//===- Any.h - Generic type erased holder of any type -----------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
///  This file provides Any, a non-template class modeled in the spirit of
 
///  std::any.  The idea is to provide a type-safe replacement for C's void*.
 
///  It can hold a value of any copy-constructible copy-assignable type
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_ANY_H
 
#define LLVM_ADT_ANY_H
 
 
 
#include "llvm/ADT/STLForwardCompat.h"
 
#include "llvm/Support/Compiler.h"
 
 
 
#include <cassert>
 
#include <memory>
 
#include <type_traits>
 
 
 
namespace llvm {
 
 
 
class LLVM_EXTERNAL_VISIBILITY Any {
 
 
 
  // The `Typeid<T>::Id` static data member below is a globally unique
 
  // identifier for the type `T`. It is explicitly marked with default
 
  // visibility so that when `-fvisibility=hidden` is used, the loader still
 
  // merges duplicate definitions across DSO boundaries.
 
  // We also cannot mark it as `const`, otherwise msvc merges all definitions
 
  // when lto is enabled, making any comparison return true.
 
  template <typename T> struct TypeId { static char Id; };
 
 
 
  struct StorageBase {
 
    virtual ~StorageBase() = default;
 
    virtual std::unique_ptr<StorageBase> clone() const = 0;
 
    virtual const void *id() const = 0;
 
  };
 
 
 
  template <typename T> struct StorageImpl : public StorageBase {
 
    explicit StorageImpl(const T &Value) : Value(Value) {}
 
 
 
    explicit StorageImpl(T &&Value) : Value(std::move(Value)) {}
 
 
 
    std::unique_ptr<StorageBase> clone() const override {
 
      return std::make_unique<StorageImpl<T>>(Value);
 
    }
 
 
 
    const void *id() const override { return &TypeId<T>::Id; }
 
 
 
    T Value;
 
 
 
  private:
 
    StorageImpl &operator=(const StorageImpl &Other) = delete;
 
    StorageImpl(const StorageImpl &Other) = delete;
 
  };
 
 
 
public:
 
  Any() = default;
 
 
 
  Any(const Any &Other)
 
      : Storage(Other.Storage ? Other.Storage->clone() : nullptr) {}
 
 
 
  // When T is Any or T is not copy-constructible we need to explicitly disable
 
  // the forwarding constructor so that the copy constructor gets selected
 
  // instead.
 
  template <typename T,
 
            std::enable_if_t<
 
                std::conjunction<
 
                    std::negation<std::is_same<std::decay_t<T>, Any>>,
 
                    // We also disable this overload when an `Any` object can be
 
                    // converted to the parameter type because in that case,
 
                    // this constructor may combine with that conversion during
 
                    // overload resolution for determining copy
 
                    // constructibility, and then when we try to determine copy
 
                    // constructibility below we may infinitely recurse. This is
 
                    // being evaluated by the standards committee as a potential
 
                    // DR in `std::any` as well, but we're going ahead and
 
                    // adopting it to work-around usage of `Any` with types that
 
                    // need to be implicitly convertible from an `Any`.
 
                    std::negation<std::is_convertible<Any, std::decay_t<T>>>,
 
                    std::is_copy_constructible<std::decay_t<T>>>::value,
 
                int> = 0>
 
  Any(T &&Value) {
 
    Storage =
 
        std::make_unique<StorageImpl<std::decay_t<T>>>(std::forward<T>(Value));
 
  }
 
 
 
  Any(Any &&Other) : Storage(std::move(Other.Storage)) {}
 
 
 
  Any &swap(Any &Other) {
 
    std::swap(Storage, Other.Storage);
 
    return *this;
 
  }
 
 
 
  Any &operator=(Any Other) {
 
    Storage = std::move(Other.Storage);
 
    return *this;
 
  }
 
 
 
  bool has_value() const { return !!Storage; }
 
 
 
  void reset() { Storage.reset(); }
 
 
 
private:
 
  // Only used for the internal llvm::Any implementation
 
  template <typename T> bool isa() const {
 
    if (!Storage)
 
      return false;
 
    return Storage->id() == &Any::TypeId<remove_cvref_t<T>>::Id;
 
  }
 
 
 
  template <class T> friend T any_cast(const Any &Value);
 
  template <class T> friend T any_cast(Any &Value);
 
  template <class T> friend T any_cast(Any &&Value);
 
  template <class T> friend const T *any_cast(const Any *Value);
 
  template <class T> friend T *any_cast(Any *Value);
 
  template <typename T> friend bool any_isa(const Any &Value);
 
 
 
  std::unique_ptr<StorageBase> Storage;
 
};
 
 
 
template <typename T> char Any::TypeId<T>::Id = 0;
 
 
 
template <typename T>
 
LLVM_DEPRECATED("Use any_cast(Any*) != nullptr instead", "any_cast")
 
bool any_isa(const Any &Value) {
 
  return Value.isa<T>();
 
}
 
 
 
template <class T> T any_cast(const Any &Value) {
 
  assert(Value.isa<T>() && "Bad any cast!");
 
  return static_cast<T>(*any_cast<remove_cvref_t<T>>(&Value));
 
}
 
 
 
template <class T> T any_cast(Any &Value) {
 
  assert(Value.isa<T>() && "Bad any cast!");
 
  return static_cast<T>(*any_cast<remove_cvref_t<T>>(&Value));
 
}
 
 
 
template <class T> T any_cast(Any &&Value) {
 
  assert(Value.isa<T>() && "Bad any cast!");
 
  return static_cast<T>(std::move(*any_cast<remove_cvref_t<T>>(&Value)));
 
}
 
 
 
template <class T> const T *any_cast(const Any *Value) {
 
  using U = remove_cvref_t<T>;
 
  if (!Value || !Value->isa<U>())
 
    return nullptr;
 
  return &static_cast<Any::StorageImpl<U> &>(*Value->Storage).Value;
 
}
 
 
 
template <class T> T *any_cast(Any *Value) {
 
  using U = std::decay_t<T>;
 
  if (!Value || !Value->isa<U>())
 
    return nullptr;
 
  return &static_cast<Any::StorageImpl<U> &>(*Value->Storage).Value;
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_ANY_H