//===- ExplodedGraph.h - Local, Path-Sens. "Exploded Graph" -----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file defines the template classes ExplodedNode and ExplodedGraph,
 
//  which represent a path-sensitive, intra-procedural "exploded graph."
 
//  See "Precise interprocedural dataflow analysis via graph reachability"
 
//  by Reps, Horwitz, and Sagiv
 
//  (http://portal.acm.org/citation.cfm?id=199462) for the definition of an
 
//  exploded graph.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
 
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
 
 
 
#include "clang/Analysis/AnalysisDeclContext.h"
 
#include "clang/Analysis/ProgramPoint.h"
 
#include "clang/Analysis/Support/BumpVector.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DepthFirstIterator.h"
 
#include "llvm/ADT/FoldingSet.h"
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SetVector.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/Compiler.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <memory>
 
#include <optional>
 
#include <utility>
 
#include <vector>
 
 
 
namespace clang {
 
 
 
class CFG;
 
class Decl;
 
class Expr;
 
class ParentMap;
 
class Stmt;
 
 
 
namespace ento {
 
 
 
class ExplodedGraph;
 
 
 
//===----------------------------------------------------------------------===//
 
// ExplodedGraph "implementation" classes.  These classes are not typed to
 
// contain a specific kind of state.  Typed-specialized versions are defined
 
// on top of these classes.
 
//===----------------------------------------------------------------------===//
 
 
 
// ExplodedNode is not constified all over the engine because we need to add
 
// successors to it at any time after creating it.
 
 
 
class ExplodedNode : public llvm::FoldingSetNode {
 
  friend class BranchNodeBuilder;
 
  friend class CoreEngine;
 
  friend class EndOfFunctionNodeBuilder;
 
  friend class ExplodedGraph;
 
  friend class IndirectGotoNodeBuilder;
 
  friend class NodeBuilder;
 
  friend class SwitchNodeBuilder;
 
 
 
  /// Efficiently stores a list of ExplodedNodes, or an optional flag.
 
  ///
 
  /// NodeGroup provides opaque storage for a list of ExplodedNodes, optimizing
 
  /// for the case when there is only one node in the group. This is a fairly
 
  /// common case in an ExplodedGraph, where most nodes have only one
 
  /// predecessor and many have only one successor. It can also be used to
 
  /// store a flag rather than a node list, which ExplodedNode uses to mark
 
  /// whether a node is a sink. If the flag is set, the group is implicitly
 
  /// empty and no nodes may be added.
 
  class NodeGroup {
 
    // Conceptually a discriminated union. If the low bit is set, the node is
 
    // a sink. If the low bit is not set, the pointer refers to the storage
 
    // for the nodes in the group.
 
    // This is not a PointerIntPair in order to keep the storage type opaque.
 
    uintptr_t P;
 
 
 
  public:
 
    NodeGroup(bool Flag = false) : P(Flag) {
 
      assert(getFlag() == Flag);
 
    }
 
 
 
    ExplodedNode * const *begin() const;
 
 
 
    ExplodedNode * const *end() const;
 
 
 
    unsigned size() const;
 
 
 
    bool empty() const { return P == 0 || getFlag() != 0; }
 
 
 
    /// Adds a node to the list.
 
    ///
 
    /// The group must not have been created with its flag set.
 
    void addNode(ExplodedNode *N, ExplodedGraph &G);
 
 
 
    /// Replaces the single node in this group with a new node.
 
    ///
 
    /// Note that this should only be used when you know the group was not
 
    /// created with its flag set, and that the group is empty or contains
 
    /// only a single node.
 
    void replaceNode(ExplodedNode *node);
 
 
 
    /// Returns whether this group was created with its flag set.
 
    bool getFlag() const {
 
      return (P & 1);
 
    }
 
  };
 
 
 
  /// Location - The program location (within a function body) associated
 
  ///  with this node.
 
  const ProgramPoint Location;
 
 
 
  /// State - The state associated with this node.
 
  ProgramStateRef State;
 
 
 
  /// Preds - The predecessors of this node.
 
  NodeGroup Preds;
 
 
 
  /// Succs - The successors of this node.
 
  NodeGroup Succs;
 
 
 
  int64_t Id;
 
 
 
public:
 
  explicit ExplodedNode(const ProgramPoint &loc, ProgramStateRef state,
 
                        int64_t Id, bool IsSink)
 
      : Location(loc), State(std::move(state)), Succs(IsSink), Id(Id) {
 
    assert(isSink() == IsSink);
 
  }
 
 
 
  /// getLocation - Returns the edge associated with the given node.
 
  ProgramPoint getLocation() const { return Location; }
 
 
 
  const LocationContext *getLocationContext() const {
 
    return getLocation().getLocationContext();
 
  }
 
 
 
  const StackFrameContext *getStackFrame() const {
 
    return getLocation().getStackFrame();
 
  }
 
 
 
  const Decl &getCodeDecl() const { return *getLocationContext()->getDecl(); }
 
 
 
  CFG &getCFG() const { return *getLocationContext()->getCFG(); }
 
 
 
  const CFGBlock *getCFGBlock() const;
 
 
 
  const ParentMap &getParentMap() const {
 
    return getLocationContext()->getParentMap();
 
  }
 
 
 
  template <typename T> T &getAnalysis() const {
 
    return *getLocationContext()->getAnalysis<T>();
 
  }
 
 
 
  const ProgramStateRef &getState() const { return State; }
 
 
 
  template <typename T> std::optional<T> getLocationAs() const & {
 
    return Location.getAs<T>();
 
  }
 
 
 
  /// Get the value of an arbitrary expression at this node.
 
  SVal getSVal(const Stmt *S) const {
 
    return getState()->getSVal(S, getLocationContext());
 
  }
 
 
 
  static void Profile(llvm::FoldingSetNodeID &ID,
 
                      const ProgramPoint &Loc,
 
                      const ProgramStateRef &state,
 
                      bool IsSink) {
 
    ID.Add(Loc);
 
    ID.AddPointer(state.get());
 
    ID.AddBoolean(IsSink);
 
  }
 
 
 
  void Profile(llvm::FoldingSetNodeID& ID) const {
 
    // We avoid copy constructors by not using accessors.
 
    Profile(ID, Location, State, isSink());
 
  }
 
 
 
  /// addPredeccessor - Adds a predecessor to the current node, and
 
  ///  in tandem add this node as a successor of the other node.
 
  void addPredecessor(ExplodedNode *V, ExplodedGraph &G);
 
 
 
  unsigned succ_size() const { return Succs.size(); }
 
  unsigned pred_size() const { return Preds.size(); }
 
  bool succ_empty() const { return Succs.empty(); }
 
  bool pred_empty() const { return Preds.empty(); }
 
 
 
  bool isSink() const { return Succs.getFlag(); }
 
 
 
  bool hasSinglePred() const {
 
    return (pred_size() == 1);
 
  }
 
 
 
  ExplodedNode *getFirstPred() {
 
    return pred_empty() ? nullptr : *(pred_begin());
 
  }
 
 
 
  const ExplodedNode *getFirstPred() const {
 
    return const_cast<ExplodedNode*>(this)->getFirstPred();
 
  }
 
 
 
  ExplodedNode *getFirstSucc() {
 
    return succ_empty() ? nullptr : *(succ_begin());
 
  }
 
 
 
  const ExplodedNode *getFirstSucc() const {
 
    return const_cast<ExplodedNode*>(this)->getFirstSucc();
 
  }
 
 
 
  // Iterators over successor and predecessor vertices.
 
  using succ_iterator = ExplodedNode * const *;
 
  using succ_range = llvm::iterator_range<succ_iterator>;
 
 
 
  using const_succ_iterator = const ExplodedNode * const *;
 
  using const_succ_range = llvm::iterator_range<const_succ_iterator>;
 
 
 
  using pred_iterator = ExplodedNode * const *;
 
  using pred_range = llvm::iterator_range<pred_iterator>;
 
 
 
  using const_pred_iterator = const ExplodedNode * const *;
 
  using const_pred_range = llvm::iterator_range<const_pred_iterator>;
 
 
 
  pred_iterator pred_begin() { return Preds.begin(); }
 
  pred_iterator pred_end() { return Preds.end(); }
 
  pred_range preds() { return {Preds.begin(), Preds.end()}; }
 
 
 
  const_pred_iterator pred_begin() const {
 
    return const_cast<ExplodedNode*>(this)->pred_begin();
 
  }
 
  const_pred_iterator pred_end() const {
 
    return const_cast<ExplodedNode*>(this)->pred_end();
 
  }
 
  const_pred_range preds() const { return {Preds.begin(), Preds.end()}; }
 
 
 
  succ_iterator succ_begin() { return Succs.begin(); }
 
  succ_iterator succ_end() { return Succs.end(); }
 
  succ_range succs() { return {Succs.begin(), Succs.end()}; }
 
 
 
  const_succ_iterator succ_begin() const {
 
    return const_cast<ExplodedNode*>(this)->succ_begin();
 
  }
 
  const_succ_iterator succ_end() const {
 
    return const_cast<ExplodedNode*>(this)->succ_end();
 
  }
 
  const_succ_range succs() const { return {Succs.begin(), Succs.end()}; }
 
 
 
  int64_t getID() const { return Id; }
 
 
 
  /// The node is trivial if it has only one successor, only one predecessor,
 
  /// it's predecessor has only one successor,
 
  /// and its program state is the same as the program state of the previous
 
  /// node.
 
  /// Trivial nodes may be skipped while printing exploded graph.
 
  bool isTrivial() const;
 
 
 
  /// If the node's program point corresponds to a statement, retrieve that
 
  /// statement. Useful for figuring out where to put a warning or a note.
 
  /// If the statement belongs to a body-farmed definition,
 
  /// retrieve the call site for that definition.
 
  const Stmt *getStmtForDiagnostics() const;
 
 
 
  /// Find the next statement that was executed on this node's execution path.
 
  /// Useful for explaining control flow that follows the current node.
 
  /// If the statement belongs to a body-farmed definition, retrieve the
 
  /// call site for that definition.
 
  const Stmt *getNextStmtForDiagnostics() const;
 
 
 
  /// Find the statement that was executed immediately before this node.
 
  /// Useful when the node corresponds to a CFG block entrance.
 
  /// If the statement belongs to a body-farmed definition, retrieve the
 
  /// call site for that definition.
 
  const Stmt *getPreviousStmtForDiagnostics() const;
 
 
 
  /// Find the statement that was executed at or immediately before this node.
 
  /// Useful when any nearby statement will do.
 
  /// If the statement belongs to a body-farmed definition, retrieve the
 
  /// call site for that definition.
 
  const Stmt *getCurrentOrPreviousStmtForDiagnostics() const;
 
 
 
private:
 
  void replaceSuccessor(ExplodedNode *node) { Succs.replaceNode(node); }
 
  void replacePredecessor(ExplodedNode *node) { Preds.replaceNode(node); }
 
};
 
 
 
using InterExplodedGraphMap =
 
    llvm::DenseMap<const ExplodedNode *, const ExplodedNode *>;
 
 
 
class ExplodedGraph {
 
protected:
 
  friend class CoreEngine;
 
 
 
  // Type definitions.
 
  using NodeVector = std::vector<ExplodedNode *>;
 
 
 
  /// The roots of the simulation graph. Usually there will be only
 
  /// one, but clients are free to establish multiple subgraphs within a single
 
  /// SimulGraph. Moreover, these subgraphs can often merge when paths from
 
  /// different roots reach the same state at the same program location.
 
  NodeVector Roots;
 
 
 
  /// The nodes in the simulation graph which have been
 
  /// specially marked as the endpoint of an abstract simulation path.
 
  NodeVector EndNodes;
 
 
 
  /// Nodes - The nodes in the graph.
 
  llvm::FoldingSet<ExplodedNode> Nodes;
 
 
 
  /// BVC - Allocator and context for allocating nodes and their predecessor
 
  /// and successor groups.
 
  BumpVectorContext BVC;
 
 
 
  /// NumNodes - The number of nodes in the graph.
 
  int64_t NumNodes = 0;
 
 
 
  /// A list of recently allocated nodes that can potentially be recycled.
 
  NodeVector ChangedNodes;
 
 
 
  /// A list of nodes that can be reused.
 
  NodeVector FreeNodes;
 
 
 
  /// Determines how often nodes are reclaimed.
 
  ///
 
  /// If this is 0, nodes will never be reclaimed.
 
  unsigned ReclaimNodeInterval = 0;
 
 
 
  /// Counter to determine when to reclaim nodes.
 
  unsigned ReclaimCounter;
 
 
 
public:
 
  ExplodedGraph();
 
  ~ExplodedGraph();
 
 
 
  /// Retrieve the node associated with a (Location,State) pair,
 
  ///  where the 'Location' is a ProgramPoint in the CFG.  If no node for
 
  ///  this pair exists, it is created. IsNew is set to true if
 
  ///  the node was freshly created.
 
  ExplodedNode *getNode(const ProgramPoint &L, ProgramStateRef State,
 
                        bool IsSink = false,
 
                        bool* IsNew = nullptr);
 
 
 
  /// Create a node for a (Location, State) pair,
 
  ///  but don't store it for deduplication later.  This
 
  ///  is useful when copying an already completed
 
  ///  ExplodedGraph for further processing.
 
  ExplodedNode *createUncachedNode(const ProgramPoint &L,
 
    ProgramStateRef State,
 
    int64_t Id,
 
    bool IsSink = false);
 
 
 
  std::unique_ptr<ExplodedGraph> MakeEmptyGraph() const {
 
    return std::make_unique<ExplodedGraph>();
 
  }
 
 
 
  /// addRoot - Add an untyped node to the set of roots.
 
  ExplodedNode *addRoot(ExplodedNode *V) {
 
    Roots.push_back(V);
 
    return V;
 
  }
 
 
 
  /// addEndOfPath - Add an untyped node to the set of EOP nodes.
 
  ExplodedNode *addEndOfPath(ExplodedNode *V) {
 
    EndNodes.push_back(V);
 
    return V;
 
  }
 
 
 
  unsigned num_roots() const { return Roots.size(); }
 
  unsigned num_eops() const { return EndNodes.size(); }
 
 
 
  bool empty() const { return NumNodes == 0; }
 
  unsigned size() const { return NumNodes; }
 
 
 
  void reserve(unsigned NodeCount) { Nodes.reserve(NodeCount); }
 
 
 
  // Iterators.
 
  using NodeTy = ExplodedNode;
 
  using AllNodesTy = llvm::FoldingSet<ExplodedNode>;
 
  using roots_iterator = NodeVector::iterator;
 
  using const_roots_iterator = NodeVector::const_iterator;
 
  using eop_iterator = NodeVector::iterator;
 
  using const_eop_iterator = NodeVector::const_iterator;
 
  using node_iterator = AllNodesTy::iterator;
 
  using const_node_iterator = AllNodesTy::const_iterator;
 
 
 
  node_iterator nodes_begin() { return Nodes.begin(); }
 
 
 
  node_iterator nodes_end() { return Nodes.end(); }
 
 
 
  const_node_iterator nodes_begin() const { return Nodes.begin(); }
 
 
 
  const_node_iterator nodes_end() const { return Nodes.end(); }
 
 
 
  roots_iterator roots_begin() { return Roots.begin(); }
 
 
 
  roots_iterator roots_end() { return Roots.end(); }
 
 
 
  const_roots_iterator roots_begin() const { return Roots.begin(); }
 
 
 
  const_roots_iterator roots_end() const { return Roots.end(); }
 
 
 
  eop_iterator eop_begin() { return EndNodes.begin(); }
 
 
 
  eop_iterator eop_end() { return EndNodes.end(); }
 
 
 
  const_eop_iterator eop_begin() const { return EndNodes.begin(); }
 
 
 
  const_eop_iterator eop_end() const { return EndNodes.end(); }
 
 
 
  llvm::BumpPtrAllocator & getAllocator() { return BVC.getAllocator(); }
 
  BumpVectorContext &getNodeAllocator() { return BVC; }
 
 
 
  using NodeMap = llvm::DenseMap<const ExplodedNode *, ExplodedNode *>;
 
 
 
  /// Creates a trimmed version of the graph that only contains paths leading
 
  /// to the given nodes.
 
  ///
 
  /// \param Nodes The nodes which must appear in the final graph. Presumably
 
  ///              these are end-of-path nodes (i.e. they have no successors).
 
  /// \param[out] ForwardMap A optional map from nodes in this graph to nodes in
 
  ///                        the returned graph.
 
  /// \param[out] InverseMap An optional map from nodes in the returned graph to
 
  ///                        nodes in this graph.
 
  /// \returns The trimmed graph
 
  std::unique_ptr<ExplodedGraph>
 
  trim(ArrayRef<const NodeTy *> Nodes,
 
       InterExplodedGraphMap *ForwardMap = nullptr,
 
       InterExplodedGraphMap *InverseMap = nullptr) const;
 
 
 
  /// Enable tracking of recently allocated nodes for potential reclamation
 
  /// when calling reclaimRecentlyAllocatedNodes().
 
  void enableNodeReclamation(unsigned Interval) {
 
    ReclaimCounter = ReclaimNodeInterval = Interval;
 
  }
 
 
 
  /// Reclaim "uninteresting" nodes created since the last time this method
 
  /// was called.
 
  void reclaimRecentlyAllocatedNodes();
 
 
 
  /// Returns true if nodes for the given expression kind are always
 
  ///        kept around.
 
  static bool isInterestingLValueExpr(const Expr *Ex);
 
 
 
private:
 
  bool shouldCollect(const ExplodedNode *node);
 
  void collectNode(ExplodedNode *node);
 
};
 
 
 
class ExplodedNodeSet {
 
  using ImplTy = llvm::SmallSetVector<ExplodedNode *, 4>;
 
  ImplTy Impl;
 
 
 
public:
 
  ExplodedNodeSet(ExplodedNode *N) {
 
    assert(N && !static_cast<ExplodedNode*>(N)->isSink());
 
    Impl.insert(N);
 
  }
 
 
 
  ExplodedNodeSet() = default;
 
 
 
  void Add(ExplodedNode *N) {
 
    if (N && !static_cast<ExplodedNode*>(N)->isSink()) Impl.insert(N);
 
  }
 
 
 
  using iterator = ImplTy::iterator;
 
  using const_iterator = ImplTy::const_iterator;
 
 
 
  unsigned size() const { return Impl.size();  }
 
  bool empty()    const { return Impl.empty(); }
 
  bool erase(ExplodedNode *N) { return Impl.remove(N); }
 
 
 
  void clear() { Impl.clear(); }
 
 
 
  void insert(const ExplodedNodeSet &S) {
 
    assert(&S != this);
 
    if (empty())
 
      Impl = S.Impl;
 
    else
 
      Impl.insert(S.begin(), S.end());
 
  }
 
 
 
  iterator begin() { return Impl.begin(); }
 
  iterator end() { return Impl.end(); }
 
 
 
  const_iterator begin() const { return Impl.begin(); }
 
  const_iterator end() const { return Impl.end(); }
 
};
 
 
 
} // namespace ento
 
 
 
} // namespace clang
 
 
 
// GraphTraits
 
 
 
namespace llvm {
 
  template <> struct GraphTraits<clang::ento::ExplodedGraph *> {
 
    using GraphTy = clang::ento::ExplodedGraph *;
 
    using NodeRef = clang::ento::ExplodedNode *;
 
    using ChildIteratorType = clang::ento::ExplodedNode::succ_iterator;
 
    using nodes_iterator = llvm::df_iterator<GraphTy>;
 
 
 
    static NodeRef getEntryNode(const GraphTy G) {
 
      return *G->roots_begin();
 
    }
 
 
 
    static bool predecessorOfTrivial(NodeRef N) {
 
      return N->succ_size() == 1 && N->getFirstSucc()->isTrivial();
 
    }
 
 
 
    static ChildIteratorType child_begin(NodeRef N) {
 
      if (predecessorOfTrivial(N))
 
        return child_begin(*N->succ_begin());
 
      return N->succ_begin();
 
    }
 
 
 
    static ChildIteratorType child_end(NodeRef N) {
 
      if (predecessorOfTrivial(N))
 
        return child_end(N->getFirstSucc());
 
      return N->succ_end();
 
    }
 
 
 
    static nodes_iterator nodes_begin(const GraphTy G) {
 
      return df_begin(G);
 
    }
 
 
 
    static nodes_iterator nodes_end(const GraphTy G) {
 
      return df_end(G);
 
    }
 
  };
 
} // namespace llvm
 
 
 
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H