//== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the state of the program along the analysisa path.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/Support/Allocator.h"
#include <optional>
#include <utility>
namespace llvm {
class APSInt;
}
namespace clang {
class ASTContext;
namespace ento {
class AnalysisManager;
class CallEvent;
class CallEventManager;
typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
ProgramStateManager &, ExprEngine *);
typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
ProgramStateManager &);
//===----------------------------------------------------------------------===//
// ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
//===----------------------------------------------------------------------===//
template <typename T> struct ProgramStateTrait {
typedef typename T::data_type data_type;
static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
static inline data_type MakeData(void *const* P) {
return P ? (data_type) *P : (data_type) 0;
}
};
/// \class ProgramState
/// ProgramState - This class encapsulates:
///
/// 1. A mapping from expressions to values (Environment)
/// 2. A mapping from locations to values (Store)
/// 3. Constraints on symbolic values (GenericDataMap)
///
/// Together these represent the "abstract state" of a program.
///
/// ProgramState is intended to be used as a functional object; that is,
/// once it is created and made "persistent" in a FoldingSet, its
/// values will never change.
class ProgramState : public llvm::FoldingSetNode {
public:
typedef llvm::ImmutableSet<llvm::APSInt*> IntSetTy;
typedef llvm::ImmutableMap<void*, void*> GenericDataMap;
private:
void operator=(const ProgramState& R) = delete;
friend class ProgramStateManager;
friend class ExplodedGraph;
friend class ExplodedNode;
friend class NodeBuilder;
ProgramStateManager *stateMgr;
Environment Env; // Maps a Stmt to its current SVal.
Store store; // Maps a location to its current value.
GenericDataMap GDM; // Custom data stored by a client of this class.
// A state is infeasible if there is a contradiction among the constraints.
// An infeasible state is represented by a `nullptr`.
// In the sense of `assumeDual`, a state can have two children by adding a
// new constraint and the negation of that new constraint. A parent state is
// over-constrained if both of its children are infeasible. In the
// mathematical sense, it means that the parent is infeasible and we should
// have realized that at the moment when we have created it. However, we
// could not recognize that because of the imperfection of the underlying
// constraint solver. We say it is posteriorly over-constrained because we
// recognize that a parent is infeasible only *after* a new and more specific
// constraint and its negation are evaluated.
//
// Example:
//
// x * x = 4 and x is in the range [0, 1]
// This is an already infeasible state, but the constraint solver is not
// capable of handling sqrt, thus we don't know it yet.
//
// Then a new constraint `x = 0` is added. At this moment the constraint
// solver re-evaluates the existing constraints and realizes the
// contradiction `0 * 0 = 4`.
// We also evaluate the negated constraint `x != 0`; the constraint solver
// deduces `x = 1` and then realizes the contradiction `1 * 1 = 4`.
// Both children are infeasible, thus the parent state is marked as
// posteriorly over-constrained. These parents are handled with special care:
// we do not allow transitions to exploded nodes with such states.
bool PosteriorlyOverconstrained = false;
// Make internal constraint solver entities friends so they can access the
// overconstrained-related functions. We want to keep this API inaccessible
// for Checkers.
friend class ConstraintManager;
bool isPosteriorlyOverconstrained() const {
return PosteriorlyOverconstrained;
}
ProgramStateRef cloneAsPosteriorlyOverconstrained() const;
unsigned refCount;
/// makeWithStore - Return a ProgramState with the same values as the current
/// state with the exception of using the specified Store.
ProgramStateRef makeWithStore(const StoreRef &store) const;
void setStore(const StoreRef &storeRef);
public:
/// This ctor is used when creating the first ProgramState object.
ProgramState(ProgramStateManager *mgr, const Environment& env,
StoreRef st, GenericDataMap gdm);
/// Copy ctor - We must explicitly define this or else the "Next" ptr
/// in FoldingSetNode will also get copied.
ProgramState(const ProgramState &RHS);
~ProgramState();
int64_t getID() const;
/// Return the ProgramStateManager associated with this state.
ProgramStateManager &getStateManager() const {
return *stateMgr;
}
AnalysisManager &getAnalysisManager() const;
/// Return the ConstraintManager.
ConstraintManager &getConstraintManager() const;
/// getEnvironment - Return the environment associated with this state.
/// The environment is the mapping from expressions to values.
const Environment& getEnvironment() const { return Env; }
/// Return the store associated with this state. The store
/// is a mapping from locations to values.
Store getStore() const { return store; }
/// getGDM - Return the generic data map associated with this state.
GenericDataMap getGDM() const { return GDM; }
void setGDM(GenericDataMap gdm) { GDM = gdm; }
/// Profile - Profile the contents of a ProgramState object for use in a
/// FoldingSet. Two ProgramState objects are considered equal if they
/// have the same Environment, Store, and GenericDataMap.
static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
V->Env.Profile(ID);
ID.AddPointer(V->store);
V->GDM.Profile(ID);
ID.AddBoolean(V->PosteriorlyOverconstrained);
}
/// Profile - Used to profile the contents of this object for inclusion
/// in a FoldingSet.
void Profile(llvm::FoldingSetNodeID& ID) const {
Profile(ID, this);
}
BasicValueFactory &getBasicVals() const;
SymbolManager &getSymbolManager() const;
//==---------------------------------------------------------------------==//
// Constraints on values.
//==---------------------------------------------------------------------==//
//
// Each ProgramState records constraints on symbolic values. These constraints
// are managed using the ConstraintManager associated with a ProgramStateManager.
// As constraints gradually accrue on symbolic values, added constraints
// may conflict and indicate that a state is infeasible (as no real values
// could satisfy all the constraints). This is the principal mechanism
// for modeling path-sensitivity in ExprEngine/ProgramState.
//
// Various "assume" methods form the interface for adding constraints to
// symbolic values. A call to 'assume' indicates an assumption being placed
// on one or symbolic values. 'assume' methods take the following inputs:
//
// (1) A ProgramState object representing the current state.
//
// (2) The assumed constraint (which is specific to a given "assume" method).
//
// (3) A binary value "Assumption" that indicates whether the constraint is
// assumed to be true or false.
//
// The output of "assume*" is a new ProgramState object with the added constraints.
// If no new state is feasible, NULL is returned.
//
/// Assumes that the value of \p cond is zero (if \p assumption is "false")
/// or non-zero (if \p assumption is "true").
///
/// This returns a new state with the added constraint on \p cond.
/// If no new state is feasible, NULL is returned.
[[nodiscard]] ProgramStateRef assume(DefinedOrUnknownSVal cond,
bool assumption) const;
/// Assumes both "true" and "false" for \p cond, and returns both
/// corresponding states (respectively).
///
/// This is more efficient than calling assume() twice. Note that one (but not
/// both) of the returned states may be NULL.
[[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
assume(DefinedOrUnknownSVal cond) const;
[[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
assumeInBoundDual(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
QualType IndexType = QualType()) const;
[[nodiscard]] ProgramStateRef
assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
bool assumption, QualType IndexType = QualType()) const;
/// Assumes that the value of \p Val is bounded with [\p From; \p To]
/// (if \p assumption is "true") or it is fully out of this range
/// (if \p assumption is "false").
///
/// This returns a new state with the added constraint on \p cond.
/// If no new state is feasible, NULL is returned.
[[nodiscard]] ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
const llvm::APSInt &From,
const llvm::APSInt &To,
bool assumption) const;
/// Assumes given range both "true" and "false" for \p Val, and returns both
/// corresponding states (respectively).
///
/// This is more efficient than calling assume() twice. Note that one (but not
/// both) of the returned states may be NULL.
[[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
const llvm::APSInt &To) const;
/// Check if the given SVal is not constrained to zero and is not
/// a zero constant.
ConditionTruthVal isNonNull(SVal V) const;
/// Check if the given SVal is constrained to zero or is a zero
/// constant.
ConditionTruthVal isNull(SVal V) const;
/// \return Whether values \p Lhs and \p Rhs are equal.
ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;
/// Utility method for getting regions.
LLVM_ATTRIBUTE_RETURNS_NONNULL
const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;
//==---------------------------------------------------------------------==//
// Binding and retrieving values to/from the environment and symbolic store.
//==---------------------------------------------------------------------==//
/// Create a new state by binding the value 'V' to the statement 'S' in the
/// state's environment.
[[nodiscard]] ProgramStateRef BindExpr(const Stmt *S,
const LocationContext *LCtx, SVal V,
bool Invalidate = true) const;
[[nodiscard]] ProgramStateRef bindLoc(Loc location, SVal V,
const LocationContext *LCtx,
bool notifyChanges = true) const;
[[nodiscard]] ProgramStateRef bindLoc(SVal location, SVal V,
const LocationContext *LCtx) const;
/// Initializes the region of memory represented by \p loc with an initial
/// value. Once initialized, all values loaded from any sub-regions of that
/// region will be equal to \p V, unless overwritten later by the program.
/// This method should not be used on regions that are already initialized.
/// If you need to indicate that memory contents have suddenly become unknown
/// within a certain region of memory, consider invalidateRegions().
[[nodiscard]] ProgramStateRef
bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;
/// Performs C++ zero-initialization procedure on the region of memory
/// represented by \p loc.
[[nodiscard]] ProgramStateRef
bindDefaultZero(SVal loc, const LocationContext *LCtx) const;
[[nodiscard]] ProgramStateRef killBinding(Loc LV) const;
/// Returns the state with bindings for the given regions
/// cleared from the store.
///
/// Optionally invalidates global regions as well.
///
/// \param Regions the set of regions to be invalidated.
/// \param E the expression that caused the invalidation.
/// \param BlockCount The number of times the current basic block has been
// visited.
/// \param CausesPointerEscape the flag is set to true when
/// the invalidation entails escape of a symbol (representing a
/// pointer). For example, due to it being passed as an argument in a
/// call.
/// \param IS the set of invalidated symbols.
/// \param Call if non-null, the invalidated regions represent parameters to
/// the call and should be considered directly invalidated.
/// \param ITraits information about special handling for a particular
/// region/symbol.
[[nodiscard]] ProgramStateRef
invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
unsigned BlockCount, const LocationContext *LCtx,
bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
const CallEvent *Call = nullptr,
RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
[[nodiscard]] ProgramStateRef
invalidateRegions(ArrayRef<SVal> Regions, const Expr *E, unsigned BlockCount,
const LocationContext *LCtx, bool CausesPointerEscape,
InvalidatedSymbols *IS = nullptr,
const CallEvent *Call = nullptr,
RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
/// enterStackFrame - Returns the state for entry to the given stack frame,
/// preserving the current state.
[[nodiscard]] ProgramStateRef
enterStackFrame(const CallEvent &Call,
const StackFrameContext *CalleeCtx) const;
/// Return the value of 'self' if available in the given context.
SVal getSelfSVal(const LocationContext *LC) const;
/// Get the lvalue for a base class object reference.
Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;
/// Get the lvalue for a base class object reference.
Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
bool IsVirtual) const;
/// Get the lvalue for a variable reference.
Loc getLValue(const VarDecl *D, const LocationContext *LC) const;
Loc getLValue(const CompoundLiteralExpr *literal,
const LocationContext *LC) const;
/// Get the lvalue for an ivar reference.
SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;
/// Get the lvalue for a field reference.
SVal getLValue(const FieldDecl *decl, SVal Base) const;
/// Get the lvalue for an indirect field reference.
SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;
/// Get the lvalue for an array index.
SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;
/// Returns the SVal bound to the statement 'S' in the state's environment.
SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;
SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;
/// Return the value bound to the specified location.
/// Returns UnknownVal() if none found.
SVal getSVal(Loc LV, QualType T = QualType()) const;
/// Returns the "raw" SVal bound to LV before any value simplfication.
SVal getRawSVal(Loc LV, QualType T= QualType()) const;
/// Return the value bound to the specified location.
/// Returns UnknownVal() if none found.
SVal getSVal(const MemRegion* R, QualType T = QualType()) const;
/// Return the value bound to the specified location, assuming
/// that the value is a scalar integer or an enumeration or a pointer.
/// Returns UnknownVal() if none found or the region is not known to hold
/// a value of such type.
SVal getSValAsScalarOrLoc(const MemRegion *R) const;
using region_iterator = const MemRegion **;
/// Visits the symbols reachable from the given SVal using the provided
/// SymbolVisitor.
///
/// This is a convenience API. Consider using ScanReachableSymbols class
/// directly when making multiple scans on the same state with the same
/// visitor to avoid repeated initialization cost.
/// \sa ScanReachableSymbols
bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;
/// Visits the symbols reachable from the regions in the given
/// MemRegions range using the provided SymbolVisitor.
bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
SymbolVisitor &visitor) const;
template <typename CB> CB scanReachableSymbols(SVal val) const;
template <typename CB> CB
scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;
//==---------------------------------------------------------------------==//
// Accessing the Generic Data Map (GDM).
//==---------------------------------------------------------------------==//
void *const* FindGDM(void *K) const;
template <typename T>
[[nodiscard]] ProgramStateRef
add(typename ProgramStateTrait<T>::key_type K) const;
template <typename T>
typename ProgramStateTrait<T>::data_type
get() const {
return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
}
template<typename T>
typename ProgramStateTrait<T>::lookup_type
get(typename ProgramStateTrait<T>::key_type key) const {
void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
}
template <typename T>
typename ProgramStateTrait<T>::context_type get_context() const;
template <typename T>
[[nodiscard]] ProgramStateRef
remove(typename ProgramStateTrait<T>::key_type K) const;
template <typename T>
[[nodiscard]] ProgramStateRef
remove(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) const;
template <typename T> [[nodiscard]] ProgramStateRef remove() const;
template <typename T>
[[nodiscard]] ProgramStateRef
set(typename ProgramStateTrait<T>::data_type D) const;
template <typename T>
[[nodiscard]] ProgramStateRef
set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E) const;
template <typename T>
[[nodiscard]] ProgramStateRef
set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E,
typename ProgramStateTrait<T>::context_type C) const;
template<typename T>
bool contains(typename ProgramStateTrait<T>::key_type key) const {
void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
}
// Pretty-printing.
void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
const char *NL = "\n", unsigned int Space = 0,
bool IsDot = false) const;
void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
unsigned int Space = 0) const;
void dump() const;
private:
friend void ProgramStateRetain(const ProgramState *state);
friend void ProgramStateRelease(const ProgramState *state);
/// \sa invalidateValues()
/// \sa invalidateRegions()
ProgramStateRef
invalidateRegionsImpl(ArrayRef<SVal> Values,
const Expr *E, unsigned BlockCount,
const LocationContext *LCtx,
bool ResultsInSymbolEscape,
InvalidatedSymbols *IS,
RegionAndSymbolInvalidationTraits *HTraits,
const CallEvent *Call) const;
};
//===----------------------------------------------------------------------===//
// ProgramStateManager - Factory object for ProgramStates.
//===----------------------------------------------------------------------===//
class ProgramStateManager {
friend class ProgramState;
friend void ProgramStateRelease(const ProgramState *state);
private:
/// Eng - The ExprEngine that owns this state manager.
ExprEngine *Eng; /* Can be null. */
EnvironmentManager EnvMgr;
std::unique_ptr<StoreManager> StoreMgr;
std::unique_ptr<ConstraintManager> ConstraintMgr;
ProgramState::GenericDataMap::Factory GDMFactory;
typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
GDMContextsTy GDMContexts;
/// StateSet - FoldingSet containing all the states created for analyzing
/// a particular function. This is used to unique states.
llvm::FoldingSet<ProgramState> StateSet;
/// Object that manages the data for all created SVals.
std::unique_ptr<SValBuilder> svalBuilder;
/// Manages memory for created CallEvents.
std::unique_ptr<CallEventManager> CallEventMgr;
/// A BumpPtrAllocator to allocate states.
llvm::BumpPtrAllocator &Alloc;
/// A vector of ProgramStates that we can reuse.
std::vector<ProgramState *> freeStates;
public:
ProgramStateManager(ASTContext &Ctx,
StoreManagerCreator CreateStoreManager,
ConstraintManagerCreator CreateConstraintManager,
llvm::BumpPtrAllocator& alloc,
ExprEngine *expreng);
~ProgramStateManager();
ProgramStateRef getInitialState(const LocationContext *InitLoc);
ASTContext &getContext() { return svalBuilder->getContext(); }
const ASTContext &getContext() const { return svalBuilder->getContext(); }
BasicValueFactory &getBasicVals() {
return svalBuilder->getBasicValueFactory();
}
SValBuilder &getSValBuilder() {
return *svalBuilder;
}
const SValBuilder &getSValBuilder() const {
return *svalBuilder;
}
SymbolManager &getSymbolManager() {
return svalBuilder->getSymbolManager();
}
const SymbolManager &getSymbolManager() const {
return svalBuilder->getSymbolManager();
}
llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
MemRegionManager& getRegionManager() {
return svalBuilder->getRegionManager();
}
const MemRegionManager &getRegionManager() const {
return svalBuilder->getRegionManager();
}
CallEventManager &getCallEventManager() { return *CallEventMgr; }
StoreManager &getStoreManager() { return *StoreMgr; }
ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
ExprEngine &getOwningEngine() { return *Eng; }
ProgramStateRef
removeDeadBindingsFromEnvironmentAndStore(ProgramStateRef St,
const StackFrameContext *LCtx,
SymbolReaper &SymReaper);
public:
SVal ArrayToPointer(Loc Array, QualType ElementTy) {
return StoreMgr->ArrayToPointer(Array, ElementTy);
}
// Methods that manipulate the GDM.
ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
ProgramStateRef removeGDM(ProgramStateRef state, void *Key);
// Methods that query & manipulate the Store.
void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
StoreMgr->iterBindings(state->getStore(), F);
}
ProgramStateRef getPersistentState(ProgramState &Impl);
ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
ProgramStateRef GDMState);
bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
return ConstraintMgr->haveEqualConstraints(S1, S2);
}
bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
return S1->Env == S2->Env;
}
bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
return S1->store == S2->store;
}
//==---------------------------------------------------------------------==//
// Generic Data Map methods.
//==---------------------------------------------------------------------==//
//
// ProgramStateManager and ProgramState support a "generic data map" that allows
// different clients of ProgramState objects to embed arbitrary data within a
// ProgramState object. The generic data map is essentially an immutable map
// from a "tag" (that acts as the "key" for a client) and opaque values.
// Tags/keys and values are simply void* values. The typical way that clients
// generate unique tags are by taking the address of a static variable.
// Clients are responsible for ensuring that data values referred to by a
// the data pointer are immutable (and thus are essentially purely functional
// data).
//
// The templated methods below use the ProgramStateTrait<T> class
// to resolve keys into the GDM and to return data values to clients.
//
// Trait based GDM dispatch.
template <typename T>
ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(D));
}
template<typename T>
ProgramStateRef set(ProgramStateRef st,
typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type V,
typename ProgramStateTrait<T>::context_type C) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
}
template <typename T>
ProgramStateRef add(ProgramStateRef st,
typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
}
template <typename T>
ProgramStateRef remove(ProgramStateRef st,
typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
}
template <typename T>
ProgramStateRef remove(ProgramStateRef st) {
return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
}
void *FindGDMContext(void *index,
void *(*CreateContext)(llvm::BumpPtrAllocator&),
void (*DeleteContext)(void*));
template <typename T>
typename ProgramStateTrait<T>::context_type get_context() {
void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::CreateContext,
ProgramStateTrait<T>::DeleteContext);
return ProgramStateTrait<T>::MakeContext(p);
}
};
//===----------------------------------------------------------------------===//
// Out-of-line method definitions for ProgramState.
//===----------------------------------------------------------------------===//
inline ConstraintManager &ProgramState::getConstraintManager() const {
return stateMgr->getConstraintManager();
}
inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
const LocationContext *LC) const
{
return getStateManager().getRegionManager().getVarRegion(D, LC);
}
inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
bool Assumption) const {
if (Cond.isUnknown())
return this;
return getStateManager().ConstraintMgr
->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
}
inline std::pair<ProgramStateRef , ProgramStateRef >
ProgramState::assume(DefinedOrUnknownSVal Cond) const {
if (Cond.isUnknown())
return std::make_pair(this, this);
return getStateManager().ConstraintMgr
->assumeDual(this, Cond.castAs<DefinedSVal>());
}
inline ProgramStateRef ProgramState::assumeInclusiveRange(
DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
bool Assumption) const {
if (Val.isUnknown())
return this;
assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
return getStateManager().ConstraintMgr->assumeInclusiveRange(
this, Val.castAs<NonLoc>(), From, To, Assumption);
}
inline std::pair<ProgramStateRef, ProgramStateRef>
ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
const llvm::APSInt &From,
const llvm::APSInt &To) const {
if (Val.isUnknown())
return std::make_pair(this, this);
assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
this, Val.castAs<NonLoc>(), From, To);
}
inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
if (std::optional<Loc> L = LV.getAs<Loc>())
return bindLoc(*L, V, LCtx);
return this;
}
inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
const SubRegion *Super) const {
const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
return loc::MemRegionVal(
getStateManager().getRegionManager().getCXXBaseObjectRegion(
Base, Super, BaseSpec.isVirtual()));
}
inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
const SubRegion *Super,
bool IsVirtual) const {
return loc::MemRegionVal(
getStateManager().getRegionManager().getCXXBaseObjectRegion(
BaseClass, Super, IsVirtual));
}
inline Loc ProgramState::getLValue(const VarDecl *VD,
const LocationContext *LC) const {
return getStateManager().StoreMgr->getLValueVar(VD, LC);
}
inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
const LocationContext *LC) const {
return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
}
inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
return getStateManager().StoreMgr->getLValueIvar(D, Base);
}
inline SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
return getStateManager().StoreMgr->getLValueField(D, Base);
}
inline SVal ProgramState::getLValue(const IndirectFieldDecl *D,
SVal Base) const {
StoreManager &SM = *getStateManager().StoreMgr;
for (const auto *I : D->chain()) {
Base = SM.getLValueField(cast<FieldDecl>(I), Base);
}
return Base;
}
inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
if (std::optional<NonLoc> N = Idx.getAs<NonLoc>())
return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
return UnknownVal();
}
inline SVal ProgramState::getSVal(const Stmt *Ex,
const LocationContext *LCtx) const{
return Env.getSVal(EnvironmentEntry(Ex, LCtx),
*getStateManager().svalBuilder);
}
inline SVal
ProgramState::getSValAsScalarOrLoc(const Stmt *S,
const LocationContext *LCtx) const {
if (const Expr *Ex = dyn_cast<Expr>(S)) {
QualType T = Ex->getType();
if (Ex->isGLValue() || Loc::isLocType(T) ||
T->isIntegralOrEnumerationType())
return getSVal(S, LCtx);
}
return UnknownVal();
}
inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
return getStateManager().StoreMgr->getBinding(getStore(), LV, T);
}
inline SVal ProgramState::getSVal(const MemRegion* R, QualType T) const {
return getStateManager().StoreMgr->getBinding(getStore(),
loc::MemRegionVal(R),
T);
}
inline BasicValueFactory &ProgramState::getBasicVals() const {
return getStateManager().getBasicVals();
}
inline SymbolManager &ProgramState::getSymbolManager() const {
return getStateManager().getSymbolManager();
}
template<typename T>
ProgramStateRef ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
return getStateManager().add<T>(this, K, get_context<T>());
}
template <typename T>
typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
return getStateManager().get_context<T>();
}
template<typename T>
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
return getStateManager().remove<T>(this, K, get_context<T>());
}
template<typename T>
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) const {
return getStateManager().remove<T>(this, K, C);
}
template <typename T>
ProgramStateRef ProgramState::remove() const {
return getStateManager().remove<T>(this);
}
template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
return getStateManager().set<T>(this, D);
}
template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E) const {
return getStateManager().set<T>(this, K, E, get_context<T>());
}
template<typename T>
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E,
typename ProgramStateTrait<T>::context_type C) const {
return getStateManager().set<T>(this, K, E, C);
}
template <typename CB>
CB ProgramState::scanReachableSymbols(SVal val) const {
CB cb(this);
scanReachableSymbols(val, cb);
return cb;
}
template <typename CB>
CB ProgramState::scanReachableSymbols(
llvm::iterator_range<region_iterator> Reachable) const {
CB cb(this);
scanReachableSymbols(Reachable, cb);
return cb;
}
/// \class ScanReachableSymbols
/// A utility class that visits the reachable symbols using a custom
/// SymbolVisitor. Terminates recursive traversal when the visitor function
/// returns false.
class ScanReachableSymbols {
typedef llvm::DenseSet<const void*> VisitedItems;
VisitedItems visited;
ProgramStateRef state;
SymbolVisitor &visitor;
public:
ScanReachableSymbols(ProgramStateRef st, SymbolVisitor &v)
: state(std::move(st)), visitor(v) {}
bool scan(nonloc::LazyCompoundVal val);
bool scan(nonloc::CompoundVal val);
bool scan(SVal val);
bool scan(const MemRegion *R);
bool scan(const SymExpr *sym);
};
} // end ento namespace
} // end clang namespace
#endif