//===- SemaTemplate.h - C++ Templates ---------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//===----------------------------------------------------------------------===//
 
//
 
// This file provides types used in the semantic analysis of C++ templates.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_SEMA_TEMPLATE_H
 
#define LLVM_CLANG_SEMA_TEMPLATE_H
 
 
 
#include "clang/AST/DeclTemplate.h"
 
#include "clang/AST/DeclVisitor.h"
 
#include "clang/AST/TemplateBase.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Sema/Sema.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include <cassert>
 
#include <optional>
 
#include <utility>
 
 
 
namespace clang {
 
 
 
class ASTContext;
 
class BindingDecl;
 
class CXXMethodDecl;
 
class Decl;
 
class DeclaratorDecl;
 
class DeclContext;
 
class EnumDecl;
 
class FunctionDecl;
 
class NamedDecl;
 
class ParmVarDecl;
 
class TagDecl;
 
class TypedefNameDecl;
 
class TypeSourceInfo;
 
class VarDecl;
 
 
 
/// The kind of template substitution being performed.
 
enum class TemplateSubstitutionKind : char {
 
  /// We are substituting template parameters for template arguments in order
 
  /// to form a template specialization.
 
  Specialization,
 
  /// We are substituting template parameters for (typically) other template
 
  /// parameters in order to rewrite a declaration as a different declaration
 
  /// (for example, when forming a deduction guide from a constructor).
 
  Rewrite,
 
};
 
 
 
  /// Data structure that captures multiple levels of template argument
 
  /// lists for use in template instantiation.
 
  ///
 
  /// Multiple levels of template arguments occur when instantiating the
 
  /// definitions of member templates. For example:
 
  ///
 
  /// \code
 
  /// template<typename T>
 
  /// struct X {
 
  ///   template<T Value>
 
  ///   struct Y {
 
  ///     void f();
 
  ///   };
 
  /// };
 
  /// \endcode
 
  ///
 
  /// When instantiating X<int>::Y<17>::f, the multi-level template argument
 
  /// list will contain a template argument list (int) at depth 0 and a
 
  /// template argument list (17) at depth 1.
 
  class MultiLevelTemplateArgumentList {
 
    /// The template argument list at a certain template depth
 
 
 
    using ArgList = ArrayRef<TemplateArgument>;
 
    struct ArgumentListLevel {
 
      llvm::PointerIntPair<Decl *, 1, bool> AssociatedDeclAndFinal;
 
      ArgList Args;
 
    };
 
    using ContainerType = SmallVector<ArgumentListLevel, 4>;
 
 
 
    using ArgListsIterator = ContainerType::iterator;
 
    using ConstArgListsIterator = ContainerType::const_iterator;
 
 
 
    /// The template argument lists, stored from the innermost template
 
    /// argument list (first) to the outermost template argument list (last).
 
    ContainerType TemplateArgumentLists;
 
 
 
    /// The number of outer levels of template arguments that are not
 
    /// being substituted.
 
    unsigned NumRetainedOuterLevels = 0;
 
 
 
    /// The kind of substitution described by this argument list.
 
    TemplateSubstitutionKind Kind = TemplateSubstitutionKind::Specialization;
 
 
 
  public:
 
    /// Construct an empty set of template argument lists.
 
    MultiLevelTemplateArgumentList() = default;
 
 
 
    /// Construct a single-level template argument list.
 
    MultiLevelTemplateArgumentList(Decl *D, ArgList Args, bool Final) {
 
      addOuterTemplateArguments(D, Args, Final);
 
    }
 
 
 
    void setKind(TemplateSubstitutionKind K) { Kind = K; }
 
 
 
    /// Determine the kind of template substitution being performed.
 
    TemplateSubstitutionKind getKind() const { return Kind; }
 
 
 
    /// Determine whether we are rewriting template parameters rather than
 
    /// substituting for them. If so, we should not leave references to the
 
    /// original template parameters behind.
 
    bool isRewrite() const {
 
      return Kind == TemplateSubstitutionKind::Rewrite;
 
    }
 
 
 
    /// Determine the number of levels in this template argument
 
    /// list.
 
    unsigned getNumLevels() const {
 
      return TemplateArgumentLists.size() + NumRetainedOuterLevels;
 
    }
 
 
 
    /// Determine the number of substituted levels in this template
 
    /// argument list.
 
    unsigned getNumSubstitutedLevels() const {
 
      return TemplateArgumentLists.size();
 
    }
 
 
 
    // Determine the number of substituted args at 'Depth'.
 
    unsigned getNumSubsitutedArgs(unsigned Depth) const {
 
      assert(NumRetainedOuterLevels <= Depth && Depth < getNumLevels());
 
      return TemplateArgumentLists[getNumLevels() - Depth - 1].Args.size();
 
    }
 
 
 
    unsigned getNumRetainedOuterLevels() const {
 
      return NumRetainedOuterLevels;
 
    }
 
 
 
    /// Determine how many of the \p OldDepth outermost template parameter
 
    /// lists would be removed by substituting these arguments.
 
    unsigned getNewDepth(unsigned OldDepth) const {
 
      if (OldDepth < NumRetainedOuterLevels)
 
        return OldDepth;
 
      if (OldDepth < getNumLevels())
 
        return NumRetainedOuterLevels;
 
      return OldDepth - TemplateArgumentLists.size();
 
    }
 
 
 
    /// Retrieve the template argument at a given depth and index.
 
    const TemplateArgument &operator()(unsigned Depth, unsigned Index) const {
 
      assert(NumRetainedOuterLevels <= Depth && Depth < getNumLevels());
 
      assert(Index <
 
             TemplateArgumentLists[getNumLevels() - Depth - 1].Args.size());
 
      return TemplateArgumentLists[getNumLevels() - Depth - 1].Args[Index];
 
    }
 
 
 
    /// A template-like entity which owns the whole pattern being substituted.
 
    /// This will usually own a set of template parameters, or in some
 
    /// cases might even be a template parameter itself.
 
    std::pair<Decl *, bool> getAssociatedDecl(unsigned Depth) const {
 
      assert(NumRetainedOuterLevels <= Depth && Depth < getNumLevels());
 
      auto AD = TemplateArgumentLists[getNumLevels() - Depth - 1]
 
                    .AssociatedDeclAndFinal;
 
      return {AD.getPointer(), AD.getInt()};
 
    }
 
 
 
    /// Determine whether there is a non-NULL template argument at the
 
    /// given depth and index.
 
    ///
 
    /// There must exist a template argument list at the given depth.
 
    bool hasTemplateArgument(unsigned Depth, unsigned Index) const {
 
      assert(Depth < getNumLevels());
 
 
 
      if (Depth < NumRetainedOuterLevels)
 
        return false;
 
 
 
      if (Index >=
 
          TemplateArgumentLists[getNumLevels() - Depth - 1].Args.size())
 
        return false;
 
 
 
      return !(*this)(Depth, Index).isNull();
 
    }
 
 
 
    bool isAnyArgInstantiationDependent() const {
 
      for (ArgumentListLevel ListLevel : TemplateArgumentLists)
 
        for (const TemplateArgument &TA : ListLevel.Args)
 
          if (TA.isInstantiationDependent())
 
            return true;
 
      return false;
 
    }
 
 
 
    /// Clear out a specific template argument.
 
    void setArgument(unsigned Depth, unsigned Index,
 
                     TemplateArgument Arg) {
 
      assert(NumRetainedOuterLevels <= Depth && Depth < getNumLevels());
 
      assert(Index <
 
             TemplateArgumentLists[getNumLevels() - Depth - 1].Args.size());
 
      const_cast<TemplateArgument &>(
 
          TemplateArgumentLists[getNumLevels() - Depth - 1].Args[Index]) = Arg;
 
    }
 
 
 
    /// Add a new outmost level to the multi-level template argument
 
    /// list.
 
    /// A 'Final' substitution means that Subst* nodes won't be built
 
    /// for the replacements.
 
    void addOuterTemplateArguments(Decl *AssociatedDecl, ArgList Args,
 
                                   bool Final) {
 
      assert(!NumRetainedOuterLevels &&
 
             "substituted args outside retained args?");
 
      assert(getKind() == TemplateSubstitutionKind::Specialization);
 
      TemplateArgumentLists.push_back(
 
          {{AssociatedDecl->getCanonicalDecl(), Final}, Args});
 
    }
 
 
 
    void addOuterTemplateArguments(ArgList Args) {
 
      assert(!NumRetainedOuterLevels &&
 
             "substituted args outside retained args?");
 
      assert(getKind() == TemplateSubstitutionKind::Rewrite);
 
      TemplateArgumentLists.push_back({{}, Args});
 
    }
 
 
 
    void addOuterTemplateArguments(std::nullopt_t) {
 
      assert(!NumRetainedOuterLevels &&
 
             "substituted args outside retained args?");
 
      TemplateArgumentLists.push_back({});
 
    }
 
 
 
    /// Replaces the current 'innermost' level with the provided argument list.
 
    /// This is useful for type deduction cases where we need to get the entire
 
    /// list from the AST, but then add the deduced innermost list.
 
    void replaceInnermostTemplateArguments(ArgList Args) {
 
      assert(TemplateArgumentLists.size() > 0 && "Replacing in an empty list?");
 
      TemplateArgumentLists[0].Args = Args;
 
    }
 
 
 
    /// Add an outermost level that we are not substituting. We have no
 
    /// arguments at this level, and do not remove it from the depth of inner
 
    /// template parameters that we instantiate.
 
    void addOuterRetainedLevel() {
 
      ++NumRetainedOuterLevels;
 
    }
 
    void addOuterRetainedLevels(unsigned Num) {
 
      NumRetainedOuterLevels += Num;
 
    }
 
 
 
    /// Retrieve the innermost template argument list.
 
    const ArgList &getInnermost() const {
 
      return TemplateArgumentLists.front().Args;
 
    }
 
    /// Retrieve the outermost template argument list.
 
    const ArgList &getOutermost() const {
 
      return TemplateArgumentLists.back().Args;
 
    }
 
    ArgListsIterator begin() { return TemplateArgumentLists.begin(); }
 
    ConstArgListsIterator begin() const {
 
      return TemplateArgumentLists.begin();
 
    }
 
    ArgListsIterator end() { return TemplateArgumentLists.end(); }
 
    ConstArgListsIterator end() const { return TemplateArgumentLists.end(); }
 
  };
 
 
 
  /// The context in which partial ordering of function templates occurs.
 
  enum TPOC {
 
    /// Partial ordering of function templates for a function call.
 
    TPOC_Call,
 
 
 
    /// Partial ordering of function templates for a call to a
 
    /// conversion function.
 
    TPOC_Conversion,
 
 
 
    /// Partial ordering of function templates in other contexts, e.g.,
 
    /// taking the address of a function template or matching a function
 
    /// template specialization to a function template.
 
    TPOC_Other
 
  };
 
 
 
  // This is lame but unavoidable in a world without forward
 
  // declarations of enums.  The alternatives are to either pollute
 
  // Sema.h (by including this file) or sacrifice type safety (by
 
  // making Sema.h declare things as enums).
 
  class TemplatePartialOrderingContext {
 
    TPOC Value;
 
 
 
  public:
 
    TemplatePartialOrderingContext(TPOC Value) : Value(Value) {}
 
 
 
    operator TPOC() const { return Value; }
 
  };
 
 
 
  /// Captures a template argument whose value has been deduced
 
  /// via c++ template argument deduction.
 
  class DeducedTemplateArgument : public TemplateArgument {
 
    /// For a non-type template argument, whether the value was
 
    /// deduced from an array bound.
 
    bool DeducedFromArrayBound = false;
 
 
 
  public:
 
    DeducedTemplateArgument() = default;
 
 
 
    DeducedTemplateArgument(const TemplateArgument &Arg,
 
                            bool DeducedFromArrayBound = false)
 
        : TemplateArgument(Arg), DeducedFromArrayBound(DeducedFromArrayBound) {}
 
 
 
    /// Construct an integral non-type template argument that
 
    /// has been deduced, possibly from an array bound.
 
    DeducedTemplateArgument(ASTContext &Ctx,
 
                            const llvm::APSInt &Value,
 
                            QualType ValueType,
 
                            bool DeducedFromArrayBound)
 
        : TemplateArgument(Ctx, Value, ValueType),
 
          DeducedFromArrayBound(DeducedFromArrayBound) {}
 
 
 
    /// For a non-type template argument, determine whether the
 
    /// template argument was deduced from an array bound.
 
    bool wasDeducedFromArrayBound() const { return DeducedFromArrayBound; }
 
 
 
    /// Specify whether the given non-type template argument
 
    /// was deduced from an array bound.
 
    void setDeducedFromArrayBound(bool Deduced) {
 
      DeducedFromArrayBound = Deduced;
 
    }
 
  };
 
 
 
  /// A stack-allocated class that identifies which local
 
  /// variable declaration instantiations are present in this scope.
 
  ///
 
  /// A new instance of this class type will be created whenever we
 
  /// instantiate a new function declaration, which will have its own
 
  /// set of parameter declarations.
 
  class LocalInstantiationScope {
 
  public:
 
    /// A set of declarations.
 
    using DeclArgumentPack = SmallVector<VarDecl *, 4>;
 
 
 
  private:
 
    /// Reference to the semantic analysis that is performing
 
    /// this template instantiation.
 
    Sema &SemaRef;
 
 
 
    using LocalDeclsMap =
 
        llvm::SmallDenseMap<const Decl *,
 
                            llvm::PointerUnion<Decl *, DeclArgumentPack *>, 4>;
 
 
 
    /// A mapping from local declarations that occur
 
    /// within a template to their instantiations.
 
    ///
 
    /// This mapping is used during instantiation to keep track of,
 
    /// e.g., function parameter and variable declarations. For example,
 
    /// given:
 
    ///
 
    /// \code
 
    ///   template<typename T> T add(T x, T y) { return x + y; }
 
    /// \endcode
 
    ///
 
    /// when we instantiate add<int>, we will introduce a mapping from
 
    /// the ParmVarDecl for 'x' that occurs in the template to the
 
    /// instantiated ParmVarDecl for 'x'.
 
    ///
 
    /// For a parameter pack, the local instantiation scope may contain a
 
    /// set of instantiated parameters. This is stored as a DeclArgumentPack
 
    /// pointer.
 
    LocalDeclsMap LocalDecls;
 
 
 
    /// The set of argument packs we've allocated.
 
    SmallVector<DeclArgumentPack *, 1> ArgumentPacks;
 
 
 
    /// The outer scope, which contains local variable
 
    /// definitions from some other instantiation (that may not be
 
    /// relevant to this particular scope).
 
    LocalInstantiationScope *Outer;
 
 
 
    /// Whether we have already exited this scope.
 
    bool Exited = false;
 
 
 
    /// Whether to combine this scope with the outer scope, such that
 
    /// lookup will search our outer scope.
 
    bool CombineWithOuterScope;
 
 
 
    /// If non-NULL, the template parameter pack that has been
 
    /// partially substituted per C++0x [temp.arg.explicit]p9.
 
    NamedDecl *PartiallySubstitutedPack = nullptr;
 
 
 
    /// If \c PartiallySubstitutedPack is non-null, the set of
 
    /// explicitly-specified template arguments in that pack.
 
    const TemplateArgument *ArgsInPartiallySubstitutedPack;
 
 
 
    /// If \c PartiallySubstitutedPack, the number of
 
    /// explicitly-specified template arguments in
 
    /// ArgsInPartiallySubstitutedPack.
 
    unsigned NumArgsInPartiallySubstitutedPack;
 
 
 
  public:
 
    LocalInstantiationScope(Sema &SemaRef, bool CombineWithOuterScope = false)
 
        : SemaRef(SemaRef), Outer(SemaRef.CurrentInstantiationScope),
 
          CombineWithOuterScope(CombineWithOuterScope) {
 
      SemaRef.CurrentInstantiationScope = this;
 
    }
 
 
 
    LocalInstantiationScope(const LocalInstantiationScope &) = delete;
 
    LocalInstantiationScope &
 
    operator=(const LocalInstantiationScope &) = delete;
 
 
 
    ~LocalInstantiationScope() {
 
      Exit();
 
    }
 
 
 
    const Sema &getSema() const { return SemaRef; }
 
 
 
    /// Exit this local instantiation scope early.
 
    void Exit() {
 
      if (Exited)
 
        return;
 
 
 
      for (unsigned I = 0, N = ArgumentPacks.size(); I != N; ++I)
 
        delete ArgumentPacks[I];
 
 
 
      SemaRef.CurrentInstantiationScope = Outer;
 
      Exited = true;
 
    }
 
 
 
    /// Clone this scope, and all outer scopes, down to the given
 
    /// outermost scope.
 
    LocalInstantiationScope *cloneScopes(LocalInstantiationScope *Outermost) {
 
      if (this == Outermost) return this;
 
 
 
      // Save the current scope from SemaRef since the LocalInstantiationScope
 
      // will overwrite it on construction
 
      LocalInstantiationScope *oldScope = SemaRef.CurrentInstantiationScope;
 
 
 
      LocalInstantiationScope *newScope =
 
        new LocalInstantiationScope(SemaRef, CombineWithOuterScope);
 
 
 
      newScope->Outer = nullptr;
 
      if (Outer)
 
        newScope->Outer = Outer->cloneScopes(Outermost);
 
 
 
      newScope->PartiallySubstitutedPack = PartiallySubstitutedPack;
 
      newScope->ArgsInPartiallySubstitutedPack = ArgsInPartiallySubstitutedPack;
 
      newScope->NumArgsInPartiallySubstitutedPack =
 
        NumArgsInPartiallySubstitutedPack;
 
 
 
      for (LocalDeclsMap::iterator I = LocalDecls.begin(), E = LocalDecls.end();
 
           I != E; ++I) {
 
        const Decl *D = I->first;
 
        llvm::PointerUnion<Decl *, DeclArgumentPack *> &Stored =
 
          newScope->LocalDecls[D];
 
        if (I->second.is<Decl *>()) {
 
          Stored = I->second.get<Decl *>();
 
        } else {
 
          DeclArgumentPack *OldPack = I->second.get<DeclArgumentPack *>();
 
          DeclArgumentPack *NewPack = new DeclArgumentPack(*OldPack);
 
          Stored = NewPack;
 
          newScope->ArgumentPacks.push_back(NewPack);
 
        }
 
      }
 
      // Restore the saved scope to SemaRef
 
      SemaRef.CurrentInstantiationScope = oldScope;
 
      return newScope;
 
    }
 
 
 
    /// deletes the given scope, and all outer scopes, down to the
 
    /// given outermost scope.
 
    static void deleteScopes(LocalInstantiationScope *Scope,
 
                             LocalInstantiationScope *Outermost) {
 
      while (Scope && Scope != Outermost) {
 
        LocalInstantiationScope *Out = Scope->Outer;
 
        delete Scope;
 
        Scope = Out;
 
      }
 
    }
 
 
 
    /// Find the instantiation of the declaration D within the current
 
    /// instantiation scope.
 
    ///
 
    /// \param D The declaration whose instantiation we are searching for.
 
    ///
 
    /// \returns A pointer to the declaration or argument pack of declarations
 
    /// to which the declaration \c D is instantiated, if found. Otherwise,
 
    /// returns NULL.
 
    llvm::PointerUnion<Decl *, DeclArgumentPack *> *
 
    findInstantiationOf(const Decl *D);
 
 
 
    void InstantiatedLocal(const Decl *D, Decl *Inst);
 
    void InstantiatedLocalPackArg(const Decl *D, VarDecl *Inst);
 
    void MakeInstantiatedLocalArgPack(const Decl *D);
 
 
 
    /// Note that the given parameter pack has been partially substituted
 
    /// via explicit specification of template arguments
 
    /// (C++0x [temp.arg.explicit]p9).
 
    ///
 
    /// \param Pack The parameter pack, which will always be a template
 
    /// parameter pack.
 
    ///
 
    /// \param ExplicitArgs The explicitly-specified template arguments provided
 
    /// for this parameter pack.
 
    ///
 
    /// \param NumExplicitArgs The number of explicitly-specified template
 
    /// arguments provided for this parameter pack.
 
    void SetPartiallySubstitutedPack(NamedDecl *Pack,
 
                                     const TemplateArgument *ExplicitArgs,
 
                                     unsigned NumExplicitArgs);
 
 
 
    /// Reset the partially-substituted pack when it is no longer of
 
    /// interest.
 
    void ResetPartiallySubstitutedPack() {
 
      assert(PartiallySubstitutedPack && "No partially-substituted pack");
 
      PartiallySubstitutedPack = nullptr;
 
      ArgsInPartiallySubstitutedPack = nullptr;
 
      NumArgsInPartiallySubstitutedPack = 0;
 
    }
 
 
 
    /// Retrieve the partially-substitued template parameter pack.
 
    ///
 
    /// If there is no partially-substituted parameter pack, returns NULL.
 
    NamedDecl *
 
    getPartiallySubstitutedPack(const TemplateArgument **ExplicitArgs = nullptr,
 
                                unsigned *NumExplicitArgs = nullptr) const;
 
 
 
    /// Determine whether D is a pack expansion created in this scope.
 
    bool isLocalPackExpansion(const Decl *D);
 
  };
 
 
 
  class TemplateDeclInstantiator
 
    : public DeclVisitor<TemplateDeclInstantiator, Decl *>
 
  {
 
    Sema &SemaRef;
 
    Sema::ArgumentPackSubstitutionIndexRAII SubstIndex;
 
    DeclContext *Owner;
 
    const MultiLevelTemplateArgumentList &TemplateArgs;
 
    Sema::LateInstantiatedAttrVec* LateAttrs = nullptr;
 
    LocalInstantiationScope *StartingScope = nullptr;
 
    bool EvaluateConstraints = true;
 
 
 
    /// A list of out-of-line class template partial
 
    /// specializations that will need to be instantiated after the
 
    /// enclosing class's instantiation is complete.
 
    SmallVector<std::pair<ClassTemplateDecl *,
 
                                ClassTemplatePartialSpecializationDecl *>, 4>
 
      OutOfLinePartialSpecs;
 
 
 
    /// A list of out-of-line variable template partial
 
    /// specializations that will need to be instantiated after the
 
    /// enclosing variable's instantiation is complete.
 
    /// FIXME: Verify that this is needed.
 
    SmallVector<
 
        std::pair<VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>, 4>
 
    OutOfLineVarPartialSpecs;
 
 
 
  public:
 
    TemplateDeclInstantiator(Sema &SemaRef, DeclContext *Owner,
 
                             const MultiLevelTemplateArgumentList &TemplateArgs)
 
        : SemaRef(SemaRef),
 
          SubstIndex(SemaRef, SemaRef.ArgumentPackSubstitutionIndex),
 
          Owner(Owner), TemplateArgs(TemplateArgs) {}
 
 
 
    void setEvaluateConstraints(bool B) {
 
      EvaluateConstraints = B;
 
    }
 
    bool getEvaluateConstraints() {
 
      return EvaluateConstraints;
 
    }
 
 
 
// Define all the decl visitors using DeclNodes.inc
 
#define DECL(DERIVED, BASE) \
 
    Decl *Visit ## DERIVED ## Decl(DERIVED ## Decl *D);
 
#define ABSTRACT_DECL(DECL)
 
 
 
// Decls which never appear inside a class or function.
 
#define OBJCCONTAINER(DERIVED, BASE)
 
#define FILESCOPEASM(DERIVED, BASE)
 
#define TOPLEVELSTMT(DERIVED, BASE)
 
#define IMPORT(DERIVED, BASE)
 
#define EXPORT(DERIVED, BASE)
 
#define LINKAGESPEC(DERIVED, BASE)
 
#define OBJCCOMPATIBLEALIAS(DERIVED, BASE)
 
#define OBJCMETHOD(DERIVED, BASE)
 
#define OBJCTYPEPARAM(DERIVED, BASE)
 
#define OBJCIVAR(DERIVED, BASE)
 
#define OBJCPROPERTY(DERIVED, BASE)
 
#define OBJCPROPERTYIMPL(DERIVED, BASE)
 
#define EMPTY(DERIVED, BASE)
 
#define LIFETIMEEXTENDEDTEMPORARY(DERIVED, BASE)
 
 
 
    // Decls which use special-case instantiation code.
 
#define BLOCK(DERIVED, BASE)
 
#define CAPTURED(DERIVED, BASE)
 
#define IMPLICITPARAM(DERIVED, BASE)
 
 
 
#include "clang/AST/DeclNodes.inc"
 
 
 
    enum class RewriteKind { None, RewriteSpaceshipAsEqualEqual };
 
 
 
    void adjustForRewrite(RewriteKind RK, FunctionDecl *Orig, QualType &T,
 
                          TypeSourceInfo *&TInfo,
 
                          DeclarationNameInfo &NameInfo);
 
 
 
    // A few supplemental visitor functions.
 
    Decl *VisitCXXMethodDecl(CXXMethodDecl *D,
 
                             TemplateParameterList *TemplateParams,
 
                             std::optional<const ASTTemplateArgumentListInfo *>
 
                                 ClassScopeSpecializationArgs = std::nullopt,
 
                             RewriteKind RK = RewriteKind::None);
 
    Decl *VisitFunctionDecl(FunctionDecl *D,
 
                            TemplateParameterList *TemplateParams,
 
                            RewriteKind RK = RewriteKind::None);
 
    Decl *VisitDecl(Decl *D);
 
    Decl *VisitVarDecl(VarDecl *D, bool InstantiatingVarTemplate,
 
                       ArrayRef<BindingDecl *> *Bindings = nullptr);
 
    Decl *VisitBaseUsingDecls(BaseUsingDecl *D, BaseUsingDecl *Inst,
 
                              LookupResult *Lookup);
 
 
 
    // Enable late instantiation of attributes.  Late instantiated attributes
 
    // will be stored in LA.
 
    void enableLateAttributeInstantiation(Sema::LateInstantiatedAttrVec *LA) {
 
      LateAttrs = LA;
 
      StartingScope = SemaRef.CurrentInstantiationScope;
 
    }
 
 
 
    // Disable late instantiation of attributes.
 
    void disableLateAttributeInstantiation() {
 
      LateAttrs = nullptr;
 
      StartingScope = nullptr;
 
    }
 
 
 
    LocalInstantiationScope *getStartingScope() const { return StartingScope; }
 
 
 
    using delayed_partial_spec_iterator = SmallVectorImpl<std::pair<
 
      ClassTemplateDecl *, ClassTemplatePartialSpecializationDecl *>>::iterator;
 
 
 
    using delayed_var_partial_spec_iterator = SmallVectorImpl<std::pair<
 
        VarTemplateDecl *, VarTemplatePartialSpecializationDecl *>>::iterator;
 
 
 
    /// Return an iterator to the beginning of the set of
 
    /// "delayed" partial specializations, which must be passed to
 
    /// InstantiateClassTemplatePartialSpecialization once the class
 
    /// definition has been completed.
 
    delayed_partial_spec_iterator delayed_partial_spec_begin() {
 
      return OutOfLinePartialSpecs.begin();
 
    }
 
 
 
    delayed_var_partial_spec_iterator delayed_var_partial_spec_begin() {
 
      return OutOfLineVarPartialSpecs.begin();
 
    }
 
 
 
    /// Return an iterator to the end of the set of
 
    /// "delayed" partial specializations, which must be passed to
 
    /// InstantiateClassTemplatePartialSpecialization once the class
 
    /// definition has been completed.
 
    delayed_partial_spec_iterator delayed_partial_spec_end() {
 
      return OutOfLinePartialSpecs.end();
 
    }
 
 
 
    delayed_var_partial_spec_iterator delayed_var_partial_spec_end() {
 
      return OutOfLineVarPartialSpecs.end();
 
    }
 
 
 
    // Helper functions for instantiating methods.
 
    TypeSourceInfo *SubstFunctionType(FunctionDecl *D,
 
                             SmallVectorImpl<ParmVarDecl *> &Params);
 
    bool InitFunctionInstantiation(FunctionDecl *New, FunctionDecl *Tmpl);
 
    bool InitMethodInstantiation(CXXMethodDecl *New, CXXMethodDecl *Tmpl);
 
 
 
    bool SubstDefaultedFunction(FunctionDecl *New, FunctionDecl *Tmpl);
 
 
 
    TemplateParameterList *
 
      SubstTemplateParams(TemplateParameterList *List);
 
 
 
    bool SubstQualifier(const DeclaratorDecl *OldDecl,
 
                        DeclaratorDecl *NewDecl);
 
    bool SubstQualifier(const TagDecl *OldDecl,
 
                        TagDecl *NewDecl);
 
 
 
    Decl *VisitVarTemplateSpecializationDecl(
 
        VarTemplateDecl *VarTemplate, VarDecl *FromVar,
 
        const TemplateArgumentListInfo &TemplateArgsInfo,
 
        ArrayRef<TemplateArgument> Converted,
 
        VarTemplateSpecializationDecl *PrevDecl = nullptr);
 
 
 
    Decl *InstantiateTypedefNameDecl(TypedefNameDecl *D, bool IsTypeAlias);
 
    ClassTemplatePartialSpecializationDecl *
 
    InstantiateClassTemplatePartialSpecialization(
 
                                              ClassTemplateDecl *ClassTemplate,
 
                           ClassTemplatePartialSpecializationDecl *PartialSpec);
 
    VarTemplatePartialSpecializationDecl *
 
    InstantiateVarTemplatePartialSpecialization(
 
        VarTemplateDecl *VarTemplate,
 
        VarTemplatePartialSpecializationDecl *PartialSpec);
 
    void InstantiateEnumDefinition(EnumDecl *Enum, EnumDecl *Pattern);
 
 
 
  private:
 
    template<typename T>
 
    Decl *instantiateUnresolvedUsingDecl(T *D,
 
                                         bool InstantiatingPackElement = false);
 
  };
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_SEMA_TEMPLATE_H