//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file declares a class to represent arbitrary precision floating point
 
/// values and provide a variety of arithmetic operations on them.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_APFLOAT_H
 
#define LLVM_ADT_APFLOAT_H
 
 
 
#include "llvm/ADT/APInt.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/FloatingPointMode.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <memory>
 
 
 
#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
 
  do {                                                                         \
 
    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
 
      return U.IEEE.METHOD_CALL;                                               \
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
 
      return U.Double.METHOD_CALL;                                             \
 
    llvm_unreachable("Unexpected semantics");                                  \
 
  } while (false)
 
 
 
namespace llvm {
 
 
 
struct fltSemantics;
 
class APSInt;
 
class StringRef;
 
class APFloat;
 
class raw_ostream;
 
 
 
template <typename T> class Expected;
 
template <typename T> class SmallVectorImpl;
 
 
 
/// Enum that represents what fraction of the LSB truncated bits of an fp number
 
/// represent.
 
///
 
/// This essentially combines the roles of guard and sticky bits.
 
enum lostFraction { // Example of truncated bits:
 
  lfExactlyZero,    // 000000
 
  lfLessThanHalf,   // 0xxxxx  x's not all zero
 
  lfExactlyHalf,    // 100000
 
  lfMoreThanHalf    // 1xxxxx  x's not all zero
 
};
 
 
 
/// A self-contained host- and target-independent arbitrary-precision
 
/// floating-point software implementation.
 
///
 
/// APFloat uses bignum integer arithmetic as provided by static functions in
 
/// the APInt class.  The library will work with bignum integers whose parts are
 
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
 
///
 
/// Written for clarity rather than speed, in particular with a view to use in
 
/// the front-end of a cross compiler so that target arithmetic can be correctly
 
/// performed on the host.  Performance should nonetheless be reasonable,
 
/// particularly for its intended use.  It may be useful as a base
 
/// implementation for a run-time library during development of a faster
 
/// target-specific one.
 
///
 
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
 
/// implemented operations.  Currently implemented operations are add, subtract,
 
/// multiply, divide, fused-multiply-add, conversion-to-float,
 
/// conversion-to-integer and conversion-from-integer.  New rounding modes
 
/// (e.g. away from zero) can be added with three or four lines of code.
 
///
 
/// Four formats are built-in: IEEE single precision, double precision,
 
/// quadruple precision, and x87 80-bit extended double (when operating with
 
/// full extended precision).  Adding a new format that obeys IEEE semantics
 
/// only requires adding two lines of code: a declaration and definition of the
 
/// format.
 
///
 
/// All operations return the status of that operation as an exception bit-mask,
 
/// so multiple operations can be done consecutively with their results or-ed
 
/// together.  The returned status can be useful for compiler diagnostics; e.g.,
 
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
 
/// and compiler optimizers can determine what exceptions would be raised by
 
/// folding operations and optimize, or perhaps not optimize, accordingly.
 
///
 
/// At present, underflow tininess is detected after rounding; it should be
 
/// straight forward to add support for the before-rounding case too.
 
///
 
/// The library reads hexadecimal floating point numbers as per C99, and
 
/// correctly rounds if necessary according to the specified rounding mode.
 
/// Syntax is required to have been validated by the caller.  It also converts
 
/// floating point numbers to hexadecimal text as per the C99 %a and %A
 
/// conversions.  The output precision (or alternatively the natural minimal
 
/// precision) can be specified; if the requested precision is less than the
 
/// natural precision the output is correctly rounded for the specified rounding
 
/// mode.
 
///
 
/// It also reads decimal floating point numbers and correctly rounds according
 
/// to the specified rounding mode.
 
///
 
/// Conversion to decimal text is not currently implemented.
 
///
 
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
 
/// signed exponent, and the significand as an array of integer parts.  After
 
/// normalization of a number of precision P the exponent is within the range of
 
/// the format, and if the number is not denormal the P-th bit of the
 
/// significand is set as an explicit integer bit.  For denormals the most
 
/// significant bit is shifted right so that the exponent is maintained at the
 
/// format's minimum, so that the smallest denormal has just the least
 
/// significant bit of the significand set.  The sign of zeroes and infinities
 
/// is significant; the exponent and significand of such numbers is not stored,
 
/// but has a known implicit (deterministic) value: 0 for the significands, 0
 
/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
 
/// significand are deterministic, although not really meaningful, and preserved
 
/// in non-conversion operations.  The exponent is implicitly all 1 bits.
 
///
 
/// APFloat does not provide any exception handling beyond default exception
 
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
 
/// by encoding Signaling NaNs with the first bit of its trailing significand as
 
/// 0.
 
///
 
/// TODO
 
/// ====
 
///
 
/// Some features that may or may not be worth adding:
 
///
 
/// Binary to decimal conversion (hard).
 
///
 
/// Optional ability to detect underflow tininess before rounding.
 
///
 
/// New formats: x87 in single and double precision mode (IEEE apart from
 
/// extended exponent range) (hard).
 
///
 
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
 
///
 
 
 
// This is the common type definitions shared by APFloat and its internal
 
// implementation classes. This struct should not define any non-static data
 
// members.
 
struct APFloatBase {
 
  typedef APInt::WordType integerPart;
 
  static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
 
 
 
  /// A signed type to represent a floating point numbers unbiased exponent.
 
  typedef int32_t ExponentType;
 
 
 
  /// \name Floating Point Semantics.
 
  /// @{
 
  enum Semantics {
 
    S_IEEEhalf,
 
    S_BFloat,
 
    S_IEEEsingle,
 
    S_IEEEdouble,
 
    S_IEEEquad,
 
    S_PPCDoubleDouble,
 
    // 8-bit floating point number following IEEE-754 conventions with bit
 
    // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433.
 
    S_Float8E5M2,
 
    // 8-bit floating point number mostly following IEEE-754 conventions with
 
    // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433.
 
    // Unlike IEEE-754 types, there are no infinity values, and NaN is
 
    // represented with the exponent and mantissa bits set to all 1s.
 
    S_Float8E4M3FN,
 
    S_x87DoubleExtended,
 
    S_MaxSemantics = S_x87DoubleExtended,
 
  };
 
 
 
  static const llvm::fltSemantics &EnumToSemantics(Semantics S);
 
  static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
 
 
 
  static const fltSemantics &IEEEhalf() LLVM_READNONE;
 
  static const fltSemantics &BFloat() LLVM_READNONE;
 
  static const fltSemantics &IEEEsingle() LLVM_READNONE;
 
  static const fltSemantics &IEEEdouble() LLVM_READNONE;
 
  static const fltSemantics &IEEEquad() LLVM_READNONE;
 
  static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
 
  static const fltSemantics &Float8E5M2() LLVM_READNONE;
 
  static const fltSemantics &Float8E4M3FN() LLVM_READNONE;
 
  static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
 
 
 
  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
 
  /// anything real.
 
  static const fltSemantics &Bogus() LLVM_READNONE;
 
 
 
  /// @}
 
 
 
  /// IEEE-754R 5.11: Floating Point Comparison Relations.
 
  enum cmpResult {
 
    cmpLessThan,
 
    cmpEqual,
 
    cmpGreaterThan,
 
    cmpUnordered
 
  };
 
 
 
  /// IEEE-754R 4.3: Rounding-direction attributes.
 
  using roundingMode = llvm::RoundingMode;
 
 
 
  static constexpr roundingMode rmNearestTiesToEven =
 
                                                RoundingMode::NearestTiesToEven;
 
  static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
 
  static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
 
  static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
 
  static constexpr roundingMode rmNearestTiesToAway =
 
                                                RoundingMode::NearestTiesToAway;
 
 
 
  /// IEEE-754R 7: Default exception handling.
 
  ///
 
  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
 
  ///
 
  /// APFloat models this behavior specified by IEEE-754:
 
  ///   "For operations producing results in floating-point format, the default
 
  ///    result of an operation that signals the invalid operation exception
 
  ///    shall be a quiet NaN."
 
  enum opStatus {
 
    opOK = 0x00,
 
    opInvalidOp = 0x01,
 
    opDivByZero = 0x02,
 
    opOverflow = 0x04,
 
    opUnderflow = 0x08,
 
    opInexact = 0x10
 
  };
 
 
 
  /// Category of internally-represented number.
 
  enum fltCategory {
 
    fcInfinity,
 
    fcNaN,
 
    fcNormal,
 
    fcZero
 
  };
 
 
 
  /// Convenience enum used to construct an uninitialized APFloat.
 
  enum uninitializedTag {
 
    uninitialized
 
  };
 
 
 
  /// Enumeration of \c ilogb error results.
 
  enum IlogbErrorKinds {
 
    IEK_Zero = INT_MIN + 1,
 
    IEK_NaN = INT_MIN,
 
    IEK_Inf = INT_MAX
 
  };
 
 
 
  static unsigned int semanticsPrecision(const fltSemantics &);
 
  static ExponentType semanticsMinExponent(const fltSemantics &);
 
  static ExponentType semanticsMaxExponent(const fltSemantics &);
 
  static unsigned int semanticsSizeInBits(const fltSemantics &);
 
 
 
  /// Returns the size of the floating point number (in bits) in the given
 
  /// semantics.
 
  static unsigned getSizeInBits(const fltSemantics &Sem);
 
};
 
 
 
namespace detail {
 
 
 
class IEEEFloat final : public APFloatBase {
 
public:
 
  /// \name Constructors
 
  /// @{
 
 
 
  IEEEFloat(const fltSemantics &); // Default construct to +0.0
 
  IEEEFloat(const fltSemantics &, integerPart);
 
  IEEEFloat(const fltSemantics &, uninitializedTag);
 
  IEEEFloat(const fltSemantics &, const APInt &);
 
  explicit IEEEFloat(double d);
 
  explicit IEEEFloat(float f);
 
  IEEEFloat(const IEEEFloat &);
 
  IEEEFloat(IEEEFloat &&);
 
  ~IEEEFloat();
 
 
 
  /// @}
 
 
 
  /// Returns whether this instance allocated memory.
 
  bool needsCleanup() const { return partCount() > 1; }
 
 
 
  /// \name Convenience "constructors"
 
  /// @{
 
 
 
  /// @}
 
 
 
  /// \name Arithmetic
 
  /// @{
 
 
 
  opStatus add(const IEEEFloat &, roundingMode);
 
  opStatus subtract(const IEEEFloat &, roundingMode);
 
  opStatus multiply(const IEEEFloat &, roundingMode);
 
  opStatus divide(const IEEEFloat &, roundingMode);
 
  /// IEEE remainder.
 
  opStatus remainder(const IEEEFloat &);
 
  /// C fmod, or llvm frem.
 
  opStatus mod(const IEEEFloat &);
 
  opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
 
  opStatus roundToIntegral(roundingMode);
 
  /// IEEE-754R 5.3.1: nextUp/nextDown.
 
  opStatus next(bool nextDown);
 
 
 
  /// @}
 
 
 
  /// \name Sign operations.
 
  /// @{
 
 
 
  void changeSign();
 
 
 
  /// @}
 
 
 
  /// \name Conversions
 
  /// @{
 
 
 
  opStatus convert(const fltSemantics &, roundingMode, bool *);
 
  opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
 
                            roundingMode, bool *) const;
 
  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
 
  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
 
                                          bool, roundingMode);
 
  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
 
                                          bool, roundingMode);
 
  Expected<opStatus> convertFromString(StringRef, roundingMode);
 
  APInt bitcastToAPInt() const;
 
  double convertToDouble() const;
 
  float convertToFloat() const;
 
 
 
  /// @}
 
 
 
  /// The definition of equality is not straightforward for floating point, so
 
  /// we won't use operator==.  Use one of the following, or write whatever it
 
  /// is you really mean.
 
  bool operator==(const IEEEFloat &) const = delete;
 
 
 
  /// IEEE comparison with another floating point number (NaNs compare
 
  /// unordered, 0==-0).
 
  cmpResult compare(const IEEEFloat &) const;
 
 
 
  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
 
  bool bitwiseIsEqual(const IEEEFloat &) const;
 
 
 
  /// Write out a hexadecimal representation of the floating point value to DST,
 
  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
 
  /// Return the number of characters written, excluding the terminating NUL.
 
  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
 
                                  bool upperCase, roundingMode) const;
 
 
 
  /// \name IEEE-754R 5.7.2 General operations.
 
  /// @{
 
 
 
  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
 
  /// negative.
 
  ///
 
  /// This applies to zeros and NaNs as well.
 
  bool isNegative() const { return sign; }
 
 
 
  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
 
  ///
 
  /// This implies that the current value of the float is not zero, subnormal,
 
  /// infinite, or NaN following the definition of normality from IEEE-754R.
 
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
 
 
 
  /// Returns true if and only if the current value is zero, subnormal, or
 
  /// normal.
 
  ///
 
  /// This means that the value is not infinite or NaN.
 
  bool isFinite() const { return !isNaN() && !isInfinity(); }
 
 
 
  /// Returns true if and only if the float is plus or minus zero.
 
  bool isZero() const { return category == fcZero; }
 
 
 
  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
 
  /// denormal.
 
  bool isDenormal() const;
 
 
 
  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
 
  bool isInfinity() const { return category == fcInfinity; }
 
 
 
  /// Returns true if and only if the float is a quiet or signaling NaN.
 
  bool isNaN() const { return category == fcNaN; }
 
 
 
  /// Returns true if and only if the float is a signaling NaN.
 
  bool isSignaling() const;
 
 
 
  /// @}
 
 
 
  /// \name Simple Queries
 
  /// @{
 
 
 
  fltCategory getCategory() const { return category; }
 
  const fltSemantics &getSemantics() const { return *semantics; }
 
  bool isNonZero() const { return category != fcZero; }
 
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
 
  bool isPosZero() const { return isZero() && !isNegative(); }
 
  bool isNegZero() const { return isZero() && isNegative(); }
 
 
 
  /// Returns true if and only if the number has the smallest possible non-zero
 
  /// magnitude in the current semantics.
 
  bool isSmallest() const;
 
 
 
  /// Returns true if this is the smallest (by magnitude) normalized finite
 
  /// number in the given semantics.
 
  bool isSmallestNormalized() const;
 
 
 
  /// Returns true if and only if the number has the largest possible finite
 
  /// magnitude in the current semantics.
 
  bool isLargest() const;
 
 
 
  /// Returns true if and only if the number is an exact integer.
 
  bool isInteger() const;
 
 
 
  /// @}
 
 
 
  IEEEFloat &operator=(const IEEEFloat &);
 
  IEEEFloat &operator=(IEEEFloat &&);
 
 
 
  /// Overload to compute a hash code for an APFloat value.
 
  ///
 
  /// Note that the use of hash codes for floating point values is in general
 
  /// frought with peril. Equality is hard to define for these values. For
 
  /// example, should negative and positive zero hash to different codes? Are
 
  /// they equal or not? This hash value implementation specifically
 
  /// emphasizes producing different codes for different inputs in order to
 
  /// be used in canonicalization and memoization. As such, equality is
 
  /// bitwiseIsEqual, and 0 != -0.
 
  friend hash_code hash_value(const IEEEFloat &Arg);
 
 
 
  /// Converts this value into a decimal string.
 
  ///
 
  /// \param FormatPrecision The maximum number of digits of
 
  ///   precision to output.  If there are fewer digits available,
 
  ///   zero padding will not be used unless the value is
 
  ///   integral and small enough to be expressed in
 
  ///   FormatPrecision digits.  0 means to use the natural
 
  ///   precision of the number.
 
  /// \param FormatMaxPadding The maximum number of zeros to
 
  ///   consider inserting before falling back to scientific
 
  ///   notation.  0 means to always use scientific notation.
 
  ///
 
  /// \param TruncateZero Indicate whether to remove the trailing zero in
 
  ///   fraction part or not. Also setting this parameter to false forcing
 
  ///   producing of output more similar to default printf behavior.
 
  ///   Specifically the lower e is used as exponent delimiter and exponent
 
  ///   always contains no less than two digits.
 
  ///
 
  /// Number       Precision    MaxPadding      Result
 
  /// ------       ---------    ----------      ------
 
  /// 1.01E+4              5             2       10100
 
  /// 1.01E+4              4             2       1.01E+4
 
  /// 1.01E+4              5             1       1.01E+4
 
  /// 1.01E-2              5             2       0.0101
 
  /// 1.01E-2              4             2       0.0101
 
  /// 1.01E-2              4             1       1.01E-2
 
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
 
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
 
 
 
  /// If this value has an exact multiplicative inverse, store it in inv and
 
  /// return true.
 
  bool getExactInverse(APFloat *inv) const;
 
 
 
  /// Returns the exponent of the internal representation of the APFloat.
 
  ///
 
  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
 
  /// For special APFloat values, this returns special error codes:
 
  ///
 
  ///   NaN -> \c IEK_NaN
 
  ///   0   -> \c IEK_Zero
 
  ///   Inf -> \c IEK_Inf
 
  ///
 
  friend int ilogb(const IEEEFloat &Arg);
 
 
 
  /// Returns: X * 2^Exp for integral exponents.
 
  friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
 
 
 
  friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
 
 
 
  /// \name Special value setters.
 
  /// @{
 
 
 
  void makeLargest(bool Neg = false);
 
  void makeSmallest(bool Neg = false);
 
  void makeNaN(bool SNaN = false, bool Neg = false,
 
               const APInt *fill = nullptr);
 
  void makeInf(bool Neg = false);
 
  void makeZero(bool Neg = false);
 
  void makeQuiet();
 
 
 
  /// Returns the smallest (by magnitude) normalized finite number in the given
 
  /// semantics.
 
  ///
 
  /// \param Negative - True iff the number should be negative
 
  void makeSmallestNormalized(bool Negative = false);
 
 
 
  /// @}
 
 
 
  cmpResult compareAbsoluteValue(const IEEEFloat &) const;
 
 
 
private:
 
  /// \name Simple Queries
 
  /// @{
 
 
 
  integerPart *significandParts();
 
  const integerPart *significandParts() const;
 
  unsigned int partCount() const;
 
 
 
  /// @}
 
 
 
  /// \name Significand operations.
 
  /// @{
 
 
 
  integerPart addSignificand(const IEEEFloat &);
 
  integerPart subtractSignificand(const IEEEFloat &, integerPart);
 
  lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
 
  lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
 
  lostFraction multiplySignificand(const IEEEFloat&);
 
  lostFraction divideSignificand(const IEEEFloat &);
 
  void incrementSignificand();
 
  void initialize(const fltSemantics *);
 
  void shiftSignificandLeft(unsigned int);
 
  lostFraction shiftSignificandRight(unsigned int);
 
  unsigned int significandLSB() const;
 
  unsigned int significandMSB() const;
 
  void zeroSignificand();
 
  /// Return true if the significand excluding the integral bit is all ones.
 
  bool isSignificandAllOnes() const;
 
  bool isSignificandAllOnesExceptLSB() const;
 
  /// Return true if the significand excluding the integral bit is all zeros.
 
  bool isSignificandAllZeros() const;
 
  bool isSignificandAllZerosExceptMSB() const;
 
 
 
  /// @}
 
 
 
  /// \name Arithmetic on special values.
 
  /// @{
 
 
 
  opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
 
  opStatus divideSpecials(const IEEEFloat &);
 
  opStatus multiplySpecials(const IEEEFloat &);
 
  opStatus modSpecials(const IEEEFloat &);
 
  opStatus remainderSpecials(const IEEEFloat&);
 
 
 
  /// @}
 
 
 
  /// \name Miscellany
 
  /// @{
 
 
 
  bool convertFromStringSpecials(StringRef str);
 
  opStatus normalize(roundingMode, lostFraction);
 
  opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
 
  opStatus handleOverflow(roundingMode);
 
  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
 
  opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
 
                                        unsigned int, bool, roundingMode,
 
                                        bool *) const;
 
  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
 
                                    roundingMode);
 
  Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
 
  Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
 
  char *convertNormalToHexString(char *, unsigned int, bool,
 
                                 roundingMode) const;
 
  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
 
                                        roundingMode);
 
  ExponentType exponentNaN() const;
 
  ExponentType exponentInf() const;
 
  ExponentType exponentZero() const;
 
 
 
  /// @}
 
 
 
  APInt convertHalfAPFloatToAPInt() const;
 
  APInt convertBFloatAPFloatToAPInt() const;
 
  APInt convertFloatAPFloatToAPInt() const;
 
  APInt convertDoubleAPFloatToAPInt() const;
 
  APInt convertQuadrupleAPFloatToAPInt() const;
 
  APInt convertF80LongDoubleAPFloatToAPInt() const;
 
  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
 
  APInt convertFloat8E5M2APFloatToAPInt() const;
 
  APInt convertFloat8E4M3FNAPFloatToAPInt() const;
 
  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
 
  void initFromHalfAPInt(const APInt &api);
 
  void initFromBFloatAPInt(const APInt &api);
 
  void initFromFloatAPInt(const APInt &api);
 
  void initFromDoubleAPInt(const APInt &api);
 
  void initFromQuadrupleAPInt(const APInt &api);
 
  void initFromF80LongDoubleAPInt(const APInt &api);
 
  void initFromPPCDoubleDoubleAPInt(const APInt &api);
 
  void initFromFloat8E5M2APInt(const APInt &api);
 
  void initFromFloat8E4M3FNAPInt(const APInt &api);
 
 
 
  void assign(const IEEEFloat &);
 
  void copySignificand(const IEEEFloat &);
 
  void freeSignificand();
 
 
 
  /// Note: this must be the first data member.
 
  /// The semantics that this value obeys.
 
  const fltSemantics *semantics;
 
 
 
  /// A binary fraction with an explicit integer bit.
 
  ///
 
  /// The significand must be at least one bit wider than the target precision.
 
  union Significand {
 
    integerPart part;
 
    integerPart *parts;
 
  } significand;
 
 
 
  /// The signed unbiased exponent of the value.
 
  ExponentType exponent;
 
 
 
  /// What kind of floating point number this is.
 
  ///
 
  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
 
  /// Using the extra bit keeps it from failing under VisualStudio.
 
  fltCategory category : 3;
 
 
 
  /// Sign bit of the number.
 
  unsigned int sign : 1;
 
};
 
 
 
hash_code hash_value(const IEEEFloat &Arg);
 
int ilogb(const IEEEFloat &Arg);
 
IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
 
IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
 
 
 
// This mode implements more precise float in terms of two APFloats.
 
// The interface and layout is designed for arbitrary underlying semantics,
 
// though currently only PPCDoubleDouble semantics are supported, whose
 
// corresponding underlying semantics are IEEEdouble.
 
class DoubleAPFloat final : public APFloatBase {
 
  // Note: this must be the first data member.
 
  const fltSemantics *Semantics;
 
  std::unique_ptr<APFloat[]> Floats;
 
 
 
  opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
 
                   const APFloat &cc, roundingMode RM);
 
 
 
  opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
 
                          DoubleAPFloat &Out, roundingMode RM);
 
 
 
public:
 
  DoubleAPFloat(const fltSemantics &S);
 
  DoubleAPFloat(const fltSemantics &S, uninitializedTag);
 
  DoubleAPFloat(const fltSemantics &S, integerPart);
 
  DoubleAPFloat(const fltSemantics &S, const APInt &I);
 
  DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
 
  DoubleAPFloat(const DoubleAPFloat &RHS);
 
  DoubleAPFloat(DoubleAPFloat &&RHS);
 
 
 
  DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
 
 
 
  DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
 
    if (this != &RHS) {
 
      this->~DoubleAPFloat();
 
      new (this) DoubleAPFloat(std::move(RHS));
 
    }
 
    return *this;
 
  }
 
 
 
  bool needsCleanup() const { return Floats != nullptr; }
 
 
 
  APFloat &getFirst() { return Floats[0]; }
 
  const APFloat &getFirst() const { return Floats[0]; }
 
  APFloat &getSecond() { return Floats[1]; }
 
  const APFloat &getSecond() const { return Floats[1]; }
 
 
 
  opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
 
  opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
 
  opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
 
  opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
 
  opStatus remainder(const DoubleAPFloat &RHS);
 
  opStatus mod(const DoubleAPFloat &RHS);
 
  opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
 
                            const DoubleAPFloat &Addend, roundingMode RM);
 
  opStatus roundToIntegral(roundingMode RM);
 
  void changeSign();
 
  cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
 
 
 
  fltCategory getCategory() const;
 
  bool isNegative() const;
 
 
 
  void makeInf(bool Neg);
 
  void makeZero(bool Neg);
 
  void makeLargest(bool Neg);
 
  void makeSmallest(bool Neg);
 
  void makeSmallestNormalized(bool Neg);
 
  void makeNaN(bool SNaN, bool Neg, const APInt *fill);
 
 
 
  cmpResult compare(const DoubleAPFloat &RHS) const;
 
  bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
 
  APInt bitcastToAPInt() const;
 
  Expected<opStatus> convertFromString(StringRef, roundingMode);
 
  opStatus next(bool nextDown);
 
 
 
  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
 
                            unsigned int Width, bool IsSigned, roundingMode RM,
 
                            bool *IsExact) const;
 
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
 
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
 
                                          unsigned int InputSize, bool IsSigned,
 
                                          roundingMode RM);
 
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
 
                                          unsigned int InputSize, bool IsSigned,
 
                                          roundingMode RM);
 
  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
 
                                  bool UpperCase, roundingMode RM) const;
 
 
 
  bool isDenormal() const;
 
  bool isSmallest() const;
 
  bool isSmallestNormalized() const;
 
  bool isLargest() const;
 
  bool isInteger() const;
 
 
 
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
 
                unsigned FormatMaxPadding, bool TruncateZero = true) const;
 
 
 
  bool getExactInverse(APFloat *inv) const;
 
 
 
  friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
 
  friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
 
  friend hash_code hash_value(const DoubleAPFloat &Arg);
 
};
 
 
 
hash_code hash_value(const DoubleAPFloat &Arg);
 
 
 
} // End detail namespace
 
 
 
// This is a interface class that is currently forwarding functionalities from
 
// detail::IEEEFloat.
 
class APFloat : public APFloatBase {
 
  typedef detail::IEEEFloat IEEEFloat;
 
  typedef detail::DoubleAPFloat DoubleAPFloat;
 
 
 
  static_assert(std::is_standard_layout<IEEEFloat>::value);
 
 
 
  union Storage {
 
    const fltSemantics *semantics;
 
    IEEEFloat IEEE;
 
    DoubleAPFloat Double;
 
 
 
    explicit Storage(IEEEFloat F, const fltSemantics &S);
 
    explicit Storage(DoubleAPFloat F, const fltSemantics &S)
 
        : Double(std::move(F)) {
 
      assert(&S == &PPCDoubleDouble());
 
    }
 
 
 
    template <typename... ArgTypes>
 
    Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
 
      if (usesLayout<IEEEFloat>(Semantics)) {
 
        new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
 
        return;
 
      }
 
      if (usesLayout<DoubleAPFloat>(Semantics)) {
 
        new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
 
        return;
 
      }
 
      llvm_unreachable("Unexpected semantics");
 
    }
 
 
 
    ~Storage() {
 
      if (usesLayout<IEEEFloat>(*semantics)) {
 
        IEEE.~IEEEFloat();
 
        return;
 
      }
 
      if (usesLayout<DoubleAPFloat>(*semantics)) {
 
        Double.~DoubleAPFloat();
 
        return;
 
      }
 
      llvm_unreachable("Unexpected semantics");
 
    }
 
 
 
    Storage(const Storage &RHS) {
 
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
 
        new (this) IEEEFloat(RHS.IEEE);
 
        return;
 
      }
 
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
 
        new (this) DoubleAPFloat(RHS.Double);
 
        return;
 
      }
 
      llvm_unreachable("Unexpected semantics");
 
    }
 
 
 
    Storage(Storage &&RHS) {
 
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
 
        new (this) IEEEFloat(std::move(RHS.IEEE));
 
        return;
 
      }
 
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
 
        new (this) DoubleAPFloat(std::move(RHS.Double));
 
        return;
 
      }
 
      llvm_unreachable("Unexpected semantics");
 
    }
 
 
 
    Storage &operator=(const Storage &RHS) {
 
      if (usesLayout<IEEEFloat>(*semantics) &&
 
          usesLayout<IEEEFloat>(*RHS.semantics)) {
 
        IEEE = RHS.IEEE;
 
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
 
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
 
        Double = RHS.Double;
 
      } else if (this != &RHS) {
 
        this->~Storage();
 
        new (this) Storage(RHS);
 
      }
 
      return *this;
 
    }
 
 
 
    Storage &operator=(Storage &&RHS) {
 
      if (usesLayout<IEEEFloat>(*semantics) &&
 
          usesLayout<IEEEFloat>(*RHS.semantics)) {
 
        IEEE = std::move(RHS.IEEE);
 
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
 
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
 
        Double = std::move(RHS.Double);
 
      } else if (this != &RHS) {
 
        this->~Storage();
 
        new (this) Storage(std::move(RHS));
 
      }
 
      return *this;
 
    }
 
  } U;
 
 
 
  template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
 
    static_assert(std::is_same<T, IEEEFloat>::value ||
 
                  std::is_same<T, DoubleAPFloat>::value);
 
    if (std::is_same<T, DoubleAPFloat>::value) {
 
      return &Semantics == &PPCDoubleDouble();
 
    }
 
    return &Semantics != &PPCDoubleDouble();
 
  }
 
 
 
  IEEEFloat &getIEEE() {
 
    if (usesLayout<IEEEFloat>(*U.semantics))
 
      return U.IEEE;
 
    if (usesLayout<DoubleAPFloat>(*U.semantics))
 
      return U.Double.getFirst().U.IEEE;
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
 
 
  const IEEEFloat &getIEEE() const {
 
    if (usesLayout<IEEEFloat>(*U.semantics))
 
      return U.IEEE;
 
    if (usesLayout<DoubleAPFloat>(*U.semantics))
 
      return U.Double.getFirst().U.IEEE;
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
 
 
  void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
 
 
 
  void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
 
 
 
  void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
 
  }
 
 
 
  void makeLargest(bool Neg) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
 
  }
 
 
 
  void makeSmallest(bool Neg) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
 
  }
 
 
 
  void makeSmallestNormalized(bool Neg) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
 
  }
 
 
 
  explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
 
  explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
 
      : U(std::move(F), S) {}
 
 
 
  cmpResult compareAbsoluteValue(const APFloat &RHS) const {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only compare APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.compareAbsoluteValue(RHS.U.Double);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
 
 
public:
 
  APFloat(const fltSemantics &Semantics) : U(Semantics) {}
 
  APFloat(const fltSemantics &Semantics, StringRef S);
 
  APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
 
  template <typename T,
 
            typename = std::enable_if_t<std::is_floating_point<T>::value>>
 
  APFloat(const fltSemantics &Semantics, T V) = delete;
 
  // TODO: Remove this constructor. This isn't faster than the first one.
 
  APFloat(const fltSemantics &Semantics, uninitializedTag)
 
      : U(Semantics, uninitialized) {}
 
  APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
 
  explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
 
  explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
 
  APFloat(const APFloat &RHS) = default;
 
  APFloat(APFloat &&RHS) = default;
 
 
 
  ~APFloat() = default;
 
 
 
  bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
 
 
 
  /// Factory for Positive and Negative Zero.
 
  ///
 
  /// \param Negative True iff the number should be negative.
 
  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
 
    APFloat Val(Sem, uninitialized);
 
    Val.makeZero(Negative);
 
    return Val;
 
  }
 
 
 
  /// Factory for Positive and Negative Infinity.
 
  ///
 
  /// \param Negative True iff the number should be negative.
 
  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
 
    APFloat Val(Sem, uninitialized);
 
    Val.makeInf(Negative);
 
    return Val;
 
  }
 
 
 
  /// Factory for NaN values.
 
  ///
 
  /// \param Negative - True iff the NaN generated should be negative.
 
  /// \param payload - The unspecified fill bits for creating the NaN, 0 by
 
  /// default.  The value is truncated as necessary.
 
  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
 
                        uint64_t payload = 0) {
 
    if (payload) {
 
      APInt intPayload(64, payload);
 
      return getQNaN(Sem, Negative, &intPayload);
 
    } else {
 
      return getQNaN(Sem, Negative, nullptr);
 
    }
 
  }
 
 
 
  /// Factory for QNaN values.
 
  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
 
                         const APInt *payload = nullptr) {
 
    APFloat Val(Sem, uninitialized);
 
    Val.makeNaN(false, Negative, payload);
 
    return Val;
 
  }
 
 
 
  /// Factory for SNaN values.
 
  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
 
                         const APInt *payload = nullptr) {
 
    APFloat Val(Sem, uninitialized);
 
    Val.makeNaN(true, Negative, payload);
 
    return Val;
 
  }
 
 
 
  /// Returns the largest finite number in the given semantics.
 
  ///
 
  /// \param Negative - True iff the number should be negative
 
  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
 
    APFloat Val(Sem, uninitialized);
 
    Val.makeLargest(Negative);
 
    return Val;
 
  }
 
 
 
  /// Returns the smallest (by magnitude) finite number in the given semantics.
 
  /// Might be denormalized, which implies a relative loss of precision.
 
  ///
 
  /// \param Negative - True iff the number should be negative
 
  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
 
    APFloat Val(Sem, uninitialized);
 
    Val.makeSmallest(Negative);
 
    return Val;
 
  }
 
 
 
  /// Returns the smallest (by magnitude) normalized finite number in the given
 
  /// semantics.
 
  ///
 
  /// \param Negative - True iff the number should be negative
 
  static APFloat getSmallestNormalized(const fltSemantics &Sem,
 
                                       bool Negative = false) {
 
    APFloat Val(Sem, uninitialized);
 
    Val.makeSmallestNormalized(Negative);
 
    return Val;
 
  }
 
 
 
  /// Returns a float which is bitcasted from an all one value int.
 
  ///
 
  /// \param Semantics - type float semantics
 
  static APFloat getAllOnesValue(const fltSemantics &Semantics);
 
 
 
  /// Used to insert APFloat objects, or objects that contain APFloat objects,
 
  /// into FoldingSets.
 
  void Profile(FoldingSetNodeID &NID) const;
 
 
 
  opStatus add(const APFloat &RHS, roundingMode RM) {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only call on two APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.add(RHS.U.IEEE, RM);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.add(RHS.U.Double, RM);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
  opStatus subtract(const APFloat &RHS, roundingMode RM) {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only call on two APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.subtract(RHS.U.IEEE, RM);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.subtract(RHS.U.Double, RM);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
  opStatus multiply(const APFloat &RHS, roundingMode RM) {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only call on two APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.multiply(RHS.U.IEEE, RM);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.multiply(RHS.U.Double, RM);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
  opStatus divide(const APFloat &RHS, roundingMode RM) {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only call on two APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.divide(RHS.U.IEEE, RM);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.divide(RHS.U.Double, RM);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
  opStatus remainder(const APFloat &RHS) {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only call on two APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.remainder(RHS.U.IEEE);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.remainder(RHS.U.Double);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
  opStatus mod(const APFloat &RHS) {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only call on two APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.mod(RHS.U.IEEE);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.mod(RHS.U.Double);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
  opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
 
                            roundingMode RM) {
 
    assert(&getSemantics() == &Multiplicand.getSemantics() &&
 
           "Should only call on APFloats with the same semantics");
 
    assert(&getSemantics() == &Addend.getSemantics() &&
 
           "Should only call on APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
 
                                       RM);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
  opStatus roundToIntegral(roundingMode RM) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
 
  }
 
 
 
  // TODO: bool parameters are not readable and a source of bugs.
 
  // Do something.
 
  opStatus next(bool nextDown) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
 
  }
 
 
 
  /// Negate an APFloat.
 
  APFloat operator-() const {
 
    APFloat Result(*this);
 
    Result.changeSign();
 
    return Result;
 
  }
 
 
 
  /// Add two APFloats, rounding ties to the nearest even.
 
  /// No error checking.
 
  APFloat operator+(const APFloat &RHS) const {
 
    APFloat Result(*this);
 
    (void)Result.add(RHS, rmNearestTiesToEven);
 
    return Result;
 
  }
 
 
 
  /// Subtract two APFloats, rounding ties to the nearest even.
 
  /// No error checking.
 
  APFloat operator-(const APFloat &RHS) const {
 
    APFloat Result(*this);
 
    (void)Result.subtract(RHS, rmNearestTiesToEven);
 
    return Result;
 
  }
 
 
 
  /// Multiply two APFloats, rounding ties to the nearest even.
 
  /// No error checking.
 
  APFloat operator*(const APFloat &RHS) const {
 
    APFloat Result(*this);
 
    (void)Result.multiply(RHS, rmNearestTiesToEven);
 
    return Result;
 
  }
 
 
 
  /// Divide the first APFloat by the second, rounding ties to the nearest even.
 
  /// No error checking.
 
  APFloat operator/(const APFloat &RHS) const {
 
    APFloat Result(*this);
 
    (void)Result.divide(RHS, rmNearestTiesToEven);
 
    return Result;
 
  }
 
 
 
  void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
 
  void clearSign() {
 
    if (isNegative())
 
      changeSign();
 
  }
 
  void copySign(const APFloat &RHS) {
 
    if (isNegative() != RHS.isNegative())
 
      changeSign();
 
  }
 
 
 
  /// A static helper to produce a copy of an APFloat value with its sign
 
  /// copied from some other APFloat.
 
  static APFloat copySign(APFloat Value, const APFloat &Sign) {
 
    Value.copySign(Sign);
 
    return Value;
 
  }
 
 
 
  opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
 
                   bool *losesInfo);
 
  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
 
                            unsigned int Width, bool IsSigned, roundingMode RM,
 
                            bool *IsExact) const {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(
 
        convertToInteger(Input, Width, IsSigned, RM, IsExact));
 
  }
 
  opStatus convertToInteger(APSInt &Result, roundingMode RM,
 
                            bool *IsExact) const;
 
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
 
                            roundingMode RM) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
 
  }
 
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
 
                                          unsigned int InputSize, bool IsSigned,
 
                                          roundingMode RM) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(
 
        convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
 
  }
 
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
 
                                          unsigned int InputSize, bool IsSigned,
 
                                          roundingMode RM) {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(
 
        convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
 
  }
 
  Expected<opStatus> convertFromString(StringRef, roundingMode);
 
  APInt bitcastToAPInt() const {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
 
  }
 
 
 
  /// Converts this APFloat to host double value.
 
  ///
 
  /// \pre The APFloat must be built using semantics, that can be represented by
 
  /// the host double type without loss of precision. It can be IEEEdouble and
 
  /// shorter semantics, like IEEEsingle and others.
 
  double convertToDouble() const;
 
 
 
  /// Converts this APFloat to host float value.
 
  ///
 
  /// \pre The APFloat must be built using semantics, that can be represented by
 
  /// the host float type without loss of precision. It can be IEEEsingle and
 
  /// shorter semantics, like IEEEhalf.
 
  float convertToFloat() const;
 
 
 
  bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
 
 
 
  bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
 
 
 
  bool operator<(const APFloat &RHS) const {
 
    return compare(RHS) == cmpLessThan;
 
  }
 
 
 
  bool operator>(const APFloat &RHS) const {
 
    return compare(RHS) == cmpGreaterThan;
 
  }
 
 
 
  bool operator<=(const APFloat &RHS) const {
 
    cmpResult Res = compare(RHS);
 
    return Res == cmpLessThan || Res == cmpEqual;
 
  }
 
 
 
  bool operator>=(const APFloat &RHS) const {
 
    cmpResult Res = compare(RHS);
 
    return Res == cmpGreaterThan || Res == cmpEqual;
 
  }
 
 
 
  cmpResult compare(const APFloat &RHS) const {
 
    assert(&getSemantics() == &RHS.getSemantics() &&
 
           "Should only compare APFloats with the same semantics");
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.compare(RHS.U.IEEE);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.compare(RHS.U.Double);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
 
 
  bool bitwiseIsEqual(const APFloat &RHS) const {
 
    if (&getSemantics() != &RHS.getSemantics())
 
      return false;
 
    if (usesLayout<IEEEFloat>(getSemantics()))
 
      return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
 
    if (usesLayout<DoubleAPFloat>(getSemantics()))
 
      return U.Double.bitwiseIsEqual(RHS.U.Double);
 
    llvm_unreachable("Unexpected semantics");
 
  }
 
 
 
  /// We don't rely on operator== working on double values, as
 
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 
  /// As such, this method can be used to do an exact bit-for-bit comparison of
 
  /// two floating point values.
 
  ///
 
  /// We leave the version with the double argument here because it's just so
 
  /// convenient to write "2.0" and the like.  Without this function we'd
 
  /// have to duplicate its logic everywhere it's called.
 
  bool isExactlyValue(double V) const {
 
    bool ignored;
 
    APFloat Tmp(V);
 
    Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
 
    return bitwiseIsEqual(Tmp);
 
  }
 
 
 
  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
 
                                  bool UpperCase, roundingMode RM) const {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(
 
        convertToHexString(DST, HexDigits, UpperCase, RM));
 
  }
 
 
 
  bool isZero() const { return getCategory() == fcZero; }
 
  bool isInfinity() const { return getCategory() == fcInfinity; }
 
  bool isNaN() const { return getCategory() == fcNaN; }
 
 
 
  bool isNegative() const { return getIEEE().isNegative(); }
 
  bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
 
  bool isSignaling() const { return getIEEE().isSignaling(); }
 
 
 
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
 
  bool isFinite() const { return !isNaN() && !isInfinity(); }
 
 
 
  fltCategory getCategory() const { return getIEEE().getCategory(); }
 
  const fltSemantics &getSemantics() const { return *U.semantics; }
 
  bool isNonZero() const { return !isZero(); }
 
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
 
  bool isPosZero() const { return isZero() && !isNegative(); }
 
  bool isNegZero() const { return isZero() && isNegative(); }
 
  bool isPosInfinity() const { return isInfinity() && !isNegative(); }
 
  bool isNegInfinity() const { return isInfinity() && isNegative(); }
 
  bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
 
  bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
 
  bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
 
  bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
 
 
 
  bool isSmallestNormalized() const {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized());
 
  }
 
 
 
  APFloat &operator=(const APFloat &RHS) = default;
 
  APFloat &operator=(APFloat &&RHS) = default;
 
 
 
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
 
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(
 
        toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
 
  }
 
 
 
  void print(raw_ostream &) const;
 
  void dump() const;
 
 
 
  bool getExactInverse(APFloat *inv) const {
 
    APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
 
  }
 
 
 
  friend hash_code hash_value(const APFloat &Arg);
 
  friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
 
  friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
 
  friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
 
  friend IEEEFloat;
 
  friend DoubleAPFloat;
 
};
 
 
 
/// See friend declarations above.
 
///
 
/// These additional declarations are required in order to compile LLVM with IBM
 
/// xlC compiler.
 
hash_code hash_value(const APFloat &Arg);
 
inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
 
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
 
    return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
 
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
 
    return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
 
  llvm_unreachable("Unexpected semantics");
 
}
 
 
 
/// Equivalent of C standard library function.
 
///
 
/// While the C standard says Exp is an unspecified value for infinity and nan,
 
/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
 
inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
 
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
 
    return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
 
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
 
    return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
 
  llvm_unreachable("Unexpected semantics");
 
}
 
/// Returns the absolute value of the argument.
 
inline APFloat abs(APFloat X) {
 
  X.clearSign();
 
  return X;
 
}
 
 
 
/// Returns the negated value of the argument.
 
inline APFloat neg(APFloat X) {
 
  X.changeSign();
 
  return X;
 
}
 
 
 
/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
 
/// both are not NaN. If either argument is a NaN, returns the other argument.
 
LLVM_READONLY
 
inline APFloat minnum(const APFloat &A, const APFloat &B) {
 
  if (A.isNaN())
 
    return B;
 
  if (B.isNaN())
 
    return A;
 
  return B < A ? B : A;
 
}
 
 
 
/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
 
/// both are not NaN. If either argument is a NaN, returns the other argument.
 
LLVM_READONLY
 
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
 
  if (A.isNaN())
 
    return B;
 
  if (B.isNaN())
 
    return A;
 
  return A < B ? B : A;
 
}
 
 
 
/// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
 
/// arguments, propagating NaNs and treating -0 as less than +0.
 
LLVM_READONLY
 
inline APFloat minimum(const APFloat &A, const APFloat &B) {
 
  if (A.isNaN())
 
    return A;
 
  if (B.isNaN())
 
    return B;
 
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
 
    return A.isNegative() ? A : B;
 
  return B < A ? B : A;
 
}
 
 
 
/// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
 
/// arguments, propagating NaNs and treating -0 as less than +0.
 
LLVM_READONLY
 
inline APFloat maximum(const APFloat &A, const APFloat &B) {
 
  if (A.isNaN())
 
    return A;
 
  if (B.isNaN())
 
    return B;
 
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
 
    return A.isNegative() ? B : A;
 
  return A < B ? B : A;
 
}
 
 
 
} // namespace llvm
 
 
 
#undef APFLOAT_DISPATCH_ON_SEMANTICS
 
#endif // LLVM_ADT_APFLOAT_H