//===- SymbolManager.h - Management of Symbolic Values ----------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file defines SymbolManager, a class that manages symbolic values
 
//  created for use by ExprEngine and related classes.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SYMBOLMANAGER_H
 
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SYMBOLMANAGER_H
 
 
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Analysis/AnalysisDeclContext.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/FoldingSet.h"
 
#include "llvm/Support/Allocator.h"
 
#include <cassert>
 
 
 
namespace clang {
 
 
 
class ASTContext;
 
class Stmt;
 
 
 
namespace ento {
 
 
 
class BasicValueFactory;
 
class StoreManager;
 
 
 
///A symbol representing the value stored at a MemRegion.
 
class SymbolRegionValue : public SymbolData {
 
  const TypedValueRegion *R;
 
 
 
public:
 
  SymbolRegionValue(SymbolID sym, const TypedValueRegion *r)
 
      : SymbolData(SymbolRegionValueKind, sym), R(r) {
 
    assert(r);
 
    assert(isValidTypeForSymbol(r->getValueType()));
 
  }
 
 
 
  LLVM_ATTRIBUTE_RETURNS_NONNULL
 
  const TypedValueRegion* getRegion() const { return R; }
 
 
 
  static void Profile(llvm::FoldingSetNodeID& profile, const TypedValueRegion* R) {
 
    profile.AddInteger((unsigned) SymbolRegionValueKind);
 
    profile.AddPointer(R);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID& profile) override {
 
    Profile(profile, R);
 
  }
 
 
 
  StringRef getKindStr() const override;
 
 
 
  void dumpToStream(raw_ostream &os) const override;
 
  const MemRegion *getOriginRegion() const override { return getRegion(); }
 
 
 
  QualType getType() const override;
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    return SE->getKind() == SymbolRegionValueKind;
 
  }
 
};
 
 
 
/// A symbol representing the result of an expression in the case when we do
 
/// not know anything about what the expression is.
 
class SymbolConjured : public SymbolData {
 
  const Stmt *S;
 
  QualType T;
 
  unsigned Count;
 
  const LocationContext *LCtx;
 
  const void *SymbolTag;
 
 
 
public:
 
  SymbolConjured(SymbolID sym, const Stmt *s, const LocationContext *lctx,
 
                 QualType t, unsigned count, const void *symbolTag)
 
      : SymbolData(SymbolConjuredKind, sym), S(s), T(t), Count(count),
 
        LCtx(lctx), SymbolTag(symbolTag) {
 
    // FIXME: 's' might be a nullptr if we're conducting invalidation
 
    // that was caused by a destructor call on a temporary object,
 
    // which has no statement associated with it.
 
    // Due to this, we might be creating the same invalidation symbol for
 
    // two different invalidation passes (for two different temporaries).
 
    assert(lctx);
 
    assert(isValidTypeForSymbol(t));
 
  }
 
 
 
  /// It might return null.
 
  const Stmt *getStmt() const { return S; }
 
  unsigned getCount() const { return Count; }
 
  /// It might return null.
 
  const void *getTag() const { return SymbolTag; }
 
 
 
  QualType getType() const override;
 
 
 
  StringRef getKindStr() const override;
 
 
 
  void dumpToStream(raw_ostream &os) const override;
 
 
 
  static void Profile(llvm::FoldingSetNodeID& profile, const Stmt *S,
 
                      QualType T, unsigned Count, const LocationContext *LCtx,
 
                      const void *SymbolTag) {
 
    profile.AddInteger((unsigned) SymbolConjuredKind);
 
    profile.AddPointer(S);
 
    profile.AddPointer(LCtx);
 
    profile.Add(T);
 
    profile.AddInteger(Count);
 
    profile.AddPointer(SymbolTag);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID& profile) override {
 
    Profile(profile, S, T, Count, LCtx, SymbolTag);
 
  }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    return SE->getKind() == SymbolConjuredKind;
 
  }
 
};
 
 
 
/// A symbol representing the value of a MemRegion whose parent region has
 
/// symbolic value.
 
class SymbolDerived : public SymbolData {
 
  SymbolRef parentSymbol;
 
  const TypedValueRegion *R;
 
 
 
public:
 
  SymbolDerived(SymbolID sym, SymbolRef parent, const TypedValueRegion *r)
 
      : SymbolData(SymbolDerivedKind, sym), parentSymbol(parent), R(r) {
 
    assert(parent);
 
    assert(r);
 
    assert(isValidTypeForSymbol(r->getValueType()));
 
  }
 
 
 
  LLVM_ATTRIBUTE_RETURNS_NONNULL
 
  SymbolRef getParentSymbol() const { return parentSymbol; }
 
  LLVM_ATTRIBUTE_RETURNS_NONNULL
 
  const TypedValueRegion *getRegion() const { return R; }
 
 
 
  QualType getType() const override;
 
 
 
  StringRef getKindStr() const override;
 
 
 
  void dumpToStream(raw_ostream &os) const override;
 
  const MemRegion *getOriginRegion() const override { return getRegion(); }
 
 
 
  static void Profile(llvm::FoldingSetNodeID& profile, SymbolRef parent,
 
                      const TypedValueRegion *r) {
 
    profile.AddInteger((unsigned) SymbolDerivedKind);
 
    profile.AddPointer(r);
 
    profile.AddPointer(parent);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID& profile) override {
 
    Profile(profile, parentSymbol, R);
 
  }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    return SE->getKind() == SymbolDerivedKind;
 
  }
 
};
 
 
 
/// SymbolExtent - Represents the extent (size in bytes) of a bounded region.
 
///  Clients should not ask the SymbolManager for a region's extent. Always use
 
///  SubRegion::getExtent instead -- the value returned may not be a symbol.
 
class SymbolExtent : public SymbolData {
 
  const SubRegion *R;
 
 
 
public:
 
  SymbolExtent(SymbolID sym, const SubRegion *r)
 
      : SymbolData(SymbolExtentKind, sym), R(r) {
 
    assert(r);
 
  }
 
 
 
  LLVM_ATTRIBUTE_RETURNS_NONNULL
 
  const SubRegion *getRegion() const { return R; }
 
 
 
  QualType getType() const override;
 
 
 
  StringRef getKindStr() const override;
 
 
 
  void dumpToStream(raw_ostream &os) const override;
 
 
 
  static void Profile(llvm::FoldingSetNodeID& profile, const SubRegion *R) {
 
    profile.AddInteger((unsigned) SymbolExtentKind);
 
    profile.AddPointer(R);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID& profile) override {
 
    Profile(profile, R);
 
  }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    return SE->getKind() == SymbolExtentKind;
 
  }
 
};
 
 
 
/// SymbolMetadata - Represents path-dependent metadata about a specific region.
 
///  Metadata symbols remain live as long as they are marked as in use before
 
///  dead-symbol sweeping AND their associated regions are still alive.
 
///  Intended for use by checkers.
 
class SymbolMetadata : public SymbolData {
 
  const MemRegion* R;
 
  const Stmt *S;
 
  QualType T;
 
  const LocationContext *LCtx;
 
  unsigned Count;
 
  const void *Tag;
 
 
 
public:
 
  SymbolMetadata(SymbolID sym, const MemRegion* r, const Stmt *s, QualType t,
 
                 const LocationContext *LCtx, unsigned count, const void *tag)
 
      : SymbolData(SymbolMetadataKind, sym), R(r), S(s), T(t), LCtx(LCtx),
 
        Count(count), Tag(tag) {
 
      assert(r);
 
      assert(s);
 
      assert(isValidTypeForSymbol(t));
 
      assert(LCtx);
 
      assert(tag);
 
    }
 
 
 
    LLVM_ATTRIBUTE_RETURNS_NONNULL
 
    const MemRegion *getRegion() const { return R; }
 
 
 
    LLVM_ATTRIBUTE_RETURNS_NONNULL
 
    const Stmt *getStmt() const { return S; }
 
 
 
    LLVM_ATTRIBUTE_RETURNS_NONNULL
 
    const LocationContext *getLocationContext() const { return LCtx; }
 
 
 
    unsigned getCount() const { return Count; }
 
 
 
    LLVM_ATTRIBUTE_RETURNS_NONNULL
 
    const void *getTag() const { return Tag; }
 
 
 
    QualType getType() const override;
 
 
 
    StringRef getKindStr() const override;
 
 
 
    void dumpToStream(raw_ostream &os) const override;
 
 
 
    static void Profile(llvm::FoldingSetNodeID &profile, const MemRegion *R,
 
                        const Stmt *S, QualType T, const LocationContext *LCtx,
 
                        unsigned Count, const void *Tag) {
 
      profile.AddInteger((unsigned)SymbolMetadataKind);
 
      profile.AddPointer(R);
 
      profile.AddPointer(S);
 
      profile.Add(T);
 
      profile.AddPointer(LCtx);
 
      profile.AddInteger(Count);
 
      profile.AddPointer(Tag);
 
    }
 
 
 
  void Profile(llvm::FoldingSetNodeID& profile) override {
 
    Profile(profile, R, S, T, LCtx, Count, Tag);
 
  }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    return SE->getKind() == SymbolMetadataKind;
 
  }
 
};
 
 
 
/// Represents a cast expression.
 
class SymbolCast : public SymExpr {
 
  const SymExpr *Operand;
 
 
 
  /// Type of the operand.
 
  QualType FromTy;
 
 
 
  /// The type of the result.
 
  QualType ToTy;
 
 
 
public:
 
  SymbolCast(const SymExpr *In, QualType From, QualType To)
 
      : SymExpr(SymbolCastKind), Operand(In), FromTy(From), ToTy(To) {
 
    assert(In);
 
    assert(isValidTypeForSymbol(From));
 
    // FIXME: GenericTaintChecker creates symbols of void type.
 
    // Otherwise, 'To' should also be a valid type.
 
  }
 
 
 
  unsigned computeComplexity() const override {
 
    if (Complexity == 0)
 
      Complexity = 1 + Operand->computeComplexity();
 
    return Complexity;
 
  }
 
 
 
  QualType getType() const override { return ToTy; }
 
 
 
  LLVM_ATTRIBUTE_RETURNS_NONNULL
 
  const SymExpr *getOperand() const { return Operand; }
 
 
 
  void dumpToStream(raw_ostream &os) const override;
 
 
 
  static void Profile(llvm::FoldingSetNodeID& ID,
 
                      const SymExpr *In, QualType From, QualType To) {
 
    ID.AddInteger((unsigned) SymbolCastKind);
 
    ID.AddPointer(In);
 
    ID.Add(From);
 
    ID.Add(To);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID& ID) override {
 
    Profile(ID, Operand, FromTy, ToTy);
 
  }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    return SE->getKind() == SymbolCastKind;
 
  }
 
};
 
 
 
/// Represents a symbolic expression involving a unary operator.
 
class UnarySymExpr : public SymExpr {
 
  const SymExpr *Operand;
 
  UnaryOperator::Opcode Op;
 
  QualType T;
 
 
 
public:
 
  UnarySymExpr(const SymExpr *In, UnaryOperator::Opcode Op, QualType T)
 
      : SymExpr(UnarySymExprKind), Operand(In), Op(Op), T(T) {
 
    // Note, some unary operators are modeled as a binary operator. E.g. ++x is
 
    // modeled as x + 1.
 
    assert((Op == UO_Minus || Op == UO_Not) && "non-supported unary expression");
 
    // Unary expressions are results of arithmetic. Pointer arithmetic is not
 
    // handled by unary expressions, but it is instead handled by applying
 
    // sub-regions to regions.
 
    assert(isValidTypeForSymbol(T) && "non-valid type for unary symbol");
 
    assert(!Loc::isLocType(T) && "unary symbol should be nonloc");
 
  }
 
 
 
  unsigned computeComplexity() const override {
 
    if (Complexity == 0)
 
      Complexity = 1 + Operand->computeComplexity();
 
    return Complexity;
 
  }
 
 
 
  const SymExpr *getOperand() const { return Operand; }
 
  UnaryOperator::Opcode getOpcode() const { return Op; }
 
  QualType getType() const override { return T; }
 
 
 
  void dumpToStream(raw_ostream &os) const override;
 
 
 
  static void Profile(llvm::FoldingSetNodeID &ID, const SymExpr *In,
 
                      UnaryOperator::Opcode Op, QualType T) {
 
    ID.AddInteger((unsigned)UnarySymExprKind);
 
    ID.AddPointer(In);
 
    ID.AddInteger(Op);
 
    ID.Add(T);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID &ID) override {
 
    Profile(ID, Operand, Op, T);
 
  }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    return SE->getKind() == UnarySymExprKind;
 
  }
 
};
 
 
 
/// Represents a symbolic expression involving a binary operator
 
class BinarySymExpr : public SymExpr {
 
  BinaryOperator::Opcode Op;
 
  QualType T;
 
 
 
protected:
 
  BinarySymExpr(Kind k, BinaryOperator::Opcode op, QualType t)
 
      : SymExpr(k), Op(op), T(t) {
 
    assert(classof(this));
 
    // Binary expressions are results of arithmetic. Pointer arithmetic is not
 
    // handled by binary expressions, but it is instead handled by applying
 
    // sub-regions to regions.
 
    assert(isValidTypeForSymbol(t) && !Loc::isLocType(t));
 
  }
 
 
 
public:
 
  // FIXME: We probably need to make this out-of-line to avoid redundant
 
  // generation of virtual functions.
 
  QualType getType() const override { return T; }
 
 
 
  BinaryOperator::Opcode getOpcode() const { return Op; }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) {
 
    Kind k = SE->getKind();
 
    return k >= BEGIN_BINARYSYMEXPRS && k <= END_BINARYSYMEXPRS;
 
  }
 
 
 
protected:
 
  static unsigned computeOperandComplexity(const SymExpr *Value) {
 
    return Value->computeComplexity();
 
  }
 
  static unsigned computeOperandComplexity(const llvm::APSInt &Value) {
 
    return 1;
 
  }
 
 
 
  static const llvm::APSInt *getPointer(const llvm::APSInt &Value) {
 
    return &Value;
 
  }
 
  static const SymExpr *getPointer(const SymExpr *Value) { return Value; }
 
 
 
  static void dumpToStreamImpl(raw_ostream &os, const SymExpr *Value);
 
  static void dumpToStreamImpl(raw_ostream &os, const llvm::APSInt &Value);
 
  static void dumpToStreamImpl(raw_ostream &os, BinaryOperator::Opcode op);
 
};
 
 
 
/// Template implementation for all binary symbolic expressions
 
template <class LHSTYPE, class RHSTYPE, SymExpr::Kind ClassKind>
 
class BinarySymExprImpl : public BinarySymExpr {
 
  LHSTYPE LHS;
 
  RHSTYPE RHS;
 
 
 
public:
 
  BinarySymExprImpl(LHSTYPE lhs, BinaryOperator::Opcode op, RHSTYPE rhs,
 
                    QualType t)
 
      : BinarySymExpr(ClassKind, op, t), LHS(lhs), RHS(rhs) {
 
    assert(getPointer(lhs));
 
    assert(getPointer(rhs));
 
  }
 
 
 
  void dumpToStream(raw_ostream &os) const override {
 
    dumpToStreamImpl(os, LHS);
 
    dumpToStreamImpl(os, getOpcode());
 
    dumpToStreamImpl(os, RHS);
 
  }
 
 
 
  LHSTYPE getLHS() const { return LHS; }
 
  RHSTYPE getRHS() const { return RHS; }
 
 
 
  unsigned computeComplexity() const override {
 
    if (Complexity == 0)
 
      Complexity =
 
          computeOperandComplexity(RHS) + computeOperandComplexity(LHS);
 
    return Complexity;
 
  }
 
 
 
  static void Profile(llvm::FoldingSetNodeID &ID, LHSTYPE lhs,
 
                      BinaryOperator::Opcode op, RHSTYPE rhs, QualType t) {
 
    ID.AddInteger((unsigned)ClassKind);
 
    ID.AddPointer(getPointer(lhs));
 
    ID.AddInteger(op);
 
    ID.AddPointer(getPointer(rhs));
 
    ID.Add(t);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID &ID) override {
 
    Profile(ID, LHS, getOpcode(), RHS, getType());
 
  }
 
 
 
  // Implement isa<T> support.
 
  static bool classof(const SymExpr *SE) { return SE->getKind() == ClassKind; }
 
};
 
 
 
/// Represents a symbolic expression like 'x' + 3.
 
using SymIntExpr = BinarySymExprImpl<const SymExpr *, const llvm::APSInt &,
 
                                     SymExpr::Kind::SymIntExprKind>;
 
 
 
/// Represents a symbolic expression like 3 - 'x'.
 
using IntSymExpr = BinarySymExprImpl<const llvm::APSInt &, const SymExpr *,
 
                                     SymExpr::Kind::IntSymExprKind>;
 
 
 
/// Represents a symbolic expression like 'x' + 'y'.
 
using SymSymExpr = BinarySymExprImpl<const SymExpr *, const SymExpr *,
 
                                     SymExpr::Kind::SymSymExprKind>;
 
 
 
class SymbolManager {
 
  using DataSetTy = llvm::FoldingSet<SymExpr>;
 
  using SymbolDependTy =
 
      llvm::DenseMap<SymbolRef, std::unique_ptr<SymbolRefSmallVectorTy>>;
 
 
 
  DataSetTy DataSet;
 
 
 
  /// Stores the extra dependencies between symbols: the data should be kept
 
  /// alive as long as the key is live.
 
  SymbolDependTy SymbolDependencies;
 
 
 
  unsigned SymbolCounter = 0;
 
  llvm::BumpPtrAllocator& BPAlloc;
 
  BasicValueFactory &BV;
 
  ASTContext &Ctx;
 
 
 
public:
 
  SymbolManager(ASTContext &ctx, BasicValueFactory &bv,
 
                llvm::BumpPtrAllocator& bpalloc)
 
      : SymbolDependencies(16), BPAlloc(bpalloc), BV(bv), Ctx(ctx) {}
 
 
 
  static bool canSymbolicate(QualType T);
 
 
 
  /// Make a unique symbol for MemRegion R according to its kind.
 
  const SymbolRegionValue* getRegionValueSymbol(const TypedValueRegion* R);
 
 
 
  const SymbolConjured* conjureSymbol(const Stmt *E,
 
                                      const LocationContext *LCtx,
 
                                      QualType T,
 
                                      unsigned VisitCount,
 
                                      const void *SymbolTag = nullptr);
 
 
 
  const SymbolConjured* conjureSymbol(const Expr *E,
 
                                      const LocationContext *LCtx,
 
                                      unsigned VisitCount,
 
                                      const void *SymbolTag = nullptr) {
 
    return conjureSymbol(E, LCtx, E->getType(), VisitCount, SymbolTag);
 
  }
 
 
 
  const SymbolDerived *getDerivedSymbol(SymbolRef parentSymbol,
 
                                        const TypedValueRegion *R);
 
 
 
  const SymbolExtent *getExtentSymbol(const SubRegion *R);
 
 
 
  /// Creates a metadata symbol associated with a specific region.
 
  ///
 
  /// VisitCount can be used to differentiate regions corresponding to
 
  /// different loop iterations, thus, making the symbol path-dependent.
 
  const SymbolMetadata *getMetadataSymbol(const MemRegion *R, const Stmt *S,
 
                                          QualType T,
 
                                          const LocationContext *LCtx,
 
                                          unsigned VisitCount,
 
                                          const void *SymbolTag = nullptr);
 
 
 
  const SymbolCast* getCastSymbol(const SymExpr *Operand,
 
                                  QualType From, QualType To);
 
 
 
  const SymIntExpr *getSymIntExpr(const SymExpr *lhs, BinaryOperator::Opcode op,
 
                                  const llvm::APSInt& rhs, QualType t);
 
 
 
  const SymIntExpr *getSymIntExpr(const SymExpr &lhs, BinaryOperator::Opcode op,
 
                                  const llvm::APSInt& rhs, QualType t) {
 
    return getSymIntExpr(&lhs, op, rhs, t);
 
  }
 
 
 
  const IntSymExpr *getIntSymExpr(const llvm::APSInt& lhs,
 
                                  BinaryOperator::Opcode op,
 
                                  const SymExpr *rhs, QualType t);
 
 
 
  const SymSymExpr *getSymSymExpr(const SymExpr *lhs, BinaryOperator::Opcode op,
 
                                  const SymExpr *rhs, QualType t);
 
 
 
  const UnarySymExpr *getUnarySymExpr(const SymExpr *operand,
 
                                      UnaryOperator::Opcode op, QualType t);
 
 
 
  QualType getType(const SymExpr *SE) const {
 
    return SE->getType();
 
  }
 
 
 
  /// Add artificial symbol dependency.
 
  ///
 
  /// The dependent symbol should stay alive as long as the primary is alive.
 
  void addSymbolDependency(const SymbolRef Primary, const SymbolRef Dependent);
 
 
 
  const SymbolRefSmallVectorTy *getDependentSymbols(const SymbolRef Primary);
 
 
 
  ASTContext &getContext() { return Ctx; }
 
  BasicValueFactory &getBasicVals() { return BV; }
 
};
 
 
 
/// A class responsible for cleaning up unused symbols.
 
class SymbolReaper {
 
  enum SymbolStatus {
 
    NotProcessed,
 
    HaveMarkedDependents
 
  };
 
 
 
  using SymbolSetTy = llvm::DenseSet<SymbolRef>;
 
  using SymbolMapTy = llvm::DenseMap<SymbolRef, SymbolStatus>;
 
  using RegionSetTy = llvm::DenseSet<const MemRegion *>;
 
 
 
  SymbolMapTy TheLiving;
 
  SymbolSetTy MetadataInUse;
 
 
 
  RegionSetTy LiveRegionRoots;
 
  // The lazily copied regions are locations for which a program
 
  // can access the value stored at that location, but not its address.
 
  // These regions are constructed as a set of regions referred to by
 
  // lazyCompoundVal.
 
  RegionSetTy LazilyCopiedRegionRoots;
 
 
 
  const StackFrameContext *LCtx;
 
  const Stmt *Loc;
 
  SymbolManager& SymMgr;
 
  StoreRef reapedStore;
 
  llvm::DenseMap<const MemRegion *, unsigned> includedRegionCache;
 
 
 
public:
 
  /// Construct a reaper object, which removes everything which is not
 
  /// live before we execute statement s in the given location context.
 
  ///
 
  /// If the statement is NULL, everything is this and parent contexts is
 
  /// considered live.
 
  /// If the stack frame context is NULL, everything on stack is considered
 
  /// dead.
 
  SymbolReaper(const StackFrameContext *Ctx, const Stmt *s,
 
               SymbolManager &symmgr, StoreManager &storeMgr)
 
      : LCtx(Ctx), Loc(s), SymMgr(symmgr), reapedStore(nullptr, storeMgr) {}
 
 
 
  /// It might return null.
 
  const LocationContext *getLocationContext() const { return LCtx; }
 
 
 
  bool isLive(SymbolRef sym);
 
  bool isLiveRegion(const MemRegion *region);
 
  bool isLive(const Expr *ExprVal, const LocationContext *LCtx) const;
 
  bool isLive(const VarRegion *VR, bool includeStoreBindings = false) const;
 
 
 
  /// Unconditionally marks a symbol as live.
 
  ///
 
  /// This should never be
 
  /// used by checkers, only by the state infrastructure such as the store and
 
  /// environment. Checkers should instead use metadata symbols and markInUse.
 
  void markLive(SymbolRef sym);
 
 
 
  /// Marks a symbol as important to a checker.
 
  ///
 
  /// For metadata symbols,
 
  /// this will keep the symbol alive as long as its associated region is also
 
  /// live. For other symbols, this has no effect; checkers are not permitted
 
  /// to influence the life of other symbols. This should be used before any
 
  /// symbol marking has occurred, i.e. in the MarkLiveSymbols callback.
 
  void markInUse(SymbolRef sym);
 
 
 
  using region_iterator = RegionSetTy::const_iterator;
 
 
 
  region_iterator region_begin() const { return LiveRegionRoots.begin(); }
 
  region_iterator region_end() const { return LiveRegionRoots.end(); }
 
 
 
  /// Returns whether or not a symbol has been confirmed dead.
 
  ///
 
  /// This should only be called once all marking of dead symbols has completed.
 
  /// (For checkers, this means only in the checkDeadSymbols callback.)
 
  bool isDead(SymbolRef sym) {
 
    return !isLive(sym);
 
  }
 
 
 
  void markLive(const MemRegion *region);
 
  void markLazilyCopied(const MemRegion *region);
 
  void markElementIndicesLive(const MemRegion *region);
 
 
 
  /// Set to the value of the symbolic store after
 
  /// StoreManager::removeDeadBindings has been called.
 
  void setReapedStore(StoreRef st) { reapedStore = st; }
 
 
 
private:
 
  bool isLazilyCopiedRegion(const MemRegion *region) const;
 
  // A readable region is a region that live or lazily copied.
 
  // Any symbols that refer to values in regions are alive if the region
 
  // is readable.
 
  bool isReadableRegion(const MemRegion *region);
 
 
 
  /// Mark the symbols dependent on the input symbol as live.
 
  void markDependentsLive(SymbolRef sym);
 
};
 
 
 
class SymbolVisitor {
 
protected:
 
  ~SymbolVisitor() = default;
 
 
 
public:
 
  SymbolVisitor() = default;
 
  SymbolVisitor(const SymbolVisitor &) = default;
 
  SymbolVisitor(SymbolVisitor &&) {}
 
 
 
  /// A visitor method invoked by ProgramStateManager::scanReachableSymbols.
 
  ///
 
  /// The method returns \c true if symbols should continue be scanned and \c
 
  /// false otherwise.
 
  virtual bool VisitSymbol(SymbolRef sym) = 0;
 
  virtual bool VisitMemRegion(const MemRegion *) { return true; }
 
};
 
 
 
} // namespace ento
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SYMBOLMANAGER_H