//===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the APSInt class, which is a simple class that
/// represents an arbitrary sized integer that knows its signedness.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APSINT_H
#define LLVM_ADT_APSINT_H
#include "llvm/ADT/APInt.h"
namespace llvm {
/// An arbitrary precision integer that knows its signedness.
class [[nodiscard]] APSInt : public APInt {
bool IsUnsigned = false;
public:
/// Default constructor that creates an uninitialized APInt.
explicit APSInt() = default;
/// Create an APSInt with the specified width, default to unsigned.
explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
: APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}
explicit APSInt(APInt I, bool isUnsigned = true)
: APInt(std::move(I)), IsUnsigned(isUnsigned) {}
/// Construct an APSInt from a string representation.
///
/// This constructor interprets the string \p Str using the radix of 10.
/// The interpretation stops at the end of the string. The bit width of the
/// constructed APSInt is determined automatically.
///
/// \param Str the string to be interpreted.
explicit APSInt(StringRef Str);
/// Determine sign of this APSInt.
///
/// \returns true if this APSInt is negative, false otherwise
bool isNegative() const { return isSigned() && APInt::isNegative(); }
/// Determine if this APSInt Value is non-negative (>= 0)
///
/// \returns true if this APSInt is non-negative, false otherwise
bool isNonNegative() const { return !isNegative(); }
/// Determine if this APSInt Value is positive.
///
/// This tests if the value of this APSInt is positive (> 0). Note
/// that 0 is not a positive value.
///
/// \returns true if this APSInt is positive.
bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
APSInt &operator=(APInt RHS) {
// Retain our current sign.
APInt::operator=(std::move(RHS));
return *this;
}
APSInt &operator=(uint64_t RHS) {
// Retain our current sign.
APInt::operator=(RHS);
return *this;
}
// Query sign information.
bool isSigned() const { return !IsUnsigned; }
bool isUnsigned() const { return IsUnsigned; }
void setIsUnsigned(bool Val) { IsUnsigned = Val; }
void setIsSigned(bool Val) { IsUnsigned = !Val; }
/// Append this APSInt to the specified SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
APInt::toString(Str, Radix, isSigned());
}
using APInt::toString;
/// If this int is representable using an int64_t.
bool isRepresentableByInt64() const {
// For unsigned values with 64 active bits, they technically fit into a
// int64_t, but the user may get negative numbers and has to manually cast
// them to unsigned. Let's not bet the user has the sanity to do that and
// not give them a vague value at the first place.
return isSigned() ? isSignedIntN(64) : isIntN(63);
}
/// Get the correctly-extended \c int64_t value.
int64_t getExtValue() const {
assert(isRepresentableByInt64() && "Too many bits for int64_t");
return isSigned() ? getSExtValue() : getZExtValue();
}
std::optional<int64_t> tryExtValue() const {
return isRepresentableByInt64() ? std::optional<int64_t>(getExtValue())
: std::nullopt;
}
APSInt trunc(uint32_t width) const {
return APSInt(APInt::trunc(width), IsUnsigned);
}
APSInt extend(uint32_t width) const {
if (IsUnsigned)
return APSInt(zext(width), IsUnsigned);
else
return APSInt(sext(width), IsUnsigned);
}
APSInt extOrTrunc(uint32_t width) const {
if (IsUnsigned)
return APSInt(zextOrTrunc(width), IsUnsigned);
else
return APSInt(sextOrTrunc(width), IsUnsigned);
}
const APSInt &operator%=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = urem(RHS);
else
*this = srem(RHS);
return *this;
}
const APSInt &operator/=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
if (IsUnsigned)
*this = udiv(RHS);
else
*this = sdiv(RHS);
return *this;
}
APSInt operator%(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
}
APSInt operator/(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
}
APSInt operator>>(unsigned Amt) const {
return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
}
APSInt &operator>>=(unsigned Amt) {
if (IsUnsigned)
lshrInPlace(Amt);
else
ashrInPlace(Amt);
return *this;
}
APSInt relativeShr(unsigned Amt) const {
return IsUnsigned ? APSInt(relativeLShr(Amt), true)
: APSInt(relativeAShr(Amt), false);
}
inline bool operator<(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ult(RHS) : slt(RHS);
}
inline bool operator>(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ugt(RHS) : sgt(RHS);
}
inline bool operator<=(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? ule(RHS) : sle(RHS);
}
inline bool operator>=(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return IsUnsigned ? uge(RHS) : sge(RHS);
}
inline bool operator==(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return eq(RHS);
}
inline bool operator!=(const APSInt &RHS) const { return !((*this) == RHS); }
bool operator==(int64_t RHS) const {
return compareValues(*this, get(RHS)) == 0;
}
bool operator!=(int64_t RHS) const {
return compareValues(*this, get(RHS)) != 0;
}
bool operator<=(int64_t RHS) const {
return compareValues(*this, get(RHS)) <= 0;
}
bool operator>=(int64_t RHS) const {
return compareValues(*this, get(RHS)) >= 0;
}
bool operator<(int64_t RHS) const {
return compareValues(*this, get(RHS)) < 0;
}
bool operator>(int64_t RHS) const {
return compareValues(*this, get(RHS)) > 0;
}
// The remaining operators just wrap the logic of APInt, but retain the
// signedness information.
APSInt operator<<(unsigned Bits) const {
return APSInt(static_cast<const APInt &>(*this) << Bits, IsUnsigned);
}
APSInt &operator<<=(unsigned Amt) {
static_cast<APInt &>(*this) <<= Amt;
return *this;
}
APSInt relativeShl(unsigned Amt) const {
return IsUnsigned ? APSInt(relativeLShl(Amt), true)
: APSInt(relativeAShl(Amt), false);
}
APSInt &operator++() {
++(static_cast<APInt &>(*this));
return *this;
}
APSInt &operator--() {
--(static_cast<APInt &>(*this));
return *this;
}
APSInt operator++(int) {
return APSInt(++static_cast<APInt &>(*this), IsUnsigned);
}
APSInt operator--(int) {
return APSInt(--static_cast<APInt &>(*this), IsUnsigned);
}
APSInt operator-() const {
return APSInt(-static_cast<const APInt &>(*this), IsUnsigned);
}
APSInt &operator+=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt &>(*this) += RHS;
return *this;
}
APSInt &operator-=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt &>(*this) -= RHS;
return *this;
}
APSInt &operator*=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt &>(*this) *= RHS;
return *this;
}
APSInt &operator&=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt &>(*this) &= RHS;
return *this;
}
APSInt &operator|=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt &>(*this) |= RHS;
return *this;
}
APSInt &operator^=(const APSInt &RHS) {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
static_cast<APInt &>(*this) ^= RHS;
return *this;
}
APSInt operator&(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt &>(*this) & RHS, IsUnsigned);
}
APSInt operator|(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt &>(*this) | RHS, IsUnsigned);
}
APSInt operator^(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt &>(*this) ^ RHS, IsUnsigned);
}
APSInt operator*(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt &>(*this) * RHS, IsUnsigned);
}
APSInt operator+(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt &>(*this) + RHS, IsUnsigned);
}
APSInt operator-(const APSInt &RHS) const {
assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
return APSInt(static_cast<const APInt &>(*this) - RHS, IsUnsigned);
}
APSInt operator~() const {
return APSInt(~static_cast<const APInt &>(*this), IsUnsigned);
}
/// Return the APSInt representing the maximum integer value with the given
/// bit width and signedness.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMaxValue(numBits)
: APInt::getSignedMaxValue(numBits),
Unsigned);
}
/// Return the APSInt representing the minimum integer value with the given
/// bit width and signedness.
static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
return APSInt(Unsigned ? APInt::getMinValue(numBits)
: APInt::getSignedMinValue(numBits),
Unsigned);
}
/// Determine if two APSInts have the same value, zero- or
/// sign-extending as needed.
static bool isSameValue(const APSInt &I1, const APSInt &I2) {
return !compareValues(I1, I2);
}
/// Compare underlying values of two numbers.
static int compareValues(const APSInt &I1, const APSInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
return I1.IsUnsigned ? I1.compare(I2) : I1.compareSigned(I2);
// Check for a bit-width mismatch.
if (I1.getBitWidth() > I2.getBitWidth())
return compareValues(I1, I2.extend(I1.getBitWidth()));
if (I2.getBitWidth() > I1.getBitWidth())
return compareValues(I1.extend(I2.getBitWidth()), I2);
// We have a signedness mismatch. Check for negative values and do an
// unsigned compare if both are positive.
if (I1.isSigned()) {
assert(!I2.isSigned() && "Expected signed mismatch");
if (I1.isNegative())
return -1;
} else {
assert(I2.isSigned() && "Expected signed mismatch");
if (I2.isNegative())
return 1;
}
return I1.compare(I2);
}
static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); }
static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); }
/// Used to insert APSInt objects, or objects that contain APSInt objects,
/// into FoldingSets.
void Profile(FoldingSetNodeID &ID) const;
};
inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; }
inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; }
inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; }
inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; }
inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; }
inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; }
inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
I.print(OS, I.isSigned());
return OS;
}
/// Provide DenseMapInfo for APSInt, using the DenseMapInfo for APInt.
template <> struct DenseMapInfo<APSInt, void> {
static inline APSInt getEmptyKey() {
return APSInt(DenseMapInfo<APInt, void>::getEmptyKey());
}
static inline APSInt getTombstoneKey() {
return APSInt(DenseMapInfo<APInt, void>::getTombstoneKey());
}
static unsigned getHashValue(const APSInt &Key) {
return DenseMapInfo<APInt, void>::getHashValue(Key);
}
static bool isEqual(const APSInt &LHS, const APSInt &RHS) {
return LHS.getBitWidth() == RHS.getBitWidth() &&
LHS.isUnsigned() == RHS.isUnsigned() && LHS == RHS;
}
};
} // end namespace llvm
#endif