//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file implements a class to represent arbitrary precision
 
/// integral constant values and operations on them.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_APINT_H
 
#define LLVM_ADT_APINT_H
 
 
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/MathExtras.h"
 
#include <cassert>
 
#include <climits>
 
#include <cstring>
 
#include <optional>
 
#include <utility>
 
 
 
namespace llvm {
 
class FoldingSetNodeID;
 
class StringRef;
 
class hash_code;
 
class raw_ostream;
 
 
 
template <typename T> class SmallVectorImpl;
 
template <typename T> class ArrayRef;
 
template <typename T, typename Enable> struct DenseMapInfo;
 
 
 
class APInt;
 
 
 
inline APInt operator-(APInt);
 
 
 
//===----------------------------------------------------------------------===//
 
//                              APInt Class
 
//===----------------------------------------------------------------------===//
 
 
 
/// Class for arbitrary precision integers.
 
///
 
/// APInt is a functional replacement for common case unsigned integer type like
 
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
 
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
 
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
 
/// and methods to manipulate integer values of any bit-width. It supports both
 
/// the typical integer arithmetic and comparison operations as well as bitwise
 
/// manipulation.
 
///
 
/// The class has several invariants worth noting:
 
///   * All bit, byte, and word positions are zero-based.
 
///   * Once the bit width is set, it doesn't change except by the Truncate,
 
///     SignExtend, or ZeroExtend operations.
 
///   * All binary operators must be on APInt instances of the same bit width.
 
///     Attempting to use these operators on instances with different bit
 
///     widths will yield an assertion.
 
///   * The value is stored canonically as an unsigned value. For operations
 
///     where it makes a difference, there are both signed and unsigned variants
 
///     of the operation. For example, sdiv and udiv. However, because the bit
 
///     widths must be the same, operations such as Mul and Add produce the same
 
///     results regardless of whether the values are interpreted as signed or
 
///     not.
 
///   * In general, the class tries to follow the style of computation that LLVM
 
///     uses in its IR. This simplifies its use for LLVM.
 
///   * APInt supports zero-bit-width values, but operations that require bits
 
///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
 
///     integer).  This means that operations like zero extension and logical
 
///     shifts are defined, but sign extension and ashr is not.  Zero bit values
 
///     compare and hash equal to themselves, and countLeadingZeros returns 0.
 
///
 
class [[nodiscard]] APInt {
 
public:
 
  typedef uint64_t WordType;
 
 
 
  /// This enum is used to hold the constants we needed for APInt.
 
  enum : unsigned {
 
    /// Byte size of a word.
 
    APINT_WORD_SIZE = sizeof(WordType),
 
    /// Bits in a word.
 
    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
 
  };
 
 
 
  enum class Rounding {
 
    DOWN,
 
    TOWARD_ZERO,
 
    UP,
 
  };
 
 
 
  static constexpr WordType WORDTYPE_MAX = ~WordType(0);
 
 
 
  /// \name Constructors
 
  /// @{
 
 
 
  /// Create a new APInt of numBits width, initialized as val.
 
  ///
 
  /// If isSigned is true then val is treated as if it were a signed value
 
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
 
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
 
  /// the range of val are zero filled).
 
  ///
 
  /// \param numBits the bit width of the constructed APInt
 
  /// \param val the initial value of the APInt
 
  /// \param isSigned how to treat signedness of val
 
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
 
      : BitWidth(numBits) {
 
    if (isSingleWord()) {
 
      U.VAL = val;
 
      clearUnusedBits();
 
    } else {
 
      initSlowCase(val, isSigned);
 
    }
 
  }
 
 
 
  /// Construct an APInt of numBits width, initialized as bigVal[].
 
  ///
 
  /// Note that bigVal.size() can be smaller or larger than the corresponding
 
  /// bit width but any extraneous bits will be dropped.
 
  ///
 
  /// \param numBits the bit width of the constructed APInt
 
  /// \param bigVal a sequence of words to form the initial value of the APInt
 
  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
 
 
 
  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
 
  /// deprecated because this constructor is prone to ambiguity with the
 
  /// APInt(unsigned, uint64_t, bool) constructor.
 
  ///
 
  /// If this overload is ever deleted, care should be taken to prevent calls
 
  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
 
  /// constructor.
 
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
 
 
 
  /// Construct an APInt from a string representation.
 
  ///
 
  /// This constructor interprets the string \p str in the given radix. The
 
  /// interpretation stops when the first character that is not suitable for the
 
  /// radix is encountered, or the end of the string. Acceptable radix values
 
  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
 
  /// string to require more bits than numBits.
 
  ///
 
  /// \param numBits the bit width of the constructed APInt
 
  /// \param str the string to be interpreted
 
  /// \param radix the radix to use for the conversion
 
  APInt(unsigned numBits, StringRef str, uint8_t radix);
 
 
 
  /// Default constructor that creates an APInt with a 1-bit zero value.
 
  explicit APInt() { U.VAL = 0; }
 
 
 
  /// Copy Constructor.
 
  APInt(const APInt &that) : BitWidth(that.BitWidth) {
 
    if (isSingleWord())
 
      U.VAL = that.U.VAL;
 
    else
 
      initSlowCase(that);
 
  }
 
 
 
  /// Move Constructor.
 
  APInt(APInt &&that) : BitWidth(that.BitWidth) {
 
    memcpy(&U, &that.U, sizeof(U));
 
    that.BitWidth = 0;
 
  }
 
 
 
  /// Destructor.
 
  ~APInt() {
 
    if (needsCleanup())
 
      delete[] U.pVal;
 
  }
 
 
 
  /// @}
 
  /// \name Value Generators
 
  /// @{
 
 
 
  /// Get the '0' value for the specified bit-width.
 
  static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
 
 
 
  /// NOTE: This is soft-deprecated.  Please use `getZero()` instead.
 
  static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
 
 
 
  /// Return an APInt zero bits wide.
 
  static APInt getZeroWidth() { return getZero(0); }
 
 
 
  /// Gets maximum unsigned value of APInt for specific bit width.
 
  static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
 
 
 
  /// Gets maximum signed value of APInt for a specific bit width.
 
  static APInt getSignedMaxValue(unsigned numBits) {
 
    APInt API = getAllOnes(numBits);
 
    API.clearBit(numBits - 1);
 
    return API;
 
  }
 
 
 
  /// Gets minimum unsigned value of APInt for a specific bit width.
 
  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
 
 
 
  /// Gets minimum signed value of APInt for a specific bit width.
 
  static APInt getSignedMinValue(unsigned numBits) {
 
    APInt API(numBits, 0);
 
    API.setBit(numBits - 1);
 
    return API;
 
  }
 
 
 
  /// Get the SignMask for a specific bit width.
 
  ///
 
  /// This is just a wrapper function of getSignedMinValue(), and it helps code
 
  /// readability when we want to get a SignMask.
 
  static APInt getSignMask(unsigned BitWidth) {
 
    return getSignedMinValue(BitWidth);
 
  }
 
 
 
  /// Return an APInt of a specified width with all bits set.
 
  static APInt getAllOnes(unsigned numBits) {
 
    return APInt(numBits, WORDTYPE_MAX, true);
 
  }
 
 
 
  /// NOTE: This is soft-deprecated.  Please use `getAllOnes()` instead.
 
  static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
 
 
 
  /// Return an APInt with exactly one bit set in the result.
 
  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
 
    APInt Res(numBits, 0);
 
    Res.setBit(BitNo);
 
    return Res;
 
  }
 
 
 
  /// Get a value with a block of bits set.
 
  ///
 
  /// Constructs an APInt value that has a contiguous range of bits set. The
 
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
 
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
 
  /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
 
  /// \p hiBit.
 
  ///
 
  /// \param numBits the intended bit width of the result
 
  /// \param loBit the index of the lowest bit set.
 
  /// \param hiBit the index of the highest bit set.
 
  ///
 
  /// \returns An APInt value with the requested bits set.
 
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
 
    APInt Res(numBits, 0);
 
    Res.setBits(loBit, hiBit);
 
    return Res;
 
  }
 
 
 
  /// Wrap version of getBitsSet.
 
  /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
 
  /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
 
  /// with parameters (32, 28, 4), you would get 0xF000000F.
 
  /// If \p hiBit is equal to \p loBit, you would get a result with all bits
 
  /// set.
 
  static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
 
                                  unsigned hiBit) {
 
    APInt Res(numBits, 0);
 
    Res.setBitsWithWrap(loBit, hiBit);
 
    return Res;
 
  }
 
 
 
  /// Constructs an APInt value that has a contiguous range of bits set. The
 
  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
 
  /// bits will be zero. For example, with parameters(32, 12) you would get
 
  /// 0xFFFFF000.
 
  ///
 
  /// \param numBits the intended bit width of the result
 
  /// \param loBit the index of the lowest bit to set.
 
  ///
 
  /// \returns An APInt value with the requested bits set.
 
  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
 
    APInt Res(numBits, 0);
 
    Res.setBitsFrom(loBit);
 
    return Res;
 
  }
 
 
 
  /// Constructs an APInt value that has the top hiBitsSet bits set.
 
  ///
 
  /// \param numBits the bitwidth of the result
 
  /// \param hiBitsSet the number of high-order bits set in the result.
 
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
 
    APInt Res(numBits, 0);
 
    Res.setHighBits(hiBitsSet);
 
    return Res;
 
  }
 
 
 
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
 
  ///
 
  /// \param numBits the bitwidth of the result
 
  /// \param loBitsSet the number of low-order bits set in the result.
 
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
 
    APInt Res(numBits, 0);
 
    Res.setLowBits(loBitsSet);
 
    return Res;
 
  }
 
 
 
  /// Return a value containing V broadcasted over NewLen bits.
 
  static APInt getSplat(unsigned NewLen, const APInt &V);
 
 
 
  /// @}
 
  /// \name Value Tests
 
  /// @{
 
 
 
  /// Determine if this APInt just has one word to store value.
 
  ///
 
  /// \returns true if the number of bits <= 64, false otherwise.
 
  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
 
 
 
  /// Determine sign of this APInt.
 
  ///
 
  /// This tests the high bit of this APInt to determine if it is set.
 
  ///
 
  /// \returns true if this APInt is negative, false otherwise
 
  bool isNegative() const { return (*this)[BitWidth - 1]; }
 
 
 
  /// Determine if this APInt Value is non-negative (>= 0)
 
  ///
 
  /// This tests the high bit of the APInt to determine if it is unset.
 
  bool isNonNegative() const { return !isNegative(); }
 
 
 
  /// Determine if sign bit of this APInt is set.
 
  ///
 
  /// This tests the high bit of this APInt to determine if it is set.
 
  ///
 
  /// \returns true if this APInt has its sign bit set, false otherwise.
 
  bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
 
 
 
  /// Determine if sign bit of this APInt is clear.
 
  ///
 
  /// This tests the high bit of this APInt to determine if it is clear.
 
  ///
 
  /// \returns true if this APInt has its sign bit clear, false otherwise.
 
  bool isSignBitClear() const { return !isSignBitSet(); }
 
 
 
  /// Determine if this APInt Value is positive.
 
  ///
 
  /// This tests if the value of this APInt is positive (> 0). Note
 
  /// that 0 is not a positive value.
 
  ///
 
  /// \returns true if this APInt is positive.
 
  bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
 
 
 
  /// Determine if this APInt Value is non-positive (<= 0).
 
  ///
 
  /// \returns true if this APInt is non-positive.
 
  bool isNonPositive() const { return !isStrictlyPositive(); }
 
 
 
  /// Determine if this APInt Value only has the specified bit set.
 
  ///
 
  /// \returns true if this APInt only has the specified bit set.
 
  bool isOneBitSet(unsigned BitNo) const {
 
    return (*this)[BitNo] && countPopulation() == 1;
 
  }
 
 
 
  /// Determine if all bits are set.  This is true for zero-width values.
 
  bool isAllOnes() const {
 
    if (BitWidth == 0)
 
      return true;
 
    if (isSingleWord())
 
      return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
 
    return countTrailingOnesSlowCase() == BitWidth;
 
  }
 
 
 
  /// NOTE: This is soft-deprecated.  Please use `isAllOnes()` instead.
 
  bool isAllOnesValue() const { return isAllOnes(); }
 
 
 
  /// Determine if this value is zero, i.e. all bits are clear.
 
  bool isZero() const {
 
    if (isSingleWord())
 
      return U.VAL == 0;
 
    return countLeadingZerosSlowCase() == BitWidth;
 
  }
 
 
 
  /// NOTE: This is soft-deprecated.  Please use `isZero()` instead.
 
  bool isNullValue() const { return isZero(); }
 
 
 
  /// Determine if this is a value of 1.
 
  ///
 
  /// This checks to see if the value of this APInt is one.
 
  bool isOne() const {
 
    if (isSingleWord())
 
      return U.VAL == 1;
 
    return countLeadingZerosSlowCase() == BitWidth - 1;
 
  }
 
 
 
  /// NOTE: This is soft-deprecated.  Please use `isOne()` instead.
 
  bool isOneValue() const { return isOne(); }
 
 
 
  /// Determine if this is the largest unsigned value.
 
  ///
 
  /// This checks to see if the value of this APInt is the maximum unsigned
 
  /// value for the APInt's bit width.
 
  bool isMaxValue() const { return isAllOnes(); }
 
 
 
  /// Determine if this is the largest signed value.
 
  ///
 
  /// This checks to see if the value of this APInt is the maximum signed
 
  /// value for the APInt's bit width.
 
  bool isMaxSignedValue() const {
 
    if (isSingleWord()) {
 
      assert(BitWidth && "zero width values not allowed");
 
      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
 
    }
 
    return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
 
  }
 
 
 
  /// Determine if this is the smallest unsigned value.
 
  ///
 
  /// This checks to see if the value of this APInt is the minimum unsigned
 
  /// value for the APInt's bit width.
 
  bool isMinValue() const { return isZero(); }
 
 
 
  /// Determine if this is the smallest signed value.
 
  ///
 
  /// This checks to see if the value of this APInt is the minimum signed
 
  /// value for the APInt's bit width.
 
  bool isMinSignedValue() const {
 
    if (isSingleWord()) {
 
      assert(BitWidth && "zero width values not allowed");
 
      return U.VAL == (WordType(1) << (BitWidth - 1));
 
    }
 
    return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
 
  }
 
 
 
  /// Check if this APInt has an N-bits unsigned integer value.
 
  bool isIntN(unsigned N) const { return getActiveBits() <= N; }
 
 
 
  /// Check if this APInt has an N-bits signed integer value.
 
  bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
 
 
 
  /// Check if this APInt's value is a power of two greater than zero.
 
  ///
 
  /// \returns true if the argument APInt value is a power of two > 0.
 
  bool isPowerOf2() const {
 
    if (isSingleWord()) {
 
      assert(BitWidth && "zero width values not allowed");
 
      return isPowerOf2_64(U.VAL);
 
    }
 
    return countPopulationSlowCase() == 1;
 
  }
 
 
 
  /// Check if this APInt's negated value is a power of two greater than zero.
 
  bool isNegatedPowerOf2() const {
 
    assert(BitWidth && "zero width values not allowed");
 
    if (isNonNegative())
 
      return false;
 
    // NegatedPowerOf2 - shifted mask in the top bits.
 
    unsigned LO = countLeadingOnes();
 
    unsigned TZ = countTrailingZeros();
 
    return (LO + TZ) == BitWidth;
 
  }
 
 
 
  /// Check if the APInt's value is returned by getSignMask.
 
  ///
 
  /// \returns true if this is the value returned by getSignMask.
 
  bool isSignMask() const { return isMinSignedValue(); }
 
 
 
  /// Convert APInt to a boolean value.
 
  ///
 
  /// This converts the APInt to a boolean value as a test against zero.
 
  bool getBoolValue() const { return !isZero(); }
 
 
 
  /// If this value is smaller than the specified limit, return it, otherwise
 
  /// return the limit value.  This causes the value to saturate to the limit.
 
  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
 
    return ugt(Limit) ? Limit : getZExtValue();
 
  }
 
 
 
  /// Check if the APInt consists of a repeated bit pattern.
 
  ///
 
  /// e.g. 0x01010101 satisfies isSplat(8).
 
  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
 
  /// width without remainder.
 
  bool isSplat(unsigned SplatSizeInBits) const;
 
 
 
  /// \returns true if this APInt value is a sequence of \param numBits ones
 
  /// starting at the least significant bit with the remainder zero.
 
  bool isMask(unsigned numBits) const {
 
    assert(numBits != 0 && "numBits must be non-zero");
 
    assert(numBits <= BitWidth && "numBits out of range");
 
    if (isSingleWord())
 
      return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
 
    unsigned Ones = countTrailingOnesSlowCase();
 
    return (numBits == Ones) &&
 
           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
 
  }
 
 
 
  /// \returns true if this APInt is a non-empty sequence of ones starting at
 
  /// the least significant bit with the remainder zero.
 
  /// Ex. isMask(0x0000FFFFU) == true.
 
  bool isMask() const {
 
    if (isSingleWord())
 
      return isMask_64(U.VAL);
 
    unsigned Ones = countTrailingOnesSlowCase();
 
    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
 
  }
 
 
 
  /// Return true if this APInt value contains a non-empty sequence of ones with
 
  /// the remainder zero.
 
  bool isShiftedMask() const {
 
    if (isSingleWord())
 
      return isShiftedMask_64(U.VAL);
 
    unsigned Ones = countPopulationSlowCase();
 
    unsigned LeadZ = countLeadingZerosSlowCase();
 
    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
 
  }
 
 
 
  /// Return true if this APInt value contains a non-empty sequence of ones with
 
  /// the remainder zero. If true, \p MaskIdx will specify the index of the
 
  /// lowest set bit and \p MaskLen is updated to specify the length of the
 
  /// mask, else neither are updated.
 
  bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
 
    if (isSingleWord())
 
      return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
 
    unsigned Ones = countPopulationSlowCase();
 
    unsigned LeadZ = countLeadingZerosSlowCase();
 
    unsigned TrailZ = countTrailingZerosSlowCase();
 
    if ((Ones + LeadZ + TrailZ) != BitWidth)
 
      return false;
 
    MaskLen = Ones;
 
    MaskIdx = TrailZ;
 
    return true;
 
  }
 
 
 
  /// Compute an APInt containing numBits highbits from this APInt.
 
  ///
 
  /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
 
  /// bits and right shift to the least significant bit.
 
  ///
 
  /// \returns the high "numBits" bits of this APInt.
 
  APInt getHiBits(unsigned numBits) const;
 
 
 
  /// Compute an APInt containing numBits lowbits from this APInt.
 
  ///
 
  /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
 
  /// bits.
 
  ///
 
  /// \returns the low "numBits" bits of this APInt.
 
  APInt getLoBits(unsigned numBits) const;
 
 
 
  /// Determine if two APInts have the same value, after zero-extending
 
  /// one of them (if needed!) to ensure that the bit-widths match.
 
  static bool isSameValue(const APInt &I1, const APInt &I2) {
 
    if (I1.getBitWidth() == I2.getBitWidth())
 
      return I1 == I2;
 
 
 
    if (I1.getBitWidth() > I2.getBitWidth())
 
      return I1 == I2.zext(I1.getBitWidth());
 
 
 
    return I1.zext(I2.getBitWidth()) == I2;
 
  }
 
 
 
  /// Overload to compute a hash_code for an APInt value.
 
  friend hash_code hash_value(const APInt &Arg);
 
 
 
  /// This function returns a pointer to the internal storage of the APInt.
 
  /// This is useful for writing out the APInt in binary form without any
 
  /// conversions.
 
  const uint64_t *getRawData() const {
 
    if (isSingleWord())
 
      return &U.VAL;
 
    return &U.pVal[0];
 
  }
 
 
 
  /// @}
 
  /// \name Unary Operators
 
  /// @{
 
 
 
  /// Postfix increment operator.  Increment *this by 1.
 
  ///
 
  /// \returns a new APInt value representing the original value of *this.
 
  APInt operator++(int) {
 
    APInt API(*this);
 
    ++(*this);
 
    return API;
 
  }
 
 
 
  /// Prefix increment operator.
 
  ///
 
  /// \returns *this incremented by one
 
  APInt &operator++();
 
 
 
  /// Postfix decrement operator. Decrement *this by 1.
 
  ///
 
  /// \returns a new APInt value representing the original value of *this.
 
  APInt operator--(int) {
 
    APInt API(*this);
 
    --(*this);
 
    return API;
 
  }
 
 
 
  /// Prefix decrement operator.
 
  ///
 
  /// \returns *this decremented by one.
 
  APInt &operator--();
 
 
 
  /// Logical negation operation on this APInt returns true if zero, like normal
 
  /// integers.
 
  bool operator!() const { return isZero(); }
 
 
 
  /// @}
 
  /// \name Assignment Operators
 
  /// @{
 
 
 
  /// Copy assignment operator.
 
  ///
 
  /// \returns *this after assignment of RHS.
 
  APInt &operator=(const APInt &RHS) {
 
    // The common case (both source or dest being inline) doesn't require
 
    // allocation or deallocation.
 
    if (isSingleWord() && RHS.isSingleWord()) {
 
      U.VAL = RHS.U.VAL;
 
      BitWidth = RHS.BitWidth;
 
      return *this;
 
    }
 
 
 
    assignSlowCase(RHS);
 
    return *this;
 
  }
 
 
 
  /// Move assignment operator.
 
  APInt &operator=(APInt &&that) {
 
#ifdef EXPENSIVE_CHECKS
 
    // Some std::shuffle implementations still do self-assignment.
 
    if (this == &that)
 
      return *this;
 
#endif
 
    assert(this != &that && "Self-move not supported");
 
    if (!isSingleWord())
 
      delete[] U.pVal;
 
 
 
    // Use memcpy so that type based alias analysis sees both VAL and pVal
 
    // as modified.
 
    memcpy(&U, &that.U, sizeof(U));
 
 
 
    BitWidth = that.BitWidth;
 
    that.BitWidth = 0;
 
    return *this;
 
  }
 
 
 
  /// Assignment operator.
 
  ///
 
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
 
  /// the bit width, the excess bits are truncated. If the bit width is larger
 
  /// than 64, the value is zero filled in the unspecified high order bits.
 
  ///
 
  /// \returns *this after assignment of RHS value.
 
  APInt &operator=(uint64_t RHS) {
 
    if (isSingleWord()) {
 
      U.VAL = RHS;
 
      return clearUnusedBits();
 
    }
 
    U.pVal[0] = RHS;
 
    memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
 
    return *this;
 
  }
 
 
 
  /// Bitwise AND assignment operator.
 
  ///
 
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
 
  /// assigned to *this.
 
  ///
 
  /// \returns *this after ANDing with RHS.
 
  APInt &operator&=(const APInt &RHS) {
 
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 
    if (isSingleWord())
 
      U.VAL &= RHS.U.VAL;
 
    else
 
      andAssignSlowCase(RHS);
 
    return *this;
 
  }
 
 
 
  /// Bitwise AND assignment operator.
 
  ///
 
  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
 
  /// logically zero-extended or truncated to match the bit-width of
 
  /// the LHS.
 
  APInt &operator&=(uint64_t RHS) {
 
    if (isSingleWord()) {
 
      U.VAL &= RHS;
 
      return *this;
 
    }
 
    U.pVal[0] &= RHS;
 
    memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
 
    return *this;
 
  }
 
 
 
  /// Bitwise OR assignment operator.
 
  ///
 
  /// Performs a bitwise OR operation on this APInt and RHS. The result is
 
  /// assigned *this;
 
  ///
 
  /// \returns *this after ORing with RHS.
 
  APInt &operator|=(const APInt &RHS) {
 
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 
    if (isSingleWord())
 
      U.VAL |= RHS.U.VAL;
 
    else
 
      orAssignSlowCase(RHS);
 
    return *this;
 
  }
 
 
 
  /// Bitwise OR assignment operator.
 
  ///
 
  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
 
  /// logically zero-extended or truncated to match the bit-width of
 
  /// the LHS.
 
  APInt &operator|=(uint64_t RHS) {
 
    if (isSingleWord()) {
 
      U.VAL |= RHS;
 
      return clearUnusedBits();
 
    }
 
    U.pVal[0] |= RHS;
 
    return *this;
 
  }
 
 
 
  /// Bitwise XOR assignment operator.
 
  ///
 
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
 
  /// assigned to *this.
 
  ///
 
  /// \returns *this after XORing with RHS.
 
  APInt &operator^=(const APInt &RHS) {
 
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 
    if (isSingleWord())
 
      U.VAL ^= RHS.U.VAL;
 
    else
 
      xorAssignSlowCase(RHS);
 
    return *this;
 
  }
 
 
 
  /// Bitwise XOR assignment operator.
 
  ///
 
  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
 
  /// logically zero-extended or truncated to match the bit-width of
 
  /// the LHS.
 
  APInt &operator^=(uint64_t RHS) {
 
    if (isSingleWord()) {
 
      U.VAL ^= RHS;
 
      return clearUnusedBits();
 
    }
 
    U.pVal[0] ^= RHS;
 
    return *this;
 
  }
 
 
 
  /// Multiplication assignment operator.
 
  ///
 
  /// Multiplies this APInt by RHS and assigns the result to *this.
 
  ///
 
  /// \returns *this
 
  APInt &operator*=(const APInt &RHS);
 
  APInt &operator*=(uint64_t RHS);
 
 
 
  /// Addition assignment operator.
 
  ///
 
  /// Adds RHS to *this and assigns the result to *this.
 
  ///
 
  /// \returns *this
 
  APInt &operator+=(const APInt &RHS);
 
  APInt &operator+=(uint64_t RHS);
 
 
 
  /// Subtraction assignment operator.
 
  ///
 
  /// Subtracts RHS from *this and assigns the result to *this.
 
  ///
 
  /// \returns *this
 
  APInt &operator-=(const APInt &RHS);
 
  APInt &operator-=(uint64_t RHS);
 
 
 
  /// Left-shift assignment function.
 
  ///
 
  /// Shifts *this left by shiftAmt and assigns the result to *this.
 
  ///
 
  /// \returns *this after shifting left by ShiftAmt
 
  APInt &operator<<=(unsigned ShiftAmt) {
 
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
 
    if (isSingleWord()) {
 
      if (ShiftAmt == BitWidth)
 
        U.VAL = 0;
 
      else
 
        U.VAL <<= ShiftAmt;
 
      return clearUnusedBits();
 
    }
 
    shlSlowCase(ShiftAmt);
 
    return *this;
 
  }
 
 
 
  /// Left-shift assignment function.
 
  ///
 
  /// Shifts *this left by shiftAmt and assigns the result to *this.
 
  ///
 
  /// \returns *this after shifting left by ShiftAmt
 
  APInt &operator<<=(const APInt &ShiftAmt);
 
 
 
  /// @}
 
  /// \name Binary Operators
 
  /// @{
 
 
 
  /// Multiplication operator.
 
  ///
 
  /// Multiplies this APInt by RHS and returns the result.
 
  APInt operator*(const APInt &RHS) const;
 
 
 
  /// Left logical shift operator.
 
  ///
 
  /// Shifts this APInt left by \p Bits and returns the result.
 
  APInt operator<<(unsigned Bits) const { return shl(Bits); }
 
 
 
  /// Left logical shift operator.
 
  ///
 
  /// Shifts this APInt left by \p Bits and returns the result.
 
  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
 
 
 
  /// Arithmetic right-shift function.
 
  ///
 
  /// Arithmetic right-shift this APInt by shiftAmt.
 
  APInt ashr(unsigned ShiftAmt) const {
 
    APInt R(*this);
 
    R.ashrInPlace(ShiftAmt);
 
    return R;
 
  }
 
 
 
  /// Arithmetic right-shift this APInt by ShiftAmt in place.
 
  void ashrInPlace(unsigned ShiftAmt) {
 
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
 
    if (isSingleWord()) {
 
      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
 
      if (ShiftAmt == BitWidth)
 
        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
 
      else
 
        U.VAL = SExtVAL >> ShiftAmt;
 
      clearUnusedBits();
 
      return;
 
    }
 
    ashrSlowCase(ShiftAmt);
 
  }
 
 
 
  /// Logical right-shift function.
 
  ///
 
  /// Logical right-shift this APInt by shiftAmt.
 
  APInt lshr(unsigned shiftAmt) const {
 
    APInt R(*this);
 
    R.lshrInPlace(shiftAmt);
 
    return R;
 
  }
 
 
 
  /// Logical right-shift this APInt by ShiftAmt in place.
 
  void lshrInPlace(unsigned ShiftAmt) {
 
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
 
    if (isSingleWord()) {
 
      if (ShiftAmt == BitWidth)
 
        U.VAL = 0;
 
      else
 
        U.VAL >>= ShiftAmt;
 
      return;
 
    }
 
    lshrSlowCase(ShiftAmt);
 
  }
 
 
 
  /// Left-shift function.
 
  ///
 
  /// Left-shift this APInt by shiftAmt.
 
  APInt shl(unsigned shiftAmt) const {
 
    APInt R(*this);
 
    R <<= shiftAmt;
 
    return R;
 
  }
 
 
 
  /// relative logical shift right
 
  APInt relativeLShr(int RelativeShift) const {
 
    return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
 
  }
 
 
 
  /// relative logical shift left
 
  APInt relativeLShl(int RelativeShift) const {
 
    return relativeLShr(-RelativeShift);
 
  }
 
 
 
  /// relative arithmetic shift right
 
  APInt relativeAShr(int RelativeShift) const {
 
    return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
 
  }
 
 
 
  /// relative arithmetic shift left
 
  APInt relativeAShl(int RelativeShift) const {
 
    return relativeAShr(-RelativeShift);
 
  }
 
 
 
  /// Rotate left by rotateAmt.
 
  APInt rotl(unsigned rotateAmt) const;
 
 
 
  /// Rotate right by rotateAmt.
 
  APInt rotr(unsigned rotateAmt) const;
 
 
 
  /// Arithmetic right-shift function.
 
  ///
 
  /// Arithmetic right-shift this APInt by shiftAmt.
 
  APInt ashr(const APInt &ShiftAmt) const {
 
    APInt R(*this);
 
    R.ashrInPlace(ShiftAmt);
 
    return R;
 
  }
 
 
 
  /// Arithmetic right-shift this APInt by shiftAmt in place.
 
  void ashrInPlace(const APInt &shiftAmt);
 
 
 
  /// Logical right-shift function.
 
  ///
 
  /// Logical right-shift this APInt by shiftAmt.
 
  APInt lshr(const APInt &ShiftAmt) const {
 
    APInt R(*this);
 
    R.lshrInPlace(ShiftAmt);
 
    return R;
 
  }
 
 
 
  /// Logical right-shift this APInt by ShiftAmt in place.
 
  void lshrInPlace(const APInt &ShiftAmt);
 
 
 
  /// Left-shift function.
 
  ///
 
  /// Left-shift this APInt by shiftAmt.
 
  APInt shl(const APInt &ShiftAmt) const {
 
    APInt R(*this);
 
    R <<= ShiftAmt;
 
    return R;
 
  }
 
 
 
  /// Rotate left by rotateAmt.
 
  APInt rotl(const APInt &rotateAmt) const;
 
 
 
  /// Rotate right by rotateAmt.
 
  APInt rotr(const APInt &rotateAmt) const;
 
 
 
  /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
 
  /// equivalent to:
 
  ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
 
  APInt concat(const APInt &NewLSB) const {
 
    /// If the result will be small, then both the merged values are small.
 
    unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
 
    if (NewWidth <= APINT_BITS_PER_WORD)
 
      return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
 
    return concatSlowCase(NewLSB);
 
  }
 
 
 
  /// Unsigned division operation.
 
  ///
 
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
 
  /// RHS are treated as unsigned quantities for purposes of this division.
 
  ///
 
  /// \returns a new APInt value containing the division result, rounded towards
 
  /// zero.
 
  APInt udiv(const APInt &RHS) const;
 
  APInt udiv(uint64_t RHS) const;
 
 
 
  /// Signed division function for APInt.
 
  ///
 
  /// Signed divide this APInt by APInt RHS.
 
  ///
 
  /// The result is rounded towards zero.
 
  APInt sdiv(const APInt &RHS) const;
 
  APInt sdiv(int64_t RHS) const;
 
 
 
  /// Unsigned remainder operation.
 
  ///
 
  /// Perform an unsigned remainder operation on this APInt with RHS being the
 
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
 
  /// of this operation.
 
  ///
 
  /// \returns a new APInt value containing the remainder result
 
  APInt urem(const APInt &RHS) const;
 
  uint64_t urem(uint64_t RHS) const;
 
 
 
  /// Function for signed remainder operation.
 
  ///
 
  /// Signed remainder operation on APInt.
 
  ///
 
  /// Note that this is a true remainder operation and not a modulo operation
 
  /// because the sign follows the sign of the dividend which is *this.
 
  APInt srem(const APInt &RHS) const;
 
  int64_t srem(int64_t RHS) const;
 
 
 
  /// Dual division/remainder interface.
 
  ///
 
  /// Sometimes it is convenient to divide two APInt values and obtain both the
 
  /// quotient and remainder. This function does both operations in the same
 
  /// computation making it a little more efficient. The pair of input arguments
 
  /// may overlap with the pair of output arguments. It is safe to call
 
  /// udivrem(X, Y, X, Y), for example.
 
  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
 
                      APInt &Remainder);
 
  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
 
                      uint64_t &Remainder);
 
 
 
  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
 
                      APInt &Remainder);
 
  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
 
                      int64_t &Remainder);
 
 
 
  // Operations that return overflow indicators.
 
  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
 
  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
 
  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
 
  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
 
  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
 
  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
 
  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
 
  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
 
  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
 
 
 
  // Operations that saturate
 
  APInt sadd_sat(const APInt &RHS) const;
 
  APInt uadd_sat(const APInt &RHS) const;
 
  APInt ssub_sat(const APInt &RHS) const;
 
  APInt usub_sat(const APInt &RHS) const;
 
  APInt smul_sat(const APInt &RHS) const;
 
  APInt umul_sat(const APInt &RHS) const;
 
  APInt sshl_sat(const APInt &RHS) const;
 
  APInt ushl_sat(const APInt &RHS) const;
 
 
 
  /// Array-indexing support.
 
  ///
 
  /// \returns the bit value at bitPosition
 
  bool operator[](unsigned bitPosition) const {
 
    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
 
    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
 
  }
 
 
 
  /// @}
 
  /// \name Comparison Operators
 
  /// @{
 
 
 
  /// Equality operator.
 
  ///
 
  /// Compares this APInt with RHS for the validity of the equality
 
  /// relationship.
 
  bool operator==(const APInt &RHS) const {
 
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
 
    if (isSingleWord())
 
      return U.VAL == RHS.U.VAL;
 
    return equalSlowCase(RHS);
 
  }
 
 
 
  /// Equality operator.
 
  ///
 
  /// Compares this APInt with a uint64_t for the validity of the equality
 
  /// relationship.
 
  ///
 
  /// \returns true if *this == Val
 
  bool operator==(uint64_t Val) const {
 
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
 
  }
 
 
 
  /// Equality comparison.
 
  ///
 
  /// Compares this APInt with RHS for the validity of the equality
 
  /// relationship.
 
  ///
 
  /// \returns true if *this == Val
 
  bool eq(const APInt &RHS) const { return (*this) == RHS; }
 
 
 
  /// Inequality operator.
 
  ///
 
  /// Compares this APInt with RHS for the validity of the inequality
 
  /// relationship.
 
  ///
 
  /// \returns true if *this != Val
 
  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
 
 
 
  /// Inequality operator.
 
  ///
 
  /// Compares this APInt with a uint64_t for the validity of the inequality
 
  /// relationship.
 
  ///
 
  /// \returns true if *this != Val
 
  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
 
 
 
  /// Inequality comparison
 
  ///
 
  /// Compares this APInt with RHS for the validity of the inequality
 
  /// relationship.
 
  ///
 
  /// \returns true if *this != Val
 
  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
 
 
 
  /// Unsigned less than comparison
 
  ///
 
  /// Regards both *this and RHS as unsigned quantities and compares them for
 
  /// the validity of the less-than relationship.
 
  ///
 
  /// \returns true if *this < RHS when both are considered unsigned.
 
  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
 
 
 
  /// Unsigned less than comparison
 
  ///
 
  /// Regards both *this as an unsigned quantity and compares it with RHS for
 
  /// the validity of the less-than relationship.
 
  ///
 
  /// \returns true if *this < RHS when considered unsigned.
 
  bool ult(uint64_t RHS) const {
 
    // Only need to check active bits if not a single word.
 
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
 
  }
 
 
 
  /// Signed less than comparison
 
  ///
 
  /// Regards both *this and RHS as signed quantities and compares them for
 
  /// validity of the less-than relationship.
 
  ///
 
  /// \returns true if *this < RHS when both are considered signed.
 
  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
 
 
 
  /// Signed less than comparison
 
  ///
 
  /// Regards both *this as a signed quantity and compares it with RHS for
 
  /// the validity of the less-than relationship.
 
  ///
 
  /// \returns true if *this < RHS when considered signed.
 
  bool slt(int64_t RHS) const {
 
    return (!isSingleWord() && getSignificantBits() > 64)
 
               ? isNegative()
 
               : getSExtValue() < RHS;
 
  }
 
 
 
  /// Unsigned less or equal comparison
 
  ///
 
  /// Regards both *this and RHS as unsigned quantities and compares them for
 
  /// validity of the less-or-equal relationship.
 
  ///
 
  /// \returns true if *this <= RHS when both are considered unsigned.
 
  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
 
 
 
  /// Unsigned less or equal comparison
 
  ///
 
  /// Regards both *this as an unsigned quantity and compares it with RHS for
 
  /// the validity of the less-or-equal relationship.
 
  ///
 
  /// \returns true if *this <= RHS when considered unsigned.
 
  bool ule(uint64_t RHS) const { return !ugt(RHS); }
 
 
 
  /// Signed less or equal comparison
 
  ///
 
  /// Regards both *this and RHS as signed quantities and compares them for
 
  /// validity of the less-or-equal relationship.
 
  ///
 
  /// \returns true if *this <= RHS when both are considered signed.
 
  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
 
 
 
  /// Signed less or equal comparison
 
  ///
 
  /// Regards both *this as a signed quantity and compares it with RHS for the
 
  /// validity of the less-or-equal relationship.
 
  ///
 
  /// \returns true if *this <= RHS when considered signed.
 
  bool sle(uint64_t RHS) const { return !sgt(RHS); }
 
 
 
  /// Unsigned greater than comparison
 
  ///
 
  /// Regards both *this and RHS as unsigned quantities and compares them for
 
  /// the validity of the greater-than relationship.
 
  ///
 
  /// \returns true if *this > RHS when both are considered unsigned.
 
  bool ugt(const APInt &RHS) const { return !ule(RHS); }
 
 
 
  /// Unsigned greater than comparison
 
  ///
 
  /// Regards both *this as an unsigned quantity and compares it with RHS for
 
  /// the validity of the greater-than relationship.
 
  ///
 
  /// \returns true if *this > RHS when considered unsigned.
 
  bool ugt(uint64_t RHS) const {
 
    // Only need to check active bits if not a single word.
 
    return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
 
  }
 
 
 
  /// Signed greater than comparison
 
  ///
 
  /// Regards both *this and RHS as signed quantities and compares them for the
 
  /// validity of the greater-than relationship.
 
  ///
 
  /// \returns true if *this > RHS when both are considered signed.
 
  bool sgt(const APInt &RHS) const { return !sle(RHS); }
 
 
 
  /// Signed greater than comparison
 
  ///
 
  /// Regards both *this as a signed quantity and compares it with RHS for
 
  /// the validity of the greater-than relationship.
 
  ///
 
  /// \returns true if *this > RHS when considered signed.
 
  bool sgt(int64_t RHS) const {
 
    return (!isSingleWord() && getSignificantBits() > 64)
 
               ? !isNegative()
 
               : getSExtValue() > RHS;
 
  }
 
 
 
  /// Unsigned greater or equal comparison
 
  ///
 
  /// Regards both *this and RHS as unsigned quantities and compares them for
 
  /// validity of the greater-or-equal relationship.
 
  ///
 
  /// \returns true if *this >= RHS when both are considered unsigned.
 
  bool uge(const APInt &RHS) const { return !ult(RHS); }
 
 
 
  /// Unsigned greater or equal comparison
 
  ///
 
  /// Regards both *this as an unsigned quantity and compares it with RHS for
 
  /// the validity of the greater-or-equal relationship.
 
  ///
 
  /// \returns true if *this >= RHS when considered unsigned.
 
  bool uge(uint64_t RHS) const { return !ult(RHS); }
 
 
 
  /// Signed greater or equal comparison
 
  ///
 
  /// Regards both *this and RHS as signed quantities and compares them for
 
  /// validity of the greater-or-equal relationship.
 
  ///
 
  /// \returns true if *this >= RHS when both are considered signed.
 
  bool sge(const APInt &RHS) const { return !slt(RHS); }
 
 
 
  /// Signed greater or equal comparison
 
  ///
 
  /// Regards both *this as a signed quantity and compares it with RHS for
 
  /// the validity of the greater-or-equal relationship.
 
  ///
 
  /// \returns true if *this >= RHS when considered signed.
 
  bool sge(int64_t RHS) const { return !slt(RHS); }
 
 
 
  /// This operation tests if there are any pairs of corresponding bits
 
  /// between this APInt and RHS that are both set.
 
  bool intersects(const APInt &RHS) const {
 
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 
    if (isSingleWord())
 
      return (U.VAL & RHS.U.VAL) != 0;
 
    return intersectsSlowCase(RHS);
 
  }
 
 
 
  /// This operation checks that all bits set in this APInt are also set in RHS.
 
  bool isSubsetOf(const APInt &RHS) const {
 
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 
    if (isSingleWord())
 
      return (U.VAL & ~RHS.U.VAL) == 0;
 
    return isSubsetOfSlowCase(RHS);
 
  }
 
 
 
  /// @}
 
  /// \name Resizing Operators
 
  /// @{
 
 
 
  /// Truncate to new width.
 
  ///
 
  /// Truncate the APInt to a specified width. It is an error to specify a width
 
  /// that is greater than the current width.
 
  APInt trunc(unsigned width) const;
 
 
 
  /// Truncate to new width with unsigned saturation.
 
  ///
 
  /// If the APInt, treated as unsigned integer, can be losslessly truncated to
 
  /// the new bitwidth, then return truncated APInt. Else, return max value.
 
  APInt truncUSat(unsigned width) const;
 
 
 
  /// Truncate to new width with signed saturation.
 
  ///
 
  /// If this APInt, treated as signed integer, can be losslessly truncated to
 
  /// the new bitwidth, then return truncated APInt. Else, return either
 
  /// signed min value if the APInt was negative, or signed max value.
 
  APInt truncSSat(unsigned width) const;
 
 
 
  /// Sign extend to a new width.
 
  ///
 
  /// This operation sign extends the APInt to a new width. If the high order
 
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
 
  /// It is an error to specify a width that is less than the
 
  /// current width.
 
  APInt sext(unsigned width) const;
 
 
 
  /// Zero extend to a new width.
 
  ///
 
  /// This operation zero extends the APInt to a new width. The high order bits
 
  /// are filled with 0 bits.  It is an error to specify a width that is less
 
  /// than the current width.
 
  APInt zext(unsigned width) const;
 
 
 
  /// Sign extend or truncate to width
 
  ///
 
  /// Make this APInt have the bit width given by \p width. The value is sign
 
  /// extended, truncated, or left alone to make it that width.
 
  APInt sextOrTrunc(unsigned width) const;
 
 
 
  /// Zero extend or truncate to width
 
  ///
 
  /// Make this APInt have the bit width given by \p width. The value is zero
 
  /// extended, truncated, or left alone to make it that width.
 
  APInt zextOrTrunc(unsigned width) const;
 
 
 
  /// @}
 
  /// \name Bit Manipulation Operators
 
  /// @{
 
 
 
  /// Set every bit to 1.
 
  void setAllBits() {
 
    if (isSingleWord())
 
      U.VAL = WORDTYPE_MAX;
 
    else
 
      // Set all the bits in all the words.
 
      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
 
    // Clear the unused ones
 
    clearUnusedBits();
 
  }
 
 
 
  /// Set the given bit to 1 whose position is given as "bitPosition".
 
  void setBit(unsigned BitPosition) {
 
    assert(BitPosition < BitWidth && "BitPosition out of range");
 
    WordType Mask = maskBit(BitPosition);
 
    if (isSingleWord())
 
      U.VAL |= Mask;
 
    else
 
      U.pVal[whichWord(BitPosition)] |= Mask;
 
  }
 
 
 
  /// Set the sign bit to 1.
 
  void setSignBit() { setBit(BitWidth - 1); }
 
 
 
  /// Set a given bit to a given value.
 
  void setBitVal(unsigned BitPosition, bool BitValue) {
 
    if (BitValue)
 
      setBit(BitPosition);
 
    else
 
      clearBit(BitPosition);
 
  }
 
 
 
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
 
  /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
 
  /// setBits when \p loBit < \p hiBit.
 
  /// For \p loBit == \p hiBit wrap case, set every bit to 1.
 
  void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
 
    assert(hiBit <= BitWidth && "hiBit out of range");
 
    assert(loBit <= BitWidth && "loBit out of range");
 
    if (loBit < hiBit) {
 
      setBits(loBit, hiBit);
 
      return;
 
    }
 
    setLowBits(hiBit);
 
    setHighBits(BitWidth - loBit);
 
  }
 
 
 
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
 
  /// This function handles case when \p loBit <= \p hiBit.
 
  void setBits(unsigned loBit, unsigned hiBit) {
 
    assert(hiBit <= BitWidth && "hiBit out of range");
 
    assert(loBit <= BitWidth && "loBit out of range");
 
    assert(loBit <= hiBit && "loBit greater than hiBit");
 
    if (loBit == hiBit)
 
      return;
 
    if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
 
      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
 
      mask <<= loBit;
 
      if (isSingleWord())
 
        U.VAL |= mask;
 
      else
 
        U.pVal[0] |= mask;
 
    } else {
 
      setBitsSlowCase(loBit, hiBit);
 
    }
 
  }
 
 
 
  /// Set the top bits starting from loBit.
 
  void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
 
 
 
  /// Set the bottom loBits bits.
 
  void setLowBits(unsigned loBits) { return setBits(0, loBits); }
 
 
 
  /// Set the top hiBits bits.
 
  void setHighBits(unsigned hiBits) {
 
    return setBits(BitWidth - hiBits, BitWidth);
 
  }
 
 
 
  /// Set every bit to 0.
 
  void clearAllBits() {
 
    if (isSingleWord())
 
      U.VAL = 0;
 
    else
 
      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
 
  }
 
 
 
  /// Set a given bit to 0.
 
  ///
 
  /// Set the given bit to 0 whose position is given as "bitPosition".
 
  void clearBit(unsigned BitPosition) {
 
    assert(BitPosition < BitWidth && "BitPosition out of range");
 
    WordType Mask = ~maskBit(BitPosition);
 
    if (isSingleWord())
 
      U.VAL &= Mask;
 
    else
 
      U.pVal[whichWord(BitPosition)] &= Mask;
 
  }
 
 
 
  /// Set bottom loBits bits to 0.
 
  void clearLowBits(unsigned loBits) {
 
    assert(loBits <= BitWidth && "More bits than bitwidth");
 
    APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
 
    *this &= Keep;
 
  }
 
 
 
  /// Set the sign bit to 0.
 
  void clearSignBit() { clearBit(BitWidth - 1); }
 
 
 
  /// Toggle every bit to its opposite value.
 
  void flipAllBits() {
 
    if (isSingleWord()) {
 
      U.VAL ^= WORDTYPE_MAX;
 
      clearUnusedBits();
 
    } else {
 
      flipAllBitsSlowCase();
 
    }
 
  }
 
 
 
  /// Toggles a given bit to its opposite value.
 
  ///
 
  /// Toggle a given bit to its opposite value whose position is given
 
  /// as "bitPosition".
 
  void flipBit(unsigned bitPosition);
 
 
 
  /// Negate this APInt in place.
 
  void negate() {
 
    flipAllBits();
 
    ++(*this);
 
  }
 
 
 
  /// Insert the bits from a smaller APInt starting at bitPosition.
 
  void insertBits(const APInt &SubBits, unsigned bitPosition);
 
  void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
 
 
 
  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
 
  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
 
  uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
 
 
 
  /// @}
 
  /// \name Value Characterization Functions
 
  /// @{
 
 
 
  /// Return the number of bits in the APInt.
 
  unsigned getBitWidth() const { return BitWidth; }
 
 
 
  /// Get the number of words.
 
  ///
 
  /// Here one word's bitwidth equals to that of uint64_t.
 
  ///
 
  /// \returns the number of words to hold the integer value of this APInt.
 
  unsigned getNumWords() const { return getNumWords(BitWidth); }
 
 
 
  /// Get the number of words.
 
  ///
 
  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
 
  ///
 
  /// \returns the number of words to hold the integer value with a given bit
 
  /// width.
 
  static unsigned getNumWords(unsigned BitWidth) {
 
    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
 
  }
 
 
 
  /// Compute the number of active bits in the value
 
  ///
 
  /// This function returns the number of active bits which is defined as the
 
  /// bit width minus the number of leading zeros. This is used in several
 
  /// computations to see how "wide" the value is.
 
  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
 
 
 
  /// Compute the number of active words in the value of this APInt.
 
  ///
 
  /// This is used in conjunction with getActiveData to extract the raw value of
 
  /// the APInt.
 
  unsigned getActiveWords() const {
 
    unsigned numActiveBits = getActiveBits();
 
    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
 
  }
 
 
 
  /// Get the minimum bit size for this signed APInt
 
  ///
 
  /// Computes the minimum bit width for this APInt while considering it to be a
 
  /// signed (and probably negative) value. If the value is not negative, this
 
  /// function returns the same value as getActiveBits()+1. Otherwise, it
 
  /// returns the smallest bit width that will retain the negative value. For
 
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
 
  /// for -1, this function will always return 1.
 
  unsigned getSignificantBits() const {
 
    return BitWidth - getNumSignBits() + 1;
 
  }
 
 
 
  /// NOTE: This is soft-deprecated.  Please use `getSignificantBits()` instead.
 
  unsigned getMinSignedBits() const { return getSignificantBits(); }
 
 
 
  /// Get zero extended value
 
  ///
 
  /// This method attempts to return the value of this APInt as a zero extended
 
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
 
  /// uint64_t. Otherwise an assertion will result.
 
  uint64_t getZExtValue() const {
 
    if (isSingleWord())
 
      return U.VAL;
 
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
 
    return U.pVal[0];
 
  }
 
 
 
  /// Get zero extended value if possible
 
  ///
 
  /// This method attempts to return the value of this APInt as a zero extended
 
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
 
  /// uint64_t. Otherwise no value is returned.
 
  std::optional<uint64_t> tryZExtValue() const {
 
    return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
 
                                   : std::nullopt;
 
  };
 
 
 
  /// Get sign extended value
 
  ///
 
  /// This method attempts to return the value of this APInt as a sign extended
 
  /// int64_t. The bit width must be <= 64 or the value must fit within an
 
  /// int64_t. Otherwise an assertion will result.
 
  int64_t getSExtValue() const {
 
    if (isSingleWord())
 
      return SignExtend64(U.VAL, BitWidth);
 
    assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
 
    return int64_t(U.pVal[0]);
 
  }
 
 
 
  /// Get sign extended value if possible
 
  ///
 
  /// This method attempts to return the value of this APInt as a sign extended
 
  /// int64_t. The bitwidth must be <= 64 or the value must fit within an
 
  /// int64_t. Otherwise no value is returned.
 
  std::optional<int64_t> trySExtValue() const {
 
    return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
 
                                        : std::nullopt;
 
  };
 
 
 
  /// Get bits required for string value.
 
  ///
 
  /// This method determines how many bits are required to hold the APInt
 
  /// equivalent of the string given by \p str.
 
  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
 
 
 
  /// Get the bits that are sufficient to represent the string value. This may
 
  /// over estimate the amount of bits required, but it does not require
 
  /// parsing the value in the string.
 
  static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
 
 
 
  /// The APInt version of the countLeadingZeros functions in
 
  ///   MathExtras.h.
 
  ///
 
  /// It counts the number of zeros from the most significant bit to the first
 
  /// one bit.
 
  ///
 
  /// \returns BitWidth if the value is zero, otherwise returns the number of
 
  ///   zeros from the most significant bit to the first one bits.
 
  unsigned countLeadingZeros() const {
 
    if (isSingleWord()) {
 
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
 
      return llvm::countLeadingZeros(U.VAL) - unusedBits;
 
    }
 
    return countLeadingZerosSlowCase();
 
  }
 
 
 
  /// Count the number of leading one bits.
 
  ///
 
  /// This function is an APInt version of the countLeadingOnes
 
  /// functions in MathExtras.h. It counts the number of ones from the most
 
  /// significant bit to the first zero bit.
 
  ///
 
  /// \returns 0 if the high order bit is not set, otherwise returns the number
 
  /// of 1 bits from the most significant to the least
 
  unsigned countLeadingOnes() const {
 
    if (isSingleWord()) {
 
      if (LLVM_UNLIKELY(BitWidth == 0))
 
        return 0;
 
      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
 
    }
 
    return countLeadingOnesSlowCase();
 
  }
 
 
 
  /// Computes the number of leading bits of this APInt that are equal to its
 
  /// sign bit.
 
  unsigned getNumSignBits() const {
 
    return isNegative() ? countLeadingOnes() : countLeadingZeros();
 
  }
 
 
 
  /// Count the number of trailing zero bits.
 
  ///
 
  /// This function is an APInt version of the countTrailingZeros
 
  /// functions in MathExtras.h. It counts the number of zeros from the least
 
  /// significant bit to the first set bit.
 
  ///
 
  /// \returns BitWidth if the value is zero, otherwise returns the number of
 
  /// zeros from the least significant bit to the first one bit.
 
  unsigned countTrailingZeros() const {
 
    if (isSingleWord()) {
 
      unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
 
      return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
 
    }
 
    return countTrailingZerosSlowCase();
 
  }
 
 
 
  /// Count the number of trailing one bits.
 
  ///
 
  /// This function is an APInt version of the countTrailingOnes
 
  /// functions in MathExtras.h. It counts the number of ones from the least
 
  /// significant bit to the first zero bit.
 
  ///
 
  /// \returns BitWidth if the value is all ones, otherwise returns the number
 
  /// of ones from the least significant bit to the first zero bit.
 
  unsigned countTrailingOnes() const {
 
    if (isSingleWord())
 
      return llvm::countTrailingOnes(U.VAL);
 
    return countTrailingOnesSlowCase();
 
  }
 
 
 
  /// Count the number of bits set.
 
  ///
 
  /// This function is an APInt version of the countPopulation functions
 
  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
 
  ///
 
  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
 
  unsigned countPopulation() const {
 
    if (isSingleWord())
 
      return llvm::popcount(U.VAL);
 
    return countPopulationSlowCase();
 
  }
 
 
 
  /// @}
 
  /// \name Conversion Functions
 
  /// @{
 
  void print(raw_ostream &OS, bool isSigned) const;
 
 
 
  /// Converts an APInt to a string and append it to Str.  Str is commonly a
 
  /// SmallString.
 
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
 
                bool formatAsCLiteral = false) const;
 
 
 
  /// Considers the APInt to be unsigned and converts it into a string in the
 
  /// radix given. The radix can be 2, 8, 10 16, or 36.
 
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
 
    toString(Str, Radix, false, false);
 
  }
 
 
 
  /// Considers the APInt to be signed and converts it into a string in the
 
  /// radix given. The radix can be 2, 8, 10, 16, or 36.
 
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
 
    toString(Str, Radix, true, false);
 
  }
 
 
 
  /// \returns a byte-swapped representation of this APInt Value.
 
  APInt byteSwap() const;
 
 
 
  /// \returns the value with the bit representation reversed of this APInt
 
  /// Value.
 
  APInt reverseBits() const;
 
 
 
  /// Converts this APInt to a double value.
 
  double roundToDouble(bool isSigned) const;
 
 
 
  /// Converts this unsigned APInt to a double value.
 
  double roundToDouble() const { return roundToDouble(false); }
 
 
 
  /// Converts this signed APInt to a double value.
 
  double signedRoundToDouble() const { return roundToDouble(true); }
 
 
 
  /// Converts APInt bits to a double
 
  ///
 
  /// The conversion does not do a translation from integer to double, it just
 
  /// re-interprets the bits as a double. Note that it is valid to do this on
 
  /// any bit width. Exactly 64 bits will be translated.
 
  double bitsToDouble() const { return BitsToDouble(getWord(0)); }
 
 
 
  /// Converts APInt bits to a float
 
  ///
 
  /// The conversion does not do a translation from integer to float, it just
 
  /// re-interprets the bits as a float. Note that it is valid to do this on
 
  /// any bit width. Exactly 32 bits will be translated.
 
  float bitsToFloat() const {
 
    return BitsToFloat(static_cast<uint32_t>(getWord(0)));
 
  }
 
 
 
  /// Converts a double to APInt bits.
 
  ///
 
  /// The conversion does not do a translation from double to integer, it just
 
  /// re-interprets the bits of the double.
 
  static APInt doubleToBits(double V) {
 
    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
 
  }
 
 
 
  /// Converts a float to APInt bits.
 
  ///
 
  /// The conversion does not do a translation from float to integer, it just
 
  /// re-interprets the bits of the float.
 
  static APInt floatToBits(float V) {
 
    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
 
  }
 
 
 
  /// @}
 
  /// \name Mathematics Operations
 
  /// @{
 
 
 
  /// \returns the floor log base 2 of this APInt.
 
  unsigned logBase2() const { return getActiveBits() - 1; }
 
 
 
  /// \returns the ceil log base 2 of this APInt.
 
  unsigned ceilLogBase2() const {
 
    APInt temp(*this);
 
    --temp;
 
    return temp.getActiveBits();
 
  }
 
 
 
  /// \returns the nearest log base 2 of this APInt. Ties round up.
 
  ///
 
  /// NOTE: When we have a BitWidth of 1, we define:
 
  ///
 
  ///   log2(0) = UINT32_MAX
 
  ///   log2(1) = 0
 
  ///
 
  /// to get around any mathematical concerns resulting from
 
  /// referencing 2 in a space where 2 does no exist.
 
  unsigned nearestLogBase2() const;
 
 
 
  /// \returns the log base 2 of this APInt if its an exact power of two, -1
 
  /// otherwise
 
  int32_t exactLogBase2() const {
 
    if (!isPowerOf2())
 
      return -1;
 
    return logBase2();
 
  }
 
 
 
  /// Compute the square root.
 
  APInt sqrt() const;
 
 
 
  /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
 
  /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
 
  /// wide APInt) is unchanged due to how negation works.
 
  APInt abs() const {
 
    if (isNegative())
 
      return -(*this);
 
    return *this;
 
  }
 
 
 
  /// \returns the multiplicative inverse for a given modulo.
 
  APInt multiplicativeInverse(const APInt &modulo) const;
 
 
 
  /// @}
 
  /// \name Building-block Operations for APInt and APFloat
 
  /// @{
 
 
 
  // These building block operations operate on a representation of arbitrary
 
  // precision, two's-complement, bignum integer values. They should be
 
  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
 
  // generally a pointer to the base of an array of integer parts, representing
 
  // an unsigned bignum, and a count of how many parts there are.
 
 
 
  /// Sets the least significant part of a bignum to the input value, and zeroes
 
  /// out higher parts.
 
  static void tcSet(WordType *, WordType, unsigned);
 
 
 
  /// Assign one bignum to another.
 
  static void tcAssign(WordType *, const WordType *, unsigned);
 
 
 
  /// Returns true if a bignum is zero, false otherwise.
 
  static bool tcIsZero(const WordType *, unsigned);
 
 
 
  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
 
  static int tcExtractBit(const WordType *, unsigned bit);
 
 
 
  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
 
  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
 
  /// significant bit of DST.  All high bits above srcBITS in DST are
 
  /// zero-filled.
 
  static void tcExtract(WordType *, unsigned dstCount, const WordType *,
 
                        unsigned srcBits, unsigned srcLSB);
 
 
 
  /// Set the given bit of a bignum.  Zero-based.
 
  static void tcSetBit(WordType *, unsigned bit);
 
 
 
  /// Clear the given bit of a bignum.  Zero-based.
 
  static void tcClearBit(WordType *, unsigned bit);
 
 
 
  /// Returns the bit number of the least or most significant set bit of a
 
  /// number.  If the input number has no bits set -1U is returned.
 
  static unsigned tcLSB(const WordType *, unsigned n);
 
  static unsigned tcMSB(const WordType *parts, unsigned n);
 
 
 
  /// Negate a bignum in-place.
 
  static void tcNegate(WordType *, unsigned);
 
 
 
  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
 
  static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
 
  /// DST += RHS.  Returns the carry flag.
 
  static WordType tcAddPart(WordType *, WordType, unsigned);
 
 
 
  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
 
  static WordType tcSubtract(WordType *, const WordType *, WordType carry,
 
                             unsigned);
 
  /// DST -= RHS.  Returns the carry flag.
 
  static WordType tcSubtractPart(WordType *, WordType, unsigned);
 
 
 
  /// DST += SRC * MULTIPLIER + PART   if add is true
 
  /// DST  = SRC * MULTIPLIER + PART   if add is false
 
  ///
 
  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
 
  /// start at the same point, i.e. DST == SRC.
 
  ///
 
  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
 
  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
 
  /// result, and if all of the omitted higher parts were zero return zero,
 
  /// otherwise overflow occurred and return one.
 
  static int tcMultiplyPart(WordType *dst, const WordType *src,
 
                            WordType multiplier, WordType carry,
 
                            unsigned srcParts, unsigned dstParts, bool add);
 
 
 
  /// DST = LHS * RHS, where DST has the same width as the operands and is
 
  /// filled with the least significant parts of the result.  Returns one if
 
  /// overflow occurred, otherwise zero.  DST must be disjoint from both
 
  /// operands.
 
  static int tcMultiply(WordType *, const WordType *, const WordType *,
 
                        unsigned);
 
 
 
  /// DST = LHS * RHS, where DST has width the sum of the widths of the
 
  /// operands. No overflow occurs. DST must be disjoint from both operands.
 
  static void tcFullMultiply(WordType *, const WordType *, const WordType *,
 
                             unsigned, unsigned);
 
 
 
  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
 
  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
 
  /// REMAINDER to the remainder, return zero.  i.e.
 
  ///
 
  ///  OLD_LHS = RHS * LHS + REMAINDER
 
  ///
 
  /// SCRATCH is a bignum of the same size as the operands and result for use by
 
  /// the routine; its contents need not be initialized and are destroyed.  LHS,
 
  /// REMAINDER and SCRATCH must be distinct.
 
  static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
 
                      WordType *scratch, unsigned parts);
 
 
 
  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
 
  /// restrictions on Count.
 
  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
 
 
 
  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
 
  /// restrictions on Count.
 
  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
 
 
 
  /// Comparison (unsigned) of two bignums.
 
  static int tcCompare(const WordType *, const WordType *, unsigned);
 
 
 
  /// Increment a bignum in-place.  Return the carry flag.
 
  static WordType tcIncrement(WordType *dst, unsigned parts) {
 
    return tcAddPart(dst, 1, parts);
 
  }
 
 
 
  /// Decrement a bignum in-place.  Return the borrow flag.
 
  static WordType tcDecrement(WordType *dst, unsigned parts) {
 
    return tcSubtractPart(dst, 1, parts);
 
  }
 
 
 
  /// Used to insert APInt objects, or objects that contain APInt objects, into
 
  ///  FoldingSets.
 
  void Profile(FoldingSetNodeID &id) const;
 
 
 
  /// debug method
 
  void dump() const;
 
 
 
  /// Returns whether this instance allocated memory.
 
  bool needsCleanup() const { return !isSingleWord(); }
 
 
 
private:
 
  /// This union is used to store the integer value. When the
 
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
 
  union {
 
    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
 
    uint64_t *pVal; ///< Used to store the >64 bits integer value.
 
  } U;
 
 
 
  unsigned BitWidth = 1; ///< The number of bits in this APInt.
 
 
 
  friend struct DenseMapInfo<APInt, void>;
 
  friend class APSInt;
 
 
 
  /// This constructor is used only internally for speed of construction of
 
  /// temporaries. It is unsafe since it takes ownership of the pointer, so it
 
  /// is not public.
 
  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
 
 
 
  /// Determine which word a bit is in.
 
  ///
 
  /// \returns the word position for the specified bit position.
 
  static unsigned whichWord(unsigned bitPosition) {
 
    return bitPosition / APINT_BITS_PER_WORD;
 
  }
 
 
 
  /// Determine which bit in a word the specified bit position is in.
 
  static unsigned whichBit(unsigned bitPosition) {
 
    return bitPosition % APINT_BITS_PER_WORD;
 
  }
 
 
 
  /// Get a single bit mask.
 
  ///
 
  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
 
  /// This method generates and returns a uint64_t (word) mask for a single
 
  /// bit at a specific bit position. This is used to mask the bit in the
 
  /// corresponding word.
 
  static uint64_t maskBit(unsigned bitPosition) {
 
    return 1ULL << whichBit(bitPosition);
 
  }
 
 
 
  /// Clear unused high order bits
 
  ///
 
  /// This method is used internally to clear the top "N" bits in the high order
 
  /// word that are not used by the APInt. This is needed after the most
 
  /// significant word is assigned a value to ensure that those bits are
 
  /// zero'd out.
 
  APInt &clearUnusedBits() {
 
    // Compute how many bits are used in the final word.
 
    unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
 
 
 
    // Mask out the high bits.
 
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
 
    if (LLVM_UNLIKELY(BitWidth == 0))
 
      mask = 0;
 
 
 
    if (isSingleWord())
 
      U.VAL &= mask;
 
    else
 
      U.pVal[getNumWords() - 1] &= mask;
 
    return *this;
 
  }
 
 
 
  /// Get the word corresponding to a bit position
 
  /// \returns the corresponding word for the specified bit position.
 
  uint64_t getWord(unsigned bitPosition) const {
 
    return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
 
  }
 
 
 
  /// Utility method to change the bit width of this APInt to new bit width,
 
  /// allocating and/or deallocating as necessary. There is no guarantee on the
 
  /// value of any bits upon return. Caller should populate the bits after.
 
  void reallocate(unsigned NewBitWidth);
 
 
 
  /// Convert a char array into an APInt
 
  ///
 
  /// \param radix 2, 8, 10, 16, or 36
 
  /// Converts a string into a number.  The string must be non-empty
 
  /// and well-formed as a number of the given base. The bit-width
 
  /// must be sufficient to hold the result.
 
  ///
 
  /// This is used by the constructors that take string arguments.
 
  ///
 
  /// StringRef::getAsInteger is superficially similar but (1) does
 
  /// not assume that the string is well-formed and (2) grows the
 
  /// result to hold the input.
 
  void fromString(unsigned numBits, StringRef str, uint8_t radix);
 
 
 
  /// An internal division function for dividing APInts.
 
  ///
 
  /// This is used by the toString method to divide by the radix. It simply
 
  /// provides a more convenient form of divide for internal use since KnuthDiv
 
  /// has specific constraints on its inputs. If those constraints are not met
 
  /// then it provides a simpler form of divide.
 
  static void divide(const WordType *LHS, unsigned lhsWords,
 
                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
 
                     WordType *Remainder);
 
 
 
  /// out-of-line slow case for inline constructor
 
  void initSlowCase(uint64_t val, bool isSigned);
 
 
 
  /// shared code between two array constructors
 
  void initFromArray(ArrayRef<uint64_t> array);
 
 
 
  /// out-of-line slow case for inline copy constructor
 
  void initSlowCase(const APInt &that);
 
 
 
  /// out-of-line slow case for shl
 
  void shlSlowCase(unsigned ShiftAmt);
 
 
 
  /// out-of-line slow case for lshr.
 
  void lshrSlowCase(unsigned ShiftAmt);
 
 
 
  /// out-of-line slow case for ashr.
 
  void ashrSlowCase(unsigned ShiftAmt);
 
 
 
  /// out-of-line slow case for operator=
 
  void assignSlowCase(const APInt &RHS);
 
 
 
  /// out-of-line slow case for operator==
 
  bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for countLeadingZeros
 
  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for countLeadingOnes.
 
  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for countTrailingZeros.
 
  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for countTrailingOnes
 
  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for countPopulation
 
  unsigned countPopulationSlowCase() const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for intersects.
 
  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for isSubsetOf.
 
  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
 
 
 
  /// out-of-line slow case for setBits.
 
  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
 
 
 
  /// out-of-line slow case for flipAllBits.
 
  void flipAllBitsSlowCase();
 
 
 
  /// out-of-line slow case for concat.
 
  APInt concatSlowCase(const APInt &NewLSB) const;
 
 
 
  /// out-of-line slow case for operator&=.
 
  void andAssignSlowCase(const APInt &RHS);
 
 
 
  /// out-of-line slow case for operator|=.
 
  void orAssignSlowCase(const APInt &RHS);
 
 
 
  /// out-of-line slow case for operator^=.
 
  void xorAssignSlowCase(const APInt &RHS);
 
 
 
  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
 
  /// to, or greater than RHS.
 
  int compare(const APInt &RHS) const LLVM_READONLY;
 
 
 
  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
 
  /// to, or greater than RHS.
 
  int compareSigned(const APInt &RHS) const LLVM_READONLY;
 
 
 
  /// @}
 
};
 
 
 
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
 
 
 
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
 
 
 
/// Unary bitwise complement operator.
 
///
 
/// \returns an APInt that is the bitwise complement of \p v.
 
inline APInt operator~(APInt v) {
 
  v.flipAllBits();
 
  return v;
 
}
 
 
 
inline APInt operator&(APInt a, const APInt &b) {
 
  a &= b;
 
  return a;
 
}
 
 
 
inline APInt operator&(const APInt &a, APInt &&b) {
 
  b &= a;
 
  return std::move(b);
 
}
 
 
 
inline APInt operator&(APInt a, uint64_t RHS) {
 
  a &= RHS;
 
  return a;
 
}
 
 
 
inline APInt operator&(uint64_t LHS, APInt b) {
 
  b &= LHS;
 
  return b;
 
}
 
 
 
inline APInt operator|(APInt a, const APInt &b) {
 
  a |= b;
 
  return a;
 
}
 
 
 
inline APInt operator|(const APInt &a, APInt &&b) {
 
  b |= a;
 
  return std::move(b);
 
}
 
 
 
inline APInt operator|(APInt a, uint64_t RHS) {
 
  a |= RHS;
 
  return a;
 
}
 
 
 
inline APInt operator|(uint64_t LHS, APInt b) {
 
  b |= LHS;
 
  return b;
 
}
 
 
 
inline APInt operator^(APInt a, const APInt &b) {
 
  a ^= b;
 
  return a;
 
}
 
 
 
inline APInt operator^(const APInt &a, APInt &&b) {
 
  b ^= a;
 
  return std::move(b);
 
}
 
 
 
inline APInt operator^(APInt a, uint64_t RHS) {
 
  a ^= RHS;
 
  return a;
 
}
 
 
 
inline APInt operator^(uint64_t LHS, APInt b) {
 
  b ^= LHS;
 
  return b;
 
}
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
 
  I.print(OS, true);
 
  return OS;
 
}
 
 
 
inline APInt operator-(APInt v) {
 
  v.negate();
 
  return v;
 
}
 
 
 
inline APInt operator+(APInt a, const APInt &b) {
 
  a += b;
 
  return a;
 
}
 
 
 
inline APInt operator+(const APInt &a, APInt &&b) {
 
  b += a;
 
  return std::move(b);
 
}
 
 
 
inline APInt operator+(APInt a, uint64_t RHS) {
 
  a += RHS;
 
  return a;
 
}
 
 
 
inline APInt operator+(uint64_t LHS, APInt b) {
 
  b += LHS;
 
  return b;
 
}
 
 
 
inline APInt operator-(APInt a, const APInt &b) {
 
  a -= b;
 
  return a;
 
}
 
 
 
inline APInt operator-(const APInt &a, APInt &&b) {
 
  b.negate();
 
  b += a;
 
  return std::move(b);
 
}
 
 
 
inline APInt operator-(APInt a, uint64_t RHS) {
 
  a -= RHS;
 
  return a;
 
}
 
 
 
inline APInt operator-(uint64_t LHS, APInt b) {
 
  b.negate();
 
  b += LHS;
 
  return b;
 
}
 
 
 
inline APInt operator*(APInt a, uint64_t RHS) {
 
  a *= RHS;
 
  return a;
 
}
 
 
 
inline APInt operator*(uint64_t LHS, APInt b) {
 
  b *= LHS;
 
  return b;
 
}
 
 
 
namespace APIntOps {
 
 
 
/// Determine the smaller of two APInts considered to be signed.
 
inline const APInt &smin(const APInt &A, const APInt &B) {
 
  return A.slt(B) ? A : B;
 
}
 
 
 
/// Determine the larger of two APInts considered to be signed.
 
inline const APInt &smax(const APInt &A, const APInt &B) {
 
  return A.sgt(B) ? A : B;
 
}
 
 
 
/// Determine the smaller of two APInts considered to be unsigned.
 
inline const APInt &umin(const APInt &A, const APInt &B) {
 
  return A.ult(B) ? A : B;
 
}
 
 
 
/// Determine the larger of two APInts considered to be unsigned.
 
inline const APInt &umax(const APInt &A, const APInt &B) {
 
  return A.ugt(B) ? A : B;
 
}
 
 
 
/// Compute GCD of two unsigned APInt values.
 
///
 
/// This function returns the greatest common divisor of the two APInt values
 
/// using Stein's algorithm.
 
///
 
/// \returns the greatest common divisor of A and B.
 
APInt GreatestCommonDivisor(APInt A, APInt B);
 
 
 
/// Converts the given APInt to a double value.
 
///
 
/// Treats the APInt as an unsigned value for conversion purposes.
 
inline double RoundAPIntToDouble(const APInt &APIVal) {
 
  return APIVal.roundToDouble();
 
}
 
 
 
/// Converts the given APInt to a double value.
 
///
 
/// Treats the APInt as a signed value for conversion purposes.
 
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
 
  return APIVal.signedRoundToDouble();
 
}
 
 
 
/// Converts the given APInt to a float value.
 
inline float RoundAPIntToFloat(const APInt &APIVal) {
 
  return float(RoundAPIntToDouble(APIVal));
 
}
 
 
 
/// Converts the given APInt to a float value.
 
///
 
/// Treats the APInt as a signed value for conversion purposes.
 
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
 
  return float(APIVal.signedRoundToDouble());
 
}
 
 
 
/// Converts the given double value into a APInt.
 
///
 
/// This function convert a double value to an APInt value.
 
APInt RoundDoubleToAPInt(double Double, unsigned width);
 
 
 
/// Converts a float value into a APInt.
 
///
 
/// Converts a float value into an APInt value.
 
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
 
  return RoundDoubleToAPInt(double(Float), width);
 
}
 
 
 
/// Return A unsign-divided by B, rounded by the given rounding mode.
 
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
 
 
 
/// Return A sign-divided by B, rounded by the given rounding mode.
 
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
 
 
 
/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
 
/// (e.g. 32 for i32).
 
/// This function finds the smallest number n, such that
 
/// (a) n >= 0 and q(n) = 0, or
 
/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
 
///     integers, belong to two different intervals [Rk, Rk+R),
 
///     where R = 2^BW, and k is an integer.
 
/// The idea here is to find when q(n) "overflows" 2^BW, while at the
 
/// same time "allowing" subtraction. In unsigned modulo arithmetic a
 
/// subtraction (treated as addition of negated numbers) would always
 
/// count as an overflow, but here we want to allow values to decrease
 
/// and increase as long as they are within the same interval.
 
/// Specifically, adding of two negative numbers should not cause an
 
/// overflow (as long as the magnitude does not exceed the bit width).
 
/// On the other hand, given a positive number, adding a negative
 
/// number to it can give a negative result, which would cause the
 
/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
 
/// treated as a special case of an overflow.
 
///
 
/// This function returns std::nullopt if after finding k that minimizes the
 
/// positive solution to q(n) = kR, both solutions are contained between
 
/// two consecutive integers.
 
///
 
/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
 
/// in arithmetic modulo 2^BW, and treating the values as signed) by the
 
/// virtue of *signed* overflow. This function will *not* find such an n,
 
/// however it may find a value of n satisfying the inequalities due to
 
/// an *unsigned* overflow (if the values are treated as unsigned).
 
/// To find a solution for a signed overflow, treat it as a problem of
 
/// finding an unsigned overflow with a range with of BW-1.
 
///
 
/// The returned value may have a different bit width from the input
 
/// coefficients.
 
std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
 
                                                unsigned RangeWidth);
 
 
 
/// Compare two values, and if they are different, return the position of the
 
/// most significant bit that is different in the values.
 
std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
 
                                                       const APInt &B);
 
 
 
/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
 
/// by \param A to \param NewBitWidth bits.
 
///
 
/// MatchAnyBits: (Default)
 
/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
 
/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
 
///
 
/// MatchAllBits:
 
/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
 
/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
 
/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
 
APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
 
                   bool MatchAllBits = false);
 
} // namespace APIntOps
 
 
 
// See friend declaration above. This additional declaration is required in
 
// order to compile LLVM with IBM xlC compiler.
 
hash_code hash_value(const APInt &Arg);
 
 
 
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
 
/// with the integer held in IntVal.
 
void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
 
 
 
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
 
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
 
void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
 
 
 
/// Provide DenseMapInfo for APInt.
 
template <> struct DenseMapInfo<APInt, void> {
 
  static inline APInt getEmptyKey() {
 
    APInt V(nullptr, 0);
 
    V.U.VAL = ~0ULL;
 
    return V;
 
  }
 
 
 
  static inline APInt getTombstoneKey() {
 
    APInt V(nullptr, 0);
 
    V.U.VAL = ~1ULL;
 
    return V;
 
  }
 
 
 
  static unsigned getHashValue(const APInt &Key);
 
 
 
  static bool isEqual(const APInt &LHS, const APInt &RHS) {
 
    return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
 
  }
 
};
 
 
 
} // namespace llvm
 
 
 
#endif