//===- Store.h - Interface for maps from Locations to Values ----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file defined the types Store and StoreManager.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_STORE_H
 
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_STORE_H
 
 
 
#include "clang/AST/Type.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
 
#include "clang/Basic/LLVM.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <memory>
 
#include <optional>
 
 
 
namespace clang {
 
 
 
class ASTContext;
 
class CastExpr;
 
class CompoundLiteralExpr;
 
class CXXBasePath;
 
class Decl;
 
class Expr;
 
class LocationContext;
 
class ObjCIvarDecl;
 
class StackFrameContext;
 
 
 
namespace ento {
 
 
 
class CallEvent;
 
class ProgramStateManager;
 
class ScanReachableSymbols;
 
class SymbolReaper;
 
 
 
using InvalidatedSymbols = llvm::DenseSet<SymbolRef>;
 
 
 
class StoreManager {
 
protected:
 
  SValBuilder &svalBuilder;
 
  ProgramStateManager &StateMgr;
 
 
 
  /// MRMgr - Manages region objects associated with this StoreManager.
 
  MemRegionManager &MRMgr;
 
  ASTContext &Ctx;
 
 
 
  StoreManager(ProgramStateManager &stateMgr);
 
 
 
public:
 
  virtual ~StoreManager() = default;
 
 
 
  /// Return the value bound to specified location in a given state.
 
  /// \param[in] store The store in which to make the lookup.
 
  /// \param[in] loc The symbolic memory location.
 
  /// \param[in] T An optional type that provides a hint indicating the
 
  ///   expected type of the returned value.  This is used if the value is
 
  ///   lazily computed.
 
  /// \return The value bound to the location \c loc.
 
  virtual SVal getBinding(Store store, Loc loc, QualType T = QualType()) = 0;
 
 
 
  /// Return the default value bound to a region in a given store. The default
 
  /// binding is the value of sub-regions that were not initialized separately
 
  /// from their base region. For example, if the structure is zero-initialized
 
  /// upon construction, this method retrieves the concrete zero value, even if
 
  /// some or all fields were later overwritten manually. Default binding may be
 
  /// an unknown, undefined, concrete, or symbolic value.
 
  /// \param[in] store The store in which to make the lookup.
 
  /// \param[in] R The region to find the default binding for.
 
  /// \return The default value bound to the region in the store, if a default
 
  /// binding exists.
 
  virtual std::optional<SVal> getDefaultBinding(Store store,
 
                                                const MemRegion *R) = 0;
 
 
 
  /// Return the default value bound to a LazyCompoundVal. The default binding
 
  /// is used to represent the value of any fields or elements within the
 
  /// structure represented by the LazyCompoundVal which were not initialized
 
  /// explicitly separately from the whole structure. Default binding may be an
 
  /// unknown, undefined, concrete, or symbolic value.
 
  /// \param[in] lcv The lazy compound value.
 
  /// \return The default value bound to the LazyCompoundVal \c lcv, if a
 
  /// default binding exists.
 
  std::optional<SVal> getDefaultBinding(nonloc::LazyCompoundVal lcv) {
 
    return getDefaultBinding(lcv.getStore(), lcv.getRegion());
 
  }
 
 
 
  /// Return a store with the specified value bound to the given location.
 
  /// \param[in] store The store in which to make the binding.
 
  /// \param[in] loc The symbolic memory location.
 
  /// \param[in] val The value to bind to location \c loc.
 
  /// \return A StoreRef object that contains the same
 
  ///   bindings as \c store with the addition of having the value specified
 
  ///   by \c val bound to the location given for \c loc.
 
  virtual StoreRef Bind(Store store, Loc loc, SVal val) = 0;
 
 
 
  /// Return a store with the specified value bound to all sub-regions of the
 
  /// region. The region must not have previous bindings. If you need to
 
  /// invalidate existing bindings, consider invalidateRegions().
 
  virtual StoreRef BindDefaultInitial(Store store, const MemRegion *R,
 
                                      SVal V) = 0;
 
 
 
  /// Return a store with in which all values within the given region are
 
  /// reset to zero. This method is allowed to overwrite previous bindings.
 
  virtual StoreRef BindDefaultZero(Store store, const MemRegion *R) = 0;
 
 
 
  /// Create a new store with the specified binding removed.
 
  /// \param ST the original store, that is the basis for the new store.
 
  /// \param L the location whose binding should be removed.
 
  virtual StoreRef killBinding(Store ST, Loc L) = 0;
 
 
 
  /// getInitialStore - Returns the initial "empty" store representing the
 
  ///  value bindings upon entry to an analyzed function.
 
  virtual StoreRef getInitialStore(const LocationContext *InitLoc) = 0;
 
 
 
  /// getRegionManager - Returns the internal RegionManager object that is
 
  ///  used to query and manipulate MemRegion objects.
 
  MemRegionManager& getRegionManager() { return MRMgr; }
 
 
 
  SValBuilder& getSValBuilder() { return svalBuilder; }
 
 
 
  virtual Loc getLValueVar(const VarDecl *VD, const LocationContext *LC) {
 
    return svalBuilder.makeLoc(MRMgr.getVarRegion(VD, LC));
 
  }
 
 
 
  Loc getLValueCompoundLiteral(const CompoundLiteralExpr *CL,
 
                               const LocationContext *LC) {
 
    return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC));
 
  }
 
 
 
  virtual SVal getLValueIvar(const ObjCIvarDecl *decl, SVal base);
 
 
 
  virtual SVal getLValueField(const FieldDecl *D, SVal Base) {
 
    return getLValueFieldOrIvar(D, Base);
 
  }
 
 
 
  virtual SVal getLValueElement(QualType elementType, NonLoc offset, SVal Base);
 
 
 
  /// ArrayToPointer - Used by ExprEngine::VistCast to handle implicit
 
  ///  conversions between arrays and pointers.
 
  virtual SVal ArrayToPointer(Loc Array, QualType ElementTy) = 0;
 
 
 
  /// Evaluates a chain of derived-to-base casts through the path specified in
 
  /// \p Cast.
 
  SVal evalDerivedToBase(SVal Derived, const CastExpr *Cast);
 
 
 
  /// Evaluates a chain of derived-to-base casts through the specified path.
 
  SVal evalDerivedToBase(SVal Derived, const CXXBasePath &CastPath);
 
 
 
  /// Evaluates a derived-to-base cast through a single level of derivation.
 
  SVal evalDerivedToBase(SVal Derived, QualType DerivedPtrType,
 
                         bool IsVirtual);
 
 
 
  /// Attempts to do a down cast. Used to model BaseToDerived and C++
 
  ///        dynamic_cast.
 
  /// The callback may result in the following 3 scenarios:
 
  ///  - Successful cast (ex: derived is subclass of base).
 
  ///  - Failed cast (ex: derived is definitely not a subclass of base).
 
  ///    The distinction of this case from the next one is necessary to model
 
  ///    dynamic_cast.
 
  ///  - We don't know (base is a symbolic region and we don't have
 
  ///    enough info to determine if the cast will succeed at run time).
 
  /// The function returns an optional with SVal representing the derived class
 
  /// in case of a successful cast and `std::nullopt` otherwise.
 
  std::optional<SVal> evalBaseToDerived(SVal Base, QualType DerivedPtrType);
 
 
 
  const ElementRegion *GetElementZeroRegion(const SubRegion *R, QualType T);
 
 
 
  /// castRegion - Used by ExprEngine::VisitCast to handle casts from
 
  ///  a MemRegion* to a specific location type.  'R' is the region being
 
  ///  casted and 'CastToTy' the result type of the cast.
 
  std::optional<const MemRegion *> castRegion(const MemRegion *region,
 
                                              QualType CastToTy);
 
 
 
  virtual StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
 
                                      SymbolReaper &SymReaper) = 0;
 
 
 
  virtual bool includedInBindings(Store store,
 
                                  const MemRegion *region) const = 0;
 
 
 
  /// If the StoreManager supports it, increment the reference count of
 
  /// the specified Store object.
 
  virtual void incrementReferenceCount(Store store) {}
 
 
 
  /// If the StoreManager supports it, decrement the reference count of
 
  /// the specified Store object.  If the reference count hits 0, the memory
 
  /// associated with the object is recycled.
 
  virtual void decrementReferenceCount(Store store) {}
 
 
 
  using InvalidatedRegions = SmallVector<const MemRegion *, 8>;
 
 
 
  /// invalidateRegions - Clears out the specified regions from the store,
 
  ///  marking their values as unknown. Depending on the store, this may also
 
  ///  invalidate additional regions that may have changed based on accessing
 
  ///  the given regions. Optionally, invalidates non-static globals as well.
 
  /// \param[in] store The initial store
 
  /// \param[in] Values The values to invalidate.
 
  /// \param[in] E The current statement being evaluated. Used to conjure
 
  ///   symbols to mark the values of invalidated regions.
 
  /// \param[in] Count The current block count. Used to conjure
 
  ///   symbols to mark the values of invalidated regions.
 
  /// \param[in] Call The call expression which will be used to determine which
 
  ///   globals should get invalidated.
 
  /// \param[in,out] IS A set to fill with any symbols that are no longer
 
  ///   accessible. Pass \c NULL if this information will not be used.
 
  /// \param[in] ITraits Information about invalidation for a particular
 
  ///   region/symbol.
 
  /// \param[in,out] InvalidatedTopLevel A vector to fill with regions
 
  ////  explicitly being invalidated. Pass \c NULL if this
 
  ///   information will not be used.
 
  /// \param[in,out] Invalidated A vector to fill with any regions being
 
  ///   invalidated. This should include any regions explicitly invalidated
 
  ///   even if they do not currently have bindings. Pass \c NULL if this
 
  ///   information will not be used.
 
  virtual StoreRef invalidateRegions(Store store,
 
                                  ArrayRef<SVal> Values,
 
                                  const Expr *E, unsigned Count,
 
                                  const LocationContext *LCtx,
 
                                  const CallEvent *Call,
 
                                  InvalidatedSymbols &IS,
 
                                  RegionAndSymbolInvalidationTraits &ITraits,
 
                                  InvalidatedRegions *InvalidatedTopLevel,
 
                                  InvalidatedRegions *Invalidated) = 0;
 
 
 
  /// enterStackFrame - Let the StoreManager to do something when execution
 
  /// engine is about to execute into a callee.
 
  StoreRef enterStackFrame(Store store,
 
                           const CallEvent &Call,
 
                           const StackFrameContext *CalleeCtx);
 
 
 
  /// Finds the transitive closure of symbols within the given region.
 
  ///
 
  /// Returns false if the visitor aborted the scan.
 
  virtual bool scanReachableSymbols(Store S, const MemRegion *R,
 
                                    ScanReachableSymbols &Visitor) = 0;
 
 
 
  virtual void printJson(raw_ostream &Out, Store S, const char *NL,
 
                         unsigned int Space, bool IsDot) const = 0;
 
 
 
  class BindingsHandler {
 
  public:
 
    virtual ~BindingsHandler();
 
 
 
    /// \return whether the iteration should continue.
 
    virtual bool HandleBinding(StoreManager& SMgr, Store store,
 
                               const MemRegion *region, SVal val) = 0;
 
  };
 
 
 
  class FindUniqueBinding : public BindingsHandler {
 
    SymbolRef Sym;
 
    const MemRegion* Binding = nullptr;
 
    bool First = true;
 
 
 
  public:
 
    FindUniqueBinding(SymbolRef sym) : Sym(sym) {}
 
 
 
    explicit operator bool() { return First && Binding; }
 
 
 
    bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R,
 
                       SVal val) override;
 
    const MemRegion *getRegion() { return Binding; }
 
  };
 
 
 
  /// iterBindings - Iterate over the bindings in the Store.
 
  virtual void iterBindings(Store store, BindingsHandler& f) = 0;
 
 
 
protected:
 
  const ElementRegion *MakeElementRegion(const SubRegion *baseRegion,
 
                                         QualType pointeeTy,
 
                                         uint64_t index = 0);
 
 
 
private:
 
  SVal getLValueFieldOrIvar(const Decl *decl, SVal base);
 
};
 
 
 
inline StoreRef::StoreRef(Store store, StoreManager & smgr)
 
    : store(store), mgr(smgr) {
 
  if (store)
 
    mgr.incrementReferenceCount(store);
 
}
 
 
 
inline StoreRef::StoreRef(const StoreRef &sr)
 
    : store(sr.store), mgr(sr.mgr)
 
{
 
  if (store)
 
    mgr.incrementReferenceCount(store);
 
}
 
 
 
inline StoreRef::~StoreRef() {
 
  if (store)
 
    mgr.decrementReferenceCount(store);
 
}
 
 
 
inline StoreRef &StoreRef::operator=(StoreRef const &newStore) {
 
  assert(&newStore.mgr == &mgr);
 
  if (store != newStore.store) {
 
    mgr.incrementReferenceCount(newStore.store);
 
    mgr.decrementReferenceCount(store);
 
    store = newStore.getStore();
 
  }
 
  return *this;
 
}
 
 
 
// FIXME: Do we need to pass ProgramStateManager anymore?
 
std::unique_ptr<StoreManager>
 
CreateRegionStoreManager(ProgramStateManager &StMgr);
 
 
 
} // namespace ento
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_STORE_H