// SValBuilder.h - Construction of SVals from evaluating expressions -*- C++ -*-
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file defines SValBuilder, a class that defines the interface for
 
//  "symbolical evaluators" which construct an SVal from an expression.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
 
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
 
 
 
#include "clang/AST/ASTContext.h"
 
#include "clang/AST/DeclarationName.h"
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/ExprObjC.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Basic/LangOptions.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
 
#include "llvm/ADT/ImmutableList.h"
 
#include <cstdint>
 
#include <optional>
 
 
 
namespace clang {
 
 
 
class AnalyzerOptions;
 
class BlockDecl;
 
class CXXBoolLiteralExpr;
 
class CXXMethodDecl;
 
class CXXRecordDecl;
 
class DeclaratorDecl;
 
class FunctionDecl;
 
class LocationContext;
 
class StackFrameContext;
 
class Stmt;
 
 
 
namespace ento {
 
 
 
class ConditionTruthVal;
 
class ProgramStateManager;
 
class StoreRef;
 
 
 
class SValBuilder {
 
  virtual void anchor();
 
 
 
protected:
 
  ASTContext &Context;
 
 
 
  /// Manager of APSInt values.
 
  BasicValueFactory BasicVals;
 
 
 
  /// Manages the creation of symbols.
 
  SymbolManager SymMgr;
 
 
 
  /// Manages the creation of memory regions.
 
  MemRegionManager MemMgr;
 
 
 
  ProgramStateManager &StateMgr;
 
 
 
  const AnalyzerOptions &AnOpts;
 
 
 
  /// The scalar type to use for array indices.
 
  const QualType ArrayIndexTy;
 
 
 
  /// The width of the scalar type used for array indices.
 
  const unsigned ArrayIndexWidth;
 
 
 
public:
 
  SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
 
              ProgramStateManager &stateMgr);
 
 
 
  virtual ~SValBuilder() = default;
 
 
 
  SVal evalCast(SVal V, QualType CastTy, QualType OriginalTy);
 
 
 
  // Handles casts of type CK_IntegralCast.
 
  SVal evalIntegralCast(ProgramStateRef state, SVal val, QualType castTy,
 
                        QualType originalType);
 
 
 
  SVal evalMinus(NonLoc val);
 
  SVal evalComplement(NonLoc val);
 
 
 
  /// Create a new value which represents a binary expression with two non-
 
  /// location operands.
 
  virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
 
                           NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;
 
 
 
  /// Create a new value which represents a binary expression with two memory
 
  /// location operands.
 
  virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
 
                           Loc lhs, Loc rhs, QualType resultTy) = 0;
 
 
 
  /// Create a new value which represents a binary expression with a memory
 
  /// location and non-location operands. For example, this would be used to
 
  /// evaluate a pointer arithmetic operation.
 
  virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
 
                           Loc lhs, NonLoc rhs, QualType resultTy) = 0;
 
 
 
  /// Evaluates a given SVal. If the SVal has only one possible (integer) value,
 
  /// that value is returned. Otherwise, returns NULL.
 
  virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal val) = 0;
 
 
 
  /// Simplify symbolic expressions within a given SVal. Return an SVal
 
  /// that represents the same value, but is hopefully easier to work with
 
  /// than the original SVal.
 
  virtual SVal simplifySVal(ProgramStateRef State, SVal Val) = 0;
 
 
 
  /// Constructs a symbolic expression for two non-location values.
 
  SVal makeSymExprValNN(BinaryOperator::Opcode op,
 
                        NonLoc lhs, NonLoc rhs, QualType resultTy);
 
 
 
  SVal evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
 
                 SVal operand, QualType type);
 
 
 
  SVal evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
 
                 SVal lhs, SVal rhs, QualType type);
 
 
 
  /// \return Whether values in \p lhs and \p rhs are equal at \p state.
 
  ConditionTruthVal areEqual(ProgramStateRef state, SVal lhs, SVal rhs);
 
 
 
  SVal evalEQ(ProgramStateRef state, SVal lhs, SVal rhs);
 
 
 
  DefinedOrUnknownSVal evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs,
 
                              DefinedOrUnknownSVal rhs);
 
 
 
  ASTContext &getContext() { return Context; }
 
  const ASTContext &getContext() const { return Context; }
 
 
 
  ProgramStateManager &getStateManager() { return StateMgr; }
 
 
 
  QualType getConditionType() const {
 
    return Context.getLangOpts().CPlusPlus ? Context.BoolTy : Context.IntTy;
 
  }
 
 
 
  QualType getArrayIndexType() const {
 
    return ArrayIndexTy;
 
  }
 
 
 
  BasicValueFactory &getBasicValueFactory() { return BasicVals; }
 
  const BasicValueFactory &getBasicValueFactory() const { return BasicVals; }
 
 
 
  SymbolManager &getSymbolManager() { return SymMgr; }
 
  const SymbolManager &getSymbolManager() const { return SymMgr; }
 
 
 
  MemRegionManager &getRegionManager() { return MemMgr; }
 
  const MemRegionManager &getRegionManager() const { return MemMgr; }
 
 
 
  const AnalyzerOptions &getAnalyzerOptions() const { return AnOpts; }
 
 
 
  // Forwarding methods to SymbolManager.
 
 
 
  const SymbolConjured* conjureSymbol(const Stmt *stmt,
 
                                      const LocationContext *LCtx,
 
                                      QualType type,
 
                                      unsigned visitCount,
 
                                      const void *symbolTag = nullptr) {
 
    return SymMgr.conjureSymbol(stmt, LCtx, type, visitCount, symbolTag);
 
  }
 
 
 
  const SymbolConjured* conjureSymbol(const Expr *expr,
 
                                      const LocationContext *LCtx,
 
                                      unsigned visitCount,
 
                                      const void *symbolTag = nullptr) {
 
    return SymMgr.conjureSymbol(expr, LCtx, visitCount, symbolTag);
 
  }
 
 
 
  /// Construct an SVal representing '0' for the specified type.
 
  DefinedOrUnknownSVal makeZeroVal(QualType type);
 
 
 
  /// Make a unique symbol for value of region.
 
  DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region);
 
 
 
  /// Create a new symbol with a unique 'name'.
 
  ///
 
  /// We resort to conjured symbols when we cannot construct a derived symbol.
 
  /// The advantage of symbols derived/built from other symbols is that we
 
  /// preserve the relation between related(or even equivalent) expressions, so
 
  /// conjured symbols should be used sparingly.
 
  DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
 
                                        const Expr *expr,
 
                                        const LocationContext *LCtx,
 
                                        unsigned count);
 
  DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
 
                                        const Expr *expr,
 
                                        const LocationContext *LCtx,
 
                                        QualType type,
 
                                        unsigned count);
 
  DefinedOrUnknownSVal conjureSymbolVal(const Stmt *stmt,
 
                                        const LocationContext *LCtx,
 
                                        QualType type,
 
                                        unsigned visitCount);
 
 
 
  /// Conjure a symbol representing heap allocated memory region.
 
  ///
 
  /// Note, the expression should represent a location.
 
  DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
 
                                                const LocationContext *LCtx,
 
                                                unsigned Count);
 
 
 
  /// Conjure a symbol representing heap allocated memory region.
 
  ///
 
  /// Note, now, the expression *doesn't* need to represent a location.
 
  /// But the type need to!
 
  DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
 
                                                const LocationContext *LCtx,
 
                                                QualType type, unsigned Count);
 
 
 
  DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(
 
      SymbolRef parentSymbol, const TypedValueRegion *region);
 
 
 
  DefinedSVal getMetadataSymbolVal(const void *symbolTag,
 
                                   const MemRegion *region,
 
                                   const Expr *expr, QualType type,
 
                                   const LocationContext *LCtx,
 
                                   unsigned count);
 
 
 
  DefinedSVal getMemberPointer(const NamedDecl *ND);
 
 
 
  DefinedSVal getFunctionPointer(const FunctionDecl *func);
 
 
 
  DefinedSVal getBlockPointer(const BlockDecl *block, CanQualType locTy,
 
                              const LocationContext *locContext,
 
                              unsigned blockCount);
 
 
 
  /// Returns the value of \p E, if it can be determined in a non-path-sensitive
 
  /// manner.
 
  ///
 
  /// If \p E is not a constant or cannot be modeled, returns \c std::nullopt.
 
  std::optional<SVal> getConstantVal(const Expr *E);
 
 
 
  NonLoc makeCompoundVal(QualType type, llvm::ImmutableList<SVal> vals) {
 
    return nonloc::CompoundVal(BasicVals.getCompoundValData(type, vals));
 
  }
 
 
 
  NonLoc makeLazyCompoundVal(const StoreRef &store,
 
                             const TypedValueRegion *region) {
 
    return nonloc::LazyCompoundVal(
 
        BasicVals.getLazyCompoundValData(store, region));
 
  }
 
 
 
  NonLoc makePointerToMember(const DeclaratorDecl *DD) {
 
    return nonloc::PointerToMember(DD);
 
  }
 
 
 
  NonLoc makePointerToMember(const PointerToMemberData *PTMD) {
 
    return nonloc::PointerToMember(PTMD);
 
  }
 
 
 
  NonLoc makeZeroArrayIndex() {
 
    return nonloc::ConcreteInt(BasicVals.getValue(0, ArrayIndexTy));
 
  }
 
 
 
  NonLoc makeArrayIndex(uint64_t idx) {
 
    return nonloc::ConcreteInt(BasicVals.getValue(idx, ArrayIndexTy));
 
  }
 
 
 
  SVal convertToArrayIndex(SVal val);
 
 
 
  nonloc::ConcreteInt makeIntVal(const IntegerLiteral* integer) {
 
    return nonloc::ConcreteInt(
 
        BasicVals.getValue(integer->getValue(),
 
                     integer->getType()->isUnsignedIntegerOrEnumerationType()));
 
  }
 
 
 
  nonloc::ConcreteInt makeBoolVal(const ObjCBoolLiteralExpr *boolean) {
 
    return makeTruthVal(boolean->getValue(), boolean->getType());
 
  }
 
 
 
  nonloc::ConcreteInt makeBoolVal(const CXXBoolLiteralExpr *boolean);
 
 
 
  nonloc::ConcreteInt makeIntVal(const llvm::APSInt& integer) {
 
    return nonloc::ConcreteInt(BasicVals.getValue(integer));
 
  }
 
 
 
  loc::ConcreteInt makeIntLocVal(const llvm::APSInt &integer) {
 
    return loc::ConcreteInt(BasicVals.getValue(integer));
 
  }
 
 
 
  NonLoc makeIntVal(const llvm::APInt& integer, bool isUnsigned) {
 
    return nonloc::ConcreteInt(BasicVals.getValue(integer, isUnsigned));
 
  }
 
 
 
  DefinedSVal makeIntVal(uint64_t integer, QualType type) {
 
    if (Loc::isLocType(type))
 
      return loc::ConcreteInt(BasicVals.getValue(integer, type));
 
 
 
    return nonloc::ConcreteInt(BasicVals.getValue(integer, type));
 
  }
 
 
 
  NonLoc makeIntVal(uint64_t integer, bool isUnsigned) {
 
    return nonloc::ConcreteInt(BasicVals.getIntValue(integer, isUnsigned));
 
  }
 
 
 
  NonLoc makeIntValWithWidth(QualType ptrType, uint64_t integer) {
 
    return nonloc::ConcreteInt(BasicVals.getValue(integer, ptrType));
 
  }
 
 
 
  NonLoc makeLocAsInteger(Loc loc, unsigned bits) {
 
    return nonloc::LocAsInteger(BasicVals.getPersistentSValWithData(loc, bits));
 
  }
 
 
 
  nonloc::SymbolVal makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
 
                               const llvm::APSInt &rhs, QualType type);
 
 
 
  nonloc::SymbolVal makeNonLoc(const llvm::APSInt &rhs,
 
                               BinaryOperator::Opcode op, const SymExpr *lhs,
 
                               QualType type);
 
 
 
  nonloc::SymbolVal makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
 
                               const SymExpr *rhs, QualType type);
 
 
 
  NonLoc makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
 
                    QualType type);
 
 
 
  /// Create a NonLoc value for cast.
 
  nonloc::SymbolVal makeNonLoc(const SymExpr *operand, QualType fromTy,
 
                               QualType toTy);
 
 
 
  nonloc::ConcreteInt makeTruthVal(bool b, QualType type) {
 
    return nonloc::ConcreteInt(BasicVals.getTruthValue(b, type));
 
  }
 
 
 
  nonloc::ConcreteInt makeTruthVal(bool b) {
 
    return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
 
  }
 
 
 
  /// Create NULL pointer, with proper pointer bit-width for given address
 
  /// space.
 
  /// \param type pointer type.
 
  loc::ConcreteInt makeNullWithType(QualType type) {
 
    // We cannot use the `isAnyPointerType()`.
 
    assert((type->isPointerType() || type->isObjCObjectPointerType() ||
 
            type->isBlockPointerType() || type->isNullPtrType() ||
 
            type->isReferenceType()) &&
 
           "makeNullWithType must use pointer type");
 
 
 
    // The `sizeof(T&)` is `sizeof(T)`, thus we replace the reference with a
 
    // pointer. Here we assume that references are actually implemented by
 
    // pointers under-the-hood.
 
    type = type->isReferenceType()
 
               ? Context.getPointerType(type->getPointeeType())
 
               : type;
 
    return loc::ConcreteInt(BasicVals.getZeroWithTypeSize(type));
 
  }
 
 
 
  loc::MemRegionVal makeLoc(SymbolRef sym) {
 
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 
  }
 
 
 
  loc::MemRegionVal makeLoc(const MemRegion *region) {
 
    return loc::MemRegionVal(region);
 
  }
 
 
 
  loc::GotoLabel makeLoc(const AddrLabelExpr *expr) {
 
    return loc::GotoLabel(expr->getLabel());
 
  }
 
 
 
  loc::ConcreteInt makeLoc(const llvm::APSInt &integer) {
 
    return loc::ConcreteInt(BasicVals.getValue(integer));
 
  }
 
 
 
  /// Return MemRegionVal on success cast, otherwise return std::nullopt.
 
  std::optional<loc::MemRegionVal>
 
  getCastedMemRegionVal(const MemRegion *region, QualType type);
 
 
 
  /// Make an SVal that represents the given symbol. This follows the convention
 
  /// of representing Loc-type symbols (symbolic pointers and references)
 
  /// as Loc values wrapping the symbol rather than as plain symbol values.
 
  DefinedSVal makeSymbolVal(SymbolRef Sym) {
 
    if (Loc::isLocType(Sym->getType()))
 
      return makeLoc(Sym);
 
    return nonloc::SymbolVal(Sym);
 
  }
 
 
 
  /// Return a memory region for the 'this' object reference.
 
  loc::MemRegionVal getCXXThis(const CXXMethodDecl *D,
 
                               const StackFrameContext *SFC);
 
 
 
  /// Return a memory region for the 'this' object reference.
 
  loc::MemRegionVal getCXXThis(const CXXRecordDecl *D,
 
                               const StackFrameContext *SFC);
 
};
 
 
 
SValBuilder* createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
 
                                     ASTContext &context,
 
                                     ProgramStateManager &stateMgr);
 
 
 
} // namespace ento
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H