//===- CallEvent.h - Wrapper for all function and method calls --*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
/// \file This file defines CallEvent and its subclasses, which represent path-
 
/// sensitive instances of different kinds of function and method calls
 
/// (C, C++, and Objective-C).
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
 
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
 
 
 
#include "clang/AST/Decl.h"
 
#include "clang/AST/DeclBase.h"
 
#include "clang/AST/DeclCXX.h"
 
#include "clang/AST/DeclObjC.h"
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/ExprCXX.h"
 
#include "clang/AST/ExprObjC.h"
 
#include "clang/AST/Stmt.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Basic/IdentifierTable.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Basic/SourceLocation.h"
 
#include "clang/Basic/SourceManager.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/IntrusiveRefCntPtr.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <cassert>
 
#include <limits>
 
#include <optional>
 
#include <utility>
 
 
 
namespace clang {
 
 
 
class LocationContext;
 
class ProgramPoint;
 
class ProgramPointTag;
 
class StackFrameContext;
 
 
 
namespace ento {
 
 
 
enum CallEventKind {
 
  CE_Function,
 
  CE_CXXMember,
 
  CE_CXXMemberOperator,
 
  CE_CXXDestructor,
 
  CE_BEG_CXX_INSTANCE_CALLS = CE_CXXMember,
 
  CE_END_CXX_INSTANCE_CALLS = CE_CXXDestructor,
 
  CE_CXXConstructor,
 
  CE_CXXInheritedConstructor,
 
  CE_BEG_CXX_CONSTRUCTOR_CALLS = CE_CXXConstructor,
 
  CE_END_CXX_CONSTRUCTOR_CALLS = CE_CXXInheritedConstructor,
 
  CE_CXXAllocator,
 
  CE_CXXDeallocator,
 
  CE_BEG_FUNCTION_CALLS = CE_Function,
 
  CE_END_FUNCTION_CALLS = CE_CXXDeallocator,
 
  CE_Block,
 
  CE_ObjCMessage
 
};
 
 
 
class CallEvent;
 
 
 
template<typename T = CallEvent>
 
class CallEventRef : public IntrusiveRefCntPtr<const T> {
 
public:
 
  CallEventRef(const T *Call) : IntrusiveRefCntPtr<const T>(Call) {}
 
  CallEventRef(const CallEventRef &Orig) : IntrusiveRefCntPtr<const T>(Orig) {}
 
 
 
  CallEventRef<T> cloneWithState(ProgramStateRef State) const {
 
    return this->get()->template cloneWithState<T>(State);
 
  }
 
 
 
  // Allow implicit conversions to a superclass type, since CallEventRef
 
  // behaves like a pointer-to-const.
 
  template <typename SuperT>
 
  operator CallEventRef<SuperT> () const {
 
    return this->get();
 
  }
 
};
 
 
 
/// \class RuntimeDefinition
 
/// Defines the runtime definition of the called function.
 
///
 
/// Encapsulates the information we have about which Decl will be used
 
/// when the call is executed on the given path. When dealing with dynamic
 
/// dispatch, the information is based on DynamicTypeInfo and might not be
 
/// precise.
 
class RuntimeDefinition {
 
  /// The Declaration of the function which could be called at runtime.
 
  /// NULL if not available.
 
  const Decl *D = nullptr;
 
 
 
  /// The region representing an object (ObjC/C++) on which the method is
 
  /// called. With dynamic dispatch, the method definition depends on the
 
  /// runtime type of this object. NULL when the DynamicTypeInfo is
 
  /// precise.
 
  const MemRegion *R = nullptr;
 
 
 
  /// A definition is foreign if it has been imported and newly created by the
 
  /// ASTImporter. This can be true only if CTU is enabled.
 
  const bool Foreign = false;
 
 
 
public:
 
  RuntimeDefinition() = default;
 
  RuntimeDefinition(const Decl *InD): D(InD) {}
 
  RuntimeDefinition(const Decl *InD, bool Foreign) : D(InD), Foreign(Foreign) {}
 
  RuntimeDefinition(const Decl *InD, const MemRegion *InR): D(InD), R(InR) {}
 
 
 
  const Decl *getDecl() { return D; }
 
  bool isForeign() const { return Foreign; }
 
 
 
  /// Check if the definition we have is precise.
 
  /// If not, it is possible that the call dispatches to another definition at
 
  /// execution time.
 
  bool mayHaveOtherDefinitions() { return R != nullptr; }
 
 
 
  /// When other definitions are possible, returns the region whose runtime type
 
  /// determines the method definition.
 
  const MemRegion *getDispatchRegion() { return R; }
 
};
 
 
 
/// Represents an abstract call to a function or method along a
 
/// particular path.
 
///
 
/// CallEvents are created through the factory methods of CallEventManager.
 
///
 
/// CallEvents should always be cheap to create and destroy. In order for
 
/// CallEventManager to be able to re-use CallEvent-sized memory blocks,
 
/// subclasses of CallEvent may not add any data members to the base class.
 
/// Use the "Data" and "Location" fields instead.
 
class CallEvent {
 
public:
 
  using Kind = CallEventKind;
 
 
 
private:
 
  ProgramStateRef State;
 
  const LocationContext *LCtx;
 
  llvm::PointerUnion<const Expr *, const Decl *> Origin;
 
  mutable std::optional<bool> Foreign; // Set by CTU analysis.
 
 
 
protected:
 
  // This is user data for subclasses.
 
  const void *Data;
 
 
 
  // This is user data for subclasses.
 
  // This should come right before RefCount, so that the two fields can be
 
  // packed together on LP64 platforms.
 
  SourceLocation Location;
 
 
 
private:
 
  template <typename T> friend struct llvm::IntrusiveRefCntPtrInfo;
 
 
 
  mutable unsigned RefCount = 0;
 
 
 
  void Retain() const { ++RefCount; }
 
  void Release() const;
 
 
 
protected:
 
  friend class CallEventManager;
 
 
 
  CallEvent(const Expr *E, ProgramStateRef state, const LocationContext *lctx)
 
      : State(std::move(state)), LCtx(lctx), Origin(E) {}
 
 
 
  CallEvent(const Decl *D, ProgramStateRef state, const LocationContext *lctx)
 
      : State(std::move(state)), LCtx(lctx), Origin(D) {}
 
 
 
  // DO NOT MAKE PUBLIC
 
  CallEvent(const CallEvent &Original)
 
      : State(Original.State), LCtx(Original.LCtx), Origin(Original.Origin),
 
        Data(Original.Data), Location(Original.Location) {}
 
 
 
  /// Copies this CallEvent, with vtable intact, into a new block of memory.
 
  virtual void cloneTo(void *Dest) const = 0;
 
 
 
  /// Get the value of arbitrary expressions at this point in the path.
 
  SVal getSVal(const Stmt *S) const {
 
    return getState()->getSVal(S, getLocationContext());
 
  }
 
 
 
  using ValueList = SmallVectorImpl<SVal>;
 
 
 
  /// Used to specify non-argument regions that will be invalidated as a
 
  /// result of this call.
 
  virtual void getExtraInvalidatedValues(ValueList &Values,
 
                 RegionAndSymbolInvalidationTraits *ETraits) const {}
 
 
 
public:
 
  CallEvent &operator=(const CallEvent &) = delete;
 
  virtual ~CallEvent() = default;
 
 
 
  /// Returns the kind of call this is.
 
  virtual Kind getKind() const = 0;
 
  virtual StringRef getKindAsString() const = 0;
 
 
 
  /// Returns the declaration of the function or method that will be
 
  /// called. May be null.
 
  virtual const Decl *getDecl() const {
 
    return Origin.dyn_cast<const Decl *>();
 
  }
 
 
 
  bool isForeign() const {
 
    assert(Foreign && "Foreign must be set before querying");
 
    return *Foreign;
 
  }
 
  void setForeign(bool B) const { Foreign = B; }
 
 
 
  /// The state in which the call is being evaluated.
 
  const ProgramStateRef &getState() const {
 
    return State;
 
  }
 
 
 
  /// The context in which the call is being evaluated.
 
  const LocationContext *getLocationContext() const {
 
    return LCtx;
 
  }
 
 
 
  /// Returns the definition of the function or method that will be
 
  /// called.
 
  virtual RuntimeDefinition getRuntimeDefinition() const = 0;
 
 
 
  /// Returns the expression whose value will be the result of this call.
 
  /// May be null.
 
  virtual const Expr *getOriginExpr() const {
 
    return Origin.dyn_cast<const Expr *>();
 
  }
 
 
 
  /// Returns the number of arguments (explicit and implicit).
 
  ///
 
  /// Note that this may be greater than the number of parameters in the
 
  /// callee's declaration, and that it may include arguments not written in
 
  /// the source.
 
  virtual unsigned getNumArgs() const = 0;
 
 
 
  /// Returns true if the callee is known to be from a system header.
 
  bool isInSystemHeader() const {
 
    const Decl *D = getDecl();
 
    if (!D)
 
      return false;
 
 
 
    SourceLocation Loc = D->getLocation();
 
    if (Loc.isValid()) {
 
      const SourceManager &SM =
 
        getState()->getStateManager().getContext().getSourceManager();
 
      return SM.isInSystemHeader(D->getLocation());
 
    }
 
 
 
    // Special case for implicitly-declared global operator new/delete.
 
    // These should be considered system functions.
 
    if (const auto *FD = dyn_cast<FunctionDecl>(D))
 
      return FD->isOverloadedOperator() && FD->isImplicit() && FD->isGlobal();
 
 
 
    return false;
 
  }
 
 
 
  /// Returns a source range for the entire call, suitable for
 
  /// outputting in diagnostics.
 
  virtual SourceRange getSourceRange() const {
 
    return getOriginExpr()->getSourceRange();
 
  }
 
 
 
  /// Returns the value of a given argument at the time of the call.
 
  virtual SVal getArgSVal(unsigned Index) const;
 
 
 
  /// Returns the expression associated with a given argument.
 
  /// May be null if this expression does not appear in the source.
 
  virtual const Expr *getArgExpr(unsigned Index) const { return nullptr; }
 
 
 
  /// Returns the source range for errors associated with this argument.
 
  ///
 
  /// May be invalid if the argument is not written in the source.
 
  virtual SourceRange getArgSourceRange(unsigned Index) const;
 
 
 
  /// Returns the result type, adjusted for references.
 
  QualType getResultType() const;
 
 
 
  /// Returns the return value of the call.
 
  ///
 
  /// This should only be called if the CallEvent was created using a state in
 
  /// which the return value has already been bound to the origin expression.
 
  SVal getReturnValue() const;
 
 
 
  /// Returns true if the type of any of the non-null arguments satisfies
 
  /// the condition.
 
  bool hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const;
 
 
 
  /// Returns true if any of the arguments appear to represent callbacks.
 
  bool hasNonZeroCallbackArg() const;
 
 
 
  /// Returns true if any of the arguments is void*.
 
  bool hasVoidPointerToNonConstArg() const;
 
 
 
  /// Returns true if any of the arguments are known to escape to long-
 
  /// term storage, even if this method will not modify them.
 
  // NOTE: The exact semantics of this are still being defined!
 
  // We don't really want a list of hardcoded exceptions in the long run,
 
  // but we don't want duplicated lists of known APIs in the short term either.
 
  virtual bool argumentsMayEscape() const {
 
    return hasNonZeroCallbackArg();
 
  }
 
 
 
  /// Returns true if the callee is an externally-visible function in the
 
  /// top-level namespace, such as \c malloc.
 
  ///
 
  /// You can use this call to determine that a particular function really is
 
  /// a library function and not, say, a C++ member function with the same name.
 
  ///
 
  /// If a name is provided, the function must additionally match the given
 
  /// name.
 
  ///
 
  /// Note that this deliberately excludes C++ library functions in the \c std
 
  /// namespace, but will include C library functions accessed through the
 
  /// \c std namespace. This also does not check if the function is declared
 
  /// as 'extern "C"', or if it uses C++ name mangling.
 
  // FIXME: Add a helper for checking namespaces.
 
  // FIXME: Move this down to AnyFunctionCall once checkers have more
 
  // precise callbacks.
 
  bool isGlobalCFunction(StringRef SpecificName = StringRef()) const;
 
 
 
  /// Returns the name of the callee, if its name is a simple identifier.
 
  ///
 
  /// Note that this will fail for Objective-C methods, blocks, and C++
 
  /// overloaded operators. The former is named by a Selector rather than a
 
  /// simple identifier, and the latter two do not have names.
 
  // FIXME: Move this down to AnyFunctionCall once checkers have more
 
  // precise callbacks.
 
  const IdentifierInfo *getCalleeIdentifier() const {
 
    const auto *ND = dyn_cast_or_null<NamedDecl>(getDecl());
 
    if (!ND)
 
      return nullptr;
 
    return ND->getIdentifier();
 
  }
 
 
 
  /// Returns an appropriate ProgramPoint for this call.
 
  ProgramPoint getProgramPoint(bool IsPreVisit = false,
 
                               const ProgramPointTag *Tag = nullptr) const;
 
 
 
  /// Returns a new state with all argument regions invalidated.
 
  ///
 
  /// This accepts an alternate state in case some processing has already
 
  /// occurred.
 
  ProgramStateRef invalidateRegions(unsigned BlockCount,
 
                                    ProgramStateRef Orig = nullptr) const;
 
 
 
  using FrameBindingTy = std::pair<SVal, SVal>;
 
  using BindingsTy = SmallVectorImpl<FrameBindingTy>;
 
 
 
  /// Populates the given SmallVector with the bindings in the callee's stack
 
  /// frame at the start of this call.
 
  virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 
                                            BindingsTy &Bindings) const = 0;
 
 
 
  /// Returns a copy of this CallEvent, but using the given state.
 
  template <typename T>
 
  CallEventRef<T> cloneWithState(ProgramStateRef NewState) const;
 
 
 
  /// Returns a copy of this CallEvent, but using the given state.
 
  CallEventRef<> cloneWithState(ProgramStateRef NewState) const {
 
    return cloneWithState<CallEvent>(NewState);
 
  }
 
 
 
  /// Returns true if this is a statement is a function or method call
 
  /// of some kind.
 
  static bool isCallStmt(const Stmt *S);
 
 
 
  /// Returns the result type of a function or method declaration.
 
  ///
 
  /// This will return a null QualType if the result type cannot be determined.
 
  static QualType getDeclaredResultType(const Decl *D);
 
 
 
  /// Returns true if the given decl is known to be variadic.
 
  ///
 
  /// \p D must not be null.
 
  static bool isVariadic(const Decl *D);
 
 
 
  /// Returns AnalysisDeclContext for the callee stack frame.
 
  /// Currently may fail; returns null on failure.
 
  AnalysisDeclContext *getCalleeAnalysisDeclContext() const;
 
 
 
  /// Returns the callee stack frame. That stack frame will only be entered
 
  /// during analysis if the call is inlined, but it may still be useful
 
  /// in intermediate calculations even if the call isn't inlined.
 
  /// May fail; returns null on failure.
 
  const StackFrameContext *getCalleeStackFrame(unsigned BlockCount) const;
 
 
 
  /// Returns memory location for a parameter variable within the callee stack
 
  /// frame. The behavior is undefined if the block count is different from the
 
  /// one that is there when call happens. May fail; returns null on failure.
 
  const ParamVarRegion *getParameterLocation(unsigned Index,
 
                                             unsigned BlockCount) const;
 
 
 
  /// Returns true if on the current path, the argument was constructed by
 
  /// calling a C++ constructor over it. This is an internal detail of the
 
  /// analysis which doesn't necessarily represent the program semantics:
 
  /// if we are supposed to construct an argument directly, we may still
 
  /// not do that because we don't know how (i.e., construction context is
 
  /// unavailable in the CFG or not supported by the analyzer).
 
  bool isArgumentConstructedDirectly(unsigned Index) const {
 
    // This assumes that the object was not yet removed from the state.
 
    return ExprEngine::getObjectUnderConstruction(
 
               getState(), {getOriginExpr(), Index}, getLocationContext())
 
        .has_value();
 
  }
 
 
 
  /// Some calls have parameter numbering mismatched from argument numbering.
 
  /// This function converts an argument index to the corresponding
 
  /// parameter index. Returns std::nullopt is the argument doesn't correspond
 
  /// to any parameter variable.
 
  virtual std::optional<unsigned>
 
  getAdjustedParameterIndex(unsigned ASTArgumentIndex) const {
 
    return ASTArgumentIndex;
 
  }
 
 
 
  /// Some call event sub-classes conveniently adjust mismatching AST indices
 
  /// to match parameter indices. This function converts an argument index
 
  /// as understood by CallEvent to the argument index as understood by the AST.
 
  virtual unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const {
 
    return CallArgumentIndex;
 
  }
 
 
 
  /// Returns the construction context of the call, if it is a C++ constructor
 
  /// call or a call of a function returning a C++ class instance. Otherwise
 
  /// return nullptr.
 
  const ConstructionContext *getConstructionContext() const;
 
 
 
  /// If the call returns a C++ record type then the region of its return value
 
  /// can be retrieved from its construction context.
 
  std::optional<SVal> getReturnValueUnderConstruction() const;
 
 
 
  // Iterator access to formal parameters and their types.
 
private:
 
  struct GetTypeFn {
 
    QualType operator()(ParmVarDecl *PD) const { return PD->getType(); }
 
  };
 
 
 
public:
 
  /// Return call's formal parameters.
 
  ///
 
  /// Remember that the number of formal parameters may not match the number
 
  /// of arguments for all calls. However, the first parameter will always
 
  /// correspond with the argument value returned by \c getArgSVal(0).
 
  virtual ArrayRef<ParmVarDecl *> parameters() const = 0;
 
 
 
  using param_type_iterator =
 
      llvm::mapped_iterator<ArrayRef<ParmVarDecl *>::iterator, GetTypeFn>;
 
 
 
  /// Returns an iterator over the types of the call's formal parameters.
 
  ///
 
  /// This uses the callee decl found by default name lookup rather than the
 
  /// definition because it represents a public interface, and probably has
 
  /// more annotations.
 
  param_type_iterator param_type_begin() const {
 
    return llvm::map_iterator(parameters().begin(), GetTypeFn());
 
  }
 
  /// \sa param_type_begin()
 
  param_type_iterator param_type_end() const {
 
    return llvm::map_iterator(parameters().end(), GetTypeFn());
 
  }
 
 
 
  // For debugging purposes only
 
  void dump(raw_ostream &Out) const;
 
  void dump() const;
 
};
 
 
 
/// Represents a call to any sort of function that might have a
 
/// FunctionDecl.
 
class AnyFunctionCall : public CallEvent {
 
protected:
 
  AnyFunctionCall(const Expr *E, ProgramStateRef St,
 
                  const LocationContext *LCtx)
 
      : CallEvent(E, St, LCtx) {}
 
  AnyFunctionCall(const Decl *D, ProgramStateRef St,
 
                  const LocationContext *LCtx)
 
      : CallEvent(D, St, LCtx) {}
 
  AnyFunctionCall(const AnyFunctionCall &Other) = default;
 
 
 
public:
 
  // This function is overridden by subclasses, but they must return
 
  // a FunctionDecl.
 
  const FunctionDecl *getDecl() const override {
 
    return cast<FunctionDecl>(CallEvent::getDecl());
 
  }
 
 
 
  RuntimeDefinition getRuntimeDefinition() const override;
 
 
 
  bool argumentsMayEscape() const override;
 
 
 
  void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 
                                    BindingsTy &Bindings) const override;
 
 
 
  ArrayRef<ParmVarDecl *> parameters() const override;
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() >= CE_BEG_FUNCTION_CALLS &&
 
           CA->getKind() <= CE_END_FUNCTION_CALLS;
 
  }
 
};
 
 
 
/// Represents a C function or static C++ member function call.
 
///
 
/// Example: \c fun()
 
class SimpleFunctionCall : public AnyFunctionCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  SimpleFunctionCall(const CallExpr *CE, ProgramStateRef St,
 
                     const LocationContext *LCtx)
 
      : AnyFunctionCall(CE, St, LCtx) {}
 
  SimpleFunctionCall(const SimpleFunctionCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override {
 
    new (Dest) SimpleFunctionCall(*this);
 
  }
 
 
 
public:
 
  const CallExpr *getOriginExpr() const override {
 
    return cast<CallExpr>(AnyFunctionCall::getOriginExpr());
 
  }
 
 
 
  const FunctionDecl *getDecl() const override;
 
 
 
  unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    return getOriginExpr()->getArg(Index);
 
  }
 
 
 
  Kind getKind() const override { return CE_Function; }
 
  StringRef getKindAsString() const override { return "SimpleFunctionCall"; }
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() == CE_Function;
 
  }
 
};
 
 
 
/// Represents a call to a block.
 
///
 
/// Example: <tt>^{ statement-body }()</tt>
 
class BlockCall : public CallEvent {
 
  friend class CallEventManager;
 
 
 
protected:
 
  BlockCall(const CallExpr *CE, ProgramStateRef St,
 
            const LocationContext *LCtx)
 
      : CallEvent(CE, St, LCtx) {}
 
  BlockCall(const BlockCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override { new (Dest) BlockCall(*this); }
 
 
 
  void getExtraInvalidatedValues(ValueList &Values,
 
         RegionAndSymbolInvalidationTraits *ETraits) const override;
 
 
 
public:
 
  const CallExpr *getOriginExpr() const override {
 
    return cast<CallExpr>(CallEvent::getOriginExpr());
 
  }
 
 
 
  unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    return getOriginExpr()->getArg(Index);
 
  }
 
 
 
  /// Returns the region associated with this instance of the block.
 
  ///
 
  /// This may be NULL if the block's origin is unknown.
 
  const BlockDataRegion *getBlockRegion() const;
 
 
 
  const BlockDecl *getDecl() const override {
 
    const BlockDataRegion *BR = getBlockRegion();
 
    if (!BR)
 
      return nullptr;
 
    return BR->getDecl();
 
  }
 
 
 
  bool isConversionFromLambda() const {
 
    const BlockDecl *BD = getDecl();
 
    if (!BD)
 
      return false;
 
 
 
    return BD->isConversionFromLambda();
 
  }
 
 
 
  /// For a block converted from a C++ lambda, returns the block
 
  /// VarRegion for the variable holding the captured C++ lambda record.
 
  const VarRegion *getRegionStoringCapturedLambda() const {
 
    assert(isConversionFromLambda());
 
    const BlockDataRegion *BR = getBlockRegion();
 
    assert(BR && "Block converted from lambda must have a block region");
 
 
 
    auto I = BR->referenced_vars_begin();
 
    assert(I != BR->referenced_vars_end());
 
 
 
    return I.getCapturedRegion();
 
  }
 
 
 
  RuntimeDefinition getRuntimeDefinition() const override {
 
    if (!isConversionFromLambda())
 
      return RuntimeDefinition(getDecl());
 
 
 
    // Clang converts lambdas to blocks with an implicit user-defined
 
    // conversion operator method on the lambda record that looks (roughly)
 
    // like:
 
    //
 
    // typedef R(^block_type)(P1, P2, ...);
 
    // operator block_type() const {
 
    //   auto Lambda = *this;
 
    //   return ^(P1 p1, P2 p2, ...){
 
    //     /* return Lambda(p1, p2, ...); */
 
    //   };
 
    // }
 
    //
 
    // Here R is the return type of the lambda and P1, P2, ... are
 
    // its parameter types. 'Lambda' is a fake VarDecl captured by the block
 
    // that is initialized to a copy of the lambda.
 
    //
 
    // Sema leaves the body of a lambda-converted block empty (it is
 
    // produced by CodeGen), so we can't analyze it directly. Instead, we skip
 
    // the block body and analyze the operator() method on the captured lambda.
 
    const VarDecl *LambdaVD = getRegionStoringCapturedLambda()->getDecl();
 
    const CXXRecordDecl *LambdaDecl = LambdaVD->getType()->getAsCXXRecordDecl();
 
    CXXMethodDecl* LambdaCallOperator = LambdaDecl->getLambdaCallOperator();
 
 
 
    return RuntimeDefinition(LambdaCallOperator);
 
  }
 
 
 
  bool argumentsMayEscape() const override {
 
    return true;
 
  }
 
 
 
  void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 
                                    BindingsTy &Bindings) const override;
 
 
 
  ArrayRef<ParmVarDecl *> parameters() const override;
 
 
 
  Kind getKind() const override { return CE_Block; }
 
  StringRef getKindAsString() const override { return "BlockCall"; }
 
 
 
  static bool classof(const CallEvent *CA) { return CA->getKind() == CE_Block; }
 
};
 
 
 
/// Represents a non-static C++ member function call, no matter how
 
/// it is written.
 
class CXXInstanceCall : public AnyFunctionCall {
 
protected:
 
  CXXInstanceCall(const CallExpr *CE, ProgramStateRef St,
 
                  const LocationContext *LCtx)
 
      : AnyFunctionCall(CE, St, LCtx) {}
 
  CXXInstanceCall(const FunctionDecl *D, ProgramStateRef St,
 
                  const LocationContext *LCtx)
 
      : AnyFunctionCall(D, St, LCtx) {}
 
  CXXInstanceCall(const CXXInstanceCall &Other) = default;
 
 
 
  void getExtraInvalidatedValues(ValueList &Values,
 
         RegionAndSymbolInvalidationTraits *ETraits) const override;
 
 
 
public:
 
  /// Returns the expression representing the implicit 'this' object.
 
  virtual const Expr *getCXXThisExpr() const { return nullptr; }
 
 
 
  /// Returns the value of the implicit 'this' object.
 
  virtual SVal getCXXThisVal() const;
 
 
 
  const FunctionDecl *getDecl() const override;
 
 
 
  RuntimeDefinition getRuntimeDefinition() const override;
 
 
 
  void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 
                                    BindingsTy &Bindings) const override;
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() >= CE_BEG_CXX_INSTANCE_CALLS &&
 
           CA->getKind() <= CE_END_CXX_INSTANCE_CALLS;
 
  }
 
};
 
 
 
/// Represents a non-static C++ member function call.
 
///
 
/// Example: \c obj.fun()
 
class CXXMemberCall : public CXXInstanceCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  CXXMemberCall(const CXXMemberCallExpr *CE, ProgramStateRef St,
 
                const LocationContext *LCtx)
 
      : CXXInstanceCall(CE, St, LCtx) {}
 
  CXXMemberCall(const CXXMemberCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override { new (Dest) CXXMemberCall(*this); }
 
 
 
public:
 
  const CXXMemberCallExpr *getOriginExpr() const override {
 
    return cast<CXXMemberCallExpr>(CXXInstanceCall::getOriginExpr());
 
  }
 
 
 
  unsigned getNumArgs() const override {
 
    if (const CallExpr *CE = getOriginExpr())
 
      return CE->getNumArgs();
 
    return 0;
 
  }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    return getOriginExpr()->getArg(Index);
 
  }
 
 
 
  const Expr *getCXXThisExpr() const override;
 
 
 
  RuntimeDefinition getRuntimeDefinition() const override;
 
 
 
  Kind getKind() const override { return CE_CXXMember; }
 
  StringRef getKindAsString() const override { return "CXXMemberCall"; }
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() == CE_CXXMember;
 
  }
 
};
 
 
 
/// Represents a C++ overloaded operator call where the operator is
 
/// implemented as a non-static member function.
 
///
 
/// Example: <tt>iter + 1</tt>
 
class CXXMemberOperatorCall : public CXXInstanceCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  CXXMemberOperatorCall(const CXXOperatorCallExpr *CE, ProgramStateRef St,
 
                        const LocationContext *LCtx)
 
      : CXXInstanceCall(CE, St, LCtx) {}
 
  CXXMemberOperatorCall(const CXXMemberOperatorCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override {
 
    new (Dest) CXXMemberOperatorCall(*this);
 
  }
 
 
 
public:
 
  const CXXOperatorCallExpr *getOriginExpr() const override {
 
    return cast<CXXOperatorCallExpr>(CXXInstanceCall::getOriginExpr());
 
  }
 
 
 
  unsigned getNumArgs() const override {
 
    return getOriginExpr()->getNumArgs() - 1;
 
  }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    return getOriginExpr()->getArg(Index + 1);
 
  }
 
 
 
  const Expr *getCXXThisExpr() const override;
 
 
 
  Kind getKind() const override { return CE_CXXMemberOperator; }
 
  StringRef getKindAsString() const override { return "CXXMemberOperatorCall"; }
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() == CE_CXXMemberOperator;
 
  }
 
 
 
  std::optional<unsigned>
 
  getAdjustedParameterIndex(unsigned ASTArgumentIndex) const override {
 
    // For member operator calls argument 0 on the expression corresponds
 
    // to implicit this-parameter on the declaration.
 
    return (ASTArgumentIndex > 0)
 
               ? std::optional<unsigned>(ASTArgumentIndex - 1)
 
               : std::nullopt;
 
  }
 
 
 
  unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const override {
 
    // For member operator calls argument 0 on the expression corresponds
 
    // to implicit this-parameter on the declaration.
 
    return CallArgumentIndex + 1;
 
  }
 
 
 
  OverloadedOperatorKind getOverloadedOperator() const {
 
    return getOriginExpr()->getOperator();
 
  }
 
};
 
 
 
/// Represents an implicit call to a C++ destructor.
 
///
 
/// This can occur at the end of a scope (for automatic objects), at the end
 
/// of a full-expression (for temporaries), or as part of a delete.
 
class CXXDestructorCall : public CXXInstanceCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  using DtorDataTy = llvm::PointerIntPair<const MemRegion *, 1, bool>;
 
 
 
  /// Creates an implicit destructor.
 
  ///
 
  /// \param DD The destructor that will be called.
 
  /// \param Trigger The statement whose completion causes this destructor call.
 
  /// \param Target The object region to be destructed.
 
  /// \param St The path-sensitive state at this point in the program.
 
  /// \param LCtx The location context at this point in the program.
 
  CXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
 
                    const MemRegion *Target, bool IsBaseDestructor,
 
                    ProgramStateRef St, const LocationContext *LCtx)
 
      : CXXInstanceCall(DD, St, LCtx) {
 
    Data = DtorDataTy(Target, IsBaseDestructor).getOpaqueValue();
 
    Location = Trigger->getEndLoc();
 
  }
 
 
 
  CXXDestructorCall(const CXXDestructorCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override {new (Dest) CXXDestructorCall(*this);}
 
 
 
public:
 
  SourceRange getSourceRange() const override { return Location; }
 
  unsigned getNumArgs() const override { return 0; }
 
 
 
  RuntimeDefinition getRuntimeDefinition() const override;
 
 
 
  /// Returns the value of the implicit 'this' object.
 
  SVal getCXXThisVal() const override;
 
 
 
  /// Returns true if this is a call to a base class destructor.
 
  bool isBaseDestructor() const {
 
    return DtorDataTy::getFromOpaqueValue(Data).getInt();
 
  }
 
 
 
  Kind getKind() const override { return CE_CXXDestructor; }
 
  StringRef getKindAsString() const override { return "CXXDestructorCall"; }
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() == CE_CXXDestructor;
 
  }
 
};
 
 
 
/// Represents any constructor invocation. This includes regular constructors
 
/// and inherited constructors.
 
class AnyCXXConstructorCall : public AnyFunctionCall {
 
protected:
 
  AnyCXXConstructorCall(const Expr *E, const MemRegion *Target,
 
                        ProgramStateRef St, const LocationContext *LCtx)
 
      : AnyFunctionCall(E, St, LCtx) {
 
    assert(E && (isa<CXXConstructExpr>(E) || isa<CXXInheritedCtorInitExpr>(E)));
 
    // Target may be null when the region is unknown.
 
    Data = Target;
 
  }
 
 
 
  void getExtraInvalidatedValues(ValueList &Values,
 
         RegionAndSymbolInvalidationTraits *ETraits) const override;
 
 
 
  void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 
                                    BindingsTy &Bindings) const override;
 
 
 
public:
 
  /// Returns the value of the implicit 'this' object.
 
  SVal getCXXThisVal() const;
 
 
 
  static bool classof(const CallEvent *Call) {
 
    return Call->getKind() >= CE_BEG_CXX_CONSTRUCTOR_CALLS &&
 
           Call->getKind() <= CE_END_CXX_CONSTRUCTOR_CALLS;
 
  }
 
};
 
 
 
/// Represents a call to a C++ constructor.
 
///
 
/// Example: \c T(1)
 
class CXXConstructorCall : public AnyCXXConstructorCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  /// Creates a constructor call.
 
  ///
 
  /// \param CE The constructor expression as written in the source.
 
  /// \param Target The region where the object should be constructed. If NULL,
 
  ///               a new symbolic region will be used.
 
  /// \param St The path-sensitive state at this point in the program.
 
  /// \param LCtx The location context at this point in the program.
 
  CXXConstructorCall(const CXXConstructExpr *CE, const MemRegion *Target,
 
                     ProgramStateRef St, const LocationContext *LCtx)
 
      : AnyCXXConstructorCall(CE, Target, St, LCtx) {}
 
 
 
  CXXConstructorCall(const CXXConstructorCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override { new (Dest) CXXConstructorCall(*this); }
 
 
 
public:
 
  const CXXConstructExpr *getOriginExpr() const override {
 
    return cast<CXXConstructExpr>(AnyFunctionCall::getOriginExpr());
 
  }
 
 
 
  const CXXConstructorDecl *getDecl() const override {
 
    return getOriginExpr()->getConstructor();
 
  }
 
 
 
  unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    return getOriginExpr()->getArg(Index);
 
  }
 
 
 
  Kind getKind() const override { return CE_CXXConstructor; }
 
  StringRef getKindAsString() const override { return "CXXConstructorCall"; }
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() == CE_CXXConstructor;
 
  }
 
};
 
 
 
/// Represents a call to a C++ inherited constructor.
 
///
 
/// Example: \c class T : public S { using S::S; }; T(1);
 
///
 
// Note, it is difficult to model the parameters. This is one of the reasons
 
// why we skip analysis of inheriting constructors as top-level functions.
 
// CXXInheritedCtorInitExpr doesn't take arguments and doesn't model parameter
 
// initialization because there is none: the arguments in the outer
 
// CXXConstructExpr directly initialize the parameters of the base class
 
// constructor, and no copies are made. (Making a copy of the parameter is
 
// incorrect, at least if it's done in an observable way.) The derived class
 
// constructor doesn't even exist in the formal model.
 
/// E.g., in:
 
///
 
/// struct X { X *p = this; ~X() {} };
 
/// struct A { A(X x) : b(x.p == &x) {} bool b; };
 
/// struct B : A { using A::A; };
 
/// B b = X{};
 
///
 
/// ... b.b is initialized to true.
 
class CXXInheritedConstructorCall : public AnyCXXConstructorCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  CXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *CE,
 
                              const MemRegion *Target, ProgramStateRef St,
 
                              const LocationContext *LCtx)
 
      : AnyCXXConstructorCall(CE, Target, St, LCtx) {}
 
 
 
  CXXInheritedConstructorCall(const CXXInheritedConstructorCall &Other) =
 
      default;
 
 
 
  void cloneTo(void *Dest) const override {
 
    new (Dest) CXXInheritedConstructorCall(*this);
 
  }
 
 
 
public:
 
  const CXXInheritedCtorInitExpr *getOriginExpr() const override {
 
    return cast<CXXInheritedCtorInitExpr>(AnyFunctionCall::getOriginExpr());
 
  }
 
 
 
  const CXXConstructorDecl *getDecl() const override {
 
    return getOriginExpr()->getConstructor();
 
  }
 
 
 
  /// Obtain the stack frame of the inheriting constructor. Argument expressions
 
  /// can be found on the call site of that stack frame.
 
  const StackFrameContext *getInheritingStackFrame() const;
 
 
 
  /// Obtain the CXXConstructExpr for the sub-class that inherited the current
 
  /// constructor (possibly indirectly). It's the statement that contains
 
  /// argument expressions.
 
  const CXXConstructExpr *getInheritingConstructor() const {
 
    return cast<CXXConstructExpr>(getInheritingStackFrame()->getCallSite());
 
  }
 
 
 
  unsigned getNumArgs() const override {
 
    return getInheritingConstructor()->getNumArgs();
 
  }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    return getInheritingConstructor()->getArg(Index);
 
  }
 
 
 
  SVal getArgSVal(unsigned Index) const override {
 
    return getState()->getSVal(
 
        getArgExpr(Index),
 
        getInheritingStackFrame()->getParent()->getStackFrame());
 
  }
 
 
 
  Kind getKind() const override { return CE_CXXInheritedConstructor; }
 
  StringRef getKindAsString() const override {
 
    return "CXXInheritedConstructorCall";
 
  }
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() == CE_CXXInheritedConstructor;
 
  }
 
};
 
 
 
/// Represents the memory allocation call in a C++ new-expression.
 
///
 
/// This is a call to "operator new".
 
class CXXAllocatorCall : public AnyFunctionCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  CXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef St,
 
                   const LocationContext *LCtx)
 
      : AnyFunctionCall(E, St, LCtx) {}
 
  CXXAllocatorCall(const CXXAllocatorCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override { new (Dest) CXXAllocatorCall(*this); }
 
 
 
public:
 
  const CXXNewExpr *getOriginExpr() const override {
 
    return cast<CXXNewExpr>(AnyFunctionCall::getOriginExpr());
 
  }
 
 
 
  const FunctionDecl *getDecl() const override {
 
    return getOriginExpr()->getOperatorNew();
 
  }
 
 
 
  SVal getObjectUnderConstruction() const {
 
    return *ExprEngine::getObjectUnderConstruction(getState(), getOriginExpr(),
 
                                                   getLocationContext());
 
  }
 
 
 
  /// Number of non-placement arguments to the call. It is equal to 2 for
 
  /// C++17 aligned operator new() calls that have alignment implicitly
 
  /// passed as the second argument, and to 1 for other operator new() calls.
 
  unsigned getNumImplicitArgs() const {
 
    return getOriginExpr()->passAlignment() ? 2 : 1;
 
  }
 
 
 
  unsigned getNumArgs() const override {
 
    return getOriginExpr()->getNumPlacementArgs() + getNumImplicitArgs();
 
  }
 
 
 
  bool isArray() const { return getOriginExpr()->isArray(); }
 
 
 
  std::optional<const clang::Expr *> getArraySizeExpr() const {
 
    return getOriginExpr()->getArraySize();
 
  }
 
 
 
  SVal getArraySizeVal() const {
 
    assert(isArray() && "The allocator call doesn't allocate and array!");
 
 
 
    return getState()->getSVal(*getArraySizeExpr(), getLocationContext());
 
  }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    // The first argument of an allocator call is the size of the allocation.
 
    if (Index < getNumImplicitArgs())
 
      return nullptr;
 
    return getOriginExpr()->getPlacementArg(Index - getNumImplicitArgs());
 
  }
 
 
 
  /// Number of placement arguments to the operator new() call. For example,
 
  /// standard std::nothrow operator new and standard placement new both have
 
  /// 1 implicit argument (size) and 1 placement argument, while regular
 
  /// operator new() has 1 implicit argument and 0 placement arguments.
 
  const Expr *getPlacementArgExpr(unsigned Index) const {
 
    return getOriginExpr()->getPlacementArg(Index);
 
  }
 
 
 
  Kind getKind() const override { return CE_CXXAllocator; }
 
  StringRef getKindAsString() const override { return "CXXAllocatorCall"; }
 
 
 
  static bool classof(const CallEvent *CE) {
 
    return CE->getKind() == CE_CXXAllocator;
 
  }
 
};
 
 
 
/// Represents the memory deallocation call in a C++ delete-expression.
 
///
 
/// This is a call to "operator delete".
 
// FIXME: CXXDeleteExpr isn't present for custom delete operators, or even for
 
// some those that are in the standard library, like the no-throw or align_val
 
// versions.
 
// Some pointers:
 
// http://lists.llvm.org/pipermail/cfe-dev/2020-April/065080.html
 
// clang/test/Analysis/cxx-dynamic-memory-analysis-order.cpp
 
// clang/unittests/StaticAnalyzer/CallEventTest.cpp
 
class CXXDeallocatorCall : public AnyFunctionCall {
 
  friend class CallEventManager;
 
 
 
protected:
 
  CXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef St,
 
                     const LocationContext *LCtx)
 
      : AnyFunctionCall(E, St, LCtx) {}
 
  CXXDeallocatorCall(const CXXDeallocatorCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override {
 
    new (Dest) CXXDeallocatorCall(*this);
 
  }
 
 
 
public:
 
  const CXXDeleteExpr *getOriginExpr() const override {
 
    return cast<CXXDeleteExpr>(AnyFunctionCall::getOriginExpr());
 
  }
 
 
 
  const FunctionDecl *getDecl() const override {
 
    return getOriginExpr()->getOperatorDelete();
 
  }
 
 
 
  unsigned getNumArgs() const override { return getDecl()->getNumParams(); }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    // CXXDeleteExpr's only have a single argument.
 
    return getOriginExpr()->getArgument();
 
  }
 
 
 
  Kind getKind() const override { return CE_CXXDeallocator; }
 
  StringRef getKindAsString() const override { return "CXXDeallocatorCall"; }
 
 
 
  static bool classof(const CallEvent *CE) {
 
    return CE->getKind() == CE_CXXDeallocator;
 
  }
 
};
 
 
 
/// Represents the ways an Objective-C message send can occur.
 
//
 
// Note to maintainers: OCM_Message should always be last, since it does not
 
// need to fit in the Data field's low bits.
 
enum ObjCMessageKind {
 
  OCM_PropertyAccess,
 
  OCM_Subscript,
 
  OCM_Message
 
};
 
 
 
/// Represents any expression that calls an Objective-C method.
 
///
 
/// This includes all of the kinds listed in ObjCMessageKind.
 
class ObjCMethodCall : public CallEvent {
 
  friend class CallEventManager;
 
 
 
  const PseudoObjectExpr *getContainingPseudoObjectExpr() const;
 
 
 
protected:
 
  ObjCMethodCall(const ObjCMessageExpr *Msg, ProgramStateRef St,
 
                 const LocationContext *LCtx)
 
      : CallEvent(Msg, St, LCtx) {
 
    Data = nullptr;
 
  }
 
 
 
  ObjCMethodCall(const ObjCMethodCall &Other) = default;
 
 
 
  void cloneTo(void *Dest) const override { new (Dest) ObjCMethodCall(*this); }
 
 
 
  void getExtraInvalidatedValues(ValueList &Values,
 
         RegionAndSymbolInvalidationTraits *ETraits) const override;
 
 
 
  /// Check if the selector may have multiple definitions (may have overrides).
 
  virtual bool canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
 
                                        Selector Sel) const;
 
 
 
public:
 
  const ObjCMessageExpr *getOriginExpr() const override {
 
    return cast<ObjCMessageExpr>(CallEvent::getOriginExpr());
 
  }
 
 
 
  const ObjCMethodDecl *getDecl() const override {
 
    return getOriginExpr()->getMethodDecl();
 
  }
 
 
 
  unsigned getNumArgs() const override {
 
    return getOriginExpr()->getNumArgs();
 
  }
 
 
 
  const Expr *getArgExpr(unsigned Index) const override {
 
    return getOriginExpr()->getArg(Index);
 
  }
 
 
 
  bool isInstanceMessage() const {
 
    return getOriginExpr()->isInstanceMessage();
 
  }
 
 
 
  ObjCMethodFamily getMethodFamily() const {
 
    return getOriginExpr()->getMethodFamily();
 
  }
 
 
 
  Selector getSelector() const {
 
    return getOriginExpr()->getSelector();
 
  }
 
 
 
  SourceRange getSourceRange() const override;
 
 
 
  /// Returns the value of the receiver at the time of this call.
 
  SVal getReceiverSVal() const;
 
 
 
  /// Get the interface for the receiver.
 
  ///
 
  /// This works whether this is an instance message or a class message.
 
  /// However, it currently just uses the static type of the receiver.
 
  const ObjCInterfaceDecl *getReceiverInterface() const {
 
    return getOriginExpr()->getReceiverInterface();
 
  }
 
 
 
  /// Checks if the receiver refers to 'self' or 'super'.
 
  bool isReceiverSelfOrSuper() const;
 
 
 
  /// Returns how the message was written in the source (property access,
 
  /// subscript, or explicit message send).
 
  ObjCMessageKind getMessageKind() const;
 
 
 
  /// Returns true if this property access or subscript is a setter (has the
 
  /// form of an assignment).
 
  bool isSetter() const {
 
    switch (getMessageKind()) {
 
    case OCM_Message:
 
      llvm_unreachable("This is not a pseudo-object access!");
 
    case OCM_PropertyAccess:
 
      return getNumArgs() > 0;
 
    case OCM_Subscript:
 
      return getNumArgs() > 1;
 
    }
 
    llvm_unreachable("Unknown message kind");
 
  }
 
 
 
  // Returns the property accessed by this method, either explicitly via
 
  // property syntax or implicitly via a getter or setter method. Returns
 
  // nullptr if the call is not a prooperty access.
 
  const ObjCPropertyDecl *getAccessedProperty() const;
 
 
 
  RuntimeDefinition getRuntimeDefinition() const override;
 
 
 
  bool argumentsMayEscape() const override;
 
 
 
  void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 
                                    BindingsTy &Bindings) const override;
 
 
 
  ArrayRef<ParmVarDecl*> parameters() const override;
 
 
 
  Kind getKind() const override { return CE_ObjCMessage; }
 
  StringRef getKindAsString() const override { return "ObjCMethodCall"; }
 
 
 
  static bool classof(const CallEvent *CA) {
 
    return CA->getKind() == CE_ObjCMessage;
 
  }
 
};
 
 
 
/// Manages the lifetime of CallEvent objects.
 
///
 
/// CallEventManager provides a way to create arbitrary CallEvents "on the
 
/// stack" as if they were value objects by keeping a cache of CallEvent-sized
 
/// memory blocks. The CallEvents created by CallEventManager are only valid
 
/// for the lifetime of the OwnedCallEvent that holds them; right now these
 
/// objects cannot be copied and ownership cannot be transferred.
 
class CallEventManager {
 
  friend class CallEvent;
 
 
 
  llvm::BumpPtrAllocator &Alloc;
 
  SmallVector<void *, 8> Cache;
 
 
 
  using CallEventTemplateTy = SimpleFunctionCall;
 
 
 
  void reclaim(const void *Memory) {
 
    Cache.push_back(const_cast<void *>(Memory));
 
  }
 
 
 
  /// Returns memory that can be initialized as a CallEvent.
 
  void *allocate() {
 
    if (Cache.empty())
 
      return Alloc.Allocate<CallEventTemplateTy>();
 
    else
 
      return Cache.pop_back_val();
 
  }
 
 
 
  template <typename T, typename Arg>
 
  T *create(Arg A, ProgramStateRef St, const LocationContext *LCtx) {
 
    static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
 
                  "CallEvent subclasses are not all the same size");
 
    return new (allocate()) T(A, St, LCtx);
 
  }
 
 
 
  template <typename T, typename Arg1, typename Arg2>
 
  T *create(Arg1 A1, Arg2 A2, ProgramStateRef St, const LocationContext *LCtx) {
 
    static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
 
                  "CallEvent subclasses are not all the same size");
 
    return new (allocate()) T(A1, A2, St, LCtx);
 
  }
 
 
 
  template <typename T, typename Arg1, typename Arg2, typename Arg3>
 
  T *create(Arg1 A1, Arg2 A2, Arg3 A3, ProgramStateRef St,
 
            const LocationContext *LCtx) {
 
    static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
 
                  "CallEvent subclasses are not all the same size");
 
    return new (allocate()) T(A1, A2, A3, St, LCtx);
 
  }
 
 
 
  template <typename T, typename Arg1, typename Arg2, typename Arg3,
 
            typename Arg4>
 
  T *create(Arg1 A1, Arg2 A2, Arg3 A3, Arg4 A4, ProgramStateRef St,
 
            const LocationContext *LCtx) {
 
    static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
 
                  "CallEvent subclasses are not all the same size");
 
    return new (allocate()) T(A1, A2, A3, A4, St, LCtx);
 
  }
 
 
 
public:
 
  CallEventManager(llvm::BumpPtrAllocator &alloc) : Alloc(alloc) {}
 
 
 
  /// Gets an outside caller given a callee context.
 
  CallEventRef<>
 
  getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State);
 
 
 
  /// Gets a call event for a function call, Objective-C method call,
 
  /// a 'new', or a 'delete' call.
 
  CallEventRef<>
 
  getCall(const Stmt *S, ProgramStateRef State,
 
          const LocationContext *LC);
 
 
 
  CallEventRef<>
 
  getSimpleCall(const CallExpr *E, ProgramStateRef State,
 
                const LocationContext *LCtx);
 
 
 
  CallEventRef<ObjCMethodCall>
 
  getObjCMethodCall(const ObjCMessageExpr *E, ProgramStateRef State,
 
                    const LocationContext *LCtx) {
 
    return create<ObjCMethodCall>(E, State, LCtx);
 
  }
 
 
 
  CallEventRef<CXXConstructorCall>
 
  getCXXConstructorCall(const CXXConstructExpr *E, const MemRegion *Target,
 
                        ProgramStateRef State, const LocationContext *LCtx) {
 
    return create<CXXConstructorCall>(E, Target, State, LCtx);
 
  }
 
 
 
  CallEventRef<CXXInheritedConstructorCall>
 
  getCXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *E,
 
                                 const MemRegion *Target, ProgramStateRef State,
 
                                 const LocationContext *LCtx) {
 
    return create<CXXInheritedConstructorCall>(E, Target, State, LCtx);
 
  }
 
 
 
  CallEventRef<CXXDestructorCall>
 
  getCXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
 
                       const MemRegion *Target, bool IsBase,
 
                       ProgramStateRef State, const LocationContext *LCtx) {
 
    return create<CXXDestructorCall>(DD, Trigger, Target, IsBase, State, LCtx);
 
  }
 
 
 
  CallEventRef<CXXAllocatorCall>
 
  getCXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef State,
 
                      const LocationContext *LCtx) {
 
    return create<CXXAllocatorCall>(E, State, LCtx);
 
  }
 
 
 
  CallEventRef<CXXDeallocatorCall>
 
  getCXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef State,
 
                        const LocationContext *LCtx) {
 
    return create<CXXDeallocatorCall>(E, State, LCtx);
 
  }
 
};
 
 
 
template <typename T>
 
CallEventRef<T> CallEvent::cloneWithState(ProgramStateRef NewState) const {
 
  assert(isa<T>(*this) && "Cloning to unrelated type");
 
  static_assert(sizeof(T) == sizeof(CallEvent),
 
                "Subclasses may not add fields");
 
 
 
  if (NewState == State)
 
    return cast<T>(this);
 
 
 
  CallEventManager &Mgr = State->getStateManager().getCallEventManager();
 
  T *Copy = static_cast<T *>(Mgr.allocate());
 
  cloneTo(Copy);
 
  assert(Copy->getKind() == this->getKind() && "Bad copy");
 
 
 
  Copy->State = NewState;
 
  return Copy;
 
}
 
 
 
inline void CallEvent::Release() const {
 
  assert(RefCount > 0 && "Reference count is already zero.");
 
  --RefCount;
 
 
 
  if (RefCount > 0)
 
    return;
 
 
 
  CallEventManager &Mgr = State->getStateManager().getCallEventManager();
 
  Mgr.reclaim(this);
 
 
 
  this->~CallEvent();
 
}
 
 
 
} // namespace ento
 
 
 
} // namespace clang
 
 
 
namespace llvm {
 
 
 
// Support isa<>, cast<>, and dyn_cast<> for CallEventRef.
 
template<class T> struct simplify_type< clang::ento::CallEventRef<T>> {
 
  using SimpleType = const T *;
 
 
 
  static SimpleType
 
  getSimplifiedValue(clang::ento::CallEventRef<T> Val) {
 
    return Val.get();
 
  }
 
};
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H