//===--- RewriteRule.h - RewriteRule class ----------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
///  \file
 
///  Defines the RewriteRule class and related functions for creating,
 
///  modifying and interpreting RewriteRules.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_TOOLING_TRANSFORMER_REWRITERULE_H
 
#define LLVM_CLANG_TOOLING_TRANSFORMER_REWRITERULE_H
 
 
 
#include "clang/ASTMatchers/ASTMatchFinder.h"
 
#include "clang/ASTMatchers/ASTMatchers.h"
 
#include "clang/ASTMatchers/ASTMatchersInternal.h"
 
#include "clang/Tooling/Refactoring/AtomicChange.h"
 
#include "clang/Tooling/Transformer/MatchConsumer.h"
 
#include "clang/Tooling/Transformer/RangeSelector.h"
 
#include "llvm/ADT/Any.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Support/Error.h"
 
#include <functional>
 
#include <string>
 
#include <utility>
 
 
 
namespace clang {
 
namespace transformer {
 
// Specifies how to interpret an edit.
 
enum class EditKind {
 
  // Edits a source range in the file.
 
  Range,
 
  // Inserts an include in the file. The `Replacement` field is the name of the
 
  // newly included file.
 
  AddInclude,
 
};
 
 
 
/// A concrete description of a source edit, represented by a character range in
 
/// the source to be replaced and a corresponding replacement string.
 
struct Edit {
 
  EditKind Kind = EditKind::Range;
 
  CharSourceRange Range;
 
  std::string Replacement;
 
  std::string Note;
 
  llvm::Any Metadata;
 
};
 
 
 
/// Format of the path in an include directive -- angle brackets or quotes.
 
enum class IncludeFormat {
 
  Quoted,
 
  Angled,
 
};
 
 
 
/// Maps a match result to a list of concrete edits (with possible
 
/// failure). This type is a building block of rewrite rules, but users will
 
/// generally work in terms of `ASTEdit`s (below) rather than directly in terms
 
/// of `EditGenerator`.
 
using EditGenerator = MatchConsumer<llvm::SmallVector<Edit, 1>>;
 
 
 
template <typename T> using Generator = std::shared_ptr<MatchComputation<T>>;
 
 
 
using TextGenerator = Generator<std::string>;
 
 
 
using AnyGenerator = MatchConsumer<llvm::Any>;
 
 
 
// Description of a source-code edit, expressed in terms of an AST node.
 
// Includes: an ID for the (bound) node, a selector for source related to the
 
// node, a replacement and, optionally, an explanation for the edit.
 
//
 
// * Target: the source code impacted by the rule. This identifies an AST node,
 
//   or part thereof (\c Part), whose source range indicates the extent of the
 
//   replacement applied by the replacement term.  By default, the extent is the
 
//   node matched by the pattern term (\c NodePart::Node). Target's are typed
 
//   (\c Kind), which guides the determination of the node extent.
 
//
 
// * Replacement: a function that produces a replacement string for the target,
 
//   based on the match result.
 
//
 
// * Note: (optional) a note specifically for this edit, potentially referencing
 
//   elements of the match.  This will be displayed to the user, where possible;
 
//   for example, in clang-tidy diagnostics.  Use of notes should be rare --
 
//   explanations of the entire rewrite should be set in the rule
 
//   (`RewriteRule::Explanation`) instead.  Notes serve the rare cases wherein
 
//   edit-specific diagnostics are required.
 
//
 
// `ASTEdit` should be built using the `change` convenience functions. For
 
// example,
 
// \code
 
//   changeTo(name(fun), cat("Frodo"))
 
// \endcode
 
// Or, if we use Stencil for the TextGenerator:
 
// \code
 
//   using stencil::cat;
 
//   changeTo(statement(thenNode), cat("{", thenNode, "}"))
 
//   changeTo(callArgs(call), cat(x, ",", y))
 
// \endcode
 
// Or, if you are changing the node corresponding to the rule's matcher, you can
 
// use the single-argument override of \c change:
 
// \code
 
//   changeTo(cat("different_expr"))
 
// \endcode
 
struct ASTEdit {
 
  EditKind Kind = EditKind::Range;
 
  RangeSelector TargetRange;
 
  TextGenerator Replacement;
 
  TextGenerator Note;
 
  // Not all transformations will want or need to attach metadata and therefore
 
  // should not be required to do so.
 
  AnyGenerator Metadata = [](const ast_matchers::MatchFinder::MatchResult &)
 
      -> llvm::Expected<llvm::Any> {
 
    return llvm::Expected<llvm::Any>(llvm::Any());
 
  };
 
};
 
 
 
/// Generates a single (specified) edit.
 
EditGenerator edit(ASTEdit E);
 
 
 
/// Lifts a list of `ASTEdit`s into an `EditGenerator`.
 
///
 
/// The `EditGenerator` will return an empty vector if any of the edits apply to
 
/// portions of the source that are ineligible for rewriting (certain
 
/// interactions with macros, for example) and it will fail if any invariants
 
/// are violated relating to bound nodes in the match.  However, it does not
 
/// fail in the case of conflicting edits -- conflict handling is left to
 
/// clients.  We recommend use of the \c AtomicChange or \c Replacements classes
 
/// for assistance in detecting such conflicts.
 
EditGenerator editList(llvm::SmallVector<ASTEdit, 1> Edits);
 
 
 
/// Generates no edits.
 
inline EditGenerator noEdits() { return editList({}); }
 
 
 
/// Generates a single, no-op edit anchored at the start location of the
 
/// specified range. A `noopEdit` may be preferred over `noEdits` to associate a
 
/// diagnostic `Explanation` with the rule.
 
EditGenerator noopEdit(RangeSelector Anchor);
 
 
 
/// Generates a single, no-op edit with the associated note anchored at the
 
/// start location of the specified range.
 
ASTEdit note(RangeSelector Anchor, TextGenerator Note);
 
 
 
/// Version of `ifBound` specialized to `ASTEdit`.
 
inline EditGenerator ifBound(std::string ID, ASTEdit TrueEdit,
 
                             ASTEdit FalseEdit) {
 
  return ifBound(std::move(ID), edit(std::move(TrueEdit)),
 
                 edit(std::move(FalseEdit)));
 
}
 
 
 
/// Version of `ifBound` that has no "False" branch. If the node is not bound,
 
/// then no edits are produced.
 
inline EditGenerator ifBound(std::string ID, ASTEdit TrueEdit) {
 
  return ifBound(std::move(ID), edit(std::move(TrueEdit)), noEdits());
 
}
 
 
 
/// Flattens a list of generators into a single generator whose elements are the
 
/// concatenation of the results of the argument generators.
 
EditGenerator flattenVector(SmallVector<EditGenerator, 2> Generators);
 
 
 
namespace detail {
 
/// Helper function to construct an \c EditGenerator. Overloaded for common
 
/// cases so that user doesn't need to specify which factory function to
 
/// use. This pattern gives benefits similar to implicit constructors, while
 
/// maintaing a higher degree of explicitness.
 
inline EditGenerator injectEdits(ASTEdit E) { return edit(std::move(E)); }
 
inline EditGenerator injectEdits(EditGenerator G) { return G; }
 
} // namespace detail
 
 
 
template <typename... Ts> EditGenerator flatten(Ts &&...Edits) {
 
  return flattenVector({detail::injectEdits(std::forward<Ts>(Edits))...});
 
}
 
 
 
// Every rewrite rule is triggered by a match against some AST node.
 
// Transformer guarantees that this ID is bound to the triggering node whenever
 
// a rewrite rule is applied.
 
extern const char RootID[];
 
 
 
/// Replaces a portion of the source text with \p Replacement.
 
ASTEdit changeTo(RangeSelector Target, TextGenerator Replacement);
 
/// DEPRECATED: use \c changeTo.
 
inline ASTEdit change(RangeSelector Target, TextGenerator Replacement) {
 
  return changeTo(std::move(Target), std::move(Replacement));
 
}
 
 
 
/// Replaces the entirety of a RewriteRule's match with \p Replacement.  For
 
/// example, to replace a function call, one could write:
 
/// \code
 
///   makeRule(callExpr(callee(functionDecl(hasName("foo")))),
 
///            changeTo(cat("bar()")))
 
/// \endcode
 
inline ASTEdit changeTo(TextGenerator Replacement) {
 
  return changeTo(node(RootID), std::move(Replacement));
 
}
 
/// DEPRECATED: use \c changeTo.
 
inline ASTEdit change(TextGenerator Replacement) {
 
  return changeTo(std::move(Replacement));
 
}
 
 
 
/// Inserts \p Replacement before \p S, leaving the source selected by \S
 
/// unchanged.
 
inline ASTEdit insertBefore(RangeSelector S, TextGenerator Replacement) {
 
  return changeTo(before(std::move(S)), std::move(Replacement));
 
}
 
 
 
/// Inserts \p Replacement after \p S, leaving the source selected by \S
 
/// unchanged.
 
inline ASTEdit insertAfter(RangeSelector S, TextGenerator Replacement) {
 
  return changeTo(after(std::move(S)), std::move(Replacement));
 
}
 
 
 
/// Removes the source selected by \p S.
 
ASTEdit remove(RangeSelector S);
 
 
 
/// Adds an include directive for the given header to the file of `Target`. The
 
/// particular location specified by `Target` is ignored.
 
ASTEdit addInclude(RangeSelector Target, StringRef Header,
 
                   IncludeFormat Format = IncludeFormat::Quoted);
 
 
 
/// Adds an include directive for the given header to the file associated with
 
/// `RootID`. If `RootID` matches inside a macro expansion, will add the
 
/// directive to the file in which the macro was expanded (as opposed to the
 
/// file in which the macro is defined).
 
inline ASTEdit addInclude(StringRef Header,
 
                          IncludeFormat Format = IncludeFormat::Quoted) {
 
  return addInclude(expansion(node(RootID)), Header, Format);
 
}
 
 
 
// FIXME: If `Metadata` returns an `llvm::Expected<T>` the `AnyGenerator` will
 
// construct an `llvm::Expected<llvm::Any>` where no error is present but the
 
// `llvm::Any` holds the error. This is unlikely but potentially surprising.
 
// Perhaps the `llvm::Expected` should be unwrapped, or perhaps this should be a
 
// compile-time error. No solution here is perfect.
 
//
 
// Note: This function template accepts any type callable with a MatchResult
 
// rather than a `std::function` because the return-type needs to be deduced. If
 
// it accepted a `std::function<R(MatchResult)>`, lambdas or other callable
 
// types would not be able to deduce `R`, and users would be forced to specify
 
// explicitly the type they intended to return by wrapping the lambda at the
 
// call-site.
 
template <typename Callable>
 
inline ASTEdit withMetadata(ASTEdit Edit, Callable Metadata) {
 
  Edit.Metadata =
 
      [Gen = std::move(Metadata)](
 
          const ast_matchers::MatchFinder::MatchResult &R) -> llvm::Any {
 
    return Gen(R);
 
  };
 
 
 
  return Edit;
 
}
 
 
 
/// Assuming that the inner range is enclosed by the outer range, creates
 
/// precision edits to remove the parts of the outer range that are not included
 
/// in the inner range.
 
inline EditGenerator shrinkTo(RangeSelector outer, RangeSelector inner) {
 
  return editList({remove(enclose(before(outer), before(inner))),
 
                   remove(enclose(after(inner), after(outer)))});
 
}
 
 
 
/// Description of a source-code transformation.
 
//
 
// A *rewrite rule* describes a transformation of source code. A simple rule
 
// contains each of the following components:
 
//
 
// * Matcher: the pattern term, expressed as clang matchers (with Transformer
 
//   extensions).
 
//
 
// * Edits: a set of Edits to the source code, described with ASTEdits.
 
//
 
// However, rules can also consist of (sub)rules, where the first that matches
 
// is applied and the rest are ignored.  So, the above components together form
 
// a logical "case" and a rule is a sequence of cases.
 
//
 
// Rule cases have an additional, implicit, component: the parameters. These are
 
// portions of the pattern which are left unspecified, yet bound in the pattern
 
// so that we can reference them in the edits.
 
//
 
// The \c Transformer class can be used to apply the rewrite rule and obtain the
 
// corresponding replacements.
 
struct RewriteRuleBase {
 
  struct Case {
 
    ast_matchers::internal::DynTypedMatcher Matcher;
 
    EditGenerator Edits;
 
  };
 
  // We expect RewriteRules will most commonly include only one case.
 
  SmallVector<Case, 1> Cases;
 
};
 
 
 
/// A source-code transformation with accompanying metadata.
 
///
 
/// When a case of the rule matches, the \c Transformer invokes the
 
/// corresponding metadata generator and provides it alongside the edits.
 
template <typename MetadataT> struct RewriteRuleWith : RewriteRuleBase {
 
  SmallVector<Generator<MetadataT>, 1> Metadata;
 
};
 
 
 
template <> struct RewriteRuleWith<void> : RewriteRuleBase {};
 
 
 
using RewriteRule = RewriteRuleWith<void>;
 
 
 
namespace detail {
 
 
 
RewriteRule makeRule(ast_matchers::internal::DynTypedMatcher M,
 
                     EditGenerator Edits);
 
 
 
template <typename MetadataT>
 
RewriteRuleWith<MetadataT> makeRule(ast_matchers::internal::DynTypedMatcher M,
 
                                    EditGenerator Edits,
 
                                    Generator<MetadataT> Metadata) {
 
  RewriteRuleWith<MetadataT> R;
 
  R.Cases = {{std::move(M), std::move(Edits)}};
 
  R.Metadata = {std::move(Metadata)};
 
  return R;
 
}
 
 
 
inline EditGenerator makeEditGenerator(EditGenerator Edits) { return Edits; }
 
EditGenerator makeEditGenerator(llvm::SmallVector<ASTEdit, 1> Edits);
 
EditGenerator makeEditGenerator(ASTEdit Edit);
 
 
 
} // namespace detail
 
 
 
/// Constructs a simple \c RewriteRule. \c Edits can be an \c EditGenerator,
 
/// multiple \c ASTEdits, or a single \c ASTEdit.
 
/// @{
 
template <int &..., typename EditsT>
 
RewriteRule makeRule(ast_matchers::internal::DynTypedMatcher M,
 
                     EditsT &&Edits) {
 
  return detail::makeRule(
 
      std::move(M), detail::makeEditGenerator(std::forward<EditsT>(Edits)));
 
}
 
 
 
RewriteRule makeRule(ast_matchers::internal::DynTypedMatcher M,
 
                     std::initializer_list<ASTEdit> Edits);
 
/// @}
 
 
 
/// Overloads of \c makeRule that also generate metadata when matching.
 
/// @{
 
template <typename MetadataT, int &..., typename EditsT>
 
RewriteRuleWith<MetadataT> makeRule(ast_matchers::internal::DynTypedMatcher M,
 
                                    EditsT &&Edits,
 
                                    Generator<MetadataT> Metadata) {
 
  return detail::makeRule(
 
      std::move(M), detail::makeEditGenerator(std::forward<EditsT>(Edits)),
 
      std::move(Metadata));
 
}
 
 
 
template <typename MetadataT>
 
RewriteRuleWith<MetadataT> makeRule(ast_matchers::internal::DynTypedMatcher M,
 
                                    std::initializer_list<ASTEdit> Edits,
 
                                    Generator<MetadataT> Metadata) {
 
  return detail::makeRule(std::move(M),
 
                          detail::makeEditGenerator(std::move(Edits)),
 
                          std::move(Metadata));
 
}
 
/// @}
 
 
 
/// For every case in Rule, adds an include directive for the given header. The
 
/// common use is assumed to be a rule with only one case. For example, to
 
/// replace a function call and add headers corresponding to the new code, one
 
/// could write:
 
/// \code
 
///   auto R = makeRule(callExpr(callee(functionDecl(hasName("foo")))),
 
///            changeTo(cat("bar()")));
 
///   addInclude(R, "path/to/bar_header.h");
 
///   addInclude(R, "vector", IncludeFormat::Angled);
 
/// \endcode
 
void addInclude(RewriteRuleBase &Rule, llvm::StringRef Header,
 
                IncludeFormat Format = IncludeFormat::Quoted);
 
 
 
/// Applies the first rule whose pattern matches; other rules are ignored.  If
 
/// the matchers are independent then order doesn't matter. In that case,
 
/// `applyFirst` is simply joining the set of rules into one.
 
//
 
// `applyFirst` is like an `anyOf` matcher with an edit action attached to each
 
// of its cases. Anywhere you'd use `anyOf(m1.bind("id1"), m2.bind("id2"))` and
 
// then dispatch on those ids in your code for control flow, `applyFirst` lifts
 
// that behavior to the rule level.  So, you can write `applyFirst({makeRule(m1,
 
// action1), makeRule(m2, action2), ...});`
 
//
 
// For example, consider a type `T` with a deterministic serialization function,
 
// `serialize()`.  For performance reasons, we would like to make it
 
// non-deterministic.  Therefore, we want to drop the expectation that
 
// `a.serialize() = b.serialize() iff a = b` (although we'll maintain
 
// `deserialize(a.serialize()) = a`).
 
//
 
// We have three cases to consider (for some equality function, `eq`):
 
// ```
 
// eq(a.serialize(), b.serialize()) --> eq(a,b)
 
// eq(a, b.serialize())             --> eq(deserialize(a), b)
 
// eq(a.serialize(), b)             --> eq(a, deserialize(b))
 
// ```
 
//
 
// `applyFirst` allows us to specify each independently:
 
// ```
 
// auto eq_fun = functionDecl(...);
 
// auto method_call = cxxMemberCallExpr(...);
 
//
 
// auto two_calls = callExpr(callee(eq_fun), hasArgument(0, method_call),
 
//                           hasArgument(1, method_call));
 
// auto left_call =
 
//     callExpr(callee(eq_fun), callExpr(hasArgument(0, method_call)));
 
// auto right_call =
 
//     callExpr(callee(eq_fun), callExpr(hasArgument(1, method_call)));
 
//
 
// RewriteRule R = applyFirst({makeRule(two_calls, two_calls_action),
 
//                             makeRule(left_call, left_call_action),
 
//                             makeRule(right_call, right_call_action)});
 
// ```
 
/// @{
 
template <typename MetadataT>
 
RewriteRuleWith<MetadataT>
 
applyFirst(ArrayRef<RewriteRuleWith<MetadataT>> Rules) {
 
  RewriteRuleWith<MetadataT> R;
 
  for (auto &Rule : Rules) {
 
    assert(Rule.Cases.size() == Rule.Metadata.size() &&
 
           "mis-match in case and metadata array size");
 
    R.Cases.append(Rule.Cases.begin(), Rule.Cases.end());
 
    R.Metadata.append(Rule.Metadata.begin(), Rule.Metadata.end());
 
  }
 
  return R;
 
}
 
 
 
template <>
 
RewriteRuleWith<void> applyFirst(ArrayRef<RewriteRuleWith<void>> Rules);
 
 
 
template <typename MetadataT>
 
RewriteRuleWith<MetadataT>
 
applyFirst(const std::vector<RewriteRuleWith<MetadataT>> &Rules) {
 
  return applyFirst(llvm::ArrayRef(Rules));
 
}
 
 
 
template <typename MetadataT>
 
RewriteRuleWith<MetadataT>
 
applyFirst(std::initializer_list<RewriteRuleWith<MetadataT>> Rules) {
 
  return applyFirst(llvm::ArrayRef(Rules.begin(), Rules.end()));
 
}
 
/// @}
 
 
 
/// Converts a \c RewriteRuleWith<T> to a \c RewriteRule by stripping off the
 
/// metadata generators.
 
template <int &..., typename MetadataT>
 
std::enable_if_t<!std::is_same<MetadataT, void>::value, RewriteRule>
 
stripMetadata(RewriteRuleWith<MetadataT> Rule) {
 
  RewriteRule R;
 
  R.Cases = std::move(Rule.Cases);
 
  return R;
 
}
 
 
 
/// Applies `Rule` to all descendants of the node bound to `NodeId`. `Rule` can
 
/// refer to nodes bound by the calling rule. `Rule` is not applied to the node
 
/// itself.
 
///
 
/// For example,
 
/// ```
 
/// auto InlineX =
 
///     makeRule(declRefExpr(to(varDecl(hasName("x")))), changeTo(cat("3")));
 
/// makeRule(functionDecl(hasName("f"), hasBody(stmt().bind("body"))).bind("f"),
 
///          flatten(
 
///            changeTo(name("f"), cat("newName")),
 
///            rewriteDescendants("body", InlineX)));
 
/// ```
 
/// Here, we find the function `f`, change its name to `newName` and change all
 
/// appearances of `x` in its body to `3`.
 
EditGenerator rewriteDescendants(std::string NodeId, RewriteRule Rule);
 
 
 
/// The following three functions are a low-level part of the RewriteRule
 
/// API. We expose them for use in implementing the fixtures that interpret
 
/// RewriteRule, like Transformer and TransfomerTidy, or for more advanced
 
/// users.
 
//
 
// FIXME: These functions are really public, if advanced, elements of the
 
// RewriteRule API.  Recast them as such.  Or, just declare these functions
 
// public and well-supported and move them out of `detail`.
 
namespace detail {
 
/// The following overload set is a version of `rewriteDescendants` that
 
/// operates directly on the AST, rather than generating a Transformer
 
/// combinator. It applies `Rule` to all descendants of `Node`, although not
 
/// `Node` itself. `Rule` can refer to nodes bound in `Result`.
 
///
 
/// For example, assuming that "body" is bound to a function body in MatchResult
 
/// `Results`, this will produce edits to change all appearances of `x` in that
 
/// body to `3`.
 
/// ```
 
/// auto InlineX =
 
///     makeRule(declRefExpr(to(varDecl(hasName("x")))), changeTo(cat("3")));
 
/// const auto *Node = Results.Nodes.getNodeAs<Stmt>("body");
 
/// auto Edits = rewriteDescendants(*Node, InlineX, Results);
 
/// ```
 
/// @{
 
llvm::Expected<SmallVector<Edit, 1>>
 
rewriteDescendants(const Decl &Node, RewriteRule Rule,
 
                   const ast_matchers::MatchFinder::MatchResult &Result);
 
 
 
llvm::Expected<SmallVector<Edit, 1>>
 
rewriteDescendants(const Stmt &Node, RewriteRule Rule,
 
                   const ast_matchers::MatchFinder::MatchResult &Result);
 
 
 
llvm::Expected<SmallVector<Edit, 1>>
 
rewriteDescendants(const TypeLoc &Node, RewriteRule Rule,
 
                   const ast_matchers::MatchFinder::MatchResult &Result);
 
 
 
llvm::Expected<SmallVector<Edit, 1>>
 
rewriteDescendants(const DynTypedNode &Node, RewriteRule Rule,
 
                   const ast_matchers::MatchFinder::MatchResult &Result);
 
/// @}
 
 
 
/// Builds a single matcher for the rule, covering all of the rule's cases.
 
/// Only supports Rules whose cases' matchers share the same base "kind"
 
/// (`Stmt`, `Decl`, etc.)  Deprecated: use `buildMatchers` instead, which
 
/// supports mixing matchers of different kinds.
 
ast_matchers::internal::DynTypedMatcher
 
buildMatcher(const RewriteRuleBase &Rule);
 
 
 
/// Builds a set of matchers that cover the rule.
 
///
 
/// One matcher is built for each distinct node matcher base kind: Stmt, Decl,
 
/// etc. Node-matchers for `QualType` and `Type` are not permitted, since such
 
/// nodes carry no source location information and are therefore not relevant
 
/// for rewriting. If any such matchers are included, will return an empty
 
/// vector.
 
std::vector<ast_matchers::internal::DynTypedMatcher>
 
buildMatchers(const RewriteRuleBase &Rule);
 
 
 
/// Gets the beginning location of the source matched by a rewrite rule. If the
 
/// match occurs within a macro expansion, returns the beginning of the
 
/// expansion point. `Result` must come from the matching of a rewrite rule.
 
SourceLocation
 
getRuleMatchLoc(const ast_matchers::MatchFinder::MatchResult &Result);
 
 
 
/// Returns the index of the \c Case of \c Rule that was selected in the match
 
/// result. Assumes a matcher built with \c buildMatcher.
 
size_t findSelectedCase(const ast_matchers::MatchFinder::MatchResult &Result,
 
                        const RewriteRuleBase &Rule);
 
} // namespace detail
 
} // namespace transformer
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_TOOLING_TRANSFORMER_REWRITERULE_H