//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_SEMA_H
#define LLVM_CLANG_SEMA_SEMA_H
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Availability.h"
#include "clang/AST/ComparisonCategories.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/LocInfoType.h"
#include "clang/AST/MangleNumberingContext.h"
#include "clang/AST/NSAPI.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/BitmaskEnum.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/DarwinSDKInfo.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/OpenCLOptions.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TemplateKinds.h"
#include "clang/Basic/TypeTraits.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/CleanupInfo.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ExternalSemaSource.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/ObjCMethodList.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/SemaConcept.h"
#include "clang/Sema/TypoCorrection.h"
#include "clang/Sema/Weak.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include <deque>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <vector>
namespace llvm {
class APSInt;
template <typename ValueT, typename ValueInfoT> class DenseSet;
class SmallBitVector;
struct InlineAsmIdentifierInfo;
}
namespace clang {
class ADLResult;
class ASTConsumer;
class ASTContext;
class ASTMutationListener;
class ASTReader;
class ASTWriter;
class ArrayType;
class ParsedAttr;
class BindingDecl;
class BlockDecl;
class CapturedDecl;
class CXXBasePath;
class CXXBasePaths;
class CXXBindTemporaryExpr;
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
class CXXConstructorDecl;
class CXXConversionDecl;
class CXXDeleteExpr;
class CXXDestructorDecl;
class CXXFieldCollector;
class CXXMemberCallExpr;
class CXXMethodDecl;
class CXXScopeSpec;
class CXXTemporary;
class CXXTryStmt;
class CallExpr;
class ClassTemplateDecl;
class ClassTemplatePartialSpecializationDecl;
class ClassTemplateSpecializationDecl;
class VarTemplatePartialSpecializationDecl;
class CodeCompleteConsumer;
class CodeCompletionAllocator;
class CodeCompletionTUInfo;
class CodeCompletionResult;
class CoroutineBodyStmt;
class Decl;
class DeclAccessPair;
class DeclContext;
class DeclRefExpr;
class DeclaratorDecl;
class DeducedTemplateArgument;
class DependentDiagnostic;
class DesignatedInitExpr;
class Designation;
class EnableIfAttr;
class EnumConstantDecl;
class Expr;
class ExtVectorType;
class FormatAttr;
class FriendDecl;
class FunctionDecl;
class FunctionProtoType;
class FunctionTemplateDecl;
class ImplicitConversionSequence;
typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
class InitListExpr;
class InitializationKind;
class InitializationSequence;
class InitializedEntity;
class IntegerLiteral;
class LabelStmt;
class LambdaExpr;
class LangOptions;
class LocalInstantiationScope;
class LookupResult;
class MacroInfo;
typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
class ModuleLoader;
class MultiLevelTemplateArgumentList;
class NamedDecl;
class ObjCCategoryDecl;
class ObjCCategoryImplDecl;
class ObjCCompatibleAliasDecl;
class ObjCContainerDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
template <class T> class ObjCList;
class ObjCMessageExpr;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ObjCProtocolDecl;
class OMPThreadPrivateDecl;
class OMPRequiresDecl;
class OMPDeclareReductionDecl;
class OMPDeclareSimdDecl;
class OMPClause;
struct OMPVarListLocTy;
struct OverloadCandidate;
enum class OverloadCandidateParamOrder : char;
enum OverloadCandidateRewriteKind : unsigned;
class OverloadCandidateSet;
class OverloadExpr;
class ParenListExpr;
class ParmVarDecl;
class Preprocessor;
class PseudoDestructorTypeStorage;
class PseudoObjectExpr;
class QualType;
class StandardConversionSequence;
class Stmt;
class StringLiteral;
class SwitchStmt;
class TemplateArgument;
class TemplateArgumentList;
class TemplateArgumentLoc;
class TemplateDecl;
class TemplateInstantiationCallback;
class TemplateParameterList;
class TemplatePartialOrderingContext;
class TemplateTemplateParmDecl;
class Token;
class TypeAliasDecl;
class TypedefDecl;
class TypedefNameDecl;
class TypeLoc;
class TypoCorrectionConsumer;
class UnqualifiedId;
class UnresolvedLookupExpr;
class UnresolvedMemberExpr;
class UnresolvedSetImpl;
class UnresolvedSetIterator;
class UsingDecl;
class UsingShadowDecl;
class ValueDecl;
class VarDecl;
class VarTemplateSpecializationDecl;
class VisibilityAttr;
class VisibleDeclConsumer;
class IndirectFieldDecl;
struct DeductionFailureInfo;
class TemplateSpecCandidateSet;
namespace sema {
class AccessedEntity;
class BlockScopeInfo;
class Capture;
class CapturedRegionScopeInfo;
class CapturingScopeInfo;
class CompoundScopeInfo;
class DelayedDiagnostic;
class DelayedDiagnosticPool;
class FunctionScopeInfo;
class LambdaScopeInfo;
class PossiblyUnreachableDiag;
class RISCVIntrinsicManager;
class SemaPPCallbacks;
class TemplateDeductionInfo;
}
namespace threadSafety {
class BeforeSet;
void threadSafetyCleanup(BeforeSet* Cache);
}
// FIXME: No way to easily map from TemplateTypeParmTypes to
// TemplateTypeParmDecls, so we have this horrible PointerUnion.
typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType *, NamedDecl *>,
SourceLocation>
UnexpandedParameterPack;
/// Describes whether we've seen any nullability information for the given
/// file.
struct FileNullability {
/// The first pointer declarator (of any pointer kind) in the file that does
/// not have a corresponding nullability annotation.
SourceLocation PointerLoc;
/// The end location for the first pointer declarator in the file. Used for
/// placing fix-its.
SourceLocation PointerEndLoc;
/// Which kind of pointer declarator we saw.
uint8_t PointerKind;
/// Whether we saw any type nullability annotations in the given file.
bool SawTypeNullability = false;
};
/// A mapping from file IDs to a record of whether we've seen nullability
/// information in that file.
class FileNullabilityMap {
/// A mapping from file IDs to the nullability information for each file ID.
llvm::DenseMap<FileID, FileNullability> Map;
/// A single-element cache based on the file ID.
struct {
FileID File;
FileNullability Nullability;
} Cache;
public:
FileNullability &operator[](FileID file) {
// Check the single-element cache.
if (file == Cache.File)
return Cache.Nullability;
// It's not in the single-element cache; flush the cache if we have one.
if (!Cache.File.isInvalid()) {
Map[Cache.File] = Cache.Nullability;
}
// Pull this entry into the cache.
Cache.File = file;
Cache.Nullability = Map[file];
return Cache.Nullability;
}
};
/// Tracks expected type during expression parsing, for use in code completion.
/// The type is tied to a particular token, all functions that update or consume
/// the type take a start location of the token they are looking at as a
/// parameter. This avoids updating the type on hot paths in the parser.
class PreferredTypeBuilder {
public:
PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
void enterCondition(Sema &S, SourceLocation Tok);
void enterReturn(Sema &S, SourceLocation Tok);
void enterVariableInit(SourceLocation Tok, Decl *D);
/// Handles e.g. BaseType{ .D = Tok...
void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
const Designation &D);
/// Computing a type for the function argument may require running
/// overloading, so we postpone its computation until it is actually needed.
///
/// Clients should be very careful when using this function, as it stores a
/// function_ref, clients should make sure all calls to get() with the same
/// location happen while function_ref is alive.
///
/// The callback should also emit signature help as a side-effect, but only
/// if the completion point has been reached.
void enterFunctionArgument(SourceLocation Tok,
llvm::function_ref<QualType()> ComputeType);
void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
SourceLocation OpLoc);
void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
/// Handles all type casts, including C-style cast, C++ casts, etc.
void enterTypeCast(SourceLocation Tok, QualType CastType);
/// Get the expected type associated with this location, if any.
///
/// If the location is a function argument, determining the expected type
/// involves considering all function overloads and the arguments so far.
/// In this case, signature help for these function overloads will be reported
/// as a side-effect (only if the completion point has been reached).
QualType get(SourceLocation Tok) const {
if (!Enabled || Tok != ExpectedLoc)
return QualType();
if (!Type.isNull())
return Type;
if (ComputeType)
return ComputeType();
return QualType();
}
private:
bool Enabled;
/// Start position of a token for which we store expected type.
SourceLocation ExpectedLoc;
/// Expected type for a token starting at ExpectedLoc.
QualType Type;
/// A function to compute expected type at ExpectedLoc. It is only considered
/// if Type is null.
llvm::function_ref<QualType()> ComputeType;
};
/// Sema - This implements semantic analysis and AST building for C.
class Sema final {
Sema(const Sema &) = delete;
void operator=(const Sema &) = delete;
///Source of additional semantic information.
IntrusiveRefCntPtr<ExternalSemaSource> ExternalSource;
static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
/// Determine whether two declarations should be linked together, given that
/// the old declaration might not be visible and the new declaration might
/// not have external linkage.
bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
const NamedDecl *New) {
if (isVisible(Old))
return true;
// See comment in below overload for why it's safe to compute the linkage
// of the new declaration here.
if (New->isExternallyDeclarable()) {
assert(Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl");
return true;
}
return false;
}
bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
QualType ResultTy,
ArrayRef<QualType> Args);
public:
/// The maximum alignment, same as in llvm::Value. We duplicate them here
/// because that allows us not to duplicate the constants in clang code,
/// which we must to since we can't directly use the llvm constants.
/// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
///
/// This is the greatest alignment value supported by load, store, and alloca
/// instructions, and global values.
static const unsigned MaxAlignmentExponent = 32;
static const uint64_t MaximumAlignment = 1ull << MaxAlignmentExponent;
typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
typedef OpaquePtr<TemplateName> TemplateTy;
typedef OpaquePtr<QualType> TypeTy;
OpenCLOptions OpenCLFeatures;
FPOptions CurFPFeatures;
const LangOptions &LangOpts;
Preprocessor &PP;
ASTContext &Context;
ASTConsumer &Consumer;
DiagnosticsEngine &Diags;
SourceManager &SourceMgr;
/// Flag indicating whether or not to collect detailed statistics.
bool CollectStats;
/// Code-completion consumer.
CodeCompleteConsumer *CodeCompleter;
/// CurContext - This is the current declaration context of parsing.
DeclContext *CurContext;
/// Generally null except when we temporarily switch decl contexts,
/// like in \see ActOnObjCTemporaryExitContainerContext.
DeclContext *OriginalLexicalContext;
/// VAListTagName - The declaration name corresponding to __va_list_tag.
/// This is used as part of a hack to omit that class from ADL results.
DeclarationName VAListTagName;
bool MSStructPragmaOn; // True when \#pragma ms_struct on
/// Controls member pointer representation format under the MS ABI.
LangOptions::PragmaMSPointersToMembersKind
MSPointerToMemberRepresentationMethod;
/// Stack of active SEH __finally scopes. Can be empty.
SmallVector<Scope*, 2> CurrentSEHFinally;
/// Source location for newly created implicit MSInheritanceAttrs
SourceLocation ImplicitMSInheritanceAttrLoc;
/// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
/// `TransformTypos` in order to keep track of any TypoExprs that are created
/// recursively during typo correction and wipe them away if the correction
/// fails.
llvm::SmallVector<TypoExpr *, 2> TypoExprs;
/// pragma clang section kind
enum PragmaClangSectionKind {
PCSK_Invalid = 0,
PCSK_BSS = 1,
PCSK_Data = 2,
PCSK_Rodata = 3,
PCSK_Text = 4,
PCSK_Relro = 5
};
enum PragmaClangSectionAction {
PCSA_Set = 0,
PCSA_Clear = 1
};
struct PragmaClangSection {
std::string SectionName;
bool Valid = false;
SourceLocation PragmaLocation;
};
PragmaClangSection PragmaClangBSSSection;
PragmaClangSection PragmaClangDataSection;
PragmaClangSection PragmaClangRodataSection;
PragmaClangSection PragmaClangRelroSection;
PragmaClangSection PragmaClangTextSection;
enum PragmaMsStackAction {
PSK_Reset = 0x0, // #pragma ()
PSK_Set = 0x1, // #pragma (value)
PSK_Push = 0x2, // #pragma (push[, id])
PSK_Pop = 0x4, // #pragma (pop[, id])
PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
};
// #pragma pack and align.
class AlignPackInfo {
public:
// `Native` represents default align mode, which may vary based on the
// platform.
enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
// #pragma pack info constructor
AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
: PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
assert(Num == PackNumber && "The pack number has been truncated.");
}
// #pragma align info constructor
AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
: PackAttr(false), AlignMode(M),
PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
AlignPackInfo() : AlignPackInfo(Native, false) {}
// When a AlignPackInfo itself cannot be used, this returns an 32-bit
// integer encoding for it. This should only be passed to
// AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
static uint32_t getRawEncoding(const AlignPackInfo &Info) {
std::uint32_t Encoding{};
if (Info.IsXLStack())
Encoding |= IsXLMask;
Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
if (Info.IsPackAttr())
Encoding |= PackAttrMask;
Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
return Encoding;
}
static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
bool IsXL = static_cast<bool>(Encoding & IsXLMask);
AlignPackInfo::Mode M =
static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
int PackNumber = (Encoding & PackNumMask) >> 4;
if (Encoding & PackAttrMask)
return AlignPackInfo(M, PackNumber, IsXL);
return AlignPackInfo(M, IsXL);
}
bool IsPackAttr() const { return PackAttr; }
bool IsAlignAttr() const { return !PackAttr; }
Mode getAlignMode() const { return AlignMode; }
unsigned getPackNumber() const { return PackNumber; }
bool IsPackSet() const {
// #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
// attriute on a decl.
return PackNumber != UninitPackVal && PackNumber != 0;
}
bool IsXLStack() const { return XLStack; }
bool operator==(const AlignPackInfo &Info) const {
return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
Info.XLStack);
}
bool operator!=(const AlignPackInfo &Info) const {
return !(*this == Info);
}
private:
/// \brief True if this is a pragma pack attribute,
/// not a pragma align attribute.
bool PackAttr;
/// \brief The alignment mode that is in effect.
Mode AlignMode;
/// \brief The pack number of the stack.
unsigned char PackNumber;
/// \brief True if it is a XL #pragma align/pack stack.
bool XLStack;
/// \brief Uninitialized pack value.
static constexpr unsigned char UninitPackVal = -1;
// Masks to encode and decode an AlignPackInfo.
static constexpr uint32_t IsXLMask{0x0000'0001};
static constexpr uint32_t AlignModeMask{0x0000'0006};
static constexpr uint32_t PackAttrMask{0x00000'0008};
static constexpr uint32_t PackNumMask{0x0000'01F0};
};
template<typename ValueType>
struct PragmaStack {
struct Slot {
llvm::StringRef StackSlotLabel;
ValueType Value;
SourceLocation PragmaLocation;
SourceLocation PragmaPushLocation;
Slot(llvm::StringRef StackSlotLabel, ValueType Value,
SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
: StackSlotLabel(StackSlotLabel), Value(Value),
PragmaLocation(PragmaLocation),
PragmaPushLocation(PragmaPushLocation) {}
};
void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel, ValueType Value) {
if (Action == PSK_Reset) {
CurrentValue = DefaultValue;
CurrentPragmaLocation = PragmaLocation;
return;
}
if (Action & PSK_Push)
Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
PragmaLocation);
else if (Action & PSK_Pop) {
if (!StackSlotLabel.empty()) {
// If we've got a label, try to find it and jump there.
auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
return x.StackSlotLabel == StackSlotLabel;
});
// If we found the label so pop from there.
if (I != Stack.rend()) {
CurrentValue = I->Value;
CurrentPragmaLocation = I->PragmaLocation;
Stack.erase(std::prev(I.base()), Stack.end());
}
} else if (!Stack.empty()) {
// We do not have a label, just pop the last entry.
CurrentValue = Stack.back().Value;
CurrentPragmaLocation = Stack.back().PragmaLocation;
Stack.pop_back();
}
}
if (Action & PSK_Set) {
CurrentValue = Value;
CurrentPragmaLocation = PragmaLocation;
}
}
// MSVC seems to add artificial slots to #pragma stacks on entering a C++
// method body to restore the stacks on exit, so it works like this:
//
// struct S {
// #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
// void Method {}
// #pragma <name>(pop, InternalPragmaSlot)
// };
//
// It works even with #pragma vtordisp, although MSVC doesn't support
// #pragma vtordisp(push [, id], n)
// syntax.
//
// Push / pop a named sentinel slot.
void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
assert((Action == PSK_Push || Action == PSK_Pop) &&
"Can only push / pop #pragma stack sentinels!");
Act(CurrentPragmaLocation, Action, Label, CurrentValue);
}
// Constructors.
explicit PragmaStack(const ValueType &Default)
: DefaultValue(Default), CurrentValue(Default) {}
bool hasValue() const { return CurrentValue != DefaultValue; }
SmallVector<Slot, 2> Stack;
ValueType DefaultValue; // Value used for PSK_Reset action.
ValueType CurrentValue;
SourceLocation CurrentPragmaLocation;
};
// FIXME: We should serialize / deserialize these if they occur in a PCH (but
// we shouldn't do so if they're in a module).
/// Whether to insert vtordisps prior to virtual bases in the Microsoft
/// C++ ABI. Possible values are 0, 1, and 2, which mean:
///
/// 0: Suppress all vtordisps
/// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
/// structors
/// 2: Always insert vtordisps to support RTTI on partially constructed
/// objects
PragmaStack<MSVtorDispMode> VtorDispStack;
PragmaStack<AlignPackInfo> AlignPackStack;
// The current #pragma align/pack values and locations at each #include.
struct AlignPackIncludeState {
AlignPackInfo CurrentValue;
SourceLocation CurrentPragmaLocation;
bool HasNonDefaultValue, ShouldWarnOnInclude;
};
SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
// Segment #pragmas.
PragmaStack<StringLiteral *> DataSegStack;
PragmaStack<StringLiteral *> BSSSegStack;
PragmaStack<StringLiteral *> ConstSegStack;
PragmaStack<StringLiteral *> CodeSegStack;
// #pragma strict_gs_check.
PragmaStack<bool> StrictGuardStackCheckStack;
// This stack tracks the current state of Sema.CurFPFeatures.
PragmaStack<FPOptionsOverride> FpPragmaStack;
FPOptionsOverride CurFPFeatureOverrides() {
FPOptionsOverride result;
if (!FpPragmaStack.hasValue()) {
result = FPOptionsOverride();
} else {
result = FpPragmaStack.CurrentValue;
}
return result;
}
// RAII object to push / pop sentinel slots for all MS #pragma stacks.
// Actions should be performed only if we enter / exit a C++ method body.
class PragmaStackSentinelRAII {
public:
PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
~PragmaStackSentinelRAII();
private:
Sema &S;
StringRef SlotLabel;
bool ShouldAct;
};
/// A mapping that describes the nullability we've seen in each header file.
FileNullabilityMap NullabilityMap;
/// Last section used with #pragma init_seg.
StringLiteral *CurInitSeg;
SourceLocation CurInitSegLoc;
/// Sections used with #pragma alloc_text.
llvm::StringMap<std::tuple<StringRef, SourceLocation>> FunctionToSectionMap;
/// VisContext - Manages the stack for \#pragma GCC visibility.
void *VisContext; // Really a "PragmaVisStack*"
/// This an attribute introduced by \#pragma clang attribute.
struct PragmaAttributeEntry {
SourceLocation Loc;
ParsedAttr *Attribute;
SmallVector<attr::SubjectMatchRule, 4> MatchRules;
bool IsUsed;
};
/// A push'd group of PragmaAttributeEntries.
struct PragmaAttributeGroup {
/// The location of the push attribute.
SourceLocation Loc;
/// The namespace of this push group.
const IdentifierInfo *Namespace;
SmallVector<PragmaAttributeEntry, 2> Entries;
};
SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
/// The declaration that is currently receiving an attribute from the
/// #pragma attribute stack.
const Decl *PragmaAttributeCurrentTargetDecl;
/// This represents the last location of a "#pragma clang optimize off"
/// directive if such a directive has not been closed by an "on" yet. If
/// optimizations are currently "on", this is set to an invalid location.
SourceLocation OptimizeOffPragmaLocation;
/// The "on" or "off" argument passed by \#pragma optimize, that denotes
/// whether the optimizations in the list passed to the pragma should be
/// turned off or on. This boolean is true by default because command line
/// options are honored when `#pragma optimize("", on)`.
/// (i.e. `ModifyFnAttributeMSPragmaOptimze()` does nothing)
bool MSPragmaOptimizeIsOn = true;
/// Set of no-builtin functions listed by \#pragma function.
llvm::SmallSetVector<StringRef, 4> MSFunctionNoBuiltins;
/// Flag indicating if Sema is building a recovery call expression.
///
/// This flag is used to avoid building recovery call expressions
/// if Sema is already doing so, which would cause infinite recursions.
bool IsBuildingRecoveryCallExpr;
/// Used to control the generation of ExprWithCleanups.
CleanupInfo Cleanup;
/// ExprCleanupObjects - This is the stack of objects requiring
/// cleanup that are created by the current full expression.
SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
/// Store a set of either DeclRefExprs or MemberExprs that contain a reference
/// to a variable (constant) that may or may not be odr-used in this Expr, and
/// we won't know until all lvalue-to-rvalue and discarded value conversions
/// have been applied to all subexpressions of the enclosing full expression.
/// This is cleared at the end of each full expression.
using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
llvm::SmallPtrSet<Expr *, 4>>;
MaybeODRUseExprSet MaybeODRUseExprs;
std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
/// Stack containing information about each of the nested
/// function, block, and method scopes that are currently active.
SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
/// The index of the first FunctionScope that corresponds to the current
/// context.
unsigned FunctionScopesStart = 0;
ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
return llvm::ArrayRef(FunctionScopes.begin() + FunctionScopesStart,
FunctionScopes.end());
}
/// Stack containing information needed when in C++2a an 'auto' is encountered
/// in a function declaration parameter type specifier in order to invent a
/// corresponding template parameter in the enclosing abbreviated function
/// template. This information is also present in LambdaScopeInfo, stored in
/// the FunctionScopes stack.
SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
/// The index of the first InventedParameterInfo that refers to the current
/// context.
unsigned InventedParameterInfosStart = 0;
ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
return llvm::ArrayRef(InventedParameterInfos.begin() +
InventedParameterInfosStart,
InventedParameterInfos.end());
}
typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadExtVectorDecls, 2, 2>
ExtVectorDeclsType;
/// ExtVectorDecls - This is a list all the extended vector types. This allows
/// us to associate a raw vector type with one of the ext_vector type names.
/// This is only necessary for issuing pretty diagnostics.
ExtVectorDeclsType ExtVectorDecls;
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
std::unique_ptr<CXXFieldCollector> FieldCollector;
typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
/// Set containing all declared private fields that are not used.
NamedDeclSetType UnusedPrivateFields;
/// Set containing all typedefs that are likely unused.
llvm::SmallSetVector<const TypedefNameDecl *, 4>
UnusedLocalTypedefNameCandidates;
/// Delete-expressions to be analyzed at the end of translation unit
///
/// This list contains class members, and locations of delete-expressions
/// that could not be proven as to whether they mismatch with new-expression
/// used in initializer of the field.
typedef std::pair<SourceLocation, bool> DeleteExprLoc;
typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
/// PureVirtualClassDiagSet - a set of class declarations which we have
/// emitted a list of pure virtual functions. Used to prevent emitting the
/// same list more than once.
std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
/// ParsingInitForAutoVars - a set of declarations with auto types for which
/// we are currently parsing the initializer.
llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
/// Look for a locally scoped extern "C" declaration by the given name.
NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
typedef LazyVector<VarDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
TentativeDefinitionsType;
/// All the tentative definitions encountered in the TU.
TentativeDefinitionsType TentativeDefinitions;
/// All the external declarations encoutered and used in the TU.
SmallVector<VarDecl *, 4> ExternalDeclarations;
typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
UnusedFileScopedDeclsType;
/// The set of file scoped decls seen so far that have not been used
/// and must warn if not used. Only contains the first declaration.
UnusedFileScopedDeclsType UnusedFileScopedDecls;
typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
&ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
DelegatingCtorDeclsType;
/// All the delegating constructors seen so far in the file, used for
/// cycle detection at the end of the TU.
DelegatingCtorDeclsType DelegatingCtorDecls;
/// All the overriding functions seen during a class definition
/// that had their exception spec checks delayed, plus the overridden
/// function.
SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
DelayedOverridingExceptionSpecChecks;
/// All the function redeclarations seen during a class definition that had
/// their exception spec checks delayed, plus the prior declaration they
/// should be checked against. Except during error recovery, the new decl
/// should always be a friend declaration, as that's the only valid way to
/// redeclare a special member before its class is complete.
SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
DelayedEquivalentExceptionSpecChecks;
typedef llvm::MapVector<const FunctionDecl *,
std::unique_ptr<LateParsedTemplate>>
LateParsedTemplateMapT;
LateParsedTemplateMapT LateParsedTemplateMap;
/// Callback to the parser to parse templated functions when needed.
typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
typedef void LateTemplateParserCleanupCB(void *P);
LateTemplateParserCB *LateTemplateParser;
LateTemplateParserCleanupCB *LateTemplateParserCleanup;
void *OpaqueParser;
void SetLateTemplateParser(LateTemplateParserCB *LTP,
LateTemplateParserCleanupCB *LTPCleanup,
void *P) {
LateTemplateParser = LTP;
LateTemplateParserCleanup = LTPCleanup;
OpaqueParser = P;
}
class DelayedDiagnostics;
class DelayedDiagnosticsState {
sema::DelayedDiagnosticPool *SavedPool;
friend class Sema::DelayedDiagnostics;
};
typedef DelayedDiagnosticsState ParsingDeclState;
typedef DelayedDiagnosticsState ProcessingContextState;
/// A class which encapsulates the logic for delaying diagnostics
/// during parsing and other processing.
class DelayedDiagnostics {
/// The current pool of diagnostics into which delayed
/// diagnostics should go.
sema::DelayedDiagnosticPool *CurPool;
public:
DelayedDiagnostics() : CurPool(nullptr) {}
/// Adds a delayed diagnostic.
void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
/// Determines whether diagnostics should be delayed.
bool shouldDelayDiagnostics() { return CurPool != nullptr; }
/// Returns the current delayed-diagnostics pool.
sema::DelayedDiagnosticPool *getCurrentPool() const {
return CurPool;
}
/// Enter a new scope. Access and deprecation diagnostics will be
/// collected in this pool.
DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
DelayedDiagnosticsState state;
state.SavedPool = CurPool;
CurPool = &pool;
return state;
}
/// Leave a delayed-diagnostic state that was previously pushed.
/// Do not emit any of the diagnostics. This is performed as part
/// of the bookkeeping of popping a pool "properly".
void popWithoutEmitting(DelayedDiagnosticsState state) {
CurPool = state.SavedPool;
}
/// Enter a new scope where access and deprecation diagnostics are
/// not delayed.
DelayedDiagnosticsState pushUndelayed() {
DelayedDiagnosticsState state;
state.SavedPool = CurPool;
CurPool = nullptr;
return state;
}
/// Undo a previous pushUndelayed().
void popUndelayed(DelayedDiagnosticsState state) {
assert(CurPool == nullptr);
CurPool = state.SavedPool;
}
} DelayedDiagnostics;
/// A RAII object to temporarily push a declaration context.
class ContextRAII {
private:
Sema &S;
DeclContext *SavedContext;
ProcessingContextState SavedContextState;
QualType SavedCXXThisTypeOverride;
unsigned SavedFunctionScopesStart;
unsigned SavedInventedParameterInfosStart;
public:
ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
: S(S), SavedContext(S.CurContext),
SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
SavedFunctionScopesStart(S.FunctionScopesStart),
SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
{
assert(ContextToPush && "pushing null context");
S.CurContext = ContextToPush;
if (NewThisContext)
S.CXXThisTypeOverride = QualType();
// Any saved FunctionScopes do not refer to this context.
S.FunctionScopesStart = S.FunctionScopes.size();
S.InventedParameterInfosStart = S.InventedParameterInfos.size();
}
void pop() {
if (!SavedContext) return;
S.CurContext = SavedContext;
S.DelayedDiagnostics.popUndelayed(SavedContextState);
S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
S.FunctionScopesStart = SavedFunctionScopesStart;
S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
SavedContext = nullptr;
}
~ContextRAII() {
pop();
}
};
/// Whether the AST is currently being rebuilt to correct immediate
/// invocations. Immediate invocation candidates and references to consteval
/// functions aren't tracked when this is set.
bool RebuildingImmediateInvocation = false;
/// Used to change context to isConstantEvaluated without pushing a heavy
/// ExpressionEvaluationContextRecord object.
bool isConstantEvaluatedOverride;
bool isConstantEvaluated() {
return ExprEvalContexts.back().isConstantEvaluated() ||
isConstantEvaluatedOverride;
}
/// RAII object to handle the state changes required to synthesize
/// a function body.
class SynthesizedFunctionScope {
Sema &S;
Sema::ContextRAII SavedContext;
bool PushedCodeSynthesisContext = false;
public:
SynthesizedFunctionScope(Sema &S, DeclContext *DC)
: S(S), SavedContext(S, DC) {
S.PushFunctionScope();
S.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
if (auto *FD = dyn_cast<FunctionDecl>(DC))
FD->setWillHaveBody(true);
else
assert(isa<ObjCMethodDecl>(DC));
}
void addContextNote(SourceLocation UseLoc) {
assert(!PushedCodeSynthesisContext);
Sema::CodeSynthesisContext Ctx;
Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
Ctx.PointOfInstantiation = UseLoc;
Ctx.Entity = cast<Decl>(S.CurContext);
S.pushCodeSynthesisContext(Ctx);
PushedCodeSynthesisContext = true;
}
~SynthesizedFunctionScope() {
if (PushedCodeSynthesisContext)
S.popCodeSynthesisContext();
if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
FD->setWillHaveBody(false);
S.PopExpressionEvaluationContext();
S.PopFunctionScopeInfo();
}
};
/// WeakUndeclaredIdentifiers - Identifiers contained in \#pragma weak before
/// declared. Rare. May alias another identifier, declared or undeclared.
///
/// For aliases, the target identifier is used as a key for eventual
/// processing when the target is declared. For the single-identifier form,
/// the sole identifier is used as the key. Each entry is a `SetVector`
/// (ordered by parse order) of aliases (identified by the alias name) in case
/// of multiple aliases to the same undeclared identifier.
llvm::MapVector<
IdentifierInfo *,
llvm::SetVector<
WeakInfo, llvm::SmallVector<WeakInfo, 1u>,
llvm::SmallDenseSet<WeakInfo, 2u, WeakInfo::DenseMapInfoByAliasOnly>>>
WeakUndeclaredIdentifiers;
/// ExtnameUndeclaredIdentifiers - Identifiers contained in
/// \#pragma redefine_extname before declared. Used in Solaris system headers
/// to define functions that occur in multiple standards to call the version
/// in the currently selected standard.
llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
/// Load weak undeclared identifiers from the external source.
void LoadExternalWeakUndeclaredIdentifiers();
/// WeakTopLevelDecl - Translation-unit scoped declarations generated by
/// \#pragma weak during processing of other Decls.
/// I couldn't figure out a clean way to generate these in-line, so
/// we store them here and handle separately -- which is a hack.
/// It would be best to refactor this.
SmallVector<Decl*,2> WeakTopLevelDecl;
IdentifierResolver IdResolver;
/// Translation Unit Scope - useful to Objective-C actions that need
/// to lookup file scope declarations in the "ordinary" C decl namespace.
/// For example, user-defined classes, built-in "id" type, etc.
Scope *TUScope;
/// The C++ "std" namespace, where the standard library resides.
LazyDeclPtr StdNamespace;
/// The C++ "std::bad_alloc" class, which is defined by the C++
/// standard library.
LazyDeclPtr StdBadAlloc;
/// The C++ "std::align_val_t" enum class, which is defined by the C++
/// standard library.
LazyDeclPtr StdAlignValT;
/// The C++ "std::experimental" namespace, where the experimental parts
/// of the standard library resides.
NamespaceDecl *StdExperimentalNamespaceCache;
/// The C++ "std::initializer_list" template, which is defined in
/// \<initializer_list>.
ClassTemplateDecl *StdInitializerList;
/// The C++ "std::coroutine_traits" template, which is defined in
/// \<coroutine_traits>
ClassTemplateDecl *StdCoroutineTraitsCache;
/// The namespace where coroutine components are defined. In standard,
/// they are defined in std namespace. And in the previous implementation,
/// they are defined in std::experimental namespace.
NamespaceDecl *CoroTraitsNamespaceCache;
/// The C++ "type_info" declaration, which is defined in \<typeinfo>.
RecordDecl *CXXTypeInfoDecl;
/// The MSVC "_GUID" struct, which is defined in MSVC header files.
RecordDecl *MSVCGuidDecl;
/// The C++ "std::source_location::__impl" struct, defined in
/// \<source_location>.
RecordDecl *StdSourceLocationImplDecl;
/// Caches identifiers/selectors for NSFoundation APIs.
std::unique_ptr<NSAPI> NSAPIObj;
/// The declaration of the Objective-C NSNumber class.
ObjCInterfaceDecl *NSNumberDecl;
/// The declaration of the Objective-C NSValue class.
ObjCInterfaceDecl *NSValueDecl;
/// Pointer to NSNumber type (NSNumber *).
QualType NSNumberPointer;
/// Pointer to NSValue type (NSValue *).
QualType NSValuePointer;
/// The Objective-C NSNumber methods used to create NSNumber literals.
ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
/// The declaration of the Objective-C NSString class.
ObjCInterfaceDecl *NSStringDecl;
/// Pointer to NSString type (NSString *).
QualType NSStringPointer;
/// The declaration of the stringWithUTF8String: method.
ObjCMethodDecl *StringWithUTF8StringMethod;
/// The declaration of the valueWithBytes:objCType: method.
ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
/// The declaration of the Objective-C NSArray class.
ObjCInterfaceDecl *NSArrayDecl;
/// The declaration of the arrayWithObjects:count: method.
ObjCMethodDecl *ArrayWithObjectsMethod;
/// The declaration of the Objective-C NSDictionary class.
ObjCInterfaceDecl *NSDictionaryDecl;
/// The declaration of the dictionaryWithObjects:forKeys:count: method.
ObjCMethodDecl *DictionaryWithObjectsMethod;
/// id<NSCopying> type.
QualType QIDNSCopying;
/// will hold 'respondsToSelector:'
Selector RespondsToSelectorSel;
/// A flag to remember whether the implicit forms of operator new and delete
/// have been declared.
bool GlobalNewDeleteDeclared;
/// Describes how the expressions currently being parsed are
/// evaluated at run-time, if at all.
enum class ExpressionEvaluationContext {
/// The current expression and its subexpressions occur within an
/// unevaluated operand (C++11 [expr]p7), such as the subexpression of
/// \c sizeof, where the type of the expression may be significant but
/// no code will be generated to evaluate the value of the expression at
/// run time.
Unevaluated,
/// The current expression occurs within a braced-init-list within
/// an unevaluated operand. This is mostly like a regular unevaluated
/// context, except that we still instantiate constexpr functions that are
/// referenced here so that we can perform narrowing checks correctly.
UnevaluatedList,
/// The current expression occurs within a discarded statement.
/// This behaves largely similarly to an unevaluated operand in preventing
/// definitions from being required, but not in other ways.
DiscardedStatement,
/// The current expression occurs within an unevaluated
/// operand that unconditionally permits abstract references to
/// fields, such as a SIZE operator in MS-style inline assembly.
UnevaluatedAbstract,
/// The current context is "potentially evaluated" in C++11 terms,
/// but the expression is evaluated at compile-time (like the values of
/// cases in a switch statement).
ConstantEvaluated,
/// In addition of being constant evaluated, the current expression
/// occurs in an immediate function context - either a consteval function
/// or a consteval if function.
ImmediateFunctionContext,
/// The current expression is potentially evaluated at run time,
/// which means that code may be generated to evaluate the value of the
/// expression at run time.
PotentiallyEvaluated,
/// The current expression is potentially evaluated, but any
/// declarations referenced inside that expression are only used if
/// in fact the current expression is used.
///
/// This value is used when parsing default function arguments, for which
/// we would like to provide diagnostics (e.g., passing non-POD arguments
/// through varargs) but do not want to mark declarations as "referenced"
/// until the default argument is used.
PotentiallyEvaluatedIfUsed
};
using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
/// Data structure used to record current or nested
/// expression evaluation contexts.
struct ExpressionEvaluationContextRecord {
/// The expression evaluation context.
ExpressionEvaluationContext Context;
/// Whether the enclosing context needed a cleanup.
CleanupInfo ParentCleanup;
/// The number of active cleanup objects when we entered
/// this expression evaluation context.
unsigned NumCleanupObjects;
/// The number of typos encountered during this expression evaluation
/// context (i.e. the number of TypoExprs created).
unsigned NumTypos;
MaybeODRUseExprSet SavedMaybeODRUseExprs;
/// The lambdas that are present within this context, if it
/// is indeed an unevaluated context.
SmallVector<LambdaExpr *, 2> Lambdas;
/// The declaration that provides context for lambda expressions
/// and block literals if the normal declaration context does not
/// suffice, e.g., in a default function argument.
Decl *ManglingContextDecl;
/// If we are processing a decltype type, a set of call expressions
/// for which we have deferred checking the completeness of the return type.
SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
/// If we are processing a decltype type, a set of temporary binding
/// expressions for which we have deferred checking the destructor.
SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
/// Expressions appearing as the LHS of a volatile assignment in this
/// context. We produce a warning for these when popping the context if
/// they are not discarded-value expressions nor unevaluated operands.
SmallVector<Expr*, 2> VolatileAssignmentLHSs;
/// Set of candidates for starting an immediate invocation.
llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
/// Set of DeclRefExprs referencing a consteval function when used in a
/// context not already known to be immediately invoked.
llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
/// \brief Describes whether we are in an expression constext which we have
/// to handle differently.
enum ExpressionKind {
EK_Decltype, EK_TemplateArgument, EK_Other
} ExprContext;
// A context can be nested in both a discarded statement context and
// an immediate function context, so they need to be tracked independently.
bool InDiscardedStatement;
bool InImmediateFunctionContext;
bool IsCurrentlyCheckingDefaultArgumentOrInitializer = false;
// When evaluating immediate functions in the initializer of a default
// argument or default member initializer, this is the declaration whose
// default initializer is being evaluated and the location of the call
// or constructor definition.
struct InitializationContext {
InitializationContext(SourceLocation Loc, ValueDecl *Decl,
DeclContext *Context)
: Loc(Loc), Decl(Decl), Context(Context) {
assert(Decl && Context && "invalid initialization context");
}
SourceLocation Loc;
ValueDecl *Decl = nullptr;
DeclContext *Context = nullptr;
};
std::optional<InitializationContext> DelayedDefaultInitializationContext;
ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
unsigned NumCleanupObjects,
CleanupInfo ParentCleanup,
Decl *ManglingContextDecl,
ExpressionKind ExprContext)
: Context(Context), ParentCleanup(ParentCleanup),
NumCleanupObjects(NumCleanupObjects), NumTypos(0),
ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext),
InDiscardedStatement(false), InImmediateFunctionContext(false) {}
bool isUnevaluated() const {
return Context == ExpressionEvaluationContext::Unevaluated ||
Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
Context == ExpressionEvaluationContext::UnevaluatedList;
}
bool isConstantEvaluated() const {
return Context == ExpressionEvaluationContext::ConstantEvaluated ||
Context == ExpressionEvaluationContext::ImmediateFunctionContext;
}
bool isImmediateFunctionContext() const {
return Context == ExpressionEvaluationContext::ImmediateFunctionContext ||
(Context == ExpressionEvaluationContext::DiscardedStatement &&
InImmediateFunctionContext) ||
// C++2b [expr.const]p14:
// An expression or conversion is in an immediate function
// context if it is potentially evaluated and either:
// * its innermost enclosing non-block scope is a function
// parameter scope of an immediate function, or
// * its enclosing statement is enclosed by the compound-
// statement of a consteval if statement.
(Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
InImmediateFunctionContext);
}
bool isDiscardedStatementContext() const {
return Context == ExpressionEvaluationContext::DiscardedStatement ||
(Context ==
ExpressionEvaluationContext::ImmediateFunctionContext &&
InDiscardedStatement);
}
};
/// A stack of expression evaluation contexts.
SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
// Set of failed immediate invocations to avoid double diagnosing.
llvm::SmallPtrSet<ConstantExpr *, 4> FailedImmediateInvocations;
/// Emit a warning for all pending noderef expressions that we recorded.
void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
/// Compute the mangling number context for a lambda expression or
/// block literal. Also return the extra mangling decl if any.
///
/// \param DC - The DeclContext containing the lambda expression or
/// block literal.
std::tuple<MangleNumberingContext *, Decl *>
getCurrentMangleNumberContext(const DeclContext *DC);
/// SpecialMemberOverloadResult - The overloading result for a special member
/// function.
///
/// This is basically a wrapper around PointerIntPair. The lowest bits of the
/// integer are used to determine whether overload resolution succeeded.
class SpecialMemberOverloadResult {
public:
enum Kind {
NoMemberOrDeleted,
Ambiguous,
Success
};
private:
llvm::PointerIntPair<CXXMethodDecl *, 2> Pair;
public:
SpecialMemberOverloadResult() {}
SpecialMemberOverloadResult(CXXMethodDecl *MD)
: Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
void setKind(Kind K) { Pair.setInt(K); }
};
class SpecialMemberOverloadResultEntry
: public llvm::FastFoldingSetNode,
public SpecialMemberOverloadResult {
public:
SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
: FastFoldingSetNode(ID)
{}
};
/// A cache of special member function overload resolution results
/// for C++ records.
llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
/// A cache of the flags available in enumerations with the flag_bits
/// attribute.
mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
/// The kind of translation unit we are processing.
///
/// When we're processing a complete translation unit, Sema will perform
/// end-of-translation-unit semantic tasks (such as creating
/// initializers for tentative definitions in C) once parsing has
/// completed. Modules and precompiled headers perform different kinds of
/// checks.
const TranslationUnitKind TUKind;
llvm::BumpPtrAllocator BumpAlloc;
/// The number of SFINAE diagnostics that have been trapped.
unsigned NumSFINAEErrors;
typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
UnparsedDefaultArgInstantiationsMap;
/// A mapping from parameters with unparsed default arguments to the
/// set of instantiations of each parameter.
///
/// This mapping is a temporary data structure used when parsing
/// nested class templates or nested classes of class templates,
/// where we might end up instantiating an inner class before the
/// default arguments of its methods have been parsed.
UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
// Contains the locations of the beginning of unparsed default
// argument locations.
llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
/// UndefinedInternals - all the used, undefined objects which require a
/// definition in this translation unit.
llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
/// Determine if VD, which must be a variable or function, is an external
/// symbol that nonetheless can't be referenced from outside this translation
/// unit because its type has no linkage and it's not extern "C".
bool isExternalWithNoLinkageType(ValueDecl *VD);
/// Obtain a sorted list of functions that are undefined but ODR-used.
void getUndefinedButUsed(
SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
/// Retrieves list of suspicious delete-expressions that will be checked at
/// the end of translation unit.
const llvm::MapVector<FieldDecl *, DeleteLocs> &
getMismatchingDeleteExpressions() const;
class GlobalMethodPool {
public:
using Lists = std::pair<ObjCMethodList, ObjCMethodList>;
using iterator = llvm::DenseMap<Selector, Lists>::iterator;
iterator begin() { return Methods.begin(); }
iterator end() { return Methods.end(); }
iterator find(Selector Sel) { return Methods.find(Sel); }
std::pair<iterator, bool> insert(std::pair<Selector, Lists> &&Val) {
return Methods.insert(Val);
}
int count(Selector Sel) const { return Methods.count(Sel); }
bool empty() const { return Methods.empty(); }
private:
llvm::DenseMap<Selector, Lists> Methods;
};
/// Method Pool - allows efficient lookup when typechecking messages to "id".
/// We need to maintain a list, since selectors can have differing signatures
/// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
/// of selectors are "overloaded").
/// At the head of the list it is recorded whether there were 0, 1, or >= 2
/// methods inside categories with a particular selector.
GlobalMethodPool MethodPool;
/// Method selectors used in a \@selector expression. Used for implementation
/// of -Wselector.
llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
/// List of SourceLocations where 'self' is implicitly retained inside a
/// block.
llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
ImplicitlyRetainedSelfLocs;
/// Kinds of C++ special members.
enum CXXSpecialMember {
CXXDefaultConstructor,
CXXCopyConstructor,
CXXMoveConstructor,
CXXCopyAssignment,
CXXMoveAssignment,
CXXDestructor,
CXXInvalid
};
typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
SpecialMemberDecl;
/// The C++ special members which we are currently in the process of
/// declaring. If this process recursively triggers the declaration of the
/// same special member, we should act as if it is not yet declared.
llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
/// Kinds of defaulted comparison operator functions.
enum class DefaultedComparisonKind : unsigned char {
/// This is not a defaultable comparison operator.
None,
/// This is an operator== that should be implemented as a series of
/// subobject comparisons.
Equal,
/// This is an operator<=> that should be implemented as a series of
/// subobject comparisons.
ThreeWay,
/// This is an operator!= that should be implemented as a rewrite in terms
/// of a == comparison.
NotEqual,
/// This is an <, <=, >, or >= that should be implemented as a rewrite in
/// terms of a <=> comparison.
Relational,
};
/// The function definitions which were renamed as part of typo-correction
/// to match their respective declarations. We want to keep track of them
/// to ensure that we don't emit a "redefinition" error if we encounter a
/// correctly named definition after the renamed definition.
llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
/// Stack of types that correspond to the parameter entities that are
/// currently being copy-initialized. Can be empty.
llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
void ReadMethodPool(Selector Sel);
void updateOutOfDateSelector(Selector Sel);
/// Private Helper predicate to check for 'self'.
bool isSelfExpr(Expr *RExpr);
bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
/// Cause the active diagnostic on the DiagosticsEngine to be
/// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
/// should not be used elsewhere.
void EmitCurrentDiagnostic(unsigned DiagID);
/// Records and restores the CurFPFeatures state on entry/exit of compound
/// statements.
class FPFeaturesStateRAII {
public:
FPFeaturesStateRAII(Sema &S);
~FPFeaturesStateRAII();
FPOptionsOverride getOverrides() { return OldOverrides; }
private:
Sema& S;
FPOptions OldFPFeaturesState;
FPOptionsOverride OldOverrides;
LangOptions::FPEvalMethodKind OldEvalMethod;
SourceLocation OldFPPragmaLocation;
};
void addImplicitTypedef(StringRef Name, QualType T);
bool WarnedStackExhausted = false;
/// Increment when we find a reference; decrement when we find an ignored
/// assignment. Ultimately the value is 0 if every reference is an ignored
/// assignment.
llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
/// Indicate RISC-V vector builtin functions enabled or not.
bool DeclareRISCVVBuiltins = false;
private:
std::unique_ptr<sema::RISCVIntrinsicManager> RVIntrinsicManager;
std::optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
bool WarnedDarwinSDKInfoMissing = false;
public:
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
TranslationUnitKind TUKind = TU_Complete,
CodeCompleteConsumer *CompletionConsumer = nullptr);
~Sema();
/// Perform initialization that occurs after the parser has been
/// initialized but before it parses anything.
void Initialize();
/// This virtual key function only exists to limit the emission of debug info
/// describing the Sema class. GCC and Clang only emit debug info for a class
/// with a vtable when the vtable is emitted. Sema is final and not
/// polymorphic, but the debug info size savings are so significant that it is
/// worth adding a vtable just to take advantage of this optimization.
virtual void anchor();
const LangOptions &getLangOpts() const { return LangOpts; }
OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
FPOptions &getCurFPFeatures() { return CurFPFeatures; }
DiagnosticsEngine &getDiagnostics() const { return Diags; }
SourceManager &getSourceManager() const { return SourceMgr; }
Preprocessor &getPreprocessor() const { return PP; }
ASTContext &getASTContext() const { return Context; }
ASTConsumer &getASTConsumer() const { return Consumer; }
ASTMutationListener *getASTMutationListener() const;
ExternalSemaSource *getExternalSource() const { return ExternalSource.get(); }
DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
StringRef Platform);
DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking();
///Registers an external source. If an external source already exists,
/// creates a multiplex external source and appends to it.
///
///\param[in] E - A non-null external sema source.
///
void addExternalSource(ExternalSemaSource *E);
void PrintStats() const;
/// Warn that the stack is nearly exhausted.
void warnStackExhausted(SourceLocation Loc);
/// Run some code with "sufficient" stack space. (Currently, at least 256K is
/// guaranteed). Produces a warning if we're low on stack space and allocates
/// more in that case. Use this in code that may recurse deeply (for example,
/// in template instantiation) to avoid stack overflow.
void runWithSufficientStackSpace(SourceLocation Loc,
llvm::function_ref<void()> Fn);
/// Helper class that creates diagnostics with optional
/// template instantiation stacks.
///
/// This class provides a wrapper around the basic DiagnosticBuilder
/// class that emits diagnostics. ImmediateDiagBuilder is
/// responsible for emitting the diagnostic (as DiagnosticBuilder
/// does) and, if the diagnostic comes from inside a template
/// instantiation, printing the template instantiation stack as
/// well.
class ImmediateDiagBuilder : public DiagnosticBuilder {
Sema &SemaRef;
unsigned DiagID;
public:
ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
: DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
: DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
// This is a cunning lie. DiagnosticBuilder actually performs move
// construction in its copy constructor (but due to varied uses, it's not
// possible to conveniently express this as actual move construction). So
// the default copy ctor here is fine, because the base class disables the
// source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
// in that case anwyay.
ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
~ImmediateDiagBuilder() {
// If we aren't active, there is nothing to do.
if (!isActive()) return;
// Otherwise, we need to emit the diagnostic. First clear the diagnostic
// builder itself so it won't emit the diagnostic in its own destructor.
//
// This seems wasteful, in that as written the DiagnosticBuilder dtor will
// do its own needless checks to see if the diagnostic needs to be
// emitted. However, because we take care to ensure that the builder
// objects never escape, a sufficiently smart compiler will be able to
// eliminate that code.
Clear();
// Dispatch to Sema to emit the diagnostic.
SemaRef.EmitCurrentDiagnostic(DiagID);
}
/// Teach operator<< to produce an object of the correct type.
template <typename T>
friend const ImmediateDiagBuilder &
operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
const DiagnosticBuilder &BaseDiag = Diag;
BaseDiag << Value;
return Diag;
}
// It is necessary to limit this to rvalue reference to avoid calling this
// function with a bitfield lvalue argument since non-const reference to
// bitfield is not allowed.
template <typename T,
typename = std::enable_if_t<!std::is_lvalue_reference<T>::value>>
const ImmediateDiagBuilder &operator<<(T &&V) const {
const DiagnosticBuilder &BaseDiag = *this;
BaseDiag << std::move(V);
return *this;
}
};
/// A generic diagnostic builder for errors which may or may not be deferred.
///
/// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
/// which are not allowed to appear inside __device__ functions and are
/// allowed to appear in __host__ __device__ functions only if the host+device
/// function is never codegen'ed.
///
/// To handle this, we use the notion of "deferred diagnostics", where we
/// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
///
/// This class lets you emit either a regular diagnostic, a deferred
/// diagnostic, or no diagnostic at all, according to an argument you pass to
/// its constructor, thus simplifying the process of creating these "maybe
/// deferred" diagnostics.
class SemaDiagnosticBuilder {
public:
enum Kind {
/// Emit no diagnostics.
K_Nop,
/// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
K_Immediate,
/// Emit the diagnostic immediately, and, if it's a warning or error, also
/// emit a call stack showing how this function can be reached by an a
/// priori known-emitted function.
K_ImmediateWithCallStack,
/// Create a deferred diagnostic, which is emitted only if the function
/// it's attached to is codegen'ed. Also emit a call stack as with
/// K_ImmediateWithCallStack.
K_Deferred
};
SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
FunctionDecl *Fn, Sema &S);
SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
~SemaDiagnosticBuilder();
bool isImmediate() const { return ImmediateDiag.has_value(); }
/// Convertible to bool: True if we immediately emitted an error, false if
/// we didn't emit an error or we created a deferred error.
///
/// Example usage:
///
/// if (SemaDiagnosticBuilder(...) << foo << bar)
/// return ExprError();
///
/// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
/// want to use these instead of creating a SemaDiagnosticBuilder yourself.
operator bool() const { return isImmediate(); }
template <typename T>
friend const SemaDiagnosticBuilder &
operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
if (Diag.ImmediateDiag)
*Diag.ImmediateDiag << Value;
else if (Diag.PartialDiagId)
Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
<< Value;
return Diag;
}
// It is necessary to limit this to rvalue reference to avoid calling this
// function with a bitfield lvalue argument since non-const reference to
// bitfield is not allowed.
template <typename T,
typename = std::enable_if_t<!std::is_lvalue_reference<T>::value>>
const SemaDiagnosticBuilder &operator<<(T &&V) const {
if (ImmediateDiag)
*ImmediateDiag << std::move(V);
else if (PartialDiagId)
S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
return *this;
}
friend const SemaDiagnosticBuilder &
operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
if (Diag.ImmediateDiag)
PD.Emit(*Diag.ImmediateDiag);
else if (Diag.PartialDiagId)
Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
return Diag;
}
void AddFixItHint(const FixItHint &Hint) const {
if (ImmediateDiag)
ImmediateDiag->AddFixItHint(Hint);
else if (PartialDiagId)
S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
}
friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
return ExprError();
}
friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
return StmtError();
}
operator ExprResult() const { return ExprError(); }
operator StmtResult() const { return StmtError(); }
operator TypeResult() const { return TypeError(); }
operator DeclResult() const { return DeclResult(true); }
operator MemInitResult() const { return MemInitResult(true); }
private:
Sema &S;
SourceLocation Loc;
unsigned DiagID;
FunctionDecl *Fn;
bool ShowCallStack;
// Invariant: At most one of these Optionals has a value.
// FIXME: Switch these to a Variant once that exists.
std::optional<ImmediateDiagBuilder> ImmediateDiag;
std::optional<unsigned> PartialDiagId;
};
/// Is the last error level diagnostic immediate. This is used to determined
/// whether the next info diagnostic should be immediate.
bool IsLastErrorImmediate = true;
/// Emit a diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
bool DeferHint = false);
/// Emit a partial diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
bool DeferHint = false);
/// Build a partial diagnostic.
PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
/// Whether deferrable diagnostics should be deferred.
bool DeferDiags = false;
/// RAII class to control scope of DeferDiags.
class DeferDiagsRAII {
Sema &S;
bool SavedDeferDiags = false;
public:
DeferDiagsRAII(Sema &S, bool DeferDiags)
: S(S), SavedDeferDiags(S.DeferDiags) {
S.DeferDiags = DeferDiags;
}
~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
};
/// Whether uncompilable error has occurred. This includes error happens
/// in deferred diagnostics.
bool hasUncompilableErrorOccurred() const;
bool findMacroSpelling(SourceLocation &loc, StringRef name);
/// Get a string to suggest for zero-initialization of a type.
std::string
getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
/// Calls \c Lexer::getLocForEndOfToken()
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
/// Retrieve the module loader associated with the preprocessor.
ModuleLoader &getModuleLoader() const;
/// Invent a new identifier for parameters of abbreviated templates.
IdentifierInfo *
InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
unsigned Index);
void emitAndClearUnusedLocalTypedefWarnings();
private:
/// Function or variable declarations to be checked for whether the deferred
/// diagnostics should be emitted.
llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
public:
// Emit all deferred diagnostics.
void emitDeferredDiags();
enum TUFragmentKind {
/// The global module fragment, between 'module;' and a module-declaration.
Global,
/// A normal translation unit fragment. For a non-module unit, this is the
/// entire translation unit. Otherwise, it runs from the module-declaration
/// to the private-module-fragment (if any) or the end of the TU (if not).
Normal,
/// The private module fragment, between 'module :private;' and the end of
/// the translation unit.
Private
};
void ActOnStartOfTranslationUnit();
void ActOnEndOfTranslationUnit();
void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
void CheckDelegatingCtorCycles();
Scope *getScopeForContext(DeclContext *Ctx);
void PushFunctionScope();
void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
sema::LambdaScopeInfo *PushLambdaScope();
/// This is used to inform Sema what the current TemplateParameterDepth
/// is during Parsing. Currently it is used to pass on the depth
/// when parsing generic lambda 'auto' parameters.
void RecordParsingTemplateParameterDepth(unsigned Depth);
void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
RecordDecl *RD, CapturedRegionKind K,
unsigned OpenMPCaptureLevel = 0);
/// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
/// time after they've been popped.
class PoppedFunctionScopeDeleter {
Sema *Self;
public:
explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
void operator()(sema::FunctionScopeInfo *Scope) const;
};
using PoppedFunctionScopePtr =
std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
PoppedFunctionScopePtr
PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
const Decl *D = nullptr,
QualType BlockType = QualType());
sema::FunctionScopeInfo *getCurFunction() const {
return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
}
sema::FunctionScopeInfo *getEnclosingFunction() const;
void setFunctionHasBranchIntoScope();
void setFunctionHasBranchProtectedScope();
void setFunctionHasIndirectGoto();
void setFunctionHasMustTail();
void PushCompoundScope(bool IsStmtExpr);
void PopCompoundScope();
sema::CompoundScopeInfo &getCurCompoundScope() const;
bool hasAnyUnrecoverableErrorsInThisFunction() const;
/// Retrieve the current block, if any.
sema::BlockScopeInfo *getCurBlock();
/// Get the innermost lambda enclosing the current location, if any. This
/// looks through intervening non-lambda scopes such as local functions and
/// blocks.
sema::LambdaScopeInfo *getEnclosingLambda() const;
/// Retrieve the current lambda scope info, if any.
/// \param IgnoreNonLambdaCapturingScope true if should find the top-most
/// lambda scope info ignoring all inner capturing scopes that are not
/// lambda scopes.
sema::LambdaScopeInfo *
getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
/// Retrieve the current generic lambda info, if any.
sema::LambdaScopeInfo *getCurGenericLambda();
/// Retrieve the current captured region, if any.
sema::CapturedRegionScopeInfo *getCurCapturedRegion();
/// Retrieve the current function, if any, that should be analyzed for
/// potential availability violations.
sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
/// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
/// Called before parsing a function declarator belonging to a function
/// declaration.
void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
unsigned TemplateParameterDepth);
/// Called after parsing a function declarator belonging to a function
/// declaration.
void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
void ActOnComment(SourceRange Comment);
//===--------------------------------------------------------------------===//
// Type Analysis / Processing: SemaType.cpp.
//
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
const DeclSpec *DS = nullptr);
QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
const DeclSpec *DS = nullptr);
QualType BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity);
QualType BuildReferenceType(QualType T, bool LValueRef,
SourceLocation Loc, DeclarationName Entity);
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity);
QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
QualType BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc);
QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
SourceLocation AttrLoc);
QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
SourceLocation AttrLoc);
/// Same as above, but constructs the AddressSpace index if not provided.
QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
SourceLocation AttrLoc);
bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
/// Build a function type.
///
/// This routine checks the function type according to C++ rules and
/// under the assumption that the result type and parameter types have
/// just been instantiated from a template. It therefore duplicates
/// some of the behavior of GetTypeForDeclarator, but in a much
/// simpler form that is only suitable for this narrow use case.
///
/// \param T The return type of the function.
///
/// \param ParamTypes The parameter types of the function. This array
/// will be modified to account for adjustments to the types of the
/// function parameters.
///
/// \param Loc The location of the entity whose type involves this
/// function type or, if there is no such entity, the location of the
/// type that will have function type.
///
/// \param Entity The name of the entity that involves the function
/// type, if known.
///
/// \param EPI Extra information about the function type. Usually this will
/// be taken from an existing function with the same prototype.
///
/// \returns A suitable function type, if there are no errors. The
/// unqualified type will always be a FunctionProtoType.
/// Otherwise, returns a NULL type.
QualType BuildFunctionType(QualType T,
MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc, DeclarationName Entity,
const FunctionProtoType::ExtProtoInfo &EPI);
QualType BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity);
QualType BuildBlockPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity);
QualType BuildParenType(QualType T);
QualType BuildAtomicType(QualType T, SourceLocation Loc);
QualType BuildReadPipeType(QualType T,
SourceLocation Loc);
QualType BuildWritePipeType(QualType T,
SourceLocation Loc);
QualType BuildBitIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
/// Package the given type and TSI into a ParsedType.
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
DeclarationNameInfo GetNameForDeclarator(Declarator &D);
DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
static QualType GetTypeFromParser(ParsedType Ty,
TypeSourceInfo **TInfo = nullptr);
CanThrowResult canThrow(const Stmt *E);
/// Determine whether the callee of a particular function call can throw.
/// E, D and Loc are all optional.
static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
SourceLocation Loc = SourceLocation());
const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
const FunctionProtoType *FPT);
void UpdateExceptionSpec(FunctionDecl *FD,
const FunctionProtoType::ExceptionSpecInfo &ESI);
bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
bool CheckDistantExceptionSpec(QualType T);
bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
bool CheckEquivalentExceptionSpec(
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc);
bool CheckEquivalentExceptionSpec(
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc);
bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
const PartialDiagnostic &NestedDiagID,
const PartialDiagnostic &NoteID,
const PartialDiagnostic &NoThrowDiagID,
const FunctionProtoType *Superset,
SourceLocation SuperLoc,
const FunctionProtoType *Subset,
SourceLocation SubLoc);
bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
const PartialDiagnostic &NoteID,
const FunctionProtoType *Target,
SourceLocation TargetLoc,
const FunctionProtoType *Source,
SourceLocation SourceLoc);
TypeResult ActOnTypeName(Scope *S, Declarator &D);
/// The parser has parsed the context-sensitive type 'instancetype'
/// in an Objective-C message declaration. Return the appropriate type.
ParsedType ActOnObjCInstanceType(SourceLocation Loc);
/// Abstract class used to diagnose incomplete types.
struct TypeDiagnoser {
TypeDiagnoser() {}
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
virtual ~TypeDiagnoser() {}
};
static int getPrintable(int I) { return I; }
static unsigned getPrintable(unsigned I) { return I; }
static bool getPrintable(bool B) { return B; }
static const char * getPrintable(const char *S) { return S; }
static StringRef getPrintable(StringRef S) { return S; }
static const std::string &getPrintable(const std::string &S) { return S; }
static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
return II;
}
static DeclarationName getPrintable(DeclarationName N) { return N; }
static QualType getPrintable(QualType T) { return T; }
static SourceRange getPrintable(SourceRange R) { return R; }
static SourceRange getPrintable(SourceLocation L) { return L; }
static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
protected:
unsigned DiagID;
std::tuple<const Ts &...> Args;
template <std::size_t... Is>
void emit(const SemaDiagnosticBuilder &DB,
std::index_sequence<Is...>) const {
// Apply all tuple elements to the builder in order.
bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
(void)Dummy;
}
public:
BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
: TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
assert(DiagID != 0 && "no diagnostic for type diagnoser");
}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
emit(DB, std::index_sequence_for<Ts...>());
DB << T;
}
};
/// Do a check to make sure \p Name looks like a legal argument for the
/// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
/// is invalid for the given declaration.
///
/// \p AL is used to provide caret diagnostics in case of a malformed name.
///
/// \returns true if the name is a valid swift name for \p D, false otherwise.
bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
const ParsedAttr &AL, bool IsAsync);
/// A derivative of BoundTypeDiagnoser for which the diagnostic's type
/// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
/// For example, a diagnostic with no other parameters would generally have
/// the form "...%select{incomplete|sizeless}0 type %1...".
template <typename... Ts>
class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
public:
SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
: BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
this->emit(DB, std::index_sequence_for<Ts...>());
DB << T->isSizelessType() << T;
}
};
enum class CompleteTypeKind {
/// Apply the normal rules for complete types. In particular,
/// treat all sizeless types as incomplete.
Normal,
/// Relax the normal rules for complete types so that they include
/// sizeless built-in types.
AcceptSizeless,
// FIXME: Eventually we should flip the default to Normal and opt in
// to AcceptSizeless rather than opt out of it.
Default = AcceptSizeless
};
enum class AcceptableKind { Visible, Reachable };
private:
/// Methods for marking which expressions involve dereferencing a pointer
/// marked with the 'noderef' attribute. Expressions are checked bottom up as
/// they are parsed, meaning that a noderef pointer may not be accessed. For
/// example, in `&*p` where `p` is a noderef pointer, we will first parse the
/// `*p`, but need to check that `address of` is called on it. This requires
/// keeping a container of all pending expressions and checking if the address
/// of them are eventually taken.
void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
void CheckAddressOfNoDeref(const Expr *E);
void CheckMemberAccessOfNoDeref(const MemberExpr *E);
bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
struct ModuleScope {
SourceLocation BeginLoc;
clang::Module *Module = nullptr;
bool ModuleInterface = false;
bool IsPartition = false;
bool ImplicitGlobalModuleFragment = false;
VisibleModuleSet OuterVisibleModules;
};
/// The modules we're currently parsing.
llvm::SmallVector<ModuleScope, 16> ModuleScopes;
/// The global module fragment of the current translation unit.
clang::Module *GlobalModuleFragment = nullptr;
/// The modules we imported directly.
llvm::SmallPtrSet<clang::Module *, 8> DirectModuleImports;
/// Namespace definitions that we will export when they finish.
llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
/// In a C++ standard module, inline declarations require a definition to be
/// present at the end of a definition domain. This set holds the decls to
/// be checked at the end of the TU.
llvm::SmallPtrSet<const FunctionDecl *, 8> PendingInlineFuncDecls;
/// Helper function to judge if we are in module purview.
/// Return false if we are not in a module.
bool isCurrentModulePurview() const {
return getCurrentModule() ? getCurrentModule()->isModulePurview() : false;
}
/// Enter the scope of the global module.
Module *PushGlobalModuleFragment(SourceLocation BeginLoc, bool IsImplicit);
/// Leave the scope of the global module.
void PopGlobalModuleFragment();
VisibleModuleSet VisibleModules;
/// Cache for module units which is usable for current module.
llvm::DenseSet<const Module *> UsableModuleUnitsCache;
bool isUsableModule(const Module *M);
bool isAcceptableSlow(const NamedDecl *D, AcceptableKind Kind);
public:
/// Get the module unit whose scope we are currently within.
Module *getCurrentModule() const {
return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
}
/// Is the module scope we are an interface?
bool currentModuleIsInterface() const {
return ModuleScopes.empty() ? false : ModuleScopes.back().ModuleInterface;
}
/// Is the module scope we are in a C++ Header Unit?
bool currentModuleIsHeaderUnit() const {
return ModuleScopes.empty() ? false
: ModuleScopes.back().Module->isHeaderUnit();
}
/// Get the module owning an entity.
Module *getOwningModule(const Decl *Entity) {
return Entity->getOwningModule();
}
bool isModuleDirectlyImported(const Module *M) {
return DirectModuleImports.contains(M);
}
// Determine whether the module M belongs to the current TU.
bool isModuleUnitOfCurrentTU(const Module *M) const;
/// Make a merged definition of an existing hidden definition \p ND
/// visible at the specified location.
void makeMergedDefinitionVisible(NamedDecl *ND);
bool isModuleVisible(const Module *M, bool ModulePrivate = false);
// When loading a non-modular PCH files, this is used to restore module
// visibility.
void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
VisibleModules.setVisible(Mod, ImportLoc);
}
/// Determine whether a declaration is visible to name lookup.
bool isVisible(const NamedDecl *D) {
return D->isUnconditionallyVisible() ||
isAcceptableSlow(D, AcceptableKind::Visible);
}
/// Determine whether a declaration is reachable.
bool isReachable(const NamedDecl *D) {
// All visible declarations are reachable.
return D->isUnconditionallyVisible() ||
isAcceptableSlow(D, AcceptableKind::Reachable);
}
/// Determine whether a declaration is acceptable (visible/reachable).
bool isAcceptable(const NamedDecl *D, AcceptableKind Kind) {
return Kind == AcceptableKind::Visible ? isVisible(D) : isReachable(D);
}
/// Determine whether any declaration of an entity is visible.
bool
hasVisibleDeclaration(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
}
bool hasVisibleDeclarationSlow(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules);
/// Determine whether any declaration of an entity is reachable.
bool
hasReachableDeclaration(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
return isReachable(D) || hasReachableDeclarationSlow(D, Modules);
}
bool hasReachableDeclarationSlow(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
bool hasVisibleMergedDefinition(NamedDecl *Def);
bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
/// Determine if \p D and \p Suggested have a structurally compatible
/// layout as described in C11 6.2.7/1.
bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
/// Determine if \p D has a visible definition. If not, suggest a declaration
/// that should be made visible to expose the definition.
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete = false);
bool hasVisibleDefinition(const NamedDecl *D) {
NamedDecl *Hidden;
return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
}
/// Determine if \p D has a reachable definition. If not, suggest a
/// declaration that should be made reachable to expose the definition.
bool hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
bool OnlyNeedComplete = false);
bool hasReachableDefinition(NamedDecl *D) {
NamedDecl *Hidden;
return hasReachableDefinition(D, &Hidden);
}
bool hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
AcceptableKind Kind,
bool OnlyNeedComplete = false);
bool hasAcceptableDefinition(NamedDecl *D, AcceptableKind Kind) {
NamedDecl *Hidden;
return hasAcceptableDefinition(D, &Hidden, Kind);
}
/// Determine if the template parameter \p D has a visible default argument.
bool
hasVisibleDefaultArgument(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if the template parameter \p D has a reachable default argument.
bool hasReachableDefaultArgument(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if the template parameter \p D has a reachable default argument.
bool hasAcceptableDefaultArgument(const NamedDecl *D,
llvm::SmallVectorImpl<Module *> *Modules,
Sema::AcceptableKind Kind);
/// Determine if there is a visible declaration of \p D that is an explicit
/// specialization declaration for a specialization of a template. (For a
/// member specialization, use hasVisibleMemberSpecialization.)
bool hasVisibleExplicitSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if there is a reachable declaration of \p D that is an explicit
/// specialization declaration for a specialization of a template. (For a
/// member specialization, use hasReachableMemberSpecialization.)
bool hasReachableExplicitSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if there is a visible declaration of \p D that is a member
/// specialization declaration (as opposed to an instantiated declaration).
bool hasVisibleMemberSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if there is a reachable declaration of \p D that is a member
/// specialization declaration (as opposed to an instantiated declaration).
bool hasReachableMemberSpecialization(
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
/// Determine if \p A and \p B are equivalent internal linkage declarations
/// from different modules, and thus an ambiguity error can be downgraded to
/// an extension warning.
bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
const NamedDecl *B);
void diagnoseEquivalentInternalLinkageDeclarations(
SourceLocation Loc, const NamedDecl *D,
ArrayRef<const NamedDecl *> Equiv);
bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
// Check whether the size of array element of type \p EltTy is a multiple of
// its alignment and return false if it isn't.
bool checkArrayElementAlignment(QualType EltTy, SourceLocation Loc);
bool isCompleteType(SourceLocation Loc, QualType T,
CompleteTypeKind Kind = CompleteTypeKind::Default) {
return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
}
bool RequireCompleteType(SourceLocation Loc, QualType T,
CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
bool RequireCompleteType(SourceLocation Loc, QualType T,
CompleteTypeKind Kind, unsigned DiagID);
bool RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
}
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
}
template <typename... Ts>
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteType(Loc, T, Diagnoser);
}
template <typename... Ts>
bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &... Args) {
SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
}
/// Get the type of expression E, triggering instantiation to complete the
/// type if necessary -- that is, if the expression refers to a templated
/// static data member of incomplete array type.
///
/// May still return an incomplete type if instantiation was not possible or
/// if the type is incomplete for a different reason. Use
/// RequireCompleteExprType instead if a diagnostic is expected for an
/// incomplete expression type.
QualType getCompletedType(Expr *E);
void completeExprArrayBound(Expr *E);
bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
TypeDiagnoser &Diagnoser);
bool RequireCompleteExprType(Expr *E, unsigned DiagID);
template <typename... Ts>
bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
}
template <typename... Ts>
bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
const Ts &... Args) {
SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
}
bool RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser);
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
template <typename... Ts>
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireLiteralType(Loc, T, Diagnoser);
}
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T,
TagDecl *OwnedTagDecl = nullptr);
// Returns the underlying type of a decltype with the given expression.
QualType getDecltypeForExpr(Expr *E);
QualType BuildTypeofExprType(Expr *E, TypeOfKind Kind);
/// If AsUnevaluated is false, E is treated as though it were an evaluated
/// context, such as when building a type for decltype(auto).
QualType BuildDecltypeType(Expr *E, bool AsUnevaluated = true);
using UTTKind = UnaryTransformType::UTTKind;
QualType BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinEnumUnderlyingType(QualType BaseType, SourceLocation Loc);
QualType BuiltinAddPointer(QualType BaseType, SourceLocation Loc);
QualType BuiltinRemovePointer(QualType BaseType, SourceLocation Loc);
QualType BuiltinDecay(QualType BaseType, SourceLocation Loc);
QualType BuiltinAddReference(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
//===--------------------------------------------------------------------===//
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
//
struct SkipBodyInfo {
SkipBodyInfo()
: ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
New(nullptr) {}
bool ShouldSkip;
bool CheckSameAsPrevious;
NamedDecl *Previous;
NamedDecl *New;
};
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
void DiagnoseUseOfUnimplementedSelectors();
bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec *SS = nullptr,
bool isClassName = false, bool HasTrailingDot = false,
ParsedType ObjectType = nullptr,
bool IsCtorOrDtorName = false,
bool WantNontrivialTypeSourceInfo = false,
bool IsClassTemplateDeductionContext = true,
ImplicitTypenameContext AllowImplicitTypename =
ImplicitTypenameContext::No,
IdentifierInfo **CorrectedII = nullptr);
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
void DiagnoseUnknownTypeName(IdentifierInfo *&II,
SourceLocation IILoc,
Scope *S,
CXXScopeSpec *SS,
ParsedType &SuggestedType,
bool IsTemplateName = false);
/// Attempt to behave like MSVC in situations where lookup of an unqualified
/// type name has failed in a dependent context. In these situations, we
/// automatically form a DependentTypeName that will retry lookup in a related
/// scope during instantiation.
ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
SourceLocation NameLoc,
bool IsTemplateTypeArg);
/// Describes the result of the name lookup and resolution performed
/// by \c ClassifyName().
enum NameClassificationKind {
/// This name is not a type or template in this context, but might be
/// something else.
NC_Unknown,
/// Classification failed; an error has been produced.
NC_Error,
/// The name has been typo-corrected to a keyword.
NC_Keyword,
/// The name was classified as a type.
NC_Type,
/// The name was classified as a specific non-type, non-template
/// declaration. ActOnNameClassifiedAsNonType should be called to
/// convert the declaration to an expression.
NC_NonType,
/// The name was classified as an ADL-only function name.
/// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
/// result to an expression.
NC_UndeclaredNonType,
/// The name denotes a member of a dependent type that could not be
/// resolved. ActOnNameClassifiedAsDependentNonType should be called to
/// convert the result to an expression.
NC_DependentNonType,
/// The name was classified as an overload set, and an expression
/// representing that overload set has been formed.
/// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
/// expression referencing the overload set.
NC_OverloadSet,
/// The name was classified as a template whose specializations are types.
NC_TypeTemplate,
/// The name was classified as a variable template name.
NC_VarTemplate,
/// The name was classified as a function template name.
NC_FunctionTemplate,
/// The name was classified as an ADL-only function template name.
NC_UndeclaredTemplate,
/// The name was classified as a concept name.
NC_Concept,
};
class NameClassification {
NameClassificationKind Kind;
union {
ExprResult Expr;
NamedDecl *NonTypeDecl;
TemplateName Template;
ParsedType Type;
};
explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
public:
NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
static NameClassification Error() {
return NameClassification(NC_Error);
}
static NameClassification Unknown() {
return NameClassification(NC_Unknown);
}
static NameClassification OverloadSet(ExprResult E) {
NameClassification Result(NC_OverloadSet);
Result.Expr = E;
return Result;
}
static NameClassification NonType(NamedDecl *D) {
NameClassification Result(NC_NonType);
Result.NonTypeDecl = D;
return Result;
}
static NameClassification UndeclaredNonType() {
return NameClassification(NC_UndeclaredNonType);
}
static NameClassification DependentNonType() {
return NameClassification(NC_DependentNonType);
}
static NameClassification TypeTemplate(TemplateName Name) {
NameClassification Result(NC_TypeTemplate);
Result.Template = Name;
return Result;
}
static NameClassification VarTemplate(TemplateName Name) {
NameClassification Result(NC_VarTemplate);
Result.Template = Name;
return Result;
}
static NameClassification FunctionTemplate(TemplateName Name) {
NameClassification Result(NC_FunctionTemplate);
Result.Template = Name;
return Result;
}
static NameClassification Concept(TemplateName Name) {
NameClassification Result(NC_Concept);
Result.Template = Name;
return Result;
}
static NameClassification UndeclaredTemplate(TemplateName Name) {
NameClassification Result(NC_UndeclaredTemplate);
Result.Template = Name;
return Result;
}
NameClassificationKind getKind() const { return Kind; }
ExprResult getExpression() const {
assert(Kind == NC_OverloadSet);
return Expr;
}
ParsedType getType() const {
assert(Kind == NC_Type);
return Type;
}
NamedDecl *getNonTypeDecl() const {
assert(Kind == NC_NonType);
return NonTypeDecl;
}
TemplateName getTemplateName() const {
assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||
Kind == NC_VarTemplate || Kind == NC_Concept ||
Kind == NC_UndeclaredTemplate);
return Template;
}
TemplateNameKind getTemplateNameKind() const {
switch (Kind) {
case NC_TypeTemplate:
return TNK_Type_template;
case NC_FunctionTemplate:
return TNK_Function_template;
case NC_VarTemplate:
return TNK_Var_template;
case NC_Concept:
return TNK_Concept_template;
case NC_UndeclaredTemplate:
return TNK_Undeclared_template;
default:
llvm_unreachable("unsupported name classification.");
}
}
};
/// Perform name lookup on the given name, classifying it based on
/// the results of name lookup and the following token.
///
/// This routine is used by the parser to resolve identifiers and help direct
/// parsing. When the identifier cannot be found, this routine will attempt
/// to correct the typo and classify based on the resulting name.
///
/// \param S The scope in which we're performing name lookup.
///
/// \param SS The nested-name-specifier that precedes the name.
///
/// \param Name The identifier. If typo correction finds an alternative name,
/// this pointer parameter will be updated accordingly.
///
/// \param NameLoc The location of the identifier.
///
/// \param NextToken The token following the identifier. Used to help
/// disambiguate the name.
///
/// \param CCC The correction callback, if typo correction is desired.
NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
IdentifierInfo *&Name, SourceLocation NameLoc,
const Token &NextToken,
CorrectionCandidateCallback *CCC = nullptr);
/// Act on the result of classifying a name as an undeclared (ADL-only)
/// non-type declaration.
ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
SourceLocation NameLoc);
/// Act on the result of classifying a name as an undeclared member of a
/// dependent base class.
ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool IsAddressOfOperand);
/// Act on the result of classifying a name as a specific non-type
/// declaration.
ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
NamedDecl *Found,
SourceLocation NameLoc,
const Token &NextToken);
/// Act on the result of classifying a name as an overload set.
ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
/// Describes the detailed kind of a template name. Used in diagnostics.
enum class TemplateNameKindForDiagnostics {
ClassTemplate,
FunctionTemplate,
VarTemplate,
AliasTemplate,
TemplateTemplateParam,
Concept,
DependentTemplate
};
TemplateNameKindForDiagnostics
getTemplateNameKindForDiagnostics(TemplateName Name);
/// Determine whether it's plausible that E was intended to be a
/// template-name.
bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
if (!getLangOpts().CPlusPlus || E.isInvalid())
return false;
Dependent = false;
if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
return !DRE->hasExplicitTemplateArgs();
if (auto *ME = dyn_cast<MemberExpr>(E.get()))
return !ME->hasExplicitTemplateArgs();
Dependent = true;
if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
return !DSDRE->hasExplicitTemplateArgs();
if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
return !DSME->hasExplicitTemplateArgs();
// Any additional cases recognized here should also be handled by
// diagnoseExprIntendedAsTemplateName.
return false;
}
void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
SourceLocation Less,
SourceLocation Greater);
void warnOnReservedIdentifier(const NamedDecl *D);
Decl *ActOnDeclarator(Scope *S, Declarator &D);
NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParameterLists);
bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
QualType &T, SourceLocation Loc,
unsigned FailedFoldDiagID);
void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
DeclarationName Name, SourceLocation Loc,
bool IsTemplateId);
void
diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
SourceLocation FallbackLoc,
SourceLocation ConstQualLoc = SourceLocation(),
SourceLocation VolatileQualLoc = SourceLocation(),
SourceLocation RestrictQualLoc = SourceLocation(),
SourceLocation AtomicQualLoc = SourceLocation(),
SourceLocation UnalignedQualLoc = SourceLocation());
static bool adjustContextForLocalExternDecl(DeclContext *&DC);
void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
const LookupResult &R);
NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
NamedDecl *getShadowedDeclaration(const BindingDecl *D,
const LookupResult &R);
void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
const LookupResult &R);
void CheckShadow(Scope *S, VarDecl *D);
/// Warn if 'E', which is an expression that is about to be modified, refers
/// to a shadowing declaration.
void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
private:
/// Map of current shadowing declarations to shadowed declarations. Warn if
/// it looks like the user is trying to modify the shadowing declaration.
llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
public:
void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
TypedefNameDecl *NewTD);
void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
TypeSourceInfo *TInfo,
LookupResult &Previous);
NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
LookupResult &Previous, bool &Redeclaration);
NamedDecl *ActOnVariableDeclarator(
Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
bool &AddToScope, ArrayRef<BindingDecl *> Bindings = std::nullopt);
NamedDecl *
ActOnDecompositionDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParamLists);
// Returns true if the variable declaration is a redeclaration
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
void CheckVariableDeclarationType(VarDecl *NewVD);
bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
Expr *Init);
void CheckCompleteVariableDeclaration(VarDecl *VD);
void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
TypeSourceInfo *TInfo,
LookupResult &Previous,
MultiTemplateParamsArg TemplateParamLists,
bool &AddToScope);
bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
enum class CheckConstexprKind {
/// Diagnose issues that are non-constant or that are extensions.
Diagnose,
/// Identify whether this function satisfies the formal rules for constexpr
/// functions in the current lanugage mode (with no extensions).
CheckValid
};
bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
CheckConstexprKind Kind);
void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
void FindHiddenVirtualMethods(CXXMethodDecl *MD,
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
// Returns true if the function declaration is a redeclaration
bool CheckFunctionDeclaration(Scope *S,
FunctionDecl *NewFD, LookupResult &Previous,
bool IsMemberSpecialization, bool DeclIsDefn);
bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
QualType NewT, QualType OldT);
void CheckMain(FunctionDecl *FD, const DeclSpec &D);
void CheckMSVCRTEntryPoint(FunctionDecl *FD);
void CheckHLSLEntryPoint(FunctionDecl *FD);
Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
bool IsDefinition);
void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
SourceLocation Loc,
QualType T);
ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
SourceLocation NameLoc, IdentifierInfo *Name,
QualType T, TypeSourceInfo *TSInfo,
StorageClass SC);
void ActOnParamDefaultArgument(Decl *param,
SourceLocation EqualLoc,
Expr *defarg);
void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
SourceLocation ArgLoc);
void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
SourceLocation EqualLoc);
void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
SourceLocation EqualLoc);
// Contexts where using non-trivial C union types can be disallowed. This is
// passed to err_non_trivial_c_union_in_invalid_context.
enum NonTrivialCUnionContext {
// Function parameter.
NTCUC_FunctionParam,
// Function return.
NTCUC_FunctionReturn,
// Default-initialized object.
NTCUC_DefaultInitializedObject,
// Variable with automatic storage duration.
NTCUC_AutoVar,
// Initializer expression that might copy from another object.
NTCUC_CopyInit,
// Assignment.
NTCUC_Assignment,
// Compound literal.
NTCUC_CompoundLiteral,
// Block capture.
NTCUC_BlockCapture,
// lvalue-to-rvalue conversion of volatile type.
NTCUC_LValueToRValueVolatile,
};
/// Emit diagnostics if the initializer or any of its explicit or
/// implicitly-generated subexpressions require copying or
/// default-initializing a type that is or contains a C union type that is
/// non-trivial to copy or default-initialize.
void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
// These flags are passed to checkNonTrivialCUnion.
enum NonTrivialCUnionKind {
NTCUK_Init = 0x1,
NTCUK_Destruct = 0x2,
NTCUK_Copy = 0x4,
};
/// Emit diagnostics if a non-trivial C union type or a struct that contains
/// a non-trivial C union is used in an invalid context.
void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
NonTrivialCUnionContext UseContext,
unsigned NonTrivialKind);
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
void ActOnUninitializedDecl(Decl *dcl);
void ActOnInitializerError(Decl *Dcl);
void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
void ActOnCXXForRangeDecl(Decl *D);
StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
IdentifierInfo *Ident,
ParsedAttributes &Attrs);
void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
void CheckStaticLocalForDllExport(VarDecl *VD);
void CheckThreadLocalForLargeAlignment(VarDecl *VD);
void FinalizeDeclaration(Decl *D);
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
ArrayRef<Decl *> Group);
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
/// Should be called on all declarations that might have attached
/// documentation comments.
void ActOnDocumentableDecl(Decl *D);
void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
enum class FnBodyKind {
/// C++ [dcl.fct.def.general]p1
/// function-body:
/// ctor-initializer[opt] compound-statement
/// function-try-block
Other,
/// = default ;
Default,
/// = delete ;
Delete
};
void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
SourceLocation LocAfterDecls);
void CheckForFunctionRedefinition(
FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
SkipBodyInfo *SkipBody = nullptr);
Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParamLists,
SkipBodyInfo *SkipBody = nullptr,
FnBodyKind BodyKind = FnBodyKind::Other);
Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
SkipBodyInfo *SkipBody = nullptr,
FnBodyKind BodyKind = FnBodyKind::Other);
void SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind);
void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
bool isObjCMethodDecl(Decl *D) {
return D && isa<ObjCMethodDecl>(D);
}
/// Determine whether we can delay parsing the body of a function or
/// function template until it is used, assuming we don't care about emitting
/// code for that function.
///
/// This will be \c false if we may need the body of the function in the
/// middle of parsing an expression (where it's impractical to switch to
/// parsing a different function), for instance, if it's constexpr in C++11
/// or has an 'auto' return type in C++14. These cases are essentially bugs.
bool canDelayFunctionBody(const Declarator &D);
/// Determine whether we can skip parsing the body of a function
/// definition, assuming we don't care about analyzing its body or emitting
/// code for that function.
///
/// This will be \c false only if we may need the body of the function in
/// order to parse the rest of the program (for instance, if it is
/// \c constexpr in C++11 or has an 'auto' return type in C++14).
bool canSkipFunctionBody(Decl *D);
/// Determine whether \param D is function like (function or function
/// template) for parsing.
bool isDeclaratorFunctionLike(Declarator &D);
void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
Decl *ActOnSkippedFunctionBody(Decl *Decl);
void ActOnFinishInlineFunctionDef(FunctionDecl *D);
/// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
/// attribute for which parsing is delayed.
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
/// Diagnose any unused parameters in the given sequence of
/// ParmVarDecl pointers.
void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
/// Diagnose whether the size of parameters or return value of a
/// function or obj-c method definition is pass-by-value and larger than a
/// specified threshold.
void
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
QualType ReturnTy, NamedDecl *D);
void DiagnoseInvalidJumps(Stmt *Body);
Decl *ActOnFileScopeAsmDecl(Expr *expr,
SourceLocation AsmLoc,
SourceLocation RParenLoc);
Decl *ActOnTopLevelStmtDecl(Stmt *Statement);
/// Handle a C++11 empty-declaration and attribute-declaration.
Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
SourceLocation SemiLoc);
enum class ModuleDeclKind {
Interface, ///< 'export module X;'
Implementation, ///< 'module X;'
PartitionInterface, ///< 'export module X:Y;'
PartitionImplementation, ///< 'module X:Y;'
};
/// An enumeration to represent the transition of states in parsing module
/// fragments and imports. If we are not parsing a C++20 TU, or we find
/// an error in state transition, the state is set to NotACXX20Module.
enum class ModuleImportState {
FirstDecl, ///< Parsing the first decl in a TU.
GlobalFragment, ///< after 'module;' but before 'module X;'
ImportAllowed, ///< after 'module X;' but before any non-import decl.
ImportFinished, ///< after any non-import decl.
PrivateFragmentImportAllowed, ///< after 'module :private;' but before any
///< non-import decl.
PrivateFragmentImportFinished, ///< after 'module :private;' but a
///< non-import decl has already been seen.
NotACXX20Module ///< Not a C++20 TU, or an invalid state was found.
};
private:
/// The parser has begun a translation unit to be compiled as a C++20
/// Header Unit, helper for ActOnStartOfTranslationUnit() only.
void HandleStartOfHeaderUnit();
public:
/// The parser has processed a module-declaration that begins the definition
/// of a module interface or implementation.
DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
SourceLocation ModuleLoc, ModuleDeclKind MDK,
ModuleIdPath Path, ModuleIdPath Partition,
ModuleImportState &ImportState);
/// The parser has processed a global-module-fragment declaration that begins
/// the definition of the global module fragment of the current module unit.
/// \param ModuleLoc The location of the 'module' keyword.
DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
/// The parser has processed a private-module-fragment declaration that begins
/// the definition of the private module fragment of the current module unit.
/// \param ModuleLoc The location of the 'module' keyword.
/// \param PrivateLoc The location of the 'private' keyword.
DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
SourceLocation PrivateLoc);
/// The parser has processed a module import declaration.
///
/// \param StartLoc The location of the first token in the declaration. This
/// could be the location of an '@', 'export', or 'import'.
/// \param ExportLoc The location of the 'export' keyword, if any.
/// \param ImportLoc The location of the 'import' keyword.
/// \param Path The module toplevel name as an access path.
/// \param IsPartition If the name is for a partition.
DeclResult ActOnModuleImport(SourceLocation StartLoc,
SourceLocation ExportLoc,
SourceLocation ImportLoc, ModuleIdPath Path,
bool IsPartition = false);
DeclResult ActOnModuleImport(SourceLocation StartLoc,
SourceLocation ExportLoc,
SourceLocation ImportLoc, Module *M,
ModuleIdPath Path = {});
/// The parser has processed a module import translated from a
/// #include or similar preprocessing directive.
void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
/// The parsed has entered a submodule.
void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
/// The parser has left a submodule.
void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
/// Create an implicit import of the given module at the given
/// source location, for error recovery, if possible.
///
/// This routine is typically used when an entity found by name lookup
/// is actually hidden within a module that we know about but the user
/// has forgotten to import.
void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
Module *Mod);
/// Kinds of missing import. Note, the values of these enumerators correspond
/// to %select values in diagnostics.
enum class MissingImportKind {
Declaration,
Definition,
DefaultArgument,
ExplicitSpecialization,
PartialSpecialization
};
/// Diagnose that the specified declaration needs to be visible but
/// isn't, and suggest a module import that would resolve the problem.
void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
MissingImportKind MIK, bool Recover = true);
void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
SourceLocation DeclLoc, ArrayRef<Module *> Modules,
MissingImportKind MIK, bool Recover);
Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
SourceLocation LBraceLoc);
Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
SourceLocation RBraceLoc);
/// We've found a use of a templated declaration that would trigger an
/// implicit instantiation. Check that any relevant explicit specializations
/// and partial specializations are visible/reachable, and diagnose if not.
void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
void checkSpecializationReachability(SourceLocation Loc, NamedDecl *Spec);
/// Retrieve a suitable printing policy for diagnostics.
PrintingPolicy getPrintingPolicy() const {
return getPrintingPolicy(Context, PP);
}
/// Retrieve a suitable printing policy for diagnostics.
static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
const Preprocessor &PP);
/// Scope actions.
void ActOnPopScope(SourceLocation Loc, Scope *S);
void ActOnTranslationUnitScope(Scope *S);
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
const ParsedAttributesView &DeclAttrs,
RecordDecl *&AnonRecord);
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
const ParsedAttributesView &DeclAttrs,
MultiTemplateParamsArg TemplateParams,
bool IsExplicitInstantiation,
RecordDecl *&AnonRecord);
Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
AccessSpecifier AS,
RecordDecl *Record,
const PrintingPolicy &Policy);
Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
RecordDecl *Record);
/// Common ways to introduce type names without a tag for use in diagnostics.
/// Keep in sync with err_tag_reference_non_tag.
enum NonTagKind {
NTK_NonStruct,
NTK_NonClass,
NTK_NonUnion,
NTK_NonEnum,
NTK_Typedef,
NTK_TypeAlias,
NTK_Template,
NTK_TypeAliasTemplate,
NTK_TemplateTemplateArgument,
};
/// Given a non-tag type declaration, returns an enum useful for indicating
/// what kind of non-tag type this is.
NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
bool isAcceptableTagRedeclaration(const TagDecl *Previous,
TagTypeKind NewTag, bool isDefinition,
SourceLocation NewTagLoc,
const IdentifierInfo *Name);
enum TagUseKind {
TUK_Reference, // Reference to a tag: 'struct foo *X;'
TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
TUK_Friend // Friend declaration: 'friend struct foo;'
};
enum OffsetOfKind {
// Not parsing a type within __builtin_offsetof.
OOK_Outside,
// Parsing a type within __builtin_offsetof.
OOK_Builtin,
// Parsing a type within macro "offsetof", defined in __buitin_offsetof
// To improve our diagnostic message.
OOK_Macro,
};
DeclResult ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
const ParsedAttributesView &Attr, AccessSpecifier AS,
SourceLocation ModulePrivateLoc,
MultiTemplateParamsArg TemplateParameterLists,
bool &OwnedDecl, bool &IsDependent,
SourceLocation ScopedEnumKWLoc,
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
bool IsTypeSpecifier, bool IsTemplateParamOrArg,
OffsetOfKind OOK, SkipBodyInfo *SkipBody = nullptr);
DeclResult ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
unsigned TagSpec, SourceLocation TagLoc,
CXXScopeSpec &SS, IdentifierInfo *Name,
SourceLocation NameLoc,
const ParsedAttributesView &Attr,
MultiTemplateParamsArg TempParamLists);
TypeResult ActOnDependentTag(Scope *S,
unsigned TagSpec,
TagUseKind TUK,
const CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation TagLoc,
SourceLocation NameLoc);
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
SmallVectorImpl<Decl *> &Decls);
Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth);
FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
InClassInitStyle InitStyle,
AccessSpecifier AS);
MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
SourceLocation DeclStart, Declarator &D,
Expr *BitfieldWidth,
InClassInitStyle InitStyle,
AccessSpecifier AS,
const ParsedAttr &MSPropertyAttr);
FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
TypeSourceInfo *TInfo,
RecordDecl *Record, SourceLocation Loc,
bool Mutable, Expr *BitfieldWidth,
InClassInitStyle InitStyle,
SourceLocation TSSL,
AccessSpecifier AS, NamedDecl *PrevDecl,
Declarator *D = nullptr);
bool CheckNontrivialField(FieldDecl *FD);
void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
enum TrivialABIHandling {
/// The triviality of a method unaffected by "trivial_abi".
TAH_IgnoreTrivialABI,
/// The triviality of a method affected by "trivial_abi".
TAH_ConsiderTrivialABI
};
bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
bool Diagnose = false);
/// For a defaulted function, the kind of defaulted function that it is.
class DefaultedFunctionKind {
CXXSpecialMember SpecialMember : 8;
DefaultedComparisonKind Comparison : 8;
public:
DefaultedFunctionKind()
: SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
}
DefaultedFunctionKind(CXXSpecialMember CSM)
: SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
DefaultedFunctionKind(DefaultedComparisonKind Comp)
: SpecialMember(CXXInvalid), Comparison(Comp) {}
bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
bool isComparison() const {
return Comparison != DefaultedComparisonKind::None;
}
explicit operator bool() const {
return isSpecialMember() || isComparison();
}
CXXSpecialMember asSpecialMember() const { return SpecialMember; }
DefaultedComparisonKind asComparison() const { return Comparison; }
/// Get the index of this function kind for use in diagnostics.
unsigned getDiagnosticIndex() const {
static_assert(CXXInvalid > CXXDestructor,
"invalid should have highest index");
static_assert((unsigned)DefaultedComparisonKind::None == 0,
"none should be equal to zero");
return SpecialMember + (unsigned)Comparison;
}
};
DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
return getDefaultedFunctionKind(MD).asSpecialMember();
}
DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
return getDefaultedFunctionKind(FD).asComparison();
}
void ActOnLastBitfield(SourceLocation DeclStart,
SmallVectorImpl<Decl *> &AllIvarDecls);
Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
tok::ObjCKeywordKind visibility);
// This is used for both record definitions and ObjC interface declarations.
void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
ArrayRef<Decl *> Fields, SourceLocation LBrac,
SourceLocation RBrac, const ParsedAttributesView &AttrList);
/// ActOnTagStartDefinition - Invoked when we have entered the
/// scope of a tag's definition (e.g., for an enumeration, class,
/// struct, or union).
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
/// Perform ODR-like check for C/ObjC when merging tag types from modules.
/// Differently from C++, actually parse the body and reject / error out
/// in case of a structural mismatch.
bool ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody);
/// Check ODR hashes for C/ObjC when merging types from modules.
/// Differently from C++, actually parse the body and reject in case
/// of a mismatch.
template <typename T,
typename = std::enable_if_t<std::is_base_of<NamedDecl, T>::value>>
bool ActOnDuplicateODRHashDefinition(T *Duplicate, T *Previous) {
if (Duplicate->getODRHash() != Previous->getODRHash())
return false;
// Make the previous decl visible.
makeMergedDefinitionVisible(Previous);
return true;
}
typedef void *SkippedDefinitionContext;
/// Invoked when we enter a tag definition that we're skipping.
SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
void ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl);
/// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
/// C++ record definition's base-specifiers clause and are starting its
/// member declarations.
void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
SourceLocation FinalLoc,
bool IsFinalSpelledSealed,
bool IsAbstract,
SourceLocation LBraceLoc);
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
/// the definition of a tag (enumeration, class, struct, or union).
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
SourceRange BraceRange);
void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
void ActOnObjCContainerFinishDefinition();
/// Invoked when we must temporarily exit the objective-c container
/// scope for parsing/looking-up C constructs.
///
/// Must be followed by a call to \see ActOnObjCReenterContainerContext
void ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx);
void ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx);
/// ActOnTagDefinitionError - Invoked when there was an unrecoverable
/// error parsing the definition of a tag.
void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
EnumConstantDecl *LastEnumConst,
SourceLocation IdLoc,
IdentifierInfo *Id,
Expr *val);
bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
QualType EnumUnderlyingTy, bool IsFixed,
const EnumDecl *Prev);
/// Determine whether the body of an anonymous enumeration should be skipped.
/// \param II The name of the first enumerator.
SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
SourceLocation IILoc);
Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
const ParsedAttributesView &Attrs,
SourceLocation EqualLoc, Expr *Val);
void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
const ParsedAttributesView &Attr);
/// Set the current declaration context until it gets popped.
void PushDeclContext(Scope *S, DeclContext *DC);
void PopDeclContext();
/// EnterDeclaratorContext - Used when we must lookup names in the context
/// of a declarator's nested name specifier.
void EnterDeclaratorContext(Scope *S, DeclContext *DC);
void ExitDeclaratorContext(Scope *S);
/// Enter a template parameter scope, after it's been associated with a particular
/// DeclContext. Causes lookup within the scope to chain through enclosing contexts
/// in the correct order.
void EnterTemplatedContext(Scope *S, DeclContext *DC);
/// Push the parameters of D, which must be a function, into scope.
void ActOnReenterFunctionContext(Scope* S, Decl* D);
void ActOnExitFunctionContext();
/// If \p AllowLambda is true, treat lambda as function.
DeclContext *getFunctionLevelDeclContext(bool AllowLambda = false);
/// Returns a pointer to the innermost enclosing function, or nullptr if the
/// current context is not inside a function. If \p AllowLambda is true,
/// this can return the call operator of an enclosing lambda, otherwise
/// lambdas are skipped when looking for an enclosing function.
FunctionDecl *getCurFunctionDecl(bool AllowLambda = false);
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
/// the method decl for the method being parsed. If we're currently
/// in a 'block', this returns the containing context.
ObjCMethodDecl *getCurMethodDecl();
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
/// or C function we're in, otherwise return null. If we're currently
/// in a 'block', this returns the containing context.
NamedDecl *getCurFunctionOrMethodDecl();
/// Add this decl to the scope shadowed decl chains.
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
/// true if 'D' belongs to the given declaration context.
///
/// \param AllowInlineNamespace If \c true, allow the declaration to be in the
/// enclosing namespace set of the context, rather than contained
/// directly within it.
bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
bool AllowInlineNamespace = false);
/// Finds the scope corresponding to the given decl context, if it
/// happens to be an enclosing scope. Otherwise return NULL.
static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
/// Subroutines of ActOnDeclarator().
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
TypeSourceInfo *TInfo);
bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
/// Describes the kind of merge to perform for availability
/// attributes (including "deprecated", "unavailable", and "availability").
enum AvailabilityMergeKind {
/// Don't merge availability attributes at all.
AMK_None,
/// Merge availability attributes for a redeclaration, which requires
/// an exact match.
AMK_Redeclaration,
/// Merge availability attributes for an override, which requires
/// an exact match or a weakening of constraints.
AMK_Override,
/// Merge availability attributes for an implementation of
/// a protocol requirement.
AMK_ProtocolImplementation,
/// Merge availability attributes for an implementation of
/// an optional protocol requirement.
AMK_OptionalProtocolImplementation
};
/// Describes the kind of priority given to an availability attribute.
///
/// The sum of priorities deteremines the final priority of the attribute.
/// The final priority determines how the attribute will be merged.
/// An attribute with a lower priority will always remove higher priority
/// attributes for the specified platform when it is being applied. An
/// attribute with a higher priority will not be applied if the declaration
/// already has an availability attribute with a lower priority for the
/// specified platform. The final prirority values are not expected to match
/// the values in this enumeration, but instead should be treated as a plain
/// integer value. This enumeration just names the priority weights that are
/// used to calculate that final vaue.
enum AvailabilityPriority : int {
/// The availability attribute was specified explicitly next to the
/// declaration.
AP_Explicit = 0,
/// The availability attribute was applied using '#pragma clang attribute'.
AP_PragmaClangAttribute = 1,
/// The availability attribute for a specific platform was inferred from
/// an availability attribute for another platform.
AP_InferredFromOtherPlatform = 2
};
/// Attribute merging methods. Return true if a new attribute was added.
AvailabilityAttr *
mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
IdentifierInfo *Platform, bool Implicit,
VersionTuple Introduced, VersionTuple Deprecated,
VersionTuple Obsoleted, bool IsUnavailable,
StringRef Message, bool IsStrict, StringRef Replacement,
AvailabilityMergeKind AMK, int Priority);
TypeVisibilityAttr *
mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
TypeVisibilityAttr::VisibilityType Vis);
VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
VisibilityAttr::VisibilityType Vis);
UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
const AttributeCommonInfo &CI,
bool BestCase,
MSInheritanceModel Model);
ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef NewUserDiagnostic);
FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
IdentifierInfo *Format, int FormatIdx,
int FirstArg);
SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Name);
CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Name);
AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
const AttributeCommonInfo &CI,
const IdentifierInfo *Ident);
MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
StringRef Name);
OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
const AttributeCommonInfo &CI);
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
const InternalLinkageAttr &AL);
WebAssemblyImportNameAttr *mergeImportNameAttr(
Decl *D, const WebAssemblyImportNameAttr &AL);
WebAssemblyImportModuleAttr *mergeImportModuleAttr(
Decl *D, const WebAssemblyImportModuleAttr &AL);
EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
const EnforceTCBLeafAttr &AL);
BTFDeclTagAttr *mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL);
HLSLNumThreadsAttr *mergeHLSLNumThreadsAttr(Decl *D,
const AttributeCommonInfo &AL,
int X, int Y, int Z);
HLSLShaderAttr *mergeHLSLShaderAttr(Decl *D, const AttributeCommonInfo &AL,
HLSLShaderAttr::ShaderType ShaderType);
void mergeDeclAttributes(NamedDecl *New, Decl *Old,
AvailabilityMergeKind AMK = AMK_Redeclaration);
void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
LookupResult &OldDecls);
bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
bool MergeTypeWithOld, bool NewDeclIsDefn);
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
Scope *S, bool MergeTypeWithOld);
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
void MergeVarDecl(VarDecl *New, LookupResult &Previous);
void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
// AssignmentAction - This is used by all the assignment diagnostic functions
// to represent what is actually causing the operation
enum AssignmentAction {
AA_Assigning,
AA_Passing,
AA_Returning,
AA_Converting,
AA_Initializing,
AA_Sending,
AA_Casting,
AA_Passing_CFAudited
};
/// C++ Overloading.
enum OverloadKind {
/// This is a legitimate overload: the existing declarations are
/// functions or function templates with different signatures.
Ovl_Overload,
/// This is not an overload because the signature exactly matches
/// an existing declaration.
Ovl_Match,
/// This is not an overload because the lookup results contain a
/// non-function.
Ovl_NonFunction
};
OverloadKind CheckOverload(Scope *S,
FunctionDecl *New,
const LookupResult &OldDecls,
NamedDecl *&OldDecl,
bool UseMemberUsingDeclRules);
bool IsOverload(FunctionDecl *New, FunctionDecl *Old,
bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs = true,
bool ConsiderRequiresClauses = true);
// Calculates whether the expression Constraint depends on an enclosing
// template, for the purposes of [temp.friend] p9.
// TemplateDepth is the 'depth' of the friend function, which is used to
// compare whether a declaration reference is referring to a containing
// template, or just the current friend function. A 'lower' TemplateDepth in
// the AST refers to a 'containing' template. As the constraint is
// uninstantiated, this is relative to the 'top' of the TU.
bool
ConstraintExpressionDependsOnEnclosingTemplate(const FunctionDecl *Friend,
unsigned TemplateDepth,
const Expr *Constraint);
// Calculates whether the friend function depends on an enclosing template for
// the purposes of [temp.friend] p9.
bool FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD);
// Calculates whether two constraint expressions are equal irrespective of a
// difference in 'depth'. This takes a pair of optional 'NamedDecl's 'Old' and
// 'New', which are the "source" of the constraint, since this is necessary
// for figuring out the relative 'depth' of the constraint. The depth of the
// 'primary template' and the 'instantiated from' templates aren't necessarily
// the same, such as a case when one is a 'friend' defined in a class.
bool AreConstraintExpressionsEqual(const NamedDecl *Old,
const Expr *OldConstr,
const NamedDecl *New,
const Expr *NewConstr);
enum class AllowedExplicit {
/// Allow no explicit functions to be used.
None,
/// Allow explicit conversion functions but not explicit constructors.
Conversions,
/// Allow both explicit conversion functions and explicit constructors.
All
};
ImplicitConversionSequence
TryImplicitConversion(Expr *From, QualType ToType,
bool SuppressUserConversions,
AllowedExplicit AllowExplicit,
bool InOverloadResolution,
bool CStyle,
bool AllowObjCWritebackConversion);
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
bool IsComplexPromotion(QualType FromType, QualType ToType);
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCWritebackConversion(QualType FromType, QualType ToType,
QualType &ConvertedType);
bool IsBlockPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType);
bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
const FunctionProtoType *NewType,
unsigned *ArgPos = nullptr,
bool Reversed = false);
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
QualType FromType, QualType ToType);
void maybeExtendBlockObject(ExprResult &E);
CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
bool CheckPointerConversion(Expr *From, QualType ToType,
CastKind &Kind,
CXXCastPath& BasePath,
bool IgnoreBaseAccess,
bool Diagnose = true);
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
bool InOverloadResolution,
QualType &ConvertedType);
bool CheckMemberPointerConversion(Expr *From, QualType ToType,
CastKind &Kind,
CXXCastPath &BasePath,
bool IgnoreBaseAccess);
bool IsQualificationConversion(QualType FromType, QualType ToType,
bool CStyle, bool &ObjCLifetimeConversion);
bool IsFunctionConversion(QualType FromType, QualType ToType,
QualType &ResultTy);
bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
bool isSameOrCompatibleFunctionType(QualType Param, QualType Arg);
bool CanPerformAggregateInitializationForOverloadResolution(
const InitializedEntity &Entity, InitListExpr *From);
bool IsStringInit(Expr *Init, const ArrayType *AT);
bool CanPerformCopyInitialization(const InitializedEntity &Entity,
ExprResult Init);
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
SourceLocation EqualLoc,
ExprResult Init,
bool TopLevelOfInitList = false,
bool AllowExplicit = false);
ExprResult PerformObjectArgumentInitialization(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
CXXMethodDecl *Method);
/// Check that the lifetime of the initializer (and its subobjects) is
/// sufficient for initializing the entity, and perform lifetime extension
/// (when permitted) if not.
void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
ExprResult PerformContextuallyConvertToBool(Expr *From);
ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
/// Contexts in which a converted constant expression is required.
enum CCEKind {
CCEK_CaseValue, ///< Expression in a case label.
CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
CCEK_TemplateArg, ///< Value of a non-type template parameter.
CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier.
CCEK_Noexcept ///< Condition in a noexcept(bool) specifier.
};
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
llvm::APSInt &Value, CCEKind CCE);
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
APValue &Value, CCEKind CCE,
NamedDecl *Dest = nullptr);
/// Abstract base class used to perform a contextual implicit
/// conversion from an expression to any type passing a filter.
class ContextualImplicitConverter {
public:
bool Suppress;
bool SuppressConversion;
ContextualImplicitConverter(bool Suppress = false,
bool SuppressConversion = false)
: Suppress(Suppress), SuppressConversion(SuppressConversion) {}
/// Determine whether the specified type is a valid destination type
/// for this conversion.
virtual bool match(QualType T) = 0;
/// Emits a diagnostic complaining that the expression does not have
/// integral or enumeration type.
virtual SemaDiagnosticBuilder
diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
/// Emits a diagnostic when the expression has incomplete class type.
virtual SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
/// Emits a diagnostic when the only matching conversion function
/// is explicit.
virtual SemaDiagnosticBuilder diagnoseExplicitConv(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
/// Emits a note for the explicit conversion function.
virtual SemaDiagnosticBuilder
noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
/// Emits a diagnostic when there are multiple possible conversion
/// functions.
virtual SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
/// Emits a note for one of the candidate conversions.
virtual SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
/// Emits a diagnostic when we picked a conversion function
/// (for cases when we are not allowed to pick a conversion function).
virtual SemaDiagnosticBuilder diagnoseConversion(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
virtual ~ContextualImplicitConverter() {}
};
class ICEConvertDiagnoser : public ContextualImplicitConverter {
bool AllowScopedEnumerations;
public:
ICEConvertDiagnoser(bool AllowScopedEnumerations,
bool Suppress, bool SuppressConversion)
: ContextualImplicitConverter(Suppress, SuppressConversion),
AllowScopedEnumerations(AllowScopedEnumerations) {}
/// Match an integral or (possibly scoped) enumeration type.
bool match(QualType T) override;
SemaDiagnosticBuilder
diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
return diagnoseNotInt(S, Loc, T);
}
/// Emits a diagnostic complaining that the expression does not have
/// integral or enumeration type.
virtual SemaDiagnosticBuilder
diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
};
/// Perform a contextual implicit conversion.
ExprResult PerformContextualImplicitConversion(
SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
enum ObjCSubscriptKind {
OS_Array,
OS_Dictionary,
OS_Error
};
ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
// Note that LK_String is intentionally after the other literals, as
// this is used for diagnostics logic.
enum ObjCLiteralKind {
LK_Array,
LK_Dictionary,
LK_Numeric,
LK_Boxed,
LK_String,
LK_Block,
LK_None
};
ObjCLiteralKind CheckLiteralKind(Expr *FromE);
ExprResult PerformObjectMemberConversion(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
NamedDecl *Member);
// Members have to be NamespaceDecl* or TranslationUnitDecl*.
// TODO: make this is a typesafe union.
typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
using ADLCallKind = CallExpr::ADLCallKind;
void AddOverloadCandidate(
FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
bool PartialOverloading = false, bool AllowExplicit = true,
bool AllowExplicitConversion = false,
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
ConversionSequenceList EarlyConversions = std::nullopt,
OverloadCandidateParamOrder PO = {});
void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
bool SuppressUserConversions = false,
bool PartialOverloading = false,
bool FirstArgumentIsBase = false);
void AddMethodCandidate(DeclAccessPair FoundDecl,
QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversion = false,
OverloadCandidateParamOrder PO = {});
void
AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false,
ConversionSequenceList EarlyConversions = std::nullopt,
OverloadCandidateParamOrder PO = {});
void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ObjectType,
Expr::Classification ObjectClassification,
ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool PartialOverloading = false,
OverloadCandidateParamOrder PO = {});
void AddTemplateOverloadCandidate(
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
bool PartialOverloading = false, bool AllowExplicit = true,
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
OverloadCandidateParamOrder PO = {});
bool CheckNonDependentConversions(
FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
ConversionSequenceList &Conversions, bool SuppressUserConversions,
CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
Expr::Classification ObjectClassification = {},
OverloadCandidateParamOrder PO = {});
void AddConversionCandidate(
CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
bool AllowExplicit, bool AllowResultConversion = true);
void AddTemplateConversionCandidate(
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
bool AllowExplicit, bool AllowResultConversion = true);
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext,
const FunctionProtoType *Proto,
Expr *Object, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet);
void AddNonMemberOperatorCandidates(
const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc, ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
OverloadCandidateParamOrder PO = {});
void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool IsAssignmentOperator = false,
unsigned NumContextualBoolArguments = 0);
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc, ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet);
void AddArgumentDependentLookupCandidates(DeclarationName Name,
SourceLocation Loc,
ArrayRef<Expr *> Args,
TemplateArgumentListInfo *ExplicitTemplateArgs,
OverloadCandidateSet& CandidateSet,
bool PartialOverloading = false);
// Emit as a 'note' the specific overload candidate
void NoteOverloadCandidate(
NamedDecl *Found, FunctionDecl *Fn,
OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
QualType DestType = QualType(), bool TakingAddress = false);
// Emit as a series of 'note's all template and non-templates identified by
// the expression Expr
void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
bool TakingAddress = false);
/// Check the enable_if expressions on the given function. Returns the first
/// failing attribute, or NULL if they were all successful.
EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
ArrayRef<Expr *> Args,
bool MissingImplicitThis = false);
/// Find the failed Boolean condition within a given Boolean
/// constant expression, and describe it with a string.
std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
/// non-ArgDependent DiagnoseIfAttrs.
///
/// Argument-dependent diagnose_if attributes should be checked each time a
/// function is used as a direct callee of a function call.
///
/// Returns true if any errors were emitted.
bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
const Expr *ThisArg,
ArrayRef<const Expr *> Args,
SourceLocation Loc);
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
/// ArgDependent DiagnoseIfAttrs.
///
/// Argument-independent diagnose_if attributes should be checked on every use
/// of a function.
///
/// Returns true if any errors were emitted.
bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
SourceLocation Loc);
/// Returns whether the given function's address can be taken or not,
/// optionally emitting a diagnostic if the address can't be taken.
///
/// Returns false if taking the address of the function is illegal.
bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
bool Complain = false,
SourceLocation Loc = SourceLocation());
// [PossiblyAFunctionType] --> [Return]
// NonFunctionType --> NonFunctionType
// R (A) --> R(A)
// R (*)(A) --> R (A)
// R (&)(A) --> R (A)
// R (S::*)(A) --> R (A)
QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
QualType TargetType,
bool Complain,
DeclAccessPair &Found,
bool *pHadMultipleCandidates = nullptr);
FunctionDecl *
resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
bool resolveAndFixAddressOfSingleOverloadCandidate(
ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
bool Complain = false,
DeclAccessPair *Found = nullptr);
bool ResolveAndFixSingleFunctionTemplateSpecialization(
ExprResult &SrcExpr, bool DoFunctionPointerConversion = false,
bool Complain = false, SourceRange OpRangeForComplaining = SourceRange(),
QualType DestTypeForComplaining = QualType(),
unsigned DiagIDForComplaining = 0);
Expr *FixOverloadedFunctionReference(Expr *E,
DeclAccessPair FoundDecl,
FunctionDecl *Fn);
ExprResult FixOverloadedFunctionReference(ExprResult,
DeclAccessPair FoundDecl,
FunctionDecl *Fn);
void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool PartialOverloading = false);
void AddOverloadedCallCandidates(
LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
// An enum used to represent the different possible results of building a
// range-based for loop.
enum ForRangeStatus {
FRS_Success,
FRS_NoViableFunction,
FRS_DiagnosticIssued
};
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
SourceLocation RangeLoc,
const DeclarationNameInfo &NameInfo,
LookupResult &MemberLookup,
OverloadCandidateSet *CandidateSet,
Expr *Range, ExprResult *CallExpr);
ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
UnresolvedLookupExpr *ULE,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc,
Expr *ExecConfig,
bool AllowTypoCorrection=true,
bool CalleesAddressIsTaken=false);
bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
MultiExprArg Args, SourceLocation RParenLoc,
OverloadCandidateSet *CandidateSet,
ExprResult *Result);
ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc NNSLoc,
DeclarationNameInfo DNI,
const UnresolvedSetImpl &Fns,
bool PerformADL = true);
ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
UnaryOperatorKind Opc,
const UnresolvedSetImpl &Fns,
Expr *input, bool RequiresADL = true);
void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
OverloadedOperatorKind Op,
const UnresolvedSetImpl &Fns,
ArrayRef<Expr *> Args, bool RequiresADL = true);
ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
BinaryOperatorKind Opc,
const UnresolvedSetImpl &Fns,
Expr *LHS, Expr *RHS,
bool RequiresADL = true,
bool AllowRewrittenCandidates = true,
FunctionDecl *DefaultedFn = nullptr);
ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
const UnresolvedSetImpl &Fns,
Expr *LHS, Expr *RHS,
FunctionDecl *DefaultedFn);
ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
SourceLocation RLoc, Expr *Base,
MultiExprArg Args);
ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc,
Expr *ExecConfig = nullptr,
bool IsExecConfig = false,
bool AllowRecovery = false);
ExprResult
BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc);
ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
bool *NoArrowOperatorFound = nullptr);
/// CheckCallReturnType - Checks that a call expression's return type is
/// complete. Returns true on failure. The location passed in is the location
/// that best represents the call.
bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
CallExpr *CE, FunctionDecl *FD);
/// Helpers for dealing with blocks and functions.
bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
bool CheckParameterNames);
void CheckCXXDefaultArguments(FunctionDecl *FD);
void CheckExtraCXXDefaultArguments(Declarator &D);
Scope *getNonFieldDeclScope(Scope *S);
/// \name Name lookup
///
/// These routines provide name lookup that is used during semantic
/// analysis to resolve the various kinds of names (identifiers,
/// overloaded operator names, constructor names, etc.) into zero or
/// more declarations within a particular scope. The major entry
/// points are LookupName, which performs unqualified name lookup,
/// and LookupQualifiedName, which performs qualified name lookup.
///
/// All name lookup is performed based on some specific criteria,
/// which specify what names will be visible to name lookup and how
/// far name lookup should work. These criteria are important both
/// for capturing language semantics (certain lookups will ignore
/// certain names, for example) and for performance, since name
/// lookup is often a bottleneck in the compilation of C++. Name
/// lookup criteria is specified via the LookupCriteria enumeration.
///
/// The results of name lookup can vary based on the kind of name
/// lookup performed, the current language, and the translation
/// unit. In C, for example, name lookup will either return nothing
/// (no entity found) or a single declaration. In C++, name lookup
/// can additionally refer to a set of overloaded functions or
/// result in an ambiguity. All of the possible results of name
/// lookup are captured by the LookupResult class, which provides
/// the ability to distinguish among them.
//@{
/// Describes the kind of name lookup to perform.
enum LookupNameKind {
/// Ordinary name lookup, which finds ordinary names (functions,
/// variables, typedefs, etc.) in C and most kinds of names
/// (functions, variables, members, types, etc.) in C++.
LookupOrdinaryName = 0,
/// Tag name lookup, which finds the names of enums, classes,
/// structs, and unions.
LookupTagName,
/// Label name lookup.
LookupLabel,
/// Member name lookup, which finds the names of
/// class/struct/union members.
LookupMemberName,
/// Look up of an operator name (e.g., operator+) for use with
/// operator overloading. This lookup is similar to ordinary name
/// lookup, but will ignore any declarations that are class members.
LookupOperatorName,
/// Look up a name following ~ in a destructor name. This is an ordinary
/// lookup, but prefers tags to typedefs.
LookupDestructorName,
/// Look up of a name that precedes the '::' scope resolution
/// operator in C++. This lookup completely ignores operator, object,
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
LookupNestedNameSpecifierName,
/// Look up a namespace name within a C++ using directive or
/// namespace alias definition, ignoring non-namespace names (C++
/// [basic.lookup.udir]p1).
LookupNamespaceName,
/// Look up all declarations in a scope with the given name,
/// including resolved using declarations. This is appropriate
/// for checking redeclarations for a using declaration.
LookupUsingDeclName,
/// Look up an ordinary name that is going to be redeclared as a
/// name with linkage. This lookup ignores any declarations that
/// are outside of the current scope unless they have linkage. See
/// C99 6.2.2p4-5 and C++ [basic.link]p6.
LookupRedeclarationWithLinkage,
/// Look up a friend of a local class. This lookup does not look
/// outside the innermost non-class scope. See C++11 [class.friend]p11.
LookupLocalFriendName,
/// Look up the name of an Objective-C protocol.
LookupObjCProtocolName,
/// Look up implicit 'self' parameter of an objective-c method.
LookupObjCImplicitSelfParam,
/// Look up the name of an OpenMP user-defined reduction operation.
LookupOMPReductionName,
/// Look up the name of an OpenMP user-defined mapper.
LookupOMPMapperName,
/// Look up any declaration with any name.
LookupAnyName
};
/// Specifies whether (or how) name lookup is being performed for a
/// redeclaration (vs. a reference).
enum RedeclarationKind {
/// The lookup is a reference to this name that is not for the
/// purpose of redeclaring the name.
NotForRedeclaration = 0,
/// The lookup results will be used for redeclaration of a name,
/// if an entity by that name already exists and is visible.
ForVisibleRedeclaration,
/// The lookup results will be used for redeclaration of a name
/// with external linkage; non-visible lookup results with external linkage
/// may also be found.
ForExternalRedeclaration
};
RedeclarationKind forRedeclarationInCurContext() {
// A declaration with an owning module for linkage can never link against
// anything that is not visible. We don't need to check linkage here; if
// the context has internal linkage, redeclaration lookup won't find things
// from other TUs, and we can't safely compute linkage yet in general.
if (cast<Decl>(CurContext)
->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
return ForVisibleRedeclaration;
return ForExternalRedeclaration;
}
/// The possible outcomes of name lookup for a literal operator.
enum LiteralOperatorLookupResult {
/// The lookup resulted in an error.
LOLR_Error,
/// The lookup found no match but no diagnostic was issued.
LOLR_ErrorNoDiagnostic,
/// The lookup found a single 'cooked' literal operator, which
/// expects a normal literal to be built and passed to it.
LOLR_Cooked,
/// The lookup found a single 'raw' literal operator, which expects
/// a string literal containing the spelling of the literal token.
LOLR_Raw,
/// The lookup found an overload set of literal operator templates,
/// which expect the characters of the spelling of the literal token to be
/// passed as a non-type template argument pack.
LOLR_Template,
/// The lookup found an overload set of literal operator templates,
/// which expect the character type and characters of the spelling of the
/// string literal token to be passed as template arguments.
LOLR_StringTemplatePack,
};
SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
CXXSpecialMember SM,
bool ConstArg,
bool VolatileArg,
bool RValueThis,
bool ConstThis,
bool VolatileThis);
typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
TypoRecoveryCallback;
private:
bool CppLookupName(LookupResult &R, Scope *S);
struct TypoExprState {
std::unique_ptr<TypoCorrectionConsumer> Consumer;
TypoDiagnosticGenerator DiagHandler;
TypoRecoveryCallback RecoveryHandler;
TypoExprState();
TypoExprState(TypoExprState &&other) noexcept;
TypoExprState &operator=(TypoExprState &&other) noexcept;
};
/// The set of unhandled TypoExprs and their associated state.
llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
/// Creates a new TypoExpr AST node.
TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
TypoDiagnosticGenerator TDG,
TypoRecoveryCallback TRC, SourceLocation TypoLoc);
// The set of known/encountered (unique, canonicalized) NamespaceDecls.
//
// The boolean value will be true to indicate that the namespace was loaded
// from an AST/PCH file, or false otherwise.
llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
/// Whether we have already loaded known namespaces from an extenal
/// source.
bool LoadedExternalKnownNamespaces;
/// Helper for CorrectTypo and CorrectTypoDelayed used to create and
/// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
/// should be skipped entirely.
std::unique_ptr<TypoCorrectionConsumer>
makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind, Scope *S,
CXXScopeSpec *SS,
CorrectionCandidateCallback &CCC,
DeclContext *MemberContext, bool EnteringContext,
const ObjCObjectPointerType *OPT,
bool ErrorRecovery);
public:
const TypoExprState &getTypoExprState(TypoExpr *TE) const;
/// Clears the state of the given TypoExpr.
void clearDelayedTypo(TypoExpr *TE);
/// Look up a name, looking for a single declaration. Return
/// null if the results were absent, ambiguous, or overloaded.
///
/// It is preferable to use the elaborated form and explicitly handle
/// ambiguity and overloaded.
NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
SourceLocation Loc,
LookupNameKind NameKind,
RedeclarationKind Redecl
= NotForRedeclaration);
bool LookupBuiltin(LookupResult &R);
void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false,
bool ForceNoCPlusPlus = false);
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
bool InUnqualifiedLookup = false);
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
CXXScopeSpec &SS);
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
bool AllowBuiltinCreation = false,
bool EnteringContext = false);
ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
RedeclarationKind Redecl
= NotForRedeclaration);
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
UnresolvedSetImpl &Functions);
LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
SourceLocation GnuLabelLoc = SourceLocation());
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
unsigned Quals);
CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
bool RValueThis, unsigned ThisQuals);
CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
unsigned Quals);
CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
bool RValueThis, unsigned ThisQuals);
CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
bool IsUDSuffix);
LiteralOperatorLookupResult
LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
bool AllowRaw, bool AllowTemplate,
bool AllowStringTemplate, bool DiagnoseMissing,
StringLiteral *StringLit = nullptr);
bool isKnownName(StringRef name);
/// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
enum class FunctionEmissionStatus {
Emitted,
CUDADiscarded, // Discarded due to CUDA/HIP hostness
OMPDiscarded, // Discarded due to OpenMP hostness
TemplateDiscarded, // Discarded due to uninstantiated templates
Unknown,
};
FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
bool Final = false);
// Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
ArrayRef<Expr *> Args, ADLResult &Functions);
void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true,
bool LoadExternal = true);
void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
VisibleDeclConsumer &Consumer,
bool IncludeGlobalScope = true,
bool IncludeDependentBases = false,
bool LoadExternal = true);
enum CorrectTypoKind {
CTK_NonError, // CorrectTypo used in a non error recovery situation.
CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
};
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind,
Scope *S, CXXScopeSpec *SS,
CorrectionCandidateCallback &CCC,
CorrectTypoKind Mode,
DeclContext *MemberContext = nullptr,
bool EnteringContext = false,
const ObjCObjectPointerType *OPT = nullptr,
bool RecordFailure = true);
TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
Sema::LookupNameKind LookupKind, Scope *S,
CXXScopeSpec *SS,
CorrectionCandidateCallback &CCC,
TypoDiagnosticGenerator TDG,
TypoRecoveryCallback TRC, CorrectTypoKind Mode,
DeclContext *MemberContext = nullptr,
bool EnteringContext = false,
const ObjCObjectPointerType *OPT = nullptr);
/// Process any TypoExprs in the given Expr and its children,
/// generating diagnostics as appropriate and returning a new Expr if there
/// were typos that were all successfully corrected and ExprError if one or
/// more typos could not be corrected.
///
/// \param E The Expr to check for TypoExprs.
///
/// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
/// initializer.
///
/// \param RecoverUncorrectedTypos If true, when typo correction fails, it
/// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
///
/// \param Filter A function applied to a newly rebuilt Expr to determine if
/// it is an acceptable/usable result from a single combination of typo
/// corrections. As long as the filter returns ExprError, different
/// combinations of corrections will be tried until all are exhausted.
ExprResult CorrectDelayedTyposInExpr(
Expr *E, VarDecl *InitDecl = nullptr,
bool RecoverUncorrectedTypos = false,
llvm::function_ref<ExprResult(Expr *)> Filter =
[](Expr *E) -> ExprResult { return E; });
ExprResult CorrectDelayedTyposInExpr(
ExprResult ER, VarDecl *InitDecl = nullptr,
bool RecoverUncorrectedTypos = false,
llvm::function_ref<ExprResult(Expr *)> Filter =
[](Expr *E) -> ExprResult { return E; }) {
return ER.isInvalid()
? ER
: CorrectDelayedTyposInExpr(ER.get(), InitDecl,
RecoverUncorrectedTypos, Filter);
}
void diagnoseTypo(const TypoCorrection &Correction,
const PartialDiagnostic &TypoDiag,
bool ErrorRecovery = true);
void diagnoseTypo(const TypoCorrection &Correction,
const PartialDiagnostic &TypoDiag,
const PartialDiagnostic &PrevNote,
bool ErrorRecovery = true);
void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
ArrayRef<Expr *> Args,
AssociatedNamespaceSet &AssociatedNamespaces,
AssociatedClassSet &AssociatedClasses);
void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
bool ConsiderLinkage, bool AllowInlineNamespace);
bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
bool CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old);
bool CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old);
bool IsRedefinitionInModule(const NamedDecl *New,
const NamedDecl *Old) const;
void DiagnoseAmbiguousLookup(LookupResult &Result);
//@}
/// Attempts to produce a RecoveryExpr after some AST node cannot be created.
ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
ArrayRef<Expr *> SubExprs,
QualType T = QualType());
ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
SourceLocation IdLoc,
bool TypoCorrection = false);
FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
SourceLocation Loc);
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
Scope *S, bool ForRedeclaration,
SourceLocation Loc);
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
FunctionDecl *FD);
void AddKnownFunctionAttributes(FunctionDecl *FD);
// More parsing and symbol table subroutines.
void ProcessPragmaWeak(Scope *S, Decl *D);
// Decl attributes - this routine is the top level dispatcher.
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
// Helper for delayed processing of attributes.
void ProcessDeclAttributeDelayed(Decl *D,
const ParsedAttributesView &AttrList);
// Options for ProcessDeclAttributeList().
struct ProcessDeclAttributeOptions {
ProcessDeclAttributeOptions()
: IncludeCXX11Attributes(true), IgnoreTypeAttributes(false) {}
ProcessDeclAttributeOptions WithIncludeCXX11Attributes(bool Val) {
ProcessDeclAttributeOptions Result = *this;
Result.IncludeCXX11Attributes = Val;
return Result;
}
ProcessDeclAttributeOptions WithIgnoreTypeAttributes(bool Val) {
ProcessDeclAttributeOptions Result = *this;
Result.IgnoreTypeAttributes = Val;
return Result;
}
// Should C++11 attributes be processed?
bool IncludeCXX11Attributes;
// Should any type attributes encountered be ignored?
// If this option is false, a diagnostic will be emitted for any type
// attributes of a kind that does not "slide" from the declaration to
// the decl-specifier-seq.
bool IgnoreTypeAttributes;
};
void ProcessDeclAttributeList(Scope *S, Decl *D,
const ParsedAttributesView &AttrList,
const ProcessDeclAttributeOptions &Options =
ProcessDeclAttributeOptions());
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
const ParsedAttributesView &AttrList);
void checkUnusedDeclAttributes(Declarator &D);
/// Handles semantic checking for features that are common to all attributes,
/// such as checking whether a parameter was properly specified, or the
/// correct number of arguments were passed, etc. Returns true if the
/// attribute has been diagnosed.
bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A,
bool SkipArgCountCheck = false);
bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A,
bool SkipArgCountCheck = false);
/// Determine if type T is a valid subject for a nonnull and similar
/// attributes. By default, we look through references (the behavior used by
/// nonnull), but if the second parameter is true, then we treat a reference
/// type as valid.
bool isValidPointerAttrType(QualType T, bool RefOkay = false);
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
const FunctionDecl *FD = nullptr);
bool CheckAttrTarget(const ParsedAttr &CurrAttr);
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI,
const Expr *E, StringRef &Str,
SourceLocation *ArgLocation = nullptr);
bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
StringRef &Str,
SourceLocation *ArgLocation = nullptr);
llvm::Error isValidSectionSpecifier(StringRef Str);
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
bool checkTargetVersionAttr(SourceLocation LiteralLoc, StringRef &Str,
bool &isDefault);
bool
checkTargetClonesAttrString(SourceLocation LiteralLoc, StringRef Str,
const StringLiteral *Literal, bool &HasDefault,
bool &HasCommas, bool &HasNotDefault,
SmallVectorImpl<SmallString<64>> &StringsBuffer);
bool checkMSInheritanceAttrOnDefinition(
CXXRecordDecl *RD, SourceRange Range, bool BestCase,
MSInheritanceModel SemanticSpelling);
void CheckAlignasUnderalignment(Decl *D);
/// Adjust the calling convention of a method to be the ABI default if it
/// wasn't specified explicitly. This handles method types formed from
/// function type typedefs and typename template arguments.
void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
SourceLocation Loc);
// Check if there is an explicit attribute, but only look through parens.
// The intent is to look for an attribute on the current declarator, but not
// one that came from a typedef.
bool hasExplicitCallingConv(QualType T);
/// Get the outermost AttributedType node that sets a calling convention.
/// Valid types should not have multiple attributes with different CCs.
const AttributedType *getCallingConvAttributedType(QualType T) const;
/// Process the attributes before creating an attributed statement. Returns
/// the semantic attributes that have been processed.
void ProcessStmtAttributes(Stmt *Stmt, const ParsedAttributes &InAttrs,
SmallVectorImpl<const Attr *> &OutAttrs);
void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl);
void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
ObjCMethodDecl *Overridden,
bool IsProtocolMethodDecl);
/// WarnExactTypedMethods - This routine issues a warning if method
/// implementation declaration matches exactly that of its declaration.
void WarnExactTypedMethods(ObjCMethodDecl *Method,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl);
typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
/// CheckImplementationIvars - This routine checks if the instance variables
/// listed in the implelementation match those listed in the interface.
void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **Fields, unsigned nIvars,
SourceLocation Loc);
/// ImplMethodsVsClassMethods - This is main routine to warn if any method
/// remains unimplemented in the class or category \@implementation.
void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool IncompleteImpl = false);
/// DiagnoseUnimplementedProperties - This routine warns on those properties
/// which must be implemented by this implementation.
void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl *CDecl,
bool SynthesizeProperties);
/// Diagnose any null-resettable synthesized setters.
void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
/// DefaultSynthesizeProperties - This routine default synthesizes all
/// properties which must be synthesized in the class's \@implementation.
void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
ObjCInterfaceDecl *IDecl,
SourceLocation AtEnd);
void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
/// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
/// an ivar synthesized for 'Method' and 'Method' is a property accessor
/// declared in class 'IFace'.
bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
ObjCMethodDecl *Method, ObjCIvarDecl *IV);
/// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
/// backs the property is not used in the property's accessor.
void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
const ObjCImplementationDecl *ImplD);
/// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
/// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
/// It also returns ivar's property on success.
ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
const ObjCPropertyDecl *&PDecl) const;
/// Called by ActOnProperty to handle \@property declarations in
/// class extensions.
ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD,
Selector GetterSel,
SourceLocation GetterNameLoc,
Selector SetterSel,
SourceLocation SetterNameLoc,
const bool isReadWrite,
unsigned &Attributes,
const unsigned AttributesAsWritten,
QualType T,
TypeSourceInfo *TSI,
tok::ObjCKeywordKind MethodImplKind);
/// Called by ActOnProperty and HandlePropertyInClassExtension to
/// handle creating the ObjcPropertyDecl for a category or \@interface.
ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
ObjCContainerDecl *CDecl,
SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD,
Selector GetterSel,
SourceLocation GetterNameLoc,
Selector SetterSel,
SourceLocation SetterNameLoc,
const bool isReadWrite,
const unsigned Attributes,
const unsigned AttributesAsWritten,
QualType T,
TypeSourceInfo *TSI,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC = nullptr);
/// AtomicPropertySetterGetterRules - This routine enforces the rule (via
/// warning) when atomic property has one but not the other user-declared
/// setter or getter.
void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
ObjCInterfaceDecl* IDecl);
void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
void DiagnoseMissingDesignatedInitOverrides(
const ObjCImplementationDecl *ImplD,
const ObjCInterfaceDecl *IFD);
void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
enum MethodMatchStrategy {
MMS_loose,
MMS_strict
};
/// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
/// true, or false, accordingly.
bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
const ObjCMethodDecl *PrevMethod,
MethodMatchStrategy strategy = MMS_strict);
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
/// or protocol against those declared in their implementations.
void MatchAllMethodDeclarations(const SelectorSet &InsMap,
const SelectorSet &ClsMap,
SelectorSet &InsMapSeen,
SelectorSet &ClsMapSeen,
ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool &IncompleteImpl,
bool ImmediateClass,
bool WarnCategoryMethodImpl=false);
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
/// category matches with those implemented in its primary class and
/// warns each time an exact match is found.
void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
/// Add the given method to the list of globally-known methods.
void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
/// Returns default addr space for method qualifiers.
LangAS getDefaultCXXMethodAddrSpace() const;
private:
/// AddMethodToGlobalPool - Add an instance or factory method to the global
/// pool. See descriptoin of AddInstanceMethodToGlobalPool.
void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
/// LookupMethodInGlobalPool - Returns the instance or factory method and
/// optionally warns if there are multiple signatures.
ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass,
bool instance);
public:
/// - Returns instance or factory methods in global method pool for
/// given selector. It checks the desired kind first, if none is found, and
/// parameter checkTheOther is set, it then checks the other kind. If no such
/// method or only one method is found, function returns false; otherwise, it
/// returns true.
bool
CollectMultipleMethodsInGlobalPool(Selector Sel,
SmallVectorImpl<ObjCMethodDecl*>& Methods,
bool InstanceFirst, bool CheckTheOther,
const ObjCObjectType *TypeBound = nullptr);
bool
AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
SourceRange R, bool receiverIdOrClass,
SmallVectorImpl<ObjCMethodDecl*>& Methods);
void
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
Selector Sel, SourceRange R,
bool receiverIdOrClass);
private:
/// - Returns a selector which best matches given argument list or
/// nullptr if none could be found
ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
bool IsInstance,
SmallVectorImpl<ObjCMethodDecl*>& Methods);
/// Record the typo correction failure and return an empty correction.
TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
bool RecordFailure = true) {
if (RecordFailure)
TypoCorrectionFailures[Typo].insert(TypoLoc);
return TypoCorrection();
}
public:
/// AddInstanceMethodToGlobalPool - All instance methods in a translation
/// unit are added to a global pool. This allows us to efficiently associate
/// a selector with a method declaraation for purposes of typechecking
/// messages sent to "id" (where the class of the object is unknown).
void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
AddMethodToGlobalPool(Method, impl, /*instance*/true);
}
/// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
AddMethodToGlobalPool(Method, impl, /*instance*/false);
}
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
/// pool.
void AddAnyMethodToGlobalPool(Decl *D);
/// LookupInstanceMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass=false) {
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
/*instance*/true);
}
/// LookupFactoryMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass=false) {
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
/*instance*/false);
}
const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
QualType ObjectType=QualType());
/// LookupImplementedMethodInGlobalPool - Returns the method which has an
/// implementation.
ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
/// initialization.
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
SmallVectorImpl<ObjCIvarDecl*> &Ivars);
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks: SemaStmt.cpp.
public:
class FullExprArg {
public:
FullExprArg() : E(nullptr) { }
FullExprArg(Sema &actions) : E(nullptr) { }
ExprResult release() {
return E;
}
Expr *get() const { return E; }
Expr *operator->() {
return E;
}
private:
// FIXME: No need to make the entire Sema class a friend when it's just
// Sema::MakeFullExpr that needs access to the constructor below.
friend class Sema;
explicit FullExprArg(Expr *expr) : E(expr) {}
Expr *E;
};
FullExprArg MakeFullExpr(Expr *Arg) {
return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
}
FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
return FullExprArg(
ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
}
FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
ExprResult FE =
ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
/*DiscardedValue*/ true);
return FullExprArg(FE.get());
}
StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
StmtResult ActOnExprStmtError();
StmtResult ActOnNullStmt(SourceLocation SemiLoc,
bool HasLeadingEmptyMacro = false);
void ActOnStartOfCompoundStmt(bool IsStmtExpr);
void ActOnAfterCompoundStatementLeadingPragmas();
void ActOnFinishOfCompoundStmt();
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
ArrayRef<Stmt *> Elts, bool isStmtExpr);
/// A RAII object to enter scope of a compound statement.
class CompoundScopeRAII {
public:
CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
S.ActOnStartOfCompoundStmt(IsStmtExpr);
}
~CompoundScopeRAII() {
S.ActOnFinishOfCompoundStmt();
}
private:
Sema &S;
};
/// An RAII helper that pops function a function scope on exit.
struct FunctionScopeRAII {
Sema &S;
bool Active;
FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
~FunctionScopeRAII() {
if (Active)
S.PopFunctionScopeInfo();
}
void disable() { Active = false; }
};
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
SourceLocation StartLoc,
SourceLocation EndLoc);
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
StmtResult ActOnForEachLValueExpr(Expr *E);
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
SourceLocation DotDotDotLoc, ExprResult RHS,
SourceLocation ColonLoc);
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
Stmt *SubStmt, Scope *CurScope);
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
SourceLocation ColonLoc, Stmt *SubStmt);
StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
StmtResult ActOnAttributedStmt(const ParsedAttributes &AttrList,
Stmt *SubStmt);
class ConditionResult;
StmtResult ActOnIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
StmtResult BuildIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond,
SourceLocation RParenLoc);
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
Stmt *Switch, Stmt *Body);
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *Body);
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc, SourceLocation CondLParen,
Expr *Cond, SourceLocation CondRParen);
StmtResult ActOnForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
Stmt *First,
ConditionResult Second,
FullExprArg Third,
SourceLocation RParenLoc,
Stmt *Body);
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
Expr *collection);
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
Stmt *First, Expr *collection,
SourceLocation RParenLoc);
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
enum BuildForRangeKind {
/// Initial building of a for-range statement.
BFRK_Build,
/// Instantiation or recovery rebuild of a for-range statement. Don't
/// attempt any typo-correction.
BFRK_Rebuild,
/// Determining whether a for-range statement could be built. Avoid any
/// unnecessary or irreversible actions.
BFRK_Check
};
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
SourceLocation CoawaitLoc,
Stmt *InitStmt,
Stmt *LoopVar,
SourceLocation ColonLoc, Expr *Collection,
SourceLocation RParenLoc,
BuildForRangeKind Kind);
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
SourceLocation CoawaitLoc,
Stmt *InitStmt,
SourceLocation ColonLoc,
Stmt *RangeDecl, Stmt *Begin, Stmt *End,
Expr *Cond, Expr *Inc,
Stmt *LoopVarDecl,
SourceLocation RParenLoc,
BuildForRangeKind Kind);
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
LabelDecl *TheDecl);
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
Expr *DestExp);
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind, unsigned NumParams);
typedef std::pair<StringRef, QualType> CapturedParamNameType;
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind,
ArrayRef<CapturedParamNameType> Params,
unsigned OpenMPCaptureLevel = 0);
StmtResult ActOnCapturedRegionEnd(Stmt *S);
void ActOnCapturedRegionError();
RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
SourceLocation Loc,
unsigned NumParams);
struct NamedReturnInfo {
const VarDecl *Candidate;
enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
Status S;
bool isMoveEligible() const { return S != None; };
bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
};
enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
NamedReturnInfo getNamedReturnInfo(
Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
QualType ReturnType);
ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
const NamedReturnInfo &NRInfo, Expr *Value,
bool SupressSimplerImplicitMoves = false);
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
Scope *CurScope);
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
bool AllowRecovery = false);
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
NamedReturnInfo &NRInfo,
bool SupressSimplerImplicitMoves);
StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
bool IsVolatile, unsigned NumOutputs,
unsigned NumInputs, IdentifierInfo **Names,
MultiExprArg Constraints, MultiExprArg Exprs,
Expr *AsmString, MultiExprArg Clobbers,
unsigned NumLabels,
SourceLocation RParenLoc);
void FillInlineAsmIdentifierInfo(Expr *Res,
llvm::InlineAsmIdentifierInfo &Info);
ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Id,
bool IsUnevaluatedContext);
bool LookupInlineAsmField(StringRef Base, StringRef Member,
unsigned &Offset, SourceLocation AsmLoc);
ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
SourceLocation AsmLoc);
StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
ArrayRef<Token> AsmToks,
StringRef AsmString,
unsigned NumOutputs, unsigned NumInputs,
ArrayRef<StringRef> Constraints,
ArrayRef<StringRef> Clobbers,
ArrayRef<Expr*> Exprs,
SourceLocation EndLoc);
LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
SourceLocation Location,
bool AlwaysCreate);
VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
bool Invalid = false);
Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
Decl *Parm, Stmt *Body);
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
MultiStmtArg Catch, Stmt *Finally);
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
Scope *CurScope);
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
Expr *operand);
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
Expr *SynchExpr,
Stmt *SynchBody);
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
SourceLocation StartLoc,
SourceLocation IdLoc,
IdentifierInfo *Id);
Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
Decl *ExDecl, Stmt *HandlerBlock);
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
ArrayRef<Stmt *> Handlers);
StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
SourceLocation TryLoc, Stmt *TryBlock,
Stmt *Handler);
StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block);
void ActOnStartSEHFinallyBlock();
void ActOnAbortSEHFinallyBlock();
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
/// If it's a file scoped decl that must warn if not used, keep track
/// of it.
void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
typedef llvm::function_ref<void(SourceLocation Loc, PartialDiagnostic PD)>
DiagReceiverTy;
/// DiagnoseUnusedExprResult - If the statement passed in is an expression
/// whose result is unused, warn.
void DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID);
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
DiagReceiverTy DiagReceiver);
void DiagnoseUnusedDecl(const NamedDecl *ND);
void DiagnoseUnusedDecl(const NamedDecl *ND, DiagReceiverTy DiagReceiver);
/// If VD is set but not otherwise used, diagnose, for a parameter or a
/// variable.
void DiagnoseUnusedButSetDecl(const VarDecl *VD, DiagReceiverTy DiagReceiver);
/// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
/// statement as a \p Body, and it is located on the same line.
///
/// This helps prevent bugs due to typos, such as:
/// if (condition);
/// do_stuff();
void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
const Stmt *Body,
unsigned DiagID);
/// Warn if a for/while loop statement \p S, which is followed by
/// \p PossibleBody, has a suspicious null statement as a body.
void DiagnoseEmptyLoopBody(const Stmt *S,
const Stmt *PossibleBody);
/// Warn if a value is moved to itself.
void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
SourceLocation OpLoc);
/// Returns a field in a CXXRecordDecl that has the same name as the decl \p
/// SelfAssigned when inside a CXXMethodDecl.
const FieldDecl *
getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned);
/// Warn if we're implicitly casting from a _Nullable pointer type to a
/// _Nonnull one.
void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
SourceLocation Loc);
/// Warn when implicitly casting 0 to nullptr.
void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
return DelayedDiagnostics.push(pool);
}
void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
typedef ProcessingContextState ParsingClassState;
ParsingClassState PushParsingClass() {
ParsingClassDepth++;
return DelayedDiagnostics.pushUndelayed();
}
void PopParsingClass(ParsingClassState state) {
ParsingClassDepth--;
DelayedDiagnostics.popUndelayed(state);
}
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
const ObjCInterfaceDecl *UnknownObjCClass,
bool ObjCPropertyAccess,
bool AvoidPartialAvailabilityChecks = false,
ObjCInterfaceDecl *ClassReceiver = nullptr);
bool makeUnavailableInSystemHeader(SourceLocation loc,
UnavailableAttr::ImplicitReason reason);
/// Issue any -Wunguarded-availability warnings in \c FD
void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks: SemaExpr.cpp.
bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
// A version of DiagnoseUseOfDecl that should be used if overload resolution
// has been used to find this declaration, which means we don't have to bother
// checking the trailing requires clause.
bool DiagnoseUseOfOverloadedDecl(NamedDecl *D, SourceLocation Loc) {
return DiagnoseUseOfDecl(
D, Loc, /*UnknownObjCClass=*/nullptr, /*ObjCPropertyAccess=*/false,
/*AvoidPartialAvailabilityChecks=*/false, /*ClassReceiver=*/nullptr,
/*SkipTrailingRequiresClause=*/true);
}
bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
bool ObjCPropertyAccess = false,
bool AvoidPartialAvailabilityChecks = false,
ObjCInterfaceDecl *ClassReciever = nullptr,
bool SkipTrailingRequiresClause = false);
void NoteDeletedFunction(FunctionDecl *FD);
void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
ObjCMethodDecl *Getter,
SourceLocation Loc);
void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
ArrayRef<Expr *> Args);
void PushExpressionEvaluationContext(
ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
ExpressionEvaluationContextRecord::ExpressionKind Type =
ExpressionEvaluationContextRecord::EK_Other);
enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
void PushExpressionEvaluationContext(
ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
ExpressionEvaluationContextRecord::ExpressionKind Type =
ExpressionEvaluationContextRecord::EK_Other);
void PopExpressionEvaluationContext();
void DiscardCleanupsInEvaluationContext();
ExprResult TransformToPotentiallyEvaluated(Expr *E);
TypeSourceInfo *TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo);
ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
ExprResult CheckUnevaluatedOperand(Expr *E);
void CheckUnusedVolatileAssignment(Expr *E);
ExprResult ActOnConstantExpression(ExprResult Res);
// Functions for marking a declaration referenced. These functions also
// contain the relevant logic for marking if a reference to a function or
// variable is an odr-use (in the C++11 sense). There are separate variants
// for expressions referring to a decl; these exist because odr-use marking
// needs to be delayed for some constant variables when we build one of the
// named expressions.
//
// MightBeOdrUse indicates whether the use could possibly be an odr-use, and
// should usually be true. This only needs to be set to false if the lack of
// odr-use cannot be determined from the current context (for instance,
// because the name denotes a virtual function and was written without an
// explicit nested-name-specifier).
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
bool MightBeOdrUse = true);
void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
void MarkMemberReferenced(MemberExpr *E);
void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
void MarkCaptureUsedInEnclosingContext(ValueDecl *Capture, SourceLocation Loc,
unsigned CapturingScopeIndex);
ExprResult CheckLValueToRValueConversionOperand(Expr *E);
void CleanupVarDeclMarking();
enum TryCaptureKind {
TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
};
/// Try to capture the given variable.
///
/// \param Var The variable to capture.
///
/// \param Loc The location at which the capture occurs.
///
/// \param Kind The kind of capture, which may be implicit (for either a
/// block or a lambda), or explicit by-value or by-reference (for a lambda).
///
/// \param EllipsisLoc The location of the ellipsis, if one is provided in
/// an explicit lambda capture.
///
/// \param BuildAndDiagnose Whether we are actually supposed to add the
/// captures or diagnose errors. If false, this routine merely check whether
/// the capture can occur without performing the capture itself or complaining
/// if the variable cannot be captured.
///
/// \param CaptureType Will be set to the type of the field used to capture
/// this variable in the innermost block or lambda. Only valid when the
/// variable can be captured.
///
/// \param DeclRefType Will be set to the type of a reference to the capture
/// from within the current scope. Only valid when the variable can be
/// captured.
///
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
/// This is useful when enclosing lambdas must speculatively capture
/// variables that may or may not be used in certain specializations of
/// a nested generic lambda.
///
/// \returns true if an error occurred (i.e., the variable cannot be
/// captured) and false if the capture succeeded.
bool tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
TryCaptureKind Kind, SourceLocation EllipsisLoc,
bool BuildAndDiagnose, QualType &CaptureType,
QualType &DeclRefType,
const unsigned *const FunctionScopeIndexToStopAt);
/// Try to capture the given variable.
bool tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
TryCaptureKind Kind = TryCapture_Implicit,
SourceLocation EllipsisLoc = SourceLocation());
/// Checks if the variable must be captured.
bool NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc);
/// Given a variable, determine the type that a reference to that
/// variable will have in the given scope.
QualType getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc);
/// Mark all of the declarations referenced within a particular AST node as
/// referenced. Used when template instantiation instantiates a non-dependent
/// type -- entities referenced by the type are now referenced.
void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
void MarkDeclarationsReferencedInExpr(
Expr *E, bool SkipLocalVariables = false,
ArrayRef<const Expr *> StopAt = std::nullopt);
/// Try to recover by turning the given expression into a
/// call. Returns true if recovery was attempted or an error was
/// emitted; this may also leave the ExprResult invalid.
bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
bool ForceComplain = false,
bool (*IsPlausibleResult)(QualType) = nullptr);
/// Figure out if an expression could be turned into a call.
bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
UnresolvedSetImpl &NonTemplateOverloads);
/// Try to convert an expression \p E to type \p Ty. Returns the result of the
/// conversion.
ExprResult tryConvertExprToType(Expr *E, QualType Ty);
/// Conditionally issue a diagnostic based on the statements's reachability
/// analysis.
///
/// \param Stmts If Stmts is non-empty, delay reporting the diagnostic until
/// the function body is parsed, and then do a basic reachability analysis to
/// determine if the statement is reachable. If it is unreachable, the
/// diagnostic will not be emitted.
bool DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
const PartialDiagnostic &PD);
/// Conditionally issue a diagnostic based on the current
/// evaluation context.
///
/// \param Statement If Statement is non-null, delay reporting the
/// diagnostic until the function body is parsed, and then do a basic
/// reachability analysis to determine if the statement is reachable.
/// If it is unreachable, the diagnostic will not be emitted.
bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
const PartialDiagnostic &PD);
/// Similar, but diagnostic is only produced if all the specified statements
/// are reachable.
bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
const PartialDiagnostic &PD);
// Primary Expressions.
SourceRange getExprRange(Expr *E) const;
ExprResult ActOnIdExpression(
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
CorrectionCandidateCallback *CCC = nullptr,
bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
void DecomposeUnqualifiedId(const UnqualifiedId &Id,
TemplateArgumentListInfo &Buffer,
DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *&TemplateArgs);
bool DiagnoseDependentMemberLookup(LookupResult &R);
bool
DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CorrectionCandidateCallback &CCC,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
ArrayRef<Expr *> Args = std::nullopt,
TypoExpr **Out = nullptr);
DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
IdentifierInfo *II);
ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
IdentifierInfo *II,
bool AllowBuiltinCreation=false);
ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
bool isAddressOfOperand,
const TemplateArgumentListInfo *TemplateArgs);
/// If \p D cannot be odr-used in the current expression evaluation context,
/// return a reason explaining why. Otherwise, return NOUR_None.
NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
SourceLocation Loc,
const CXXScopeSpec *SS = nullptr);
DeclRefExpr *
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS = nullptr,
NamedDecl *FoundD = nullptr,
SourceLocation TemplateKWLoc = SourceLocation(),
const TemplateArgumentListInfo *TemplateArgs = nullptr);
DeclRefExpr *
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
NestedNameSpecifierLoc NNS,
NamedDecl *FoundD = nullptr,
SourceLocation TemplateKWLoc = SourceLocation(),
const TemplateArgumentListInfo *TemplateArgs = nullptr);
ExprResult
BuildAnonymousStructUnionMemberReference(
const CXXScopeSpec &SS,
SourceLocation nameLoc,
IndirectFieldDecl *indirectField,
DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
Expr *baseObjectExpr = nullptr,
SourceLocation opLoc = SourceLocation());
ExprResult BuildPossibleImplicitMemberExpr(
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
UnresolvedLookupExpr *AsULE = nullptr);
ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
bool IsDefiniteInstance,
const Scope *S);
bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
const LookupResult &R,
bool HasTrailingLParen);
ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
bool IsAddressOfOperand, const Scope *S,
TypeSourceInfo **RecoveryTSI = nullptr);
ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool NeedsADL,
bool AcceptInvalidDecl = false);
ExprResult BuildDeclarationNameExpr(
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr,
bool AcceptInvalidDecl = false);
ExprResult BuildLiteralOperatorCall(LookupResult &R,
DeclarationNameInfo &SuffixInfo,
ArrayRef<Expr *> Args,
SourceLocation LitEndLoc,
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
ExprResult BuildPredefinedExpr(SourceLocation Loc,
PredefinedExpr::IdentKind IK);
ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation LParen,
SourceLocation RParen,
TypeSourceInfo *TSI);
ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation LParen,
SourceLocation RParen,
ParsedType ParsedTy);
bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
ExprResult ActOnCharacterConstant(const Token &Tok,
Scope *UDLScope = nullptr);
ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
ExprResult ActOnParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val);
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
Scope *UDLScope = nullptr);
ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
ArrayRef<ParsedType> ArgTypes,
ArrayRef<Expr *> ArgExprs);
ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> Types,
ArrayRef<Expr *> Exprs);
// Binary/Unary Operators. 'Tok' is the token for the operator.
ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
Expr *InputExpr, bool IsAfterAmp = false);
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc,
Expr *Input, bool IsAfterAmp = false);
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
Expr *Input, bool IsAfterAmp = false);
bool isQualifiedMemberAccess(Expr *E);
QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
bool CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N);
ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R);
ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind);
ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
bool IsType, void *TyOrEx,
SourceRange ArgRange);
ExprResult CheckPlaceholderExpr(Expr *E);
bool CheckVecStepExpr(Expr *E);
bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
SourceRange ExprRange,
UnaryExprOrTypeTrait ExprKind);
ExprResult ActOnSizeofParameterPackExpr(Scope *S,
SourceLocation OpLoc,
IdentifierInfo &Name,
SourceLocation NameLoc,
SourceLocation RParenLoc);
ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input);
ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
MultiExprArg ArgExprs,
SourceLocation RLoc);
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc);
ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
Expr *ColumnIdx,
SourceLocation RBLoc);
ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLocFirst,
SourceLocation ColonLocSecond,
Expr *Length, Expr *Stride,
SourceLocation RBLoc);
ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
SourceLocation RParenLoc,
ArrayRef<Expr *> Dims,
ArrayRef<SourceRange> Brackets);
/// Data structure for iterator expression.
struct OMPIteratorData {
IdentifierInfo *DeclIdent = nullptr;
SourceLocation DeclIdentLoc;
ParsedType Type;
OMPIteratorExpr::IteratorRange Range;
SourceLocation AssignLoc;
SourceLocation ColonLoc;
SourceLocation SecColonLoc;
};
ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
SourceLocation LLoc, SourceLocation RLoc,
ArrayRef<OMPIteratorData> Data);
// This struct is for use by ActOnMemberAccess to allow
// BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
// changing the access operator from a '.' to a '->' (to see if that is the
// change needed to fix an error about an unknown member, e.g. when the class
// defines a custom operator->).
struct ActOnMemberAccessExtraArgs {
Scope *S;
UnqualifiedId &Id;
Decl *ObjCImpDecl;
};
ExprResult BuildMemberReferenceExpr(
Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
const Scope *S,
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
ExprResult
BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
bool IsArrow, const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope, LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
const Scope *S,
bool SuppressQualifierCheck = false,
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
SourceLocation OpLoc,
const CXXScopeSpec &SS, FieldDecl *Field,
DeclAccessPair FoundDecl,
const DeclarationNameInfo &MemberNameInfo);
ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
const CXXScopeSpec &SS,
const LookupResult &R);
ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
bool IsArrow, SourceLocation OpLoc,
const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
UnqualifiedId &Member,
Decl *ObjCImpDecl);
MemberExpr *
BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
ValueDecl *Member, DeclAccessPair FoundDecl,
bool HadMultipleCandidates,
const DeclarationNameInfo &MemberNameInfo, QualType Ty,
ExprValueKind VK, ExprObjectKind OK,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
MemberExpr *
BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
ValueDecl *Member, DeclAccessPair FoundDecl,
bool HadMultipleCandidates,
const DeclarationNameInfo &MemberNameInfo, QualType Ty,
ExprValueKind VK, ExprObjectKind OK,
const TemplateArgumentListInfo *TemplateArgs = nullptr);
void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
ArrayRef<Expr *> Args,
SourceLocation RParenLoc,
bool ExecConfig = false);
void CheckStaticArrayArgument(SourceLocation CallLoc,
ParmVarDecl *Param,
const Expr *ArgExpr);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig = nullptr);
ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig = nullptr,
bool IsExecConfig = false,
bool AllowRecovery = false);
Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
MultiExprArg CallArgs);
enum class AtomicArgumentOrder { API, AST };
ExprResult
BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
SourceLocation RParenLoc, MultiExprArg Args,
AtomicExpr::AtomicOp Op,
AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
ExprResult
BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
Expr *Config = nullptr, bool IsExecConfig = false,
ADLCallKind UsesADL = ADLCallKind::NotADL);
ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
MultiExprArg ExecConfig,
SourceLocation GGGLoc);
ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
Declarator &D, ParsedType &Ty,
SourceLocation RParenLoc, Expr *CastExpr);
ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
TypeSourceInfo *Ty,
SourceLocation RParenLoc,
Expr *Op);
CastKind PrepareScalarCast(ExprResult &src, QualType destType);
/// Build an altivec or OpenCL literal.
ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
SourceLocation RParenLoc, Expr *E,
TypeSourceInfo *TInfo);
ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
ParsedType Ty,
SourceLocation RParenLoc,
Expr *InitExpr);
ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *LiteralExpr);
ExprResult ActOnInitList(SourceLocation LBraceLoc,
MultiExprArg InitArgList,
SourceLocation RBraceLoc);
ExprResult BuildInitList(SourceLocation LBraceLoc,
MultiExprArg InitArgList,
SourceLocation RBraceLoc);
ExprResult ActOnDesignatedInitializer(Designation &Desig,
SourceLocation EqualOrColonLoc,
bool GNUSyntax,
ExprResult Init);
private:
static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
public:
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
Expr *LHSExpr, Expr *RHSExpr);
void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
UnresolvedSetImpl &Functions);
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
LabelDecl *TheDecl);
void ActOnStartStmtExpr();
ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc);
ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc, unsigned TemplateDepth);
// Handle the final expression in a statement expression.
ExprResult ActOnStmtExprResult(ExprResult E);
void ActOnStmtExprError();
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
struct OffsetOfComponent {
SourceLocation LocStart, LocEnd;
bool isBrackets; // true if [expr], false if .ident
union {
IdentifierInfo *IdentInfo;
Expr *E;
} U;
};
/// __builtin_offsetof(type, a.b[123][456].c)
ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc);
ExprResult ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
ParsedType ParsedArgTy,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
Expr *CondExpr, Expr *LHSExpr,
Expr *RHSExpr, SourceLocation RPLoc);
// __builtin_va_arg(expr, type)
ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
SourceLocation RPLoc);
ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
TypeSourceInfo *TInfo, SourceLocation RPLoc);
// __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
// __builtin_COLUMN(), __builtin_source_location()
ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
SourceLocation BuiltinLoc,
SourceLocation RPLoc);
// Build a potentially resolved SourceLocExpr.
ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
QualType ResultTy, SourceLocation BuiltinLoc,
SourceLocation RPLoc,
DeclContext *ParentContext);
// __null
ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
bool CheckCaseExpression(Expr *E);
/// Describes the result of an "if-exists" condition check.
enum IfExistsResult {
/// The symbol exists.
IER_Exists,
/// The symbol does not exist.
IER_DoesNotExist,
/// The name is a dependent name, so the results will differ
/// from one instantiation to the next.
IER_Dependent,
/// An error occurred.
IER_Error
};
IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
const DeclarationNameInfo &TargetNameInfo);
IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
bool IsIfExists, CXXScopeSpec &SS,
UnqualifiedId &Name);
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
Stmt *Nested);
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
CXXScopeSpec &SS, UnqualifiedId &Name,
Stmt *Nested);
//===------------------------- "Block" Extension ------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is
/// started.
void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockArguments - This callback allows processing of block arguments.
/// If there are no arguments, this is still invoked.
void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
Scope *CurScope);
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
Scope *CurScope);
//===---------------------------- Clang Extensions ----------------------===//
/// __builtin_convertvector(...)
ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
//===---------------------------- OpenCL Features -----------------------===//
/// __builtin_astype(...)
ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
//===---------------------------- HLSL Features -------------------------===//
Decl *ActOnStartHLSLBuffer(Scope *BufferScope, bool CBuffer,
SourceLocation KwLoc, IdentifierInfo *Ident,
SourceLocation IdentLoc, SourceLocation LBrace);
void ActOnFinishHLSLBuffer(Decl *Dcl, SourceLocation RBrace);
//===---------------------------- C++ Features --------------------------===//
// Act on C++ namespaces
Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
SourceLocation NamespaceLoc,
SourceLocation IdentLoc, IdentifierInfo *Ident,
SourceLocation LBrace,
const ParsedAttributesView &AttrList,
UsingDirectiveDecl *&UsingDecl, bool IsNested);
void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
NamespaceDecl *getStdNamespace() const;
NamespaceDecl *getOrCreateStdNamespace();
NamespaceDecl *lookupStdExperimentalNamespace();
NamespaceDecl *getCachedCoroNamespace() { return CoroTraitsNamespaceCache; }
CXXRecordDecl *getStdBadAlloc() const;
EnumDecl *getStdAlignValT() const;
private:
// A cache representing if we've fully checked the various comparison category
// types stored in ASTContext. The bit-index corresponds to the integer value
// of a ComparisonCategoryType enumerator.
llvm::SmallBitVector FullyCheckedComparisonCategories;
ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
CXXScopeSpec &SS,
ParsedType TemplateTypeTy,
IdentifierInfo *MemberOrBase);
public:
enum class ComparisonCategoryUsage {
/// The '<=>' operator was used in an expression and a builtin operator
/// was selected.
OperatorInExpression,
/// A defaulted 'operator<=>' needed the comparison category. This
/// typically only applies to 'std::strong_ordering', due to the implicit
/// fallback return value.
DefaultedOperator,
};
/// Lookup the specified comparison category types in the standard
/// library, an check the VarDecls possibly returned by the operator<=>
/// builtins for that type.
///
/// \return The type of the comparison category type corresponding to the
/// specified Kind, or a null type if an error occurs
QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
SourceLocation Loc,
ComparisonCategoryUsage Usage);
/// Tests whether Ty is an instance of std::initializer_list and, if
/// it is and Element is not NULL, assigns the element type to Element.
bool isStdInitializerList(QualType Ty, QualType *Element);
/// Looks for the std::initializer_list template and instantiates it
/// with Element, or emits an error if it's not found.
///
/// \returns The instantiated template, or null on error.
QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
/// Determine whether Ctor is an initializer-list constructor, as
/// defined in [dcl.init.list]p2.
bool isInitListConstructor(const FunctionDecl *Ctor);
Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
SourceLocation NamespcLoc, CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
const ParsedAttributesView &AttrList);
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
Decl *ActOnNamespaceAliasDef(Scope *CurScope,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *Ident);
void FilterUsingLookup(Scope *S, LookupResult &lookup);
void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
const LookupResult &PreviousDecls,
UsingShadowDecl *&PrevShadow);
UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
NamedDecl *Target,
UsingShadowDecl *PrevDecl);
bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
bool HasTypenameKeyword,
const CXXScopeSpec &SS,
SourceLocation NameLoc,
const LookupResult &Previous);
bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
SourceLocation NameLoc,
const LookupResult *R = nullptr,
const UsingDecl *UD = nullptr);
NamedDecl *BuildUsingDeclaration(
Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
const ParsedAttributesView &AttrList, bool IsInstantiation,
bool IsUsingIfExists);
NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
SourceLocation UsingLoc,
SourceLocation EnumLoc,
SourceLocation NameLoc,
TypeSourceInfo *EnumType, EnumDecl *ED);
NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> Expansions);
bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
/// Given a derived-class using shadow declaration for a constructor and the
/// correspnding base class constructor, find or create the implicit
/// synthesized derived class constructor to use for this initialization.
CXXConstructorDecl *
findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
ConstructorUsingShadowDecl *DerivedShadow);
Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
SourceLocation UsingLoc,
SourceLocation TypenameLoc, CXXScopeSpec &SS,
UnqualifiedId &Name, SourceLocation EllipsisLoc,
const ParsedAttributesView &AttrList);
Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
SourceLocation UsingLoc,
SourceLocation EnumLoc,
SourceLocation IdentLoc, IdentifierInfo &II,
CXXScopeSpec *SS = nullptr);
Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
MultiTemplateParamsArg TemplateParams,
SourceLocation UsingLoc, UnqualifiedId &Name,
const ParsedAttributesView &AttrList,
TypeResult Type, Decl *DeclFromDeclSpec);
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
/// including handling of its default argument expressions.
///
/// \param ConstructKind - a CXXConstructExpr::ConstructionKind
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
NamedDecl *FoundDecl,
CXXConstructorDecl *Constructor, MultiExprArg Exprs,
bool HadMultipleCandidates, bool IsListInitialization,
bool IsStdInitListInitialization,
bool RequiresZeroInit, unsigned ConstructKind,
SourceRange ParenRange);
/// Build a CXXConstructExpr whose constructor has already been resolved if
/// it denotes an inherited constructor.
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
CXXConstructorDecl *Constructor, bool Elidable,
MultiExprArg Exprs,
bool HadMultipleCandidates, bool IsListInitialization,
bool IsStdInitListInitialization,
bool RequiresZeroInit, unsigned ConstructKind,
SourceRange ParenRange);
// FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
// the constructor can be elidable?
ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
NamedDecl *FoundDecl,
CXXConstructorDecl *Constructor, bool Elidable,
MultiExprArg Exprs, bool HadMultipleCandidates,
bool IsListInitialization,
bool IsStdInitListInitialization, bool RequiresZeroInit,
unsigned ConstructKind, SourceRange ParenRange);
ExprResult ConvertMemberDefaultInitExpression(FieldDecl *FD, Expr *InitExpr,
SourceLocation InitLoc);
ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
/// Instantiate or parse a C++ default argument expression as necessary.
/// Return true on error.
bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
ParmVarDecl *Param, Expr *Init = nullptr,
bool SkipImmediateInvocations = true);
/// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
/// the default expr if needed.
ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
ParmVarDecl *Param, Expr *Init = nullptr);
/// FinalizeVarWithDestructor - Prepare for calling destructor on the
/// constructed variable.
void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
/// Helper class that collects exception specifications for
/// implicitly-declared special member functions.
class ImplicitExceptionSpecification {
// Pointer to allow copying
Sema *Self;
// We order exception specifications thus:
// noexcept is the most restrictive, but is only used in C++11.
// throw() comes next.
// Then a throw(collected exceptions)
// Finally no specification, which is expressed as noexcept(false).
// throw(...) is used instead if any called function uses it.
ExceptionSpecificationType ComputedEST;
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
SmallVector<QualType, 4> Exceptions;
void ClearExceptions() {
ExceptionsSeen.clear();
Exceptions.clear();
}
public:
explicit ImplicitExceptionSpecification(Sema &Self)
: Self(&Self), ComputedEST(EST_BasicNoexcept) {
if (!Self.getLangOpts().CPlusPlus11)
ComputedEST = EST_DynamicNone;
}
/// Get the computed exception specification type.
ExceptionSpecificationType getExceptionSpecType() const {
assert(!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result");
return ComputedEST;
}
/// The number of exceptions in the exception specification.
unsigned size() const { return Exceptions.size(); }
/// The set of exceptions in the exception specification.
const QualType *data() const { return Exceptions.data(); }
/// Integrate another called method into the collected data.
void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
/// Integrate an invoked expression into the collected data.
void CalledExpr(Expr *E) { CalledStmt(E); }
/// Integrate an invoked statement into the collected data.
void CalledStmt(Stmt *S);
/// Overwrite an EPI's exception specification with this
/// computed exception specification.
FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
FunctionProtoType::ExceptionSpecInfo ESI;
ESI.Type = getExceptionSpecType();
if (ESI.Type == EST_Dynamic) {
ESI.Exceptions = Exceptions;
} else if (ESI.Type == EST_None) {
/// C++11 [except.spec]p14:
/// The exception-specification is noexcept(false) if the set of
/// potential exceptions of the special member function contains "any"
ESI.Type = EST_NoexceptFalse;
ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
tok::kw_false).get();
}
return ESI;
}
};
/// Evaluate the implicit exception specification for a defaulted
/// special member function.
void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
/// Check the given noexcept-specifier, convert its expression, and compute
/// the appropriate ExceptionSpecificationType.
ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr,
ExceptionSpecificationType &EST);
/// Check the given exception-specification and update the
/// exception specification information with the results.
void checkExceptionSpecification(bool IsTopLevel,
ExceptionSpecificationType EST,
ArrayRef<ParsedType> DynamicExceptions,
ArrayRef<SourceRange> DynamicExceptionRanges,
Expr *NoexceptExpr,
SmallVectorImpl<QualType> &Exceptions,
FunctionProtoType::ExceptionSpecInfo &ESI);
/// Determine if we're in a case where we need to (incorrectly) eagerly
/// parse an exception specification to work around a libstdc++ bug.
bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
/// Add an exception-specification to the given member function
/// (or member function template). The exception-specification was parsed
/// after the method itself was declared.
void actOnDelayedExceptionSpecification(Decl *Method,
ExceptionSpecificationType EST,
SourceRange SpecificationRange,
ArrayRef<ParsedType> DynamicExceptions,
ArrayRef<SourceRange> DynamicExceptionRanges,
Expr *NoexceptExpr);
class InheritedConstructorInfo;
/// Determine if a special member function should have a deleted
/// definition when it is defaulted.
bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
InheritedConstructorInfo *ICI = nullptr,
bool Diagnose = false);
/// Produce notes explaining why a defaulted function was defined as deleted.
void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
/// Declare the implicit default constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// default constructor will be added.
///
/// \returns The implicitly-declared default constructor.
CXXConstructorDecl *DeclareImplicitDefaultConstructor(
CXXRecordDecl *ClassDecl);
/// DefineImplicitDefaultConstructor - Checks for feasibility of
/// defining this constructor as the default constructor.
void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// Declare the implicit destructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// destructor will be added.
///
/// \returns The implicitly-declared destructor.
CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitDestructor - Checks for feasibility of
/// defining this destructor as the default destructor.
void DefineImplicitDestructor(SourceLocation CurrentLocation,
CXXDestructorDecl *Destructor);
/// Build an exception spec for destructors that don't have one.
///
/// C++11 says that user-defined destructors with no exception spec get one
/// that looks as if the destructor was implicitly declared.
void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
/// Define the specified inheriting constructor.
void DefineInheritingConstructor(SourceLocation UseLoc,
CXXConstructorDecl *Constructor);
/// Declare the implicit copy constructor for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy constructor will be added.
///
/// \returns The implicitly-declared copy constructor.
CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitCopyConstructor - Checks for feasibility of
/// defining this constructor as the copy constructor.
void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// Declare the implicit move constructor for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move constructor will be added.
///
/// \returns The implicitly-declared move constructor, or NULL if it wasn't
/// declared.
CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
/// DefineImplicitMoveConstructor - Checks for feasibility of
/// defining this constructor as the move constructor.
void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// Declare the implicit copy assignment operator for the given class.
///
/// \param ClassDecl The class declaration into which the implicit
/// copy assignment operator will be added.
///
/// \returns The implicitly-declared copy assignment operator.
CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
/// Defines an implicitly-declared copy assignment operator.
void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// Declare the implicit move assignment operator for the given class.
///
/// \param ClassDecl The Class declaration into which the implicit
/// move assignment operator will be added.
///
/// \returns The implicitly-declared move assignment operator, or NULL if it
/// wasn't declared.
CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
/// Defines an implicitly-declared move assignment operator.
void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// Force the declaration of any implicitly-declared members of this
/// class.
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
/// Check a completed declaration of an implicit special member.
void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
/// Determine whether the given function is an implicitly-deleted
/// special member function.
bool isImplicitlyDeleted(FunctionDecl *FD);
/// Check whether 'this' shows up in the type of a static member
/// function after the (naturally empty) cv-qualifier-seq would be.
///
/// \returns true if an error occurred.
bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
/// Whether this' shows up in the exception specification of a static
/// member function.
bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
/// Check whether 'this' shows up in the attributes of the given
/// static member function.
///
/// \returns true if an error occurred.
bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
/// MaybeBindToTemporary - If the passed in expression has a record type with
/// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
/// it simply returns the passed in expression.
ExprResult MaybeBindToTemporary(Expr *E);
/// Wrap the expression in a ConstantExpr if it is a potential immediate
/// invocation.
ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
QualType DeclInitType, MultiExprArg ArgsPtr,
SourceLocation Loc,
SmallVectorImpl<Expr *> &ConvertedArgs,
bool AllowExplicit = false,
bool IsListInitialization = false);
ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
SourceLocation NameLoc,
IdentifierInfo &Name);
ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
bool EnteringContext);
ParsedType getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectType,
bool EnteringContext);
ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
ParsedType ObjectType);
// Checks that reinterpret casts don't have undefined behavior.
void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
bool IsDereference, SourceRange Range);
// Checks that the vector type should be initialized from a scalar
// by splatting the value rather than populating a single element.
// This is the case for AltiVecVector types as well as with
// AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
// Checks if the -faltivec-src-compat=gcc option is specified.
// If so, AltiVecVector, AltiVecBool and AltiVecPixel types are
// treated the same way as they are when trying to initialize
// these vectors on gcc (an error is emitted).
bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
QualType SrcTy);
/// ActOnCXXNamedCast - Parse
/// {dynamic,static,reinterpret,const,addrspace}_cast's.
ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
SourceLocation LAngleBracketLoc,
Declarator &D,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc,
Expr *E,
SourceLocation RParenLoc);
ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
TypeSourceInfo *Ty,
Expr *E,
SourceRange AngleBrackets,
SourceRange Parens);
ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
ExprResult Operand,
SourceLocation RParenLoc);
ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
Expr *Operand, SourceLocation RParenLoc);
ExprResult BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc);
ExprResult BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc);
/// ActOnCXXTypeid - Parse typeid( something ).
ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc);
ExprResult BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc);
ExprResult BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc);
/// ActOnCXXUuidof - Parse __uuidof( something ).
ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc);
/// Handle a C++1z fold-expression: ( expr op ... op expr ).
ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
tok::TokenKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc);
ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
SourceLocation LParenLoc, Expr *LHS,
BinaryOperatorKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc,
std::optional<unsigned> NumExpansions);
ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
BinaryOperatorKind Operator);
//// ActOnCXXThis - Parse 'this' pointer.
ExprResult ActOnCXXThis(SourceLocation loc);
/// Build a CXXThisExpr and mark it referenced in the current context.
Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
void MarkThisReferenced(CXXThisExpr *This);
/// Try to retrieve the type of the 'this' pointer.
///
/// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
QualType getCurrentThisType();
/// When non-NULL, the C++ 'this' expression is allowed despite the
/// current context not being a non-static member function. In such cases,
/// this provides the type used for 'this'.
QualType CXXThisTypeOverride;
/// RAII object used to temporarily allow the C++ 'this' expression
/// to be used, with the given qualifiers on the current class type.
class CXXThisScopeRAII {
Sema &S;
QualType OldCXXThisTypeOverride;
bool Enabled;
public:
/// Introduce a new scope where 'this' may be allowed (when enabled),
/// using the given declaration (which is either a class template or a
/// class) along with the given qualifiers.
/// along with the qualifiers placed on '*this'.
CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
bool Enabled = true);
~CXXThisScopeRAII();
};
/// Make sure the value of 'this' is actually available in the current
/// context, if it is a potentially evaluated context.
///
/// \param Loc The location at which the capture of 'this' occurs.
///
/// \param Explicit Whether 'this' is explicitly captured in a lambda
/// capture list.
///
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
/// This is useful when enclosing lambdas must speculatively capture
/// 'this' that may or may not be used in certain specializations of
/// a nested generic lambda (depending on whether the name resolves to
/// a non-static member function or a static function).
/// \return returns 'true' if failed, 'false' if success.
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
bool BuildAndDiagnose = true,
const unsigned *const FunctionScopeIndexToStopAt = nullptr,
bool ByCopy = false);
/// Determine whether the given type is the type of *this that is used
/// outside of the body of a member function for a type that is currently
/// being defined.
bool isThisOutsideMemberFunctionBody(QualType BaseType);
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
ExprResult
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
SourceLocation AtLoc, SourceLocation RParen);
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
//// ActOnCXXThrow - Parse throw expressions.
ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
bool IsThrownVarInScope);
bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenOrBraceLoc,
MultiExprArg Exprs,
SourceLocation RParenOrBraceLoc,
bool ListInitialization);
ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc,
bool ListInitialization);
/// ActOnCXXNew - Parsed a C++ 'new' expression.
ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens, Declarator &D,
Expr *Initializer);
ExprResult
BuildCXXNew(SourceRange Range, bool UseGlobal, SourceLocation PlacementLParen,
MultiExprArg PlacementArgs, SourceLocation PlacementRParen,
SourceRange TypeIdParens, QualType AllocType,
TypeSourceInfo *AllocTypeInfo, std::optional<Expr *> ArraySize,
SourceRange DirectInitRange, Expr *Initializer);
/// Determine whether \p FD is an aligned allocation or deallocation
/// function that is unavailable.
bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
/// Produce diagnostics if \p FD is an aligned allocation or deallocation
/// function that is unavailable.
void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
SourceLocation Loc);
bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R);
/// The scope in which to find allocation functions.
enum AllocationFunctionScope {
/// Only look for allocation functions in the global scope.
AFS_Global,
/// Only look for allocation functions in the scope of the
/// allocated class.
AFS_Class,
/// Look for allocation functions in both the global scope
/// and in the scope of the allocated class.
AFS_Both
};
/// Finds the overloads of operator new and delete that are appropriate
/// for the allocation.
bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
AllocationFunctionScope NewScope,
AllocationFunctionScope DeleteScope,
QualType AllocType, bool IsArray,
bool &PassAlignment, MultiExprArg PlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete,
bool Diagnose = true);
void DeclareGlobalNewDelete();
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
ArrayRef<QualType> Params);
bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
DeclarationName Name, FunctionDecl *&Operator,
bool Diagnose = true, bool WantSize = false,
bool WantAligned = false);
FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
bool CanProvideSize,
bool Overaligned,
DeclarationName Name);
FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
CXXRecordDecl *RD);
/// ActOnCXXDelete - Parsed a C++ 'delete' expression
ExprResult ActOnCXXDelete(SourceLocation StartLoc,
bool UseGlobal, bool ArrayForm,
Expr *Operand);
void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
bool IsDelete, bool CallCanBeVirtual,
bool WarnOnNonAbstractTypes,
SourceLocation DtorLoc);
ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
Expr *Operand, SourceLocation RParen);
ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
SourceLocation RParen);
/// Parsed one of the type trait support pseudo-functions.
ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
ArrayRef<ParsedType> Args,
SourceLocation RParenLoc);
ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc);
/// ActOnArrayTypeTrait - Parsed one of the binary type trait support
/// pseudo-functions.
ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
SourceLocation KWLoc,
ParsedType LhsTy,
Expr *DimExpr,
SourceLocation RParen);
ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
SourceLocation KWLoc,
TypeSourceInfo *TSInfo,
Expr *DimExpr,
SourceLocation RParen);
/// ActOnExpressionTrait - Parsed one of the unary type trait support
/// pseudo-functions.
ExprResult ActOnExpressionTrait(ExpressionTrait OET,
SourceLocation KWLoc,
Expr *Queried,
SourceLocation RParen);
ExprResult BuildExpressionTrait(ExpressionTrait OET,
SourceLocation KWLoc,
Expr *Queried,
SourceLocation RParen);
ExprResult ActOnStartCXXMemberReference(Scope *S,
Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
ParsedType &ObjectType,
bool &MayBePseudoDestructor);
ExprResult BuildPseudoDestructorExpr(Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
const CXXScopeSpec &SS,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage DestroyedType);
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &FirstTypeName,
SourceLocation CCLoc,
SourceLocation TildeLoc,
UnqualifiedId &SecondTypeName);
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation TildeLoc,
const DeclSpec& DS);
/// MaybeCreateExprWithCleanups - If the current full-expression
/// requires any cleanups, surround it with a ExprWithCleanups node.
/// Otherwise, just returns the passed-in expression.
Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
MaterializeTemporaryExpr *
CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
bool BoundToLvalueReference);
ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
return ActOnFinishFullExpr(
Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
}
ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
bool DiscardedValue, bool IsConstexpr = false,
bool IsTemplateArgument = false);
StmtResult ActOnFinishFullStmt(Stmt *Stmt);
// Marks SS invalid if it represents an incomplete type.
bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
// Complete an enum decl, maybe without a scope spec.
bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
CXXScopeSpec *SS = nullptr);
DeclContext *computeDeclContext(QualType T);
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
bool EnteringContext = false);
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
/// The parser has parsed a global nested-name-specifier '::'.
///
/// \param CCLoc The location of the '::'.
///
/// \param SS The nested-name-specifier, which will be updated in-place
/// to reflect the parsed nested-name-specifier.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
/// The parser has parsed a '__super' nested-name-specifier.
///
/// \param SuperLoc The location of the '__super' keyword.
///
/// \param ColonColonLoc The location of the '::'.
///
/// \param SS The nested-name-specifier, which will be updated in-place
/// to reflect the parsed nested-name-specifier.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
SourceLocation ColonColonLoc, CXXScopeSpec &SS);
bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
bool *CanCorrect = nullptr);
NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
/// Keeps information about an identifier in a nested-name-spec.
///
struct NestedNameSpecInfo {
/// The type of the object, if we're parsing nested-name-specifier in
/// a member access expression.
ParsedType ObjectType;
/// The identifier preceding the '::'.
IdentifierInfo *Identifier;
/// The location of the identifier.
SourceLocation IdentifierLoc;
/// The location of the '::'.
SourceLocation CCLoc;
/// Creates info object for the most typical case.
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
: ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
CCLoc(ColonColonLoc) {
}
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
SourceLocation ColonColonLoc, QualType ObjectType)
: ObjectType(ParsedType::make(ObjectType)), Identifier(II),
IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
}
};
bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
NestedNameSpecInfo &IdInfo);
bool BuildCXXNestedNameSpecifier(Scope *S,
NestedNameSpecInfo &IdInfo,
bool EnteringContext,
CXXScopeSpec &SS,
NamedDecl *ScopeLookupResult,
bool ErrorRecoveryLookup,
bool *IsCorrectedToColon = nullptr,
bool OnlyNamespace = false);
/// The parser has parsed a nested-name-specifier 'identifier::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param IdInfo Parser information about an identifier in the
/// nested-name-spec.
///
/// \param EnteringContext Whether we're entering the context nominated by
/// this nested-name-specifier.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
/// are allowed. The bool value pointed by this parameter is set to 'true'
/// if the identifier is treated as if it was followed by ':', not '::'.
///
/// \param OnlyNamespace If true, only considers namespaces in lookup.
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(Scope *S,
NestedNameSpecInfo &IdInfo,
bool EnteringContext,
CXXScopeSpec &SS,
bool *IsCorrectedToColon = nullptr,
bool OnlyNamespace = false);
ExprResult ActOnDecltypeExpression(Expr *E);
bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
const DeclSpec &DS,
SourceLocation ColonColonLoc);
bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
NestedNameSpecInfo &IdInfo,
bool EnteringContext);
/// The parser has parsed a nested-name-specifier
/// 'template[opt] template-name < template-args >::'.
///
/// \param S The scope in which this nested-name-specifier occurs.
///
/// \param SS The nested-name-specifier, which is both an input
/// parameter (the nested-name-specifier before this type) and an
/// output parameter (containing the full nested-name-specifier,
/// including this new type).
///
/// \param TemplateKWLoc the location of the 'template' keyword, if any.
/// \param TemplateName the template name.
/// \param TemplateNameLoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
/// \param CCLoc The location of the '::'.
///
/// \param EnteringContext Whether we're entering the context of the
/// nested-name-specifier.
///
///
/// \returns true if an error occurred, false otherwise.
bool ActOnCXXNestedNameSpecifier(Scope *S,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
TemplateTy TemplateName,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
SourceLocation CCLoc,
bool EnteringContext);
/// Given a C++ nested-name-specifier, produce an annotation value
/// that the parser can use later to reconstruct the given
/// nested-name-specifier.
///
/// \param SS A nested-name-specifier.
///
/// \returns A pointer containing all of the information in the
/// nested-name-specifier \p SS.
void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
/// Given an annotation pointer for a nested-name-specifier, restore
/// the nested-name-specifier structure.
///
/// \param Annotation The annotation pointer, produced by
/// \c SaveNestedNameSpecifierAnnotation().
///
/// \param AnnotationRange The source range corresponding to the annotation.
///
/// \param SS The nested-name-specifier that will be updated with the contents
/// of the annotation pointer.
void RestoreNestedNameSpecifierAnnotation(void *Annotation,
SourceRange AnnotationRange,
CXXScopeSpec &SS);
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
/// initializer for the declaration 'Dcl'.
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the declaration 'Dcl'.
void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
/// Create a new lambda closure type.
CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
TypeSourceInfo *Info,
unsigned LambdaDependencyKind,
LambdaCaptureDefault CaptureDefault);
/// Start the definition of a lambda expression.
CXXMethodDecl *
startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange,
TypeSourceInfo *MethodType, SourceLocation EndLoc,
ArrayRef<ParmVarDecl *> Params,
ConstexprSpecKind ConstexprKind, StorageClass SC,
Expr *TrailingRequiresClause);
/// Number lambda for linkage purposes if necessary.
void handleLambdaNumbering(
CXXRecordDecl *Class, CXXMethodDecl *Method,
std::optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling =
std::nullopt);
/// Endow the lambda scope info with the relevant properties.
void buildLambdaScope(sema::LambdaScopeInfo *LSI,
CXXMethodDecl *CallOperator,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
bool ExplicitParams,
bool ExplicitResultType,
bool Mutable);
/// Perform initialization analysis of the init-capture and perform
/// any implicit conversions such as an lvalue-to-rvalue conversion if
/// not being used to initialize a reference.
ParsedType actOnLambdaInitCaptureInitialization(
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
return ParsedType::make(buildLambdaInitCaptureInitialization(
Loc, ByRef, EllipsisLoc, std::nullopt, Id,
InitKind != LambdaCaptureInitKind::CopyInit, Init));
}
QualType buildLambdaInitCaptureInitialization(
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions, IdentifierInfo *Id,
bool DirectInit, Expr *&Init);
/// Create a dummy variable within the declcontext of the lambda's
/// call operator, for name lookup purposes for a lambda init capture.
///
/// CodeGen handles emission of lambda captures, ignoring these dummy
/// variables appropriately.
VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
QualType InitCaptureType,
SourceLocation EllipsisLoc,
IdentifierInfo *Id,
unsigned InitStyle, Expr *Init);
/// Add an init-capture to a lambda scope.
void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var,
bool isReferenceType);
/// Note that we have finished the explicit captures for the
/// given lambda.
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
/// \brief This is called after parsing the explicit template parameter list
/// on a lambda (if it exists) in C++2a.
void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
ArrayRef<NamedDecl *> TParams,
SourceLocation RAngleLoc,
ExprResult RequiresClause);
/// Introduce the lambda parameters into scope.
void addLambdaParameters(
ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
CXXMethodDecl *CallOperator, Scope *CurScope);
/// Deduce a block or lambda's return type based on the return
/// statements present in the body.
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
/// ActOnStartOfLambdaDefinition - This is called just before we start
/// parsing the body of a lambda; it analyzes the explicit captures and
/// arguments, and sets up various data-structures for the body of the
/// lambda.
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
Declarator &ParamInfo, Scope *CurScope);
/// ActOnLambdaError - If there is an error parsing a lambda, this callback
/// is invoked to pop the information about the lambda.
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
bool IsInstantiation = false);
/// ActOnLambdaExpr - This is called when the body of a lambda expression
/// was successfully completed.
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
Scope *CurScope);
/// Does copying/destroying the captured variable have side effects?
bool CaptureHasSideEffects(const sema::Capture &From);
/// Diagnose if an explicit lambda capture is unused. Returns true if a
/// diagnostic is emitted.
bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
const sema::Capture &From);
/// Build a FieldDecl suitable to hold the given capture.
FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
/// Initialize the given capture with a suitable expression.
ExprResult BuildCaptureInit(const sema::Capture &Capture,
SourceLocation ImplicitCaptureLoc,
bool IsOpenMPMapping = false);
/// Complete a lambda-expression having processed and attached the
/// lambda body.
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
sema::LambdaScopeInfo *LSI);
/// Get the return type to use for a lambda's conversion function(s) to
/// function pointer type, given the type of the call operator.
QualType
getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
CallingConv CC);
/// Define the "body" of the conversion from a lambda object to a
/// function pointer.
///
/// This routine doesn't actually define a sensible body; rather, it fills
/// in the initialization expression needed to copy the lambda object into
/// the block, and IR generation actually generates the real body of the
/// block pointer conversion.
void DefineImplicitLambdaToFunctionPointerConversion(
SourceLocation CurrentLoc, CXXConversionDecl *Conv);
/// Define the "body" of the conversion from a lambda object to a
/// block pointer.
///
/// This routine doesn't actually define a sensible body; rather, it fills
/// in the initialization expression needed to copy the lambda object into
/// the block, and IR generation actually generates the real body of the
/// block pointer conversion.
void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
CXXConversionDecl *Conv);
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
SourceLocation ConvLocation,
CXXConversionDecl *Conv,
Expr *Src);
/// Check whether the given expression is a valid constraint expression.
/// A diagnostic is emitted if it is not, false is returned, and
/// PossibleNonPrimary will be set to true if the failure might be due to a
/// non-primary expression being used as an atomic constraint.
bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
bool *PossibleNonPrimary = nullptr,
bool IsTrailingRequiresClause = false);
private:
/// Caches pairs of template-like decls whose associated constraints were
/// checked for subsumption and whether or not the first's constraints did in
/// fact subsume the second's.
llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
/// Caches the normalized associated constraints of declarations (concepts or
/// constrained declarations). If an error occurred while normalizing the
/// associated constraints of the template or concept, nullptr will be cached
/// here.
llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
NormalizationCache;
llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
SatisfactionCache;
/// Introduce the instantiated function parameters into the local
/// instantiation scope, and set the parameter names to those used
/// in the template.
bool addInstantiatedParametersToScope(
FunctionDecl *Function, const FunctionDecl *PatternDecl,
LocalInstantiationScope &Scope,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// used by SetupConstraintCheckingTemplateArgumentsAndScope to recursively(in
/// the case of lambdas) set up the LocalInstantiationScope of the current
/// function.
bool SetupConstraintScope(
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
MultiLevelTemplateArgumentList MLTAL, LocalInstantiationScope &Scope);
/// Used during constraint checking, sets up the constraint template argument
/// lists, and calls SetupConstraintScope to set up the
/// LocalInstantiationScope to have the proper set of ParVarDecls configured.
std::optional<MultiLevelTemplateArgumentList>
SetupConstraintCheckingTemplateArgumentsAndScope(
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
LocalInstantiationScope &Scope);
private:
// The current stack of constraint satisfactions, so we can exit-early.
using SatisfactionStackEntryTy =
std::pair<const NamedDecl *, llvm::FoldingSetNodeID>;
llvm::SmallVector<SatisfactionStackEntryTy, 10>
SatisfactionStack;
public:
void PushSatisfactionStackEntry(const NamedDecl *D,
const llvm::FoldingSetNodeID &ID) {
const NamedDecl *Can = cast<NamedDecl>(D->getCanonicalDecl());
SatisfactionStack.emplace_back(Can, ID);
}
void PopSatisfactionStackEntry() { SatisfactionStack.pop_back(); }
bool SatisfactionStackContains(const NamedDecl *D,
const llvm::FoldingSetNodeID &ID) const {
const NamedDecl *Can = cast<NamedDecl>(D->getCanonicalDecl());
return llvm::find(SatisfactionStack,
SatisfactionStackEntryTy{Can, ID}) !=
SatisfactionStack.end();
}
// Resets the current SatisfactionStack for cases where we are instantiating
// constraints as a 'side effect' of normal instantiation in a way that is not
// indicative of recursive definition.
class SatisfactionStackResetRAII {
llvm::SmallVector<SatisfactionStackEntryTy, 10>
BackupSatisfactionStack;
Sema &SemaRef;
public:
SatisfactionStackResetRAII(Sema &S) : SemaRef(S) {
SemaRef.SwapSatisfactionStack(BackupSatisfactionStack);
}
~SatisfactionStackResetRAII() {
SemaRef.SwapSatisfactionStack(BackupSatisfactionStack);
}
};
void SwapSatisfactionStack(
llvm::SmallVectorImpl<SatisfactionStackEntryTy> &NewSS) {
SatisfactionStack.swap(NewSS);
}
const NormalizedConstraint *
getNormalizedAssociatedConstraints(
NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
/// \brief Check whether the given declaration's associated constraints are
/// at least as constrained than another declaration's according to the
/// partial ordering of constraints.
///
/// \param Result If no error occurred, receives the result of true if D1 is
/// at least constrained than D2, and false otherwise.
///
/// \returns true if an error occurred, false otherwise.
bool IsAtLeastAsConstrained(NamedDecl *D1, MutableArrayRef<const Expr *> AC1,
NamedDecl *D2, MutableArrayRef<const Expr *> AC2,
bool &Result);
/// If D1 was not at least as constrained as D2, but would've been if a pair
/// of atomic constraints involved had been declared in a concept and not
/// repeated in two separate places in code.
/// \returns true if such a diagnostic was emitted, false otherwise.
bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
/// \brief Check whether the given list of constraint expressions are
/// satisfied (as if in a 'conjunction') given template arguments.
/// \param Template the template-like entity that triggered the constraints
/// check (either a concept or a constrained entity).
/// \param ConstraintExprs a list of constraint expressions, treated as if
/// they were 'AND'ed together.
/// \param TemplateArgLists the list of template arguments to substitute into
/// the constraint expression.
/// \param TemplateIDRange The source range of the template id that
/// caused the constraints check.
/// \param Satisfaction if true is returned, will contain details of the
/// satisfaction, with enough information to diagnose an unsatisfied
/// expression.
/// \returns true if an error occurred and satisfaction could not be checked,
/// false otherwise.
bool CheckConstraintSatisfaction(
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
const MultiLevelTemplateArgumentList &TemplateArgLists,
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
llvm::SmallVector<Expr *, 4> Converted;
return CheckConstraintSatisfaction(Template, ConstraintExprs, Converted,
TemplateArgLists, TemplateIDRange,
Satisfaction);
}
/// \brief Check whether the given list of constraint expressions are
/// satisfied (as if in a 'conjunction') given template arguments.
/// Additionally, takes an empty list of Expressions which is populated with
/// the instantiated versions of the ConstraintExprs.
/// \param Template the template-like entity that triggered the constraints
/// check (either a concept or a constrained entity).
/// \param ConstraintExprs a list of constraint expressions, treated as if
/// they were 'AND'ed together.
/// \param ConvertedConstraints a out parameter that will get populated with
/// the instantiated version of the ConstraintExprs if we successfully checked
/// satisfaction.
/// \param TemplateArgList the multi-level list of template arguments to
/// substitute into the constraint expression. This should be relative to the
/// top-level (hence multi-level), since we need to instantiate fully at the
/// time of checking.
/// \param TemplateIDRange The source range of the template id that
/// caused the constraints check.
/// \param Satisfaction if true is returned, will contain details of the
/// satisfaction, with enough information to diagnose an unsatisfied
/// expression.
/// \returns true if an error occurred and satisfaction could not be checked,
/// false otherwise.
bool CheckConstraintSatisfaction(
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
const MultiLevelTemplateArgumentList &TemplateArgList,
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
/// \brief Check whether the given non-dependent constraint expression is
/// satisfied. Returns false and updates Satisfaction with the satisfaction
/// verdict if successful, emits a diagnostic and returns true if an error
/// occurred and satisfaction could not be determined.
///
/// \returns true if an error occurred, false otherwise.
bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
ConstraintSatisfaction &Satisfaction);
/// Check whether the given function decl's trailing requires clause is
/// satisfied, if any. Returns false and updates Satisfaction with the
/// satisfaction verdict if successful, emits a diagnostic and returns true if
/// an error occurred and satisfaction could not be determined.
///
/// \returns true if an error occurred, false otherwise.
bool CheckFunctionConstraints(const FunctionDecl *FD,
ConstraintSatisfaction &Satisfaction,
SourceLocation UsageLoc = SourceLocation(),
bool ForOverloadResolution = false);
/// \brief Ensure that the given template arguments satisfy the constraints
/// associated with the given template, emitting a diagnostic if they do not.
///
/// \param Template The template to which the template arguments are being
/// provided.
///
/// \param TemplateArgs The converted, canonicalized template arguments.
///
/// \param TemplateIDRange The source range of the template id that
/// caused the constraints check.
///
/// \returns true if the constrains are not satisfied or could not be checked
/// for satisfaction, false if the constraints are satisfied.
bool EnsureTemplateArgumentListConstraints(
TemplateDecl *Template,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceRange TemplateIDRange);
/// \brief Emit diagnostics explaining why a constraint expression was deemed
/// unsatisfied.
/// \param First whether this is the first time an unsatisfied constraint is
/// diagnosed for this error.
void
DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
bool First = true);
/// \brief Emit diagnostics explaining why a constraint expression was deemed
/// unsatisfied.
void
DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
bool First = true);
// ParseObjCStringLiteral - Parse Objective-C string literals.
ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
ArrayRef<Expr *> Strings);
ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
/// numeric literal expression. Type of the expression will be "NSNumber *"
/// or "id" if NSNumber is unavailable.
ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
bool Value);
ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
/// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
/// '@' prefixed parenthesized expression. The type of the expression will
/// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
/// of ValueType, which is allowed to be a built-in numeric type, "char *",
/// "const char *" or C structure with attribute 'objc_boxable'.
ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
Expr *IndexExpr,
ObjCMethodDecl *getterMethod,
ObjCMethodDecl *setterMethod);
ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
MutableArrayRef<ObjCDictionaryElement> Elements);
ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
TypeSourceInfo *EncodedTypeInfo,
SourceLocation RParenLoc);
ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
CXXConversionDecl *Method,
bool HadMultipleCandidates);
ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
ParsedType Ty,
SourceLocation RParenLoc);
/// ParseObjCSelectorExpression - Build selector expression for \@selector
ExprResult ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc,
bool WarnMultipleSelectors);
/// ParseObjCProtocolExpression - Build protocol expression for \@protocol
ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation ProtoIdLoc,
SourceLocation RParenLoc);
//===--------------------------------------------------------------------===//
// C++ Declarations
//
Decl *ActOnStartLinkageSpecification(Scope *S,
SourceLocation ExternLoc,
Expr *LangStr,
SourceLocation LBraceLoc);
Decl *ActOnFinishLinkageSpecification(Scope *S,
Decl *LinkageSpec,
SourceLocation RBraceLoc);
//===--------------------------------------------------------------------===//
// C++ Classes
//
CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS = nullptr);
bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
SourceLocation ColonLoc,
const ParsedAttributesView &Attrs);
NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
Expr *BitfieldWidth, const VirtSpecifiers &VS,
InClassInitStyle InitStyle);
void ActOnStartCXXInClassMemberInitializer();
void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
SourceLocation EqualLoc,
Expr *Init);
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS,
SourceLocation IdLoc,
SourceLocation LParenLoc,
ArrayRef<Expr *> Args,
SourceLocation RParenLoc,
SourceLocation EllipsisLoc);
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS,
SourceLocation IdLoc,
Expr *InitList,
SourceLocation EllipsisLoc);
MemInitResult BuildMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
const DeclSpec &DS,
SourceLocation IdLoc,
Expr *Init,
SourceLocation EllipsisLoc);
MemInitResult BuildMemberInitializer(ValueDecl *Member,
Expr *Init,
SourceLocation IdLoc);
MemInitResult BuildBaseInitializer(QualType BaseType,
TypeSourceInfo *BaseTInfo,
Expr *Init,
CXXRecordDecl *ClassDecl,
SourceLocation EllipsisLoc);
MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
Expr *Init,
CXXRecordDecl *ClassDecl);
bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
CXXCtorInitializer *Initializer);
bool SetCtorInitializers(
CXXConstructorDecl *Constructor, bool AnyErrors,
ArrayRef<CXXCtorInitializer *> Initializers = std::nullopt);
void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
/// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
/// mark all the non-trivial destructors of its members and bases as
/// referenced.
void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
CXXRecordDecl *Record);
/// Mark destructors of virtual bases of this class referenced. In the Itanium
/// C++ ABI, this is done when emitting a destructor for any non-abstract
/// class. In the Microsoft C++ ABI, this is done any time a class's
/// destructor is referenced.
void MarkVirtualBaseDestructorsReferenced(
SourceLocation Location, CXXRecordDecl *ClassDecl,
llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
/// Do semantic checks to allow the complete destructor variant to be emitted
/// when the destructor is defined in another translation unit. In the Itanium
/// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
/// can be emitted in separate TUs. To emit the complete variant, run a subset
/// of the checks performed when emitting a regular destructor.
void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
CXXDestructorDecl *Dtor);
/// The list of classes whose vtables have been used within
/// this translation unit, and the source locations at which the
/// first use occurred.
typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
/// The list of vtables that are required but have not yet been
/// materialized.
SmallVector<VTableUse, 16> VTableUses;
/// The set of classes whose vtables have been used within
/// this translation unit, and a bit that will be true if the vtable is
/// required to be emitted (otherwise, it should be emitted only if needed
/// by code generation).
llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
/// Load any externally-stored vtable uses.
void LoadExternalVTableUses();
/// Note that the vtable for the given class was used at the
/// given location.
void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
bool DefinitionRequired = false);
/// Mark the exception specifications of all virtual member functions
/// in the given class as needed.
void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
const CXXRecordDecl *RD);
/// MarkVirtualMembersReferenced - Will mark all members of the given
/// CXXRecordDecl referenced.
void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
bool ConstexprOnly = false);
/// Define all of the vtables that have been used in this
/// translation unit and reference any virtual members used by those
/// vtables.
///
/// \returns true if any work was done, false otherwise.
bool DefineUsedVTables();
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
void ActOnMemInitializers(Decl *ConstructorDecl,
SourceLocation ColonLoc,
ArrayRef<CXXCtorInitializer*> MemInits,
bool AnyErrors);
/// Check class-level dllimport/dllexport attribute. The caller must
/// ensure that referenceDLLExportedClassMethods is called some point later
/// when all outer classes of Class are complete.
void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
void referenceDLLExportedClassMethods();
void propagateDLLAttrToBaseClassTemplate(
CXXRecordDecl *Class, Attr *ClassAttr,
ClassTemplateSpecializationDecl *BaseTemplateSpec,
SourceLocation BaseLoc);
/// Add gsl::Pointer attribute to std::container::iterator
/// \param ND The declaration that introduces the name
/// std::container::iterator. \param UnderlyingRecord The record named by ND.
void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
/// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
/// Add [[gsl::Pointer]] attributes for std:: types.
void inferGslPointerAttribute(TypedefNameDecl *TD);
void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
/// Check that the C++ class annoated with "trivial_abi" satisfies all the
/// conditions that are needed for the attribute to have an effect.
void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
Decl *TagDecl, SourceLocation LBrac,
SourceLocation RBrac,
const ParsedAttributesView &AttrList);
void ActOnFinishCXXMemberDecls();
void ActOnFinishCXXNonNestedClass();
void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
unsigned ActOnReenterTemplateScope(Decl *Template,
llvm::function_ref<Scope *()> EnterScope);
void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
void ActOnFinishDelayedMemberInitializers(Decl *Record);
void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
CachedTokens &Toks);
void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
bool IsInsideALocalClassWithinATemplateFunction();
Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
Expr *AssertExpr,
Expr *AssertMessageExpr,
SourceLocation RParenLoc);
Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
Expr *AssertExpr,
StringLiteral *AssertMessageExpr,
SourceLocation RParenLoc,
bool Failed);
void DiagnoseStaticAssertDetails(const Expr *E);
FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
SourceLocation FriendLoc,
TypeSourceInfo *TSInfo);
Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
MultiTemplateParamsArg TemplateParams);
NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParams);
QualType CheckConstructorDeclarator(Declarator &D, QualType R,
StorageClass& SC);
void CheckConstructor(CXXConstructorDecl *Constructor);
QualType CheckDestructorDeclarator(Declarator &D, QualType R,
StorageClass& SC);
bool CheckDestructor(CXXDestructorDecl *Destructor);
void CheckConversionDeclarator(Declarator &D, QualType &R,
StorageClass& SC);
Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
StorageClass &SC);
void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
CXXSpecialMember CSM,
SourceLocation DefaultLoc);
void CheckDelayedMemberExceptionSpecs();
bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
DefaultedComparisonKind DCK);
void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
FunctionDecl *Spaceship);
void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
DefaultedComparisonKind DCK);
//===--------------------------------------------------------------------===//
// C++ Derived Classes
//
/// ActOnBaseSpecifier - Parsed a base specifier
CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeSourceInfo *TInfo,
SourceLocation EllipsisLoc);
BaseResult ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
const ParsedAttributesView &Attrs, bool Virtual,
AccessSpecifier Access, ParsedType basetype,
SourceLocation BaseLoc,
SourceLocation EllipsisLoc);
bool AttachBaseSpecifiers(CXXRecordDecl *Class,
MutableArrayRef<CXXBaseSpecifier *> Bases);
void ActOnBaseSpecifiers(Decl *ClassDecl,
MutableArrayRef<CXXBaseSpecifier *> Bases);
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
CXXBasePaths &Paths);
// FIXME: I don't like this name.
void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
SourceLocation Loc, SourceRange Range,
CXXCastPath *BasePath = nullptr,
bool IgnoreAccess = false);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
unsigned InaccessibleBaseID,
unsigned AmbiguousBaseConvID,
SourceLocation Loc, SourceRange Range,
DeclarationName Name,
CXXCastPath *BasePath,
bool IgnoreAccess = false);
std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// CheckOverridingFunctionReturnType - Checks whether the return types are
/// covariant, according to C++ [class.virtual]p5.
bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// CheckOverridingFunctionExceptionSpec - Checks whether the exception
/// spec is a subset of base spec.
bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
/// CheckOverrideControl - Check C++11 override control semantics.
void CheckOverrideControl(NamedDecl *D);
/// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
/// not used in the declaration of an overriding method.
void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
/// CheckForFunctionMarkedFinal - Checks whether a virtual member function
/// overrides a virtual member function marked 'final', according to
/// C++11 [class.virtual]p4.
bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
//===--------------------------------------------------------------------===//
// C++ Access Control
//
enum AccessResult {
AR_accessible,
AR_inaccessible,
AR_dependent,
AR_delayed
};
bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
NamedDecl *PrevMemberDecl,
AccessSpecifier LexicalAS);
AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
DeclAccessPair FoundDecl);
AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
DeclAccessPair FoundDecl);
AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
SourceRange PlacementRange,
CXXRecordDecl *NamingClass,
DeclAccessPair FoundDecl,
bool Diagnose = true);
AccessResult CheckConstructorAccess(SourceLocation Loc,
CXXConstructorDecl *D,
DeclAccessPair FoundDecl,
const InitializedEntity &Entity,
bool IsCopyBindingRefToTemp = false);
AccessResult CheckConstructorAccess(SourceLocation Loc,
CXXConstructorDecl *D,
DeclAccessPair FoundDecl,
const InitializedEntity &Entity,
const PartialDiagnostic &PDiag);
AccessResult CheckDestructorAccess(SourceLocation Loc,
CXXDestructorDecl *Dtor,
const PartialDiagnostic &PDiag,
QualType objectType = QualType());
AccessResult CheckFriendAccess(NamedDecl *D);
AccessResult CheckMemberAccess(SourceLocation UseLoc,
CXXRecordDecl *NamingClass,
DeclAccessPair Found);
AccessResult
CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
CXXRecordDecl *DecomposedClass,
DeclAccessPair Field);
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
const SourceRange &,
DeclAccessPair FoundDecl);
AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
Expr *ObjectExpr,
Expr *ArgExpr,
DeclAccessPair FoundDecl);
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
ArrayRef<Expr *> ArgExprs,
DeclAccessPair FoundDecl);
AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
DeclAccessPair FoundDecl);
AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
QualType Base, QualType Derived,
const CXXBasePath &Path,
unsigned DiagID,
bool ForceCheck = false,
bool ForceUnprivileged = false);
void CheckLookupAccess(const LookupResult &R);
bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
QualType BaseType);
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
DeclAccessPair Found, QualType ObjectType,
SourceLocation Loc,
const PartialDiagnostic &Diag);
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
DeclAccessPair Found,
QualType ObjectType) {
return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
SourceLocation(), PDiag());
}
void HandleDependentAccessCheck(const DependentDiagnostic &DD,
const MultiLevelTemplateArgumentList &TemplateArgs);
void PerformDependentDiagnostics(const DeclContext *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
/// When true, access checking violations are treated as SFINAE
/// failures rather than hard errors.
bool AccessCheckingSFINAE;
enum AbstractDiagSelID {
AbstractNone = -1,
AbstractReturnType,
AbstractParamType,
AbstractVariableType,
AbstractFieldType,
AbstractIvarType,
AbstractSynthesizedIvarType,
AbstractArrayType
};
bool isAbstractType(SourceLocation Loc, QualType T);
bool RequireNonAbstractType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser);
template <typename... Ts>
bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
const Ts &...Args) {
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
return RequireNonAbstractType(Loc, T, Diagnoser);
}
void DiagnoseAbstractType(const CXXRecordDecl *RD);
//===--------------------------------------------------------------------===//
// C++ Overloaded Operators [C++ 13.5]
//
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
//===--------------------------------------------------------------------===//
// C++ Templates [C++ 14]
//
void FilterAcceptableTemplateNames(LookupResult &R,
bool AllowFunctionTemplates = true,
bool AllowDependent = true);
bool hasAnyAcceptableTemplateNames(LookupResult &R,
bool AllowFunctionTemplates = true,
bool AllowDependent = true,
bool AllowNonTemplateFunctions = false);
/// Try to interpret the lookup result D as a template-name.
///
/// \param D A declaration found by name lookup.
/// \param AllowFunctionTemplates Whether function templates should be
/// considered valid results.
/// \param AllowDependent Whether unresolved using declarations (that might
/// name templates) should be considered valid results.
static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
bool AllowFunctionTemplates = true,
bool AllowDependent = true);
enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
/// Whether and why a template name is required in this lookup.
class RequiredTemplateKind {
public:
/// Template name is required if TemplateKWLoc is valid.
RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
: TemplateKW(TemplateKWLoc) {}
/// Template name is unconditionally required.
RequiredTemplateKind(TemplateNameIsRequiredTag) {}
SourceLocation getTemplateKeywordLoc() const {
return TemplateKW.value_or(SourceLocation());
}
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
bool isRequired() const { return TemplateKW != SourceLocation(); }
explicit operator bool() const { return isRequired(); }
private:
std::optional<SourceLocation> TemplateKW;
};
enum class AssumedTemplateKind {
/// This is not assumed to be a template name.
None,
/// This is assumed to be a template name because lookup found nothing.
FoundNothing,
/// This is assumed to be a template name because lookup found one or more
/// functions (but no function templates).
FoundFunctions,
};
bool LookupTemplateName(
LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
bool EnteringContext, bool &MemberOfUnknownSpecialization,
RequiredTemplateKind RequiredTemplate = SourceLocation(),
AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
TemplateNameKind isTemplateName(Scope *S,
CXXScopeSpec &SS,
bool hasTemplateKeyword,
const UnqualifiedId &Name,
ParsedType ObjectType,
bool EnteringContext,
TemplateTy &Template,
bool &MemberOfUnknownSpecialization,
bool Disambiguation = false);
/// Try to resolve an undeclared template name as a type template.
///
/// Sets II to the identifier corresponding to the template name, and updates
/// Name to a corresponding (typo-corrected) type template name and TNK to
/// the corresponding kind, if possible.
void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
TemplateNameKind &TNK,
SourceLocation NameLoc,
IdentifierInfo *&II);
bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
SourceLocation NameLoc,
bool Diagnose = true);
/// Determine whether a particular identifier might be the name in a C++1z
/// deduction-guide declaration.
bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
SourceLocation NameLoc,
ParsedTemplateTy *Template = nullptr);
bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
SourceLocation IILoc,
Scope *S,
const CXXScopeSpec *SS,
TemplateTy &SuggestedTemplate,
TemplateNameKind &SuggestedKind);
bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
NamedDecl *Instantiation,
bool InstantiatedFromMember,
const NamedDecl *Pattern,
const NamedDecl *PatternDef,
TemplateSpecializationKind TSK,
bool Complain = true);
void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
SourceLocation EllipsisLoc,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth, unsigned Position,
SourceLocation EqualLoc,
ParsedType DefaultArg, bool HasTypeConstraint);
bool ActOnTypeConstraint(const CXXScopeSpec &SS,
TemplateIdAnnotation *TypeConstraint,
TemplateTypeParmDecl *ConstrainedParameter,
SourceLocation EllipsisLoc);
bool BuildTypeConstraint(const CXXScopeSpec &SS,
TemplateIdAnnotation *TypeConstraint,
TemplateTypeParmDecl *ConstrainedParameter,
SourceLocation EllipsisLoc,
bool AllowUnexpandedPack);
bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
DeclarationNameInfo NameInfo,
ConceptDecl *NamedConcept,
const TemplateArgumentListInfo *TemplateArgs,
TemplateTypeParmDecl *ConstrainedParameter,
SourceLocation EllipsisLoc);
bool AttachTypeConstraint(AutoTypeLoc TL,
NonTypeTemplateParmDecl *ConstrainedParameter,
SourceLocation EllipsisLoc);
bool RequireStructuralType(QualType T, SourceLocation Loc);
QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
SourceLocation Loc);
QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
Expr *DefaultArg);
NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
SourceLocation TmpLoc,
TemplateParameterList *Params,
SourceLocation EllipsisLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth,
unsigned Position,
SourceLocation EqualLoc,
ParsedTemplateArgument DefaultArg);
TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,
SourceLocation ExportLoc,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ArrayRef<NamedDecl *> Params,
SourceLocation RAngleLoc,
Expr *RequiresClause);
/// The context in which we are checking a template parameter list.
enum TemplateParamListContext {
TPC_ClassTemplate,
TPC_VarTemplate,
TPC_FunctionTemplate,
TPC_ClassTemplateMember,
TPC_FriendClassTemplate,
TPC_FriendFunctionTemplate,
TPC_FriendFunctionTemplateDefinition,
TPC_TypeAliasTemplate
};
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
TemplateParameterList *OldParams,
TemplateParamListContext TPC,
SkipBodyInfo *SkipBody = nullptr);
TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
SourceLocation DeclStartLoc, SourceLocation DeclLoc,
const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
ArrayRef<TemplateParameterList *> ParamLists,
bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
bool SuppressDiagnostic = false);
DeclResult CheckClassTemplate(
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
AccessSpecifier AS, SourceLocation ModulePrivateLoc,
SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
TemplateParameterList **OuterTemplateParamLists,
SkipBodyInfo *SkipBody = nullptr);
TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
QualType NTTPType,
SourceLocation Loc);
/// Get a template argument mapping the given template parameter to itself,
/// e.g. for X in \c template<int X>, this would return an expression template
/// argument referencing X.
TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
SourceLocation Location);
void translateTemplateArguments(const ASTTemplateArgsPtr &In,
TemplateArgumentListInfo &Out);
ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
void NoteAllFoundTemplates(TemplateName Name);
QualType CheckTemplateIdType(TemplateName Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs);
TypeResult
ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
TemplateTy Template, IdentifierInfo *TemplateII,
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
bool IsCtorOrDtorName = false, bool IsClassName = false,
ImplicitTypenameContext AllowImplicitTypename =
ImplicitTypenameContext::No);
/// Parsed an elaborated-type-specifier that refers to a template-id,
/// such as \c class T::template apply<U>.
TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
TypeSpecifierType TagSpec,
SourceLocation TagLoc,
CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
TemplateTy TemplateD,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgsIn,
SourceLocation RAngleLoc);
DeclResult ActOnVarTemplateSpecialization(
Scope *S, Declarator &D, TypeSourceInfo *DI,
SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
StorageClass SC, bool IsPartialSpecialization);
/// Get the specialization of the given variable template corresponding to
/// the specified argument list, or a null-but-valid result if the arguments
/// are dependent.
DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation TemplateNameLoc,
const TemplateArgumentListInfo &TemplateArgs);
/// Form a reference to the specialization of the given variable template
/// corresponding to the specified argument list, or a null-but-valid result
/// if the arguments are dependent.
ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
VarTemplateDecl *Template,
SourceLocation TemplateLoc,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult
CheckConceptTemplateId(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &ConceptNameInfo,
NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
const TemplateArgumentListInfo *TemplateArgs);
void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo *TemplateArgs);
ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
TemplateNameKind ActOnTemplateName(
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
TemplateTy &Template, bool AllowInjectedClassName = false);
DeclResult ActOnClassTemplateSpecialization(
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
MultiTemplateParamsArg TemplateParameterLists,
SkipBodyInfo *SkipBody = nullptr);
bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
TemplateDecl *PrimaryTemplate,
unsigned NumExplicitArgs,
ArrayRef<TemplateArgument> Args);
void CheckTemplatePartialSpecialization(
ClassTemplatePartialSpecializationDecl *Partial);
void CheckTemplatePartialSpecialization(
VarTemplatePartialSpecializationDecl *Partial);
Decl *ActOnTemplateDeclarator(Scope *S,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D);
bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
TemplateSpecializationKind NewTSK,
NamedDecl *PrevDecl,
TemplateSpecializationKind PrevTSK,
SourceLocation PrevPtOfInstantiation,
bool &SuppressNew);
bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
const TemplateArgumentListInfo &ExplicitTemplateArgs,
LookupResult &Previous);
bool CheckFunctionTemplateSpecialization(
FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
LookupResult &Previous, bool QualifiedFriend = false);
bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
DeclResult ActOnExplicitInstantiation(
Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
TemplateTy Template, SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec, SourceLocation KWLoc,
CXXScopeSpec &SS, IdentifierInfo *Name,
SourceLocation NameLoc,
const ParsedAttributesView &Attr);
DeclResult ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
Declarator &D);
TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(
TemplateDecl *Template, SourceLocation TemplateLoc,
SourceLocation RAngleLoc, Decl *Param,
ArrayRef<TemplateArgument> SugaredConverted,
ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg);
/// Specifies the context in which a particular template
/// argument is being checked.
enum CheckTemplateArgumentKind {
/// The template argument was specified in the code or was
/// instantiated with some deduced template arguments.
CTAK_Specified,
/// The template argument was deduced via template argument
/// deduction.
CTAK_Deduced,
/// The template argument was deduced from an array bound
/// via template argument deduction.
CTAK_DeducedFromArrayBound
};
bool
CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg,
NamedDecl *Template, SourceLocation TemplateLoc,
SourceLocation RAngleLoc, unsigned ArgumentPackIndex,
SmallVectorImpl<TemplateArgument> &SugaredConverted,
SmallVectorImpl<TemplateArgument> &CanonicalConverted,
CheckTemplateArgumentKind CTAK);
/// Check that the given template arguments can be provided to
/// the given template, converting the arguments along the way.
///
/// \param Template The template to which the template arguments are being
/// provided.
///
/// \param TemplateLoc The location of the template name in the source.
///
/// \param TemplateArgs The list of template arguments. If the template is
/// a template template parameter, this function may extend the set of
/// template arguments to also include substituted, defaulted template
/// arguments.
///
/// \param PartialTemplateArgs True if the list of template arguments is
/// intentionally partial, e.g., because we're checking just the initial
/// set of template arguments.
///
/// \param Converted Will receive the converted, canonicalized template
/// arguments.
///
/// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
/// contain the converted forms of the template arguments as written.
/// Otherwise, \p TemplateArgs will not be modified.
///
/// \param ConstraintsNotSatisfied If provided, and an error occurred, will
/// receive true if the cause for the error is the associated constraints of
/// the template not being satisfied by the template arguments.
///
/// \returns true if an error occurred, false otherwise.
bool CheckTemplateArgumentList(
TemplateDecl *Template, SourceLocation TemplateLoc,
TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
SmallVectorImpl<TemplateArgument> &SugaredConverted,
SmallVectorImpl<TemplateArgument> &CanonicalConverted,
bool UpdateArgsWithConversions = true,
bool *ConstraintsNotSatisfied = nullptr);
bool CheckTemplateTypeArgument(
TemplateTypeParmDecl *Param, TemplateArgumentLoc &Arg,
SmallVectorImpl<TemplateArgument> &SugaredConverted,
SmallVectorImpl<TemplateArgument> &CanonicalConverted);
bool CheckTemplateArgument(TypeSourceInfo *Arg);
ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
QualType InstantiatedParamType, Expr *Arg,
TemplateArgument &SugaredConverted,
TemplateArgument &CanonicalConverted,
CheckTemplateArgumentKind CTAK);
bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
TemplateParameterList *Params,
TemplateArgumentLoc &Arg);
ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
QualType ParamType,
SourceLocation Loc);
ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
SourceLocation Loc);
/// Enumeration describing how template parameter lists are compared
/// for equality.
enum TemplateParameterListEqualKind {
/// We are matching the template parameter lists of two templates
/// that might be redeclarations.
///
/// \code
/// template<typename T> struct X;
/// template<typename T> struct X;
/// \endcode
TPL_TemplateMatch,
/// We are matching the template parameter lists of two template
/// template parameters as part of matching the template parameter lists
/// of two templates that might be redeclarations.
///
/// \code
/// template<template<int I> class TT> struct X;
/// template<template<int Value> class Other> struct X;
/// \endcode
TPL_TemplateTemplateParmMatch,
/// We are matching the template parameter lists of a template
/// template argument against the template parameter lists of a template
/// template parameter.
///
/// \code
/// template<template<int Value> class Metafun> struct X;
/// template<int Value> struct integer_c;
/// X<integer_c> xic;
/// \endcode
TPL_TemplateTemplateArgumentMatch
};
bool TemplateParameterListsAreEqual(
const NamedDecl *NewInstFrom, TemplateParameterList *New,
const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
TemplateParameterListEqualKind Kind,
SourceLocation TemplateArgLoc = SourceLocation(),
bool PartialOrdering = false);
bool TemplateParameterListsAreEqual(
TemplateParameterList *New, TemplateParameterList *Old, bool Complain,
TemplateParameterListEqualKind Kind,
SourceLocation TemplateArgLoc = SourceLocation(),
bool PartialOrdering = false) {
return TemplateParameterListsAreEqual(nullptr, New, nullptr, Old, Complain,
Kind, TemplateArgLoc,
PartialOrdering);
}
bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
/// Called when the parser has parsed a C++ typename
/// specifier, e.g., "typename T::type".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
/// \param IdLoc the location of the identifier.
/// \param IsImplicitTypename context where T::type refers to a type.
TypeResult ActOnTypenameType(
Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS,
const IdentifierInfo &II, SourceLocation IdLoc,
ImplicitTypenameContext IsImplicitTypename = ImplicitTypenameContext::No);
/// Called when the parser has parsed a C++ typename
/// specifier that ends in a template-id, e.g.,
/// "typename MetaFun::template apply<T1, T2>".
///
/// \param S The scope in which this typename type occurs.
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param TemplateLoc the location of the 'template' keyword, if any.
/// \param TemplateName The template name.
/// \param TemplateII The identifier used to name the template.
/// \param TemplateIILoc The location of the template name.
/// \param LAngleLoc The location of the opening angle bracket ('<').
/// \param TemplateArgs The template arguments.
/// \param RAngleLoc The location of the closing angle bracket ('>').
TypeResult
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
const CXXScopeSpec &SS,
SourceLocation TemplateLoc,
TemplateTy TemplateName,
IdentifierInfo *TemplateII,
SourceLocation TemplateIILoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc);
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo &II,
SourceLocation IILoc,
TypeSourceInfo **TSI,
bool DeducedTSTContext);
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo &II,
SourceLocation IILoc,
bool DeducedTSTContext = true);
TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
SourceLocation Loc,
DeclarationName Name);
bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
ExprResult RebuildExprInCurrentInstantiation(Expr *E);
bool RebuildTemplateParamsInCurrentInstantiation(
TemplateParameterList *Params);
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgumentList &Args);
std::string
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
const TemplateArgument *Args,
unsigned NumArgs);
//===--------------------------------------------------------------------===//
// C++ Concepts
//===--------------------------------------------------------------------===//
Decl *ActOnConceptDefinition(
Scope *S, MultiTemplateParamsArg TemplateParameterLists,
IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
void CheckConceptRedefinition(ConceptDecl *NewDecl, LookupResult &Previous,
bool &AddToScope);
RequiresExprBodyDecl *
ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
ArrayRef<ParmVarDecl *> LocalParameters,
Scope *BodyScope);
void ActOnFinishRequiresExpr();
concepts::Requirement *ActOnSimpleRequirement(Expr *E);
concepts::Requirement *ActOnTypeRequirement(
SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
concepts::Requirement *ActOnCompoundRequirement(Expr *E,
SourceLocation NoexceptLoc);
concepts::Requirement *
ActOnCompoundRequirement(
Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
TemplateIdAnnotation *TypeConstraint, unsigned Depth);
concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
concepts::ExprRequirement *
BuildExprRequirement(
Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
concepts::ExprRequirement *
BuildExprRequirement(
concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
bool IsSatisfied, SourceLocation NoexceptLoc,
concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
concepts::TypeRequirement *
BuildTypeRequirement(
concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
concepts::NestedRequirement *
BuildNestedRequirement(StringRef InvalidConstraintEntity,
const ASTConstraintSatisfaction &Satisfaction);
ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
RequiresExprBodyDecl *Body,
ArrayRef<ParmVarDecl *> LocalParameters,
ArrayRef<concepts::Requirement *> Requirements,
SourceLocation ClosingBraceLoc);
//===--------------------------------------------------------------------===//
// C++ Variadic Templates (C++0x [temp.variadic])
//===--------------------------------------------------------------------===//
/// Determine whether an unexpanded parameter pack might be permitted in this
/// location. Useful for error recovery.
bool isUnexpandedParameterPackPermitted();
/// The context in which an unexpanded parameter pack is
/// being diagnosed.
///
/// Note that the values of this enumeration line up with the first
/// argument to the \c err_unexpanded_parameter_pack diagnostic.
enum UnexpandedParameterPackContext {
/// An arbitrary expression.
UPPC_Expression = 0,
/// The base type of a class type.
UPPC_BaseType,
/// The type of an arbitrary declaration.
UPPC_DeclarationType,
/// The type of a data member.
UPPC_DataMemberType,
/// The size of a bit-field.
UPPC_BitFieldWidth,
/// The expression in a static assertion.
UPPC_StaticAssertExpression,
/// The fixed underlying type of an enumeration.
UPPC_FixedUnderlyingType,
/// The enumerator value.
UPPC_EnumeratorValue,
/// A using declaration.
UPPC_UsingDeclaration,
/// A friend declaration.
UPPC_FriendDeclaration,
/// A declaration qualifier.
UPPC_DeclarationQualifier,
/// An initializer.
UPPC_Initializer,
/// A default argument.
UPPC_DefaultArgument,
/// The type of a non-type template parameter.
UPPC_NonTypeTemplateParameterType,
/// The type of an exception.
UPPC_ExceptionType,
/// Partial specialization.
UPPC_PartialSpecialization,
/// Microsoft __if_exists.
UPPC_IfExists,
/// Microsoft __if_not_exists.
UPPC_IfNotExists,
/// Lambda expression.
UPPC_Lambda,
/// Block expression.
UPPC_Block,
/// A type constraint.
UPPC_TypeConstraint,
// A requirement in a requires-expression.
UPPC_Requirement,
// A requires-clause.
UPPC_RequiresClause,
};
/// Diagnose unexpanded parameter packs.
///
/// \param Loc The location at which we should emit the diagnostic.
///
/// \param UPPC The context in which we are diagnosing unexpanded
/// parameter packs.
///
/// \param Unexpanded the set of unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
UnexpandedParameterPackContext UPPC,
ArrayRef<UnexpandedParameterPack> Unexpanded);
/// If the given type contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The source location where a diagnostc should be emitted.
///
/// \param T The type that is being checked for unexpanded parameter
/// packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
UnexpandedParameterPackContext UPPC);
/// If the given expression contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param E The expression that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(Expr *E,
UnexpandedParameterPackContext UPPC = UPPC_Expression);
/// If the given requirees-expression contains an unexpanded reference to one
/// of its own parameter packs, diagnose the error.
///
/// \param RE The requiress-expression that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
/// If the given nested-name-specifier contains an unexpanded
/// parameter pack, diagnose the error.
///
/// \param SS The nested-name-specifier that is being checked for
/// unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
UnexpandedParameterPackContext UPPC);
/// If the given name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param NameInfo The name (with source location information) that
/// is being checked for unexpanded parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
UnexpandedParameterPackContext UPPC);
/// If the given template name contains an unexpanded parameter pack,
/// diagnose the error.
///
/// \param Loc The location of the template name.
///
/// \param Template The template name that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TemplateName Template,
UnexpandedParameterPackContext UPPC);
/// If the given template argument contains an unexpanded parameter
/// pack, diagnose the error.
///
/// \param Arg The template argument that is being checked for unexpanded
/// parameter packs.
///
/// \returns true if an error occurred, false otherwise.
bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
UnexpandedParameterPackContext UPPC);
/// Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TemplateArgument Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// template argument.
///
/// \param Arg The template argument that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param T The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(QualType T,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// type.
///
/// \param TL The type that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(TypeLoc TL,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// nested-name-specifier.
///
/// \param NNS The nested-name-specifier that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Collect the set of unexpanded parameter packs within the given
/// name.
///
/// \param NameInfo The name that will be traversed to find
/// unexpanded parameter packs.
void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
/// Invoked when parsing a template argument followed by an
/// ellipsis, which creates a pack expansion.
///
/// \param Arg The template argument preceding the ellipsis, which
/// may already be invalid.
///
/// \param EllipsisLoc The location of the ellipsis.
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
SourceLocation EllipsisLoc);
/// Invoked when parsing a type followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Type The type preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
/// Construct a pack expansion type from the pattern of the pack
/// expansion.
TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions);
/// Construct a pack expansion type from the pattern of the pack
/// expansion.
QualType CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions);
/// Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
/// Invoked when parsing an expression followed by an ellipsis, which
/// creates a pack expansion.
///
/// \param Pattern The expression preceding the ellipsis, which will become
/// the pattern of the pack expansion.
///
/// \param EllipsisLoc The location of the ellipsis.
ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
std::optional<unsigned> NumExpansions);
/// Determine whether we could expand a pack expansion with the
/// given set of parameter packs into separate arguments by repeatedly
/// transforming the pattern.
///
/// \param EllipsisLoc The location of the ellipsis that identifies the
/// pack expansion.
///
/// \param PatternRange The source range that covers the entire pattern of
/// the pack expansion.
///
/// \param Unexpanded The set of unexpanded parameter packs within the
/// pattern.
///
/// \param ShouldExpand Will be set to \c true if the transformer should
/// expand the corresponding pack expansions into separate arguments. When
/// set, \c NumExpansions must also be set.
///
/// \param RetainExpansion Whether the caller should add an unexpanded
/// pack expansion after all of the expanded arguments. This is used
/// when extending explicitly-specified template argument packs per
/// C++0x [temp.arg.explicit]p9.
///
/// \param NumExpansions The number of separate arguments that will be in
/// the expanded form of the corresponding pack expansion. This is both an
/// input and an output parameter, which can be set by the caller if the
/// number of expansions is known a priori (e.g., due to a prior substitution)
/// and will be set by the callee when the number of expansions is known.
/// The callee must set this value when \c ShouldExpand is \c true; it may
/// set this value in other cases.
///
/// \returns true if an error occurred (e.g., because the parameter packs
/// are to be instantiated with arguments of different lengths), false
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
/// must be set.
bool CheckParameterPacksForExpansion(
SourceLocation EllipsisLoc, SourceRange PatternRange,
ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
bool &RetainExpansion, std::optional<unsigned> &NumExpansions);
/// Determine the number of arguments in the given pack expansion
/// type.
///
/// This routine assumes that the number of arguments in the expansion is
/// consistent across all of the unexpanded parameter packs in its pattern.
///
/// Returns an empty Optional if the type can't be expanded.
std::optional<unsigned> getNumArgumentsInExpansion(
QualType T, const MultiLevelTemplateArgumentList &TemplateArgs);
/// Determine whether the given declarator contains any unexpanded
/// parameter packs.
///
/// This routine is used by the parser to disambiguate function declarators
/// with an ellipsis prior to the ')', e.g.,
///
/// \code
/// void f(T...);
/// \endcode
///
/// To determine whether we have an (unnamed) function parameter pack or
/// a variadic function.
///
/// \returns true if the declarator contains any unexpanded parameter packs,
/// false otherwise.
bool containsUnexpandedParameterPacks(Declarator &D);
/// Returns the pattern of the pack expansion for a template argument.
///
/// \param OrigLoc The template argument to expand.
///
/// \param Ellipsis Will be set to the location of the ellipsis.
///
/// \param NumExpansions Will be set to the number of expansions that will
/// be generated from this pack expansion, if known a priori.
TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
TemplateArgumentLoc OrigLoc, SourceLocation &Ellipsis,
std::optional<unsigned> &NumExpansions) const;
/// Given a template argument that contains an unexpanded parameter pack, but
/// which has already been substituted, attempt to determine the number of
/// elements that will be produced once this argument is fully-expanded.
///
/// This is intended for use when transforming 'sizeof...(Arg)' in order to
/// avoid actually expanding the pack where possible.
std::optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
//===--------------------------------------------------------------------===//
// C++ Template Argument Deduction (C++ [temp.deduct])
//===--------------------------------------------------------------------===//
/// Adjust the type \p ArgFunctionType to match the calling convention,
/// noreturn, and optionally the exception specification of \p FunctionType.
/// Deduction often wants to ignore these properties when matching function
/// types.
QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
bool AdjustExceptionSpec = false);
/// Describes the result of template argument deduction.
///
/// The TemplateDeductionResult enumeration describes the result of
/// template argument deduction, as returned from
/// DeduceTemplateArguments(). The separate TemplateDeductionInfo
/// structure provides additional information about the results of
/// template argument deduction, e.g., the deduced template argument
/// list (if successful) or the specific template parameters or
/// deduced arguments that were involved in the failure.
enum TemplateDeductionResult {
/// Template argument deduction was successful.
TDK_Success = 0,
/// The declaration was invalid; do nothing.
TDK_Invalid,
/// Template argument deduction exceeded the maximum template
/// instantiation depth (which has already been diagnosed).
TDK_InstantiationDepth,
/// Template argument deduction did not deduce a value
/// for every template parameter.
TDK_Incomplete,
/// Template argument deduction did not deduce a value for every
/// expansion of an expanded template parameter pack.
TDK_IncompletePack,
/// Template argument deduction produced inconsistent
/// deduced values for the given template parameter.
TDK_Inconsistent,
/// Template argument deduction failed due to inconsistent
/// cv-qualifiers on a template parameter type that would
/// otherwise be deduced, e.g., we tried to deduce T in "const T"
/// but were given a non-const "X".
TDK_Underqualified,
/// Substitution of the deduced template argument values
/// resulted in an error.
TDK_SubstitutionFailure,
/// After substituting deduced template arguments, a dependent
/// parameter type did not match the corresponding argument.
TDK_DeducedMismatch,
/// After substituting deduced template arguments, an element of
/// a dependent parameter type did not match the corresponding element
/// of the corresponding argument (when deducing from an initializer list).
TDK_DeducedMismatchNested,
/// A non-depnedent component of the parameter did not match the
/// corresponding component of the argument.
TDK_NonDeducedMismatch,
/// When performing template argument deduction for a function
/// template, there were too many call arguments.
TDK_TooManyArguments,
/// When performing template argument deduction for a function
/// template, there were too few call arguments.
TDK_TooFewArguments,
/// The explicitly-specified template arguments were not valid
/// template arguments for the given template.
TDK_InvalidExplicitArguments,
/// Checking non-dependent argument conversions failed.
TDK_NonDependentConversionFailure,
/// The deduced arguments did not satisfy the constraints associated
/// with the template.
TDK_ConstraintsNotSatisfied,
/// Deduction failed; that's all we know.
TDK_MiscellaneousDeductionFailure,
/// CUDA Target attributes do not match.
TDK_CUDATargetMismatch,
/// Some error which was already diagnosed.
TDK_AlreadyDiagnosed
};
TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult SubstituteExplicitTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo &ExplicitTemplateArgs,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
sema::TemplateDeductionInfo &Info);
/// brief A function argument from which we performed template argument
// deduction for a call.
struct OriginalCallArg {
OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
unsigned ArgIdx, QualType OriginalArgType)
: OriginalParamType(OriginalParamType),
DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
OriginalArgType(OriginalArgType) {}
QualType OriginalParamType;
bool DecomposedParam;
unsigned ArgIdx;
QualType OriginalArgType;
};
TemplateDeductionResult FinishTemplateArgumentDeduction(
FunctionTemplateDecl *FunctionTemplate,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
bool PartialOverloading = false,
llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
TemplateDeductionResult DeduceTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
bool PartialOverloading,
llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ArgFunctionType,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
bool IsAddressOfFunction = false);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
QualType ToType,
CXXConversionDecl *&Specialization,
sema::TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
FunctionDecl *&Specialization,
sema::TemplateDeductionInfo &Info,
bool IsAddressOfFunction = false);
/// Substitute Replacement for \p auto in \p TypeWithAuto
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
/// Substitute Replacement for auto in TypeWithAuto
TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
QualType Replacement);
// Substitute auto in TypeWithAuto for a Dependent auto type
QualType SubstAutoTypeDependent(QualType TypeWithAuto);
// Substitute auto in TypeWithAuto for a Dependent auto type
TypeSourceInfo *
SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto);
/// Completely replace the \c auto in \p TypeWithAuto by
/// \p Replacement. This does not retain any \c auto type sugar.
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
QualType Replacement);
TemplateDeductionResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *Initializer,
QualType &Result,
sema::TemplateDeductionInfo &Info,
bool DependentDeduction = false,
bool IgnoreConstraints = false);
void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
bool Diagnose = true);
/// Declare implicit deduction guides for a class template if we've
/// not already done so.
void DeclareImplicitDeductionGuides(TemplateDecl *Template,
SourceLocation Loc);
QualType DeduceTemplateSpecializationFromInitializer(
TypeSourceInfo *TInfo, const InitializedEntity &Entity,
const InitializationKind &Kind, MultiExprArg Init);
QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
QualType Type, TypeSourceInfo *TSI,
SourceRange Range, bool DirectInit,
Expr *Init);
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
SourceLocation ReturnLoc, Expr *RetExpr,
const AutoType *AT);
FunctionTemplateDecl *getMoreSpecializedTemplate(
FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
unsigned NumCallArguments2, bool Reversed = false);
UnresolvedSetIterator
getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
TemplateSpecCandidateSet &FailedCandidates,
SourceLocation Loc,
const PartialDiagnostic &NoneDiag,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &CandidateDiag,
bool Complain = true, QualType TargetType = QualType());
ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(
ClassTemplatePartialSpecializationDecl *PS1,
ClassTemplatePartialSpecializationDecl *PS2,
SourceLocation Loc);
bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
sema::TemplateDeductionInfo &Info);
VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
VarTemplatePartialSpecializationDecl *PS1,
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
sema::TemplateDeductionInfo &Info);
bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
unsigned Depth, llvm::SmallBitVector &Used);
void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used);
void MarkDeducedTemplateParameters(
const FunctionTemplateDecl *FunctionTemplate,
llvm::SmallBitVector &Deduced) {
return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
}
static void MarkDeducedTemplateParameters(ASTContext &Ctx,
const FunctionTemplateDecl *FunctionTemplate,
llvm::SmallBitVector &Deduced);
//===--------------------------------------------------------------------===//
// C++ Template Instantiation
//
MultiLevelTemplateArgumentList
getTemplateInstantiationArgs(const NamedDecl *D, bool Final = false,
const TemplateArgumentList *Innermost = nullptr,
bool RelativeToPrimary = false,
const FunctionDecl *Pattern = nullptr,
bool ForConstraintInstantiation = false,
bool SkipForSpecialization = false);
/// A context in which code is being synthesized (where a source location
/// alone is not sufficient to identify the context). This covers template
/// instantiation and various forms of implicitly-generated functions.
struct CodeSynthesisContext {
/// The kind of template instantiation we are performing
enum SynthesisKind {
/// We are instantiating a template declaration. The entity is
/// the declaration we're instantiating (e.g., a CXXRecordDecl).
TemplateInstantiation,
/// We are instantiating a default argument for a template
/// parameter. The Entity is the template parameter whose argument is
/// being instantiated, the Template is the template, and the
/// TemplateArgs/NumTemplateArguments provide the template arguments as
/// specified.
DefaultTemplateArgumentInstantiation,
/// We are instantiating a default argument for a function.
/// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
/// provides the template arguments as specified.
DefaultFunctionArgumentInstantiation,
/// We are substituting explicit template arguments provided for
/// a function template. The entity is a FunctionTemplateDecl.
ExplicitTemplateArgumentSubstitution,
/// We are substituting template argument determined as part of
/// template argument deduction for either a class template
/// partial specialization or a function template. The
/// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
/// a TemplateDecl.
DeducedTemplateArgumentSubstitution,
/// We are substituting prior template arguments into a new
/// template parameter. The template parameter itself is either a
/// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
PriorTemplateArgumentSubstitution,
/// We are checking the validity of a default template argument that
/// has been used when naming a template-id.
DefaultTemplateArgumentChecking,
/// We are computing the exception specification for a defaulted special
/// member function.
ExceptionSpecEvaluation,
/// We are instantiating the exception specification for a function
/// template which was deferred until it was needed.
ExceptionSpecInstantiation,
/// We are instantiating a requirement of a requires expression.
RequirementInstantiation,
/// We are checking the satisfaction of a nested requirement of a requires
/// expression.
NestedRequirementConstraintsCheck,
/// We are declaring an implicit special member function.
DeclaringSpecialMember,
/// We are declaring an implicit 'operator==' for a defaulted
/// 'operator<=>'.
DeclaringImplicitEqualityComparison,
/// We are defining a synthesized function (such as a defaulted special
/// member).
DefiningSynthesizedFunction,
// We are checking the constraints associated with a constrained entity or
// the constraint expression of a concept. This includes the checks that
// atomic constraints have the type 'bool' and that they can be constant
// evaluated.
ConstraintsCheck,
// We are substituting template arguments into a constraint expression.
ConstraintSubstitution,
// We are normalizing a constraint expression.
ConstraintNormalization,
// Instantiating a Requires Expression parameter clause.
RequirementParameterInstantiation,
// We are substituting into the parameter mapping of an atomic constraint
// during normalization.
ParameterMappingSubstitution,
/// We are rewriting a comparison operator in terms of an operator<=>.
RewritingOperatorAsSpaceship,
/// We are initializing a structured binding.
InitializingStructuredBinding,
/// We are marking a class as __dllexport.
MarkingClassDllexported,
/// We are building an implied call from __builtin_dump_struct. The
/// arguments are in CallArgs.
BuildingBuiltinDumpStructCall,
/// Added for Template instantiation observation.
/// Memoization means we are _not_ instantiating a template because
/// it is already instantiated (but we entered a context where we
/// would have had to if it was not already instantiated).
Memoization
} Kind;
/// Was the enclosing context a non-instantiation SFINAE context?
bool SavedInNonInstantiationSFINAEContext;
/// The point of instantiation or synthesis within the source code.
SourceLocation PointOfInstantiation;
/// The entity that is being synthesized.
Decl *Entity;
/// The template (or partial specialization) in which we are
/// performing the instantiation, for substitutions of prior template
/// arguments.
NamedDecl *Template;
union {
/// The list of template arguments we are substituting, if they
/// are not part of the entity.
const TemplateArgument *TemplateArgs;
/// The list of argument expressions in a synthesized call.
const Expr *const *CallArgs;
};
// FIXME: Wrap this union around more members, or perhaps store the
// kind-specific members in the RAII object owning the context.
union {
/// The number of template arguments in TemplateArgs.
unsigned NumTemplateArgs;
/// The number of expressions in CallArgs.
unsigned NumCallArgs;
/// The special member being declared or defined.
CXXSpecialMember SpecialMember;
};
ArrayRef<TemplateArgument> template_arguments() const {
assert(Kind != DeclaringSpecialMember);
return {TemplateArgs, NumTemplateArgs};
}
/// The template deduction info object associated with the
/// substitution or checking of explicit or deduced template arguments.
sema::TemplateDeductionInfo *DeductionInfo;
/// The source range that covers the construct that cause
/// the instantiation, e.g., the template-id that causes a class
/// template instantiation.
SourceRange InstantiationRange;
CodeSynthesisContext()
: Kind(TemplateInstantiation),
SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
DeductionInfo(nullptr) {}
/// Determines whether this template is an actual instantiation
/// that should be counted toward the maximum instantiation depth.
bool isInstantiationRecord() const;
};
/// List of active code synthesis contexts.
///
/// This vector is treated as a stack. As synthesis of one entity requires
/// synthesis of another, additional contexts are pushed onto the stack.
SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
/// Specializations whose definitions are currently being instantiated.
llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
/// Non-dependent types used in templates that have already been instantiated
/// by some template instantiation.
llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
/// Extra modules inspected when performing a lookup during a template
/// instantiation. Computed lazily.
SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
/// Cache of additional modules that should be used for name lookup
/// within the current template instantiation. Computed lazily; use
/// getLookupModules() to get a complete set.
llvm::DenseSet<Module*> LookupModulesCache;
/// Get the set of additional modules that should be checked during
/// name lookup. A module and its imports become visible when instanting a
/// template defined within it.
llvm::DenseSet<Module*> &getLookupModules();
/// Map from the most recent declaration of a namespace to the most
/// recent visible declaration of that namespace.
llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
/// Whether we are in a SFINAE context that is not associated with
/// template instantiation.
///
/// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
/// of a template instantiation or template argument deduction.
bool InNonInstantiationSFINAEContext;
/// The number of \p CodeSynthesisContexts that are not template
/// instantiations and, therefore, should not be counted as part of the
/// instantiation depth.
///
/// When the instantiation depth reaches the user-configurable limit
/// \p LangOptions::InstantiationDepth we will abort instantiation.
// FIXME: Should we have a similar limit for other forms of synthesis?
unsigned NonInstantiationEntries;
/// The depth of the context stack at the point when the most recent
/// error or warning was produced.
///
/// This value is used to suppress printing of redundant context stacks
/// when there are multiple errors or warnings in the same instantiation.
// FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
unsigned LastEmittedCodeSynthesisContextDepth = 0;
/// The template instantiation callbacks to trace or track
/// instantiations (objects can be chained).
///
/// This callbacks is used to print, trace or track template
/// instantiations as they are being constructed.
std::vector<std::unique_ptr<TemplateInstantiationCallback>>
TemplateInstCallbacks;
/// The current index into pack expansion arguments that will be
/// used for substitution of parameter packs.
///
/// The pack expansion index will be -1 to indicate that parameter packs
/// should be instantiated as themselves. Otherwise, the index specifies
/// which argument within the parameter pack will be used for substitution.
int ArgumentPackSubstitutionIndex;
/// RAII object used to change the argument pack substitution index
/// within a \c Sema object.
///
/// See \c ArgumentPackSubstitutionIndex for more information.
class ArgumentPackSubstitutionIndexRAII {
Sema &Self;
int OldSubstitutionIndex;
public:
ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
: Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
}
~ArgumentPackSubstitutionIndexRAII() {
Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
}
};
friend class ArgumentPackSubstitutionRAII;
/// For each declaration that involved template argument deduction, the
/// set of diagnostics that were suppressed during that template argument
/// deduction.
///
/// FIXME: Serialize this structure to the AST file.
typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
SuppressedDiagnosticsMap;
SuppressedDiagnosticsMap SuppressedDiagnostics;
/// A stack object to be created when performing template
/// instantiation.
///
/// Construction of an object of type \c InstantiatingTemplate
/// pushes the current instantiation onto the stack of active
/// instantiations. If the size of this stack exceeds the maximum
/// number of recursive template instantiations, construction
/// produces an error and evaluates true.
///
/// Destruction of this object will pop the named instantiation off
/// the stack.
struct InstantiatingTemplate {
/// Note that we are instantiating a class template,
/// function template, variable template, alias template,
/// or a member thereof.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
Decl *Entity,
SourceRange InstantiationRange = SourceRange());
struct ExceptionSpecification {};
/// Note that we are instantiating an exception specification
/// of a function template.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionDecl *Entity, ExceptionSpecification,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating a default argument in a
/// template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateParameter Param, TemplateDecl *Template,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// Note that we are substituting either explicitly-specified or
/// deduced template arguments during function template argument deduction.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionTemplateDecl *FunctionTemplate,
ArrayRef<TemplateArgument> TemplateArgs,
CodeSynthesisContext::SynthesisKind Kind,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating as part of template
/// argument deduction for a class template declaration.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating as part of template
/// argument deduction for a class template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ClassTemplatePartialSpecializationDecl *PartialSpec,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating as part of template
/// argument deduction for a variable template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
VarTemplatePartialSpecializationDecl *PartialSpec,
ArrayRef<TemplateArgument> TemplateArgs,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// Note that we are instantiating a default argument for a function
/// parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ParmVarDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// Note that we are substituting prior template arguments into a
/// non-type parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template,
NonTypeTemplateParmDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
/// Note that we are substituting prior template arguments into a
/// template template parameter.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
NamedDecl *Template,
TemplateTemplateParmDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
/// Note that we are checking the default template argument
/// against the template parameter for a given template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
NamedDecl *Param,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
struct ConstraintsCheck {};
/// \brief Note that we are checking the constraints associated with some
/// constrained entity (a concept declaration or a template with associated
/// constraints).
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ConstraintsCheck, NamedDecl *Template,
ArrayRef<TemplateArgument> TemplateArgs,
SourceRange InstantiationRange);
struct ConstraintSubstitution {};
/// \brief Note that we are checking a constraint expression associated
/// with a template declaration or as part of the satisfaction check of a
/// concept.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ConstraintSubstitution, NamedDecl *Template,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange);
struct ConstraintNormalization {};
/// \brief Note that we are normalizing a constraint expression.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ConstraintNormalization, NamedDecl *Template,
SourceRange InstantiationRange);
struct ParameterMappingSubstitution {};
/// \brief Note that we are subtituting into the parameter mapping of an
/// atomic constraint during constraint normalization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ParameterMappingSubstitution, NamedDecl *Template,
SourceRange InstantiationRange);
/// \brief Note that we are substituting template arguments into a part of
/// a requirement of a requires expression.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
concepts::Requirement *Req,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are checking the satisfaction of the constraint
/// expression inside of a nested requirement.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
concepts::NestedRequirement *Req, ConstraintsCheck,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are checking a requires clause.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
const RequiresExpr *E,
sema::TemplateDeductionInfo &DeductionInfo,
SourceRange InstantiationRange);
/// Note that we have finished instantiating this template.
void Clear();
~InstantiatingTemplate() { Clear(); }
/// Determines whether we have exceeded the maximum
/// recursive template instantiations.
bool isInvalid() const { return Invalid; }
/// Determine whether we are already instantiating this
/// specialization in some surrounding active instantiation.
bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
private:
Sema &SemaRef;
bool Invalid;
bool AlreadyInstantiating;
bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
SourceRange InstantiationRange);
InstantiatingTemplate(
Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
Decl *Entity, NamedDecl *Template = nullptr,
ArrayRef<TemplateArgument> TemplateArgs = std::nullopt,
sema::TemplateDeductionInfo *DeductionInfo = nullptr);
InstantiatingTemplate(const InstantiatingTemplate&) = delete;
InstantiatingTemplate&
operator=(const InstantiatingTemplate&) = delete;
};
void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
void popCodeSynthesisContext();
/// Determine whether we are currently performing template instantiation.
bool inTemplateInstantiation() const {
return CodeSynthesisContexts.size() > NonInstantiationEntries;
}
void PrintContextStack() {
if (!CodeSynthesisContexts.empty() &&
CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
PrintInstantiationStack();
LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
}
if (PragmaAttributeCurrentTargetDecl)
PrintPragmaAttributeInstantiationPoint();
}
void PrintInstantiationStack();
void PrintPragmaAttributeInstantiationPoint();
/// Determines whether we are currently in a context where
/// template argument substitution failures are not considered
/// errors.
///
/// \returns An empty \c Optional if we're not in a SFINAE context.
/// Otherwise, contains a pointer that, if non-NULL, contains the nearest
/// template-deduction context object, which can be used to capture
/// diagnostics that will be suppressed.
std::optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
/// Determines whether we are currently in a context that
/// is not evaluated as per C++ [expr] p5.
bool isUnevaluatedContext() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
return ExprEvalContexts.back().isUnevaluated();
}
bool isConstantEvaluatedContext() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
return ExprEvalContexts.back().isConstantEvaluated();
}
bool isImmediateFunctionContext() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
return ExprEvalContexts.back().isImmediateFunctionContext();
}
bool isCheckingDefaultArgumentOrInitializer() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
const ExpressionEvaluationContextRecord &Ctx = ExprEvalContexts.back();
return (Ctx.Context ==
ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed) ||
Ctx.IsCurrentlyCheckingDefaultArgumentOrInitializer;
}
std::optional<ExpressionEvaluationContextRecord::InitializationContext>
InnermostDeclarationWithDelayedImmediateInvocations() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
for (const auto &Ctx : llvm::reverse(ExprEvalContexts)) {
if (Ctx.Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
Ctx.DelayedDefaultInitializationContext)
return Ctx.DelayedDefaultInitializationContext;
if (Ctx.isConstantEvaluated() || Ctx.isImmediateFunctionContext() ||
Ctx.isUnevaluated())
break;
}
return std::nullopt;
}
std::optional<ExpressionEvaluationContextRecord::InitializationContext>
OutermostDeclarationWithDelayedImmediateInvocations() const {
assert(!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context");
std::optional<ExpressionEvaluationContextRecord::InitializationContext> Res;
for (auto &Ctx : llvm::reverse(ExprEvalContexts)) {
if (Ctx.Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
!Ctx.DelayedDefaultInitializationContext && Res)
break;
if (Ctx.isConstantEvaluated() || Ctx.isImmediateFunctionContext() ||
Ctx.isUnevaluated())
break;
Res = Ctx.DelayedDefaultInitializationContext;
}
return Res;
}
/// RAII class used to determine whether SFINAE has
/// trapped any errors that occur during template argument
/// deduction.
class SFINAETrap {
Sema &SemaRef;
unsigned PrevSFINAEErrors;
bool PrevInNonInstantiationSFINAEContext;
bool PrevAccessCheckingSFINAE;
bool PrevLastDiagnosticIgnored;
public:
explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
: SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
PrevInNonInstantiationSFINAEContext(
SemaRef.InNonInstantiationSFINAEContext),
PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
PrevLastDiagnosticIgnored(
SemaRef.getDiagnostics().isLastDiagnosticIgnored())
{
if (!SemaRef.isSFINAEContext())
SemaRef.InNonInstantiationSFINAEContext = true;
SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
}
~SFINAETrap() {
SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
SemaRef.InNonInstantiationSFINAEContext
= PrevInNonInstantiationSFINAEContext;
SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
SemaRef.getDiagnostics().setLastDiagnosticIgnored(
PrevLastDiagnosticIgnored);
}
/// Determine whether any SFINAE errors have been trapped.
bool hasErrorOccurred() const {
return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
}
};
/// RAII class used to indicate that we are performing provisional
/// semantic analysis to determine the validity of a construct, so
/// typo-correction and diagnostics in the immediate context (not within
/// implicitly-instantiated templates) should be suppressed.
class TentativeAnalysisScope {
Sema &SemaRef;
// FIXME: Using a SFINAETrap for this is a hack.
SFINAETrap Trap;
bool PrevDisableTypoCorrection;
public:
explicit TentativeAnalysisScope(Sema &SemaRef)
: SemaRef(SemaRef), Trap(SemaRef, true),
PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
SemaRef.DisableTypoCorrection = true;
}
~TentativeAnalysisScope() {
SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
}
};
/// The current instantiation scope used to store local
/// variables.
LocalInstantiationScope *CurrentInstantiationScope;
/// Tracks whether we are in a context where typo correction is
/// disabled.
bool DisableTypoCorrection;
/// The number of typos corrected by CorrectTypo.
unsigned TyposCorrected;
typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
/// A cache containing identifiers for which typo correction failed and
/// their locations, so that repeated attempts to correct an identifier in a
/// given location are ignored if typo correction already failed for it.
IdentifierSourceLocations TypoCorrectionFailures;
/// Worker object for performing CFG-based warnings.
sema::AnalysisBasedWarnings AnalysisWarnings;
threadSafety::BeforeSet *ThreadSafetyDeclCache;
/// An entity for which implicit template instantiation is required.
///
/// The source location associated with the declaration is the first place in
/// the source code where the declaration was "used". It is not necessarily
/// the point of instantiation (which will be either before or after the
/// namespace-scope declaration that triggered this implicit instantiation),
/// However, it is the location that diagnostics should generally refer to,
/// because users will need to know what code triggered the instantiation.
typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
/// The queue of implicit template instantiations that are required
/// but have not yet been performed.
std::deque<PendingImplicitInstantiation> PendingInstantiations;
/// Queue of implicit template instantiations that cannot be performed
/// eagerly.
SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
class GlobalEagerInstantiationScope {
public:
GlobalEagerInstantiationScope(Sema &S, bool Enabled)
: S(S), Enabled(Enabled) {
if (!Enabled) return;
SavedPendingInstantiations.swap(S.PendingInstantiations);
SavedVTableUses.swap(S.VTableUses);
}
void perform() {
if (Enabled) {
S.DefineUsedVTables();
S.PerformPendingInstantiations();
}
}
~GlobalEagerInstantiationScope() {
if (!Enabled) return;
// Restore the set of pending vtables.
assert(S.VTableUses.empty() &&
"VTableUses should be empty before it is discarded.");
S.VTableUses.swap(SavedVTableUses);
// Restore the set of pending implicit instantiations.
if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
assert(S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded.");
S.PendingInstantiations.swap(SavedPendingInstantiations);
} else {
// Template instantiations in the PCH may be delayed until the TU.
S.PendingInstantiations.swap(SavedPendingInstantiations);
S.PendingInstantiations.insert(S.PendingInstantiations.end(),
SavedPendingInstantiations.begin(),
SavedPendingInstantiations.end());
}
}
private:
Sema &S;
SmallVector<VTableUse, 16> SavedVTableUses;
std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
bool Enabled;
};
/// The queue of implicit template instantiations that are required
/// and must be performed within the current local scope.
///
/// This queue is only used for member functions of local classes in
/// templates, which must be instantiated in the same scope as their
/// enclosing function, so that they can reference function-local
/// types, static variables, enumerators, etc.
std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
class LocalEagerInstantiationScope {
public:
LocalEagerInstantiationScope(Sema &S) : S(S) {
SavedPendingLocalImplicitInstantiations.swap(
S.PendingLocalImplicitInstantiations);
}
void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
~LocalEagerInstantiationScope() {
assert(S.PendingLocalImplicitInstantiations.empty() &&
"there shouldn't be any pending local implicit instantiations");
SavedPendingLocalImplicitInstantiations.swap(
S.PendingLocalImplicitInstantiations);
}
private:
Sema &S;
std::deque<PendingImplicitInstantiation>
SavedPendingLocalImplicitInstantiations;
};
/// A helper class for building up ExtParameterInfos.
class ExtParameterInfoBuilder {
SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
bool HasInteresting = false;
public:
/// Set the ExtParameterInfo for the parameter at the given index,
///
void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
assert(Infos.size() <= index);
Infos.resize(index);
Infos.push_back(info);
if (!HasInteresting)
HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
}
/// Return a pointer (suitable for setting in an ExtProtoInfo) to the
/// ExtParameterInfo array we've built up.
const FunctionProtoType::ExtParameterInfo *
getPointerOrNull(unsigned numParams) {
if (!HasInteresting) return nullptr;
Infos.resize(numParams);
return Infos.data();
}
};
void PerformPendingInstantiations(bool LocalOnly = false);
TypeSourceInfo *SubstType(TypeSourceInfo *T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity,
bool AllowDeducedTST = false);
QualType SubstType(QualType T,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
TypeSourceInfo *SubstType(TypeLoc TL,
const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
TypeSourceInfo *SubstFunctionDeclType(
TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity, CXXRecordDecl *ThisContext,
Qualifiers ThisTypeQuals, bool EvaluateConstraints = true);
void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
const MultiLevelTemplateArgumentList &Args);
bool SubstExceptionSpec(SourceLocation Loc,
FunctionProtoType::ExceptionSpecInfo &ESI,
SmallVectorImpl<QualType> &ExceptionStorage,
const MultiLevelTemplateArgumentList &Args);
ParmVarDecl *
SubstParmVarDecl(ParmVarDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs,
int indexAdjustment, std::optional<unsigned> NumExpansions,
bool ExpectParameterPack, bool EvaluateConstraints = true);
bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<QualType> &ParamTypes,
SmallVectorImpl<ParmVarDecl *> *OutParams,
ExtParameterInfoBuilder &ParamInfos);
bool SubstDefaultArgument(SourceLocation Loc, ParmVarDecl *Param,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool ForCallExpr = false);
ExprResult SubstExpr(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs);
// A RAII type used by the TemplateDeclInstantiator and TemplateInstantiator
// to disable constraint evaluation, then restore the state.
template <typename InstTy> struct ConstraintEvalRAII {
InstTy &TI;
bool OldValue;
ConstraintEvalRAII(InstTy &TI)
: TI(TI), OldValue(TI.getEvaluateConstraints()) {
TI.setEvaluateConstraints(false);
}
~ConstraintEvalRAII() { TI.setEvaluateConstraints(OldValue); }
};
// Unlike the above, this evaluates constraints, which should only happen at
// 'constraint checking' time.
ExprResult
SubstConstraintExpr(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Substitute the given template arguments into a list of
/// expressions, expanding pack expansions if required.
///
/// \param Exprs The list of expressions to substitute into.
///
/// \param IsCall Whether this is some form of call, in which case
/// default arguments will be dropped.
///
/// \param TemplateArgs The set of template arguments to substitute.
///
/// \param Outputs Will receive all of the substituted arguments.
///
/// \returns true if an error occurred, false otherwise.
bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
const MultiLevelTemplateArgumentList &TemplateArgs,
SmallVectorImpl<Expr *> &Outputs);
StmtResult SubstStmt(Stmt *S,
const MultiLevelTemplateArgumentList &TemplateArgs);
TemplateParameterList *
SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool EvaluateConstraints = true);
bool
SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateArgumentListInfo &Outputs);
Decl *SubstDecl(Decl *D, DeclContext *Owner,
const MultiLevelTemplateArgumentList &TemplateArgs);
/// Substitute the name and return type of a defaulted 'operator<=>' to form
/// an implicit 'operator=='.
FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
FunctionDecl *Spaceship);
ExprResult SubstInitializer(Expr *E,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool CXXDirectInit);
bool
SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool
InstantiateClass(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK,
bool Complain = true);
bool InstantiateEnum(SourceLocation PointOfInstantiation,
EnumDecl *Instantiation, EnumDecl *Pattern,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK);
bool InstantiateInClassInitializer(
SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
struct LateInstantiatedAttribute {
const Attr *TmplAttr;
LocalInstantiationScope *Scope;
Decl *NewDecl;
LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
Decl *D)
: TmplAttr(A), Scope(S), NewDecl(D)
{ }
};
typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
const Decl *Pattern, Decl *Inst,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *OuterMostScope = nullptr);
void
InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
const Decl *Pattern, Decl *Inst,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *OuterMostScope = nullptr);
void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
bool usesPartialOrExplicitSpecialization(
SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
bool
InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK,
bool Complain = true);
void InstantiateClassMembers(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation,
const MultiLevelTemplateArgumentList &TemplateArgs,
TemplateSpecializationKind TSK);
void InstantiateClassTemplateSpecializationMembers(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec,
TemplateSpecializationKind TSK);
NestedNameSpecifierLoc
SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
const MultiLevelTemplateArgumentList &TemplateArgs);
DeclarationNameInfo
SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
const MultiLevelTemplateArgumentList &TemplateArgs);
TemplateName
SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
SourceLocation Loc,
const MultiLevelTemplateArgumentList &TemplateArgs);
bool SubstTypeConstraint(TemplateTypeParmDecl *Inst, const TypeConstraint *TC,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool EvaluateConstraint);
bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
ParmVarDecl *Param);
void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
FunctionDecl *Function);
bool CheckInstantiatedFunctionTemplateConstraints(
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
ArrayRef<TemplateArgument> TemplateArgs,
ConstraintSatisfaction &Satisfaction);
FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
const TemplateArgumentList *Args,
SourceLocation Loc);
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
FunctionDecl *Function,
bool Recursive = false,
bool DefinitionRequired = false,
bool AtEndOfTU = false);
VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
VarTemplateDecl *VarTemplate, VarDecl *FromVar,
const TemplateArgumentList &TemplateArgList,
const TemplateArgumentListInfo &TemplateArgsInfo,
SmallVectorImpl<TemplateArgument> &Converted,
SourceLocation PointOfInstantiation,
LateInstantiatedAttrVec *LateAttrs = nullptr,
LocalInstantiationScope *StartingScope = nullptr);
VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
const MultiLevelTemplateArgumentList &TemplateArgs);
void
BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
const MultiLevelTemplateArgumentList &TemplateArgs,
LateInstantiatedAttrVec *LateAttrs,
DeclContext *Owner,
LocalInstantiationScope *StartingScope,
bool InstantiatingVarTemplate = false,
VarTemplateSpecializationDecl *PrevVTSD = nullptr);
void InstantiateVariableInitializer(
VarDecl *Var, VarDecl *OldVar,
const MultiLevelTemplateArgumentList &TemplateArgs);
void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
VarDecl *Var, bool Recursive = false,
bool DefinitionRequired = false,
bool AtEndOfTU = false);
void InstantiateMemInitializers(CXXConstructorDecl *New,
const CXXConstructorDecl *Tmpl,
const MultiLevelTemplateArgumentList &TemplateArgs);
NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
const MultiLevelTemplateArgumentList &TemplateArgs,
bool FindingInstantiatedContext = false);
DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
const MultiLevelTemplateArgumentList &TemplateArgs);
// Objective-C declarations.
enum ObjCContainerKind {
OCK_None = -1,
OCK_Interface = 0,
OCK_Protocol,
OCK_Category,
OCK_ClassExtension,
OCK_Implementation,
OCK_CategoryImplementation
};
ObjCContainerKind getObjCContainerKind() const;
DeclResult actOnObjCTypeParam(Scope *S,
ObjCTypeParamVariance variance,
SourceLocation varianceLoc,
unsigned index,
IdentifierInfo *paramName,
SourceLocation paramLoc,
SourceLocation colonLoc,
ParsedType typeBound);
ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
ArrayRef<Decl *> typeParams,
SourceLocation rAngleLoc);
void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
ObjCInterfaceDecl *ActOnStartClassInterface(
Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
IdentifierInfo *SuperName, SourceLocation SuperLoc,
ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
Decl *const *ProtoRefs, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody);
void ActOnSuperClassOfClassInterface(Scope *S,
SourceLocation AtInterfaceLoc,
ObjCInterfaceDecl *IDecl,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
ArrayRef<ParsedType> SuperTypeArgs,
SourceRange SuperTypeArgsRange);
void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
SmallVectorImpl<SourceLocation> &ProtocolLocs,
IdentifierInfo *SuperName,
SourceLocation SuperLoc);
Decl *ActOnCompatibilityAlias(
SourceLocation AtCompatibilityAliasLoc,
IdentifierInfo *AliasName, SourceLocation AliasLocation,
IdentifierInfo *ClassName, SourceLocation ClassLocation);
bool CheckForwardProtocolDeclarationForCircularDependency(
IdentifierInfo *PName,
SourceLocation &PLoc, SourceLocation PrevLoc,
const ObjCList<ObjCProtocolDecl> &PList);
ObjCProtocolDecl *ActOnStartProtocolInterface(
SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList,
SkipBodyInfo *SkipBody);
ObjCCategoryDecl *ActOnStartCategoryInterface(
SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
Decl *const *ProtoRefs, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
const ParsedAttributesView &AttrList);
ObjCImplementationDecl *ActOnStartClassImplementation(
SourceLocation AtClassImplLoc, IdentifierInfo *ClassName,
SourceLocation ClassLoc, IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc, const ParsedAttributesView &AttrList);
ObjCCategoryImplDecl *ActOnStartCategoryImplementation(
SourceLocation AtCatImplLoc, IdentifierInfo *ClassName,
SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc,
const ParsedAttributesView &AttrList);
DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
ArrayRef<Decl *> Decls);
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
IdentifierInfo **IdentList,
SourceLocation *IdentLocs,
ArrayRef<ObjCTypeParamList *> TypeParamLists,
unsigned NumElts);
DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
ArrayRef<IdentifierLocPair> IdentList,
const ParsedAttributesView &attrList);
void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
ArrayRef<IdentifierLocPair> ProtocolId,
SmallVectorImpl<Decl *> &Protocols);
void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
SourceLocation ProtocolLoc,
IdentifierInfo *TypeArgId,
SourceLocation TypeArgLoc,
bool SelectProtocolFirst = false);
/// Given a list of identifiers (and their locations), resolve the
/// names to either Objective-C protocol qualifiers or type
/// arguments, as appropriate.
void actOnObjCTypeArgsOrProtocolQualifiers(
Scope *S,
ParsedType baseType,
SourceLocation lAngleLoc,
ArrayRef<IdentifierInfo *> identifiers,
ArrayRef<SourceLocation> identifierLocs,
SourceLocation rAngleLoc,
SourceLocation &typeArgsLAngleLoc,
SmallVectorImpl<ParsedType> &typeArgs,
SourceLocation &typeArgsRAngleLoc,
SourceLocation &protocolLAngleLoc,
SmallVectorImpl<Decl *> &protocols,
SourceLocation &protocolRAngleLoc,
bool warnOnIncompleteProtocols);
/// Build a an Objective-C protocol-qualified 'id' type where no
/// base type was specified.
TypeResult actOnObjCProtocolQualifierType(
SourceLocation lAngleLoc,
ArrayRef<Decl *> protocols,
ArrayRef<SourceLocation> protocolLocs,
SourceLocation rAngleLoc);
/// Build a specialized and/or protocol-qualified Objective-C type.
TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
Scope *S,
SourceLocation Loc,
ParsedType BaseType,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<ParsedType> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<Decl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc);
/// Build an Objective-C type parameter type.
QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc,
bool FailOnError = false);
/// Build an Objective-C object pointer type.
QualType BuildObjCObjectType(
QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc,
ArrayRef<TypeSourceInfo *> TypeArgs, SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc, ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs, SourceLocation ProtocolRAngleLoc,
bool FailOnError, bool Rebuilding);
/// Ensure attributes are consistent with type.
/// \param [in, out] Attributes The attributes to check; they will
/// be modified to be consistent with \p PropertyTy.
void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
SourceLocation Loc,
unsigned &Attributes,
bool propertyInPrimaryClass);
/// Process the specified property declaration and create decls for the
/// setters and getters as needed.
/// \param property The property declaration being processed
void ProcessPropertyDecl(ObjCPropertyDecl *property);
void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
ObjCPropertyDecl *SuperProperty,
const IdentifierInfo *Name,
bool OverridingProtocolProperty);
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
ObjCInterfaceDecl *ID);
Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
ArrayRef<Decl *> allMethods = std::nullopt,
ArrayRef<DeclGroupPtrTy> allTUVars = std::nullopt);
Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD, ObjCDeclSpec &ODS,
Selector GetterSel, Selector SetterSel,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC = nullptr);
Decl *ActOnPropertyImplDecl(Scope *S,
SourceLocation AtLoc,
SourceLocation PropertyLoc,
bool ImplKind,
IdentifierInfo *PropertyId,
IdentifierInfo *PropertyIvar,
SourceLocation PropertyIvarLoc,
ObjCPropertyQueryKind QueryKind);
enum ObjCSpecialMethodKind {
OSMK_None,
OSMK_Alloc,
OSMK_New,
OSMK_Copy,
OSMK_RetainingInit,
OSMK_NonRetainingInit
};
struct ObjCArgInfo {
IdentifierInfo *Name;
SourceLocation NameLoc;
// The Type is null if no type was specified, and the DeclSpec is invalid
// in this case.
ParsedType Type;
ObjCDeclSpec DeclSpec;
/// ArgAttrs - Attribute list for this argument.
ParsedAttributesView ArgAttrs;
};
Decl *ActOnMethodDeclaration(
Scope *S,
SourceLocation BeginLoc, // location of the + or -.
SourceLocation EndLoc, // location of the ; or {.
tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
unsigned CNumArgs, // c-style args
const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
bool isVariadic, bool MethodDefinition);
ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
const ObjCObjectPointerType *OPT,
bool IsInstance);
ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
bool IsInstance);
bool CheckARCMethodDecl(ObjCMethodDecl *method);
bool inferObjCARCLifetime(ValueDecl *decl);
void deduceOpenCLAddressSpace(ValueDecl *decl);
ExprResult
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
Expr *BaseExpr,
SourceLocation OpLoc,
DeclarationName MemberName,
SourceLocation MemberLoc,
SourceLocation SuperLoc, QualType SuperType,
bool Super);
ExprResult
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation receiverNameLoc,
SourceLocation propertyNameLoc);
ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
/// Describes the kind of message expression indicated by a message
/// send that starts with an identifier.
enum ObjCMessageKind {
/// The message is sent to 'super'.
ObjCSuperMessage,
/// The message is an instance message.
ObjCInstanceMessage,
/// The message is a class message, and the identifier is a type
/// name.
ObjCClassMessage
};
ObjCMessageKind getObjCMessageKind(Scope *S,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool IsSuper,
bool HasTrailingDot,
ParsedType &ReceiverType);
ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args,
bool isImplicit = false);
ExprResult BuildClassMessageImplicit(QualType ReceiverType,
bool isSuperReceiver,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args);
ExprResult ActOnClassMessage(Scope *S,
ParsedType Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildInstanceMessage(Expr *Receiver,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args,
bool isImplicit = false);
ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
QualType ReceiverType,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args);
ExprResult ActOnInstanceMessage(Scope *S,
Expr *Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args);
ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
TypeSourceInfo *TSInfo,
Expr *SubExpr);
ExprResult ActOnObjCBridgedCast(Scope *S,
SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
ParsedType Type,
SourceLocation RParenLoc,
Expr *SubExpr);
void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
CastKind &Kind);
bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
QualType DestType, QualType SrcType,
ObjCInterfaceDecl *&RelatedClass,
ObjCMethodDecl *&ClassMethod,
ObjCMethodDecl *&InstanceMethod,
TypedefNameDecl *&TDNDecl,
bool CfToNs, bool Diagnose = true);
bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
QualType DestType, QualType SrcType,
Expr *&SrcExpr, bool Diagnose = true);
bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
bool Diagnose = true);
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
/// Check whether the given new method is a valid override of the
/// given overridden method, and set any properties that should be inherited.
void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
const ObjCMethodDecl *Overridden);
/// Describes the compatibility of a result type with its method.
enum ResultTypeCompatibilityKind {
RTC_Compatible,
RTC_Incompatible,
RTC_Unknown
};
void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
ObjCMethodDecl *overridden);
void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
ObjCInterfaceDecl *CurrentClass,
ResultTypeCompatibilityKind RTC);
enum PragmaOptionsAlignKind {
POAK_Native, // #pragma options align=native
POAK_Natural, // #pragma options align=natural
POAK_Packed, // #pragma options align=packed
POAK_Power, // #pragma options align=power
POAK_Mac68k, // #pragma options align=mac68k
POAK_Reset // #pragma options align=reset
};
/// ActOnPragmaClangSection - Called on well formed \#pragma clang section
void ActOnPragmaClangSection(SourceLocation PragmaLoc,
PragmaClangSectionAction Action,
PragmaClangSectionKind SecKind, StringRef SecName);
/// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
SourceLocation PragmaLoc);
/// ActOnPragmaPack - Called on well formed \#pragma pack(...).
void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
StringRef SlotLabel, Expr *Alignment);
enum class PragmaAlignPackDiagnoseKind {
NonDefaultStateAtInclude,
ChangedStateAtExit
};
void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
SourceLocation IncludeLoc);
void DiagnoseUnterminatedPragmaAlignPack();
/// ActOnPragmaMSStrictGuardStackCheck - Called on well formed \#pragma
/// strict_gs_check.
void ActOnPragmaMSStrictGuardStackCheck(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
bool Value);
/// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
/// ActOnPragmaMSComment - Called on well formed
/// \#pragma comment(kind, "arg").
void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
StringRef Arg);
/// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
/// pointers_to_members(representation method[, general purpose
/// representation]).
void ActOnPragmaMSPointersToMembers(
LangOptions::PragmaMSPointersToMembersKind Kind,
SourceLocation PragmaLoc);
/// Called on well formed \#pragma vtordisp().
void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
SourceLocation PragmaLoc,
MSVtorDispMode Value);
enum PragmaSectionKind {
PSK_DataSeg,
PSK_BSSSeg,
PSK_ConstSeg,
PSK_CodeSeg,
};
bool UnifySection(StringRef SectionName, int SectionFlags,
NamedDecl *TheDecl);
bool UnifySection(StringRef SectionName,
int SectionFlags,
SourceLocation PragmaSectionLocation);
/// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel,
StringLiteral *SegmentName,
llvm::StringRef PragmaName);
/// Called on well formed \#pragma section().
void ActOnPragmaMSSection(SourceLocation PragmaLocation,
int SectionFlags, StringLiteral *SegmentName);
/// Called on well-formed \#pragma init_seg().
void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
StringLiteral *SegmentName);
/// Called on well-formed \#pragma alloc_text().
void ActOnPragmaMSAllocText(
SourceLocation PragmaLocation, StringRef Section,
const SmallVector<std::tuple<IdentifierInfo *, SourceLocation>>
&Functions);
/// Called on #pragma clang __debug dump II
void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
/// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
StringRef Value);
/// Are precise floating point semantics currently enabled?
bool isPreciseFPEnabled() {
return !CurFPFeatures.getAllowFPReassociate() &&
!CurFPFeatures.getNoSignedZero() &&
!CurFPFeatures.getAllowReciprocal() &&
!CurFPFeatures.getAllowApproxFunc();
}
void ActOnPragmaFPEvalMethod(SourceLocation Loc,
LangOptions::FPEvalMethodKind Value);
/// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
PragmaFloatControlKind Value);
/// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
void ActOnPragmaUnused(const Token &Identifier,
Scope *curScope,
SourceLocation PragmaLoc);
/// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
void ActOnPragmaVisibility(const IdentifierInfo* VisType,
SourceLocation PragmaLoc);
NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II,
SourceLocation Loc);
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W);
/// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
void ActOnPragmaWeakID(IdentifierInfo* WeakName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc);
/// ActOnPragmaRedefineExtname - Called on well formed
/// \#pragma redefine_extname oldname newname.
void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
IdentifierInfo* AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
IdentifierInfo* AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// ActOnPragmaFPContract - Called on well formed
/// \#pragma {STDC,OPENCL} FP_CONTRACT and
/// \#pragma clang fp contract
void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
/// Called on well formed
/// \#pragma clang fp reassociate
void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
/// ActOnPragmaFenvAccess - Called on well formed
/// \#pragma STDC FENV_ACCESS
void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
/// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
void ActOnPragmaFPExceptions(SourceLocation Loc,
LangOptions::FPExceptionModeKind);
/// Called to set constant rounding mode for floating point operations.
void ActOnPragmaFEnvRound(SourceLocation Loc, llvm::RoundingMode);
/// Called to set exception behavior for floating point operations.
void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
/// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
/// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
void AddAlignmentAttributesForRecord(RecordDecl *RD);
/// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
void AddMsStructLayoutForRecord(RecordDecl *RD);
/// PushNamespaceVisibilityAttr - Note that we've entered a
/// namespace with a visibility attribute.
void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
SourceLocation Loc);
/// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
/// add an appropriate visibility attribute.
void AddPushedVisibilityAttribute(Decl *RD);
/// PopPragmaVisibility - Pop the top element of the visibility stack; used
/// for '\#pragma GCC visibility' and visibility attributes on namespaces.
void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
/// FreeVisContext - Deallocate and null out VisContext.
void FreeVisContext();
/// AddCFAuditedAttribute - Check whether we're currently within
/// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
/// the appropriate attribute.
void AddCFAuditedAttribute(Decl *D);
void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
SourceLocation PragmaLoc,
attr::ParsedSubjectMatchRuleSet Rules);
void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
const IdentifierInfo *Namespace);
/// Called on well-formed '\#pragma clang attribute pop'.
void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
const IdentifierInfo *Namespace);
/// Adds the attributes that have been specified using the
/// '\#pragma clang attribute push' directives to the given declaration.
void AddPragmaAttributes(Scope *S, Decl *D);
void DiagnoseUnterminatedPragmaAttribute();
/// Called on well formed \#pragma clang optimize.
void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
/// #pragma optimize("[optimization-list]", on | off).
void ActOnPragmaMSOptimize(SourceLocation Loc, bool IsOn);
/// Call on well formed \#pragma function.
void
ActOnPragmaMSFunction(SourceLocation Loc,
const llvm::SmallVectorImpl<StringRef> &NoBuiltins);
/// Get the location for the currently active "\#pragma clang optimize
/// off". If this location is invalid, then the state of the pragma is "on".
SourceLocation getOptimizeOffPragmaLocation() const {
return OptimizeOffPragmaLocation;
}
/// Only called on function definitions; if there is a pragma in scope
/// with the effect of a range-based optnone, consider marking the function
/// with attribute optnone.
void AddRangeBasedOptnone(FunctionDecl *FD);
/// Only called on function definitions; if there is a `#pragma alloc_text`
/// that decides which code section the function should be in, add
/// attribute section to the function.
void AddSectionMSAllocText(FunctionDecl *FD);
/// Adds the 'optnone' attribute to the function declaration if there
/// are no conflicts; Loc represents the location causing the 'optnone'
/// attribute to be added (usually because of a pragma).
void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
/// Only called on function definitions; if there is a MSVC #pragma optimize
/// in scope, consider changing the function's attributes based on the
/// optimization list passed to the pragma.
void ModifyFnAttributesMSPragmaOptimize(FunctionDecl *FD);
/// Only called on function definitions; if there is a pragma in scope
/// with the effect of a range-based no_builtin, consider marking the function
/// with attribute no_builtin.
void AddImplicitMSFunctionNoBuiltinAttr(FunctionDecl *FD);
/// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
bool IsPackExpansion);
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
bool IsPackExpansion);
/// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
/// declaration.
void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
Expr *OE);
/// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
/// declaration.
void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *ParamExpr);
/// AddAlignValueAttr - Adds an align_value attribute to a particular
/// declaration.
void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
/// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
StringRef Annot, MutableArrayRef<Expr *> Args);
/// ConstantFoldAttrArgs - Folds attribute arguments into ConstantExprs
/// (unless they are value dependent or type dependent). Returns false
/// and emits a diagnostic if one or more of the arguments could not be
/// folded into a constant.
bool ConstantFoldAttrArgs(const AttributeCommonInfo &CI,
MutableArrayRef<Expr *> Args);
/// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
/// declaration.
void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *MaxThreads, Expr *MinBlocks);
/// AddModeAttr - Adds a mode attribute to a particular declaration.
void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
bool InInstantiation = false);
void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
ParameterABI ABI);
enum class RetainOwnershipKind {NS, CF, OS};
void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
RetainOwnershipKind K, bool IsTemplateInstantiation);
/// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
/// attribute to a particular declaration.
void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *Min, Expr *Max);
/// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
/// particular declaration.
void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
Expr *Min, Expr *Max);
bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
//===--------------------------------------------------------------------===//
// C++ Coroutines TS
//
bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
StringRef Keyword);
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
ExprResult BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc);
ExprResult BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
UnresolvedLookupExpr *Lookup);
ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand,
Expr *Awaiter, bool IsImplicit = false);
ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand,
UnresolvedLookupExpr *Lookup);
ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
bool IsImplicit = false);
StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
bool buildCoroutineParameterMoves(SourceLocation Loc);
VarDecl *buildCoroutinePromise(SourceLocation Loc);
void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
/// Lookup 'coroutine_traits' in std namespace and std::experimental
/// namespace. The namespace found is recorded in Namespace.
ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
SourceLocation FuncLoc,
NamespaceDecl *&Namespace);
/// Check that the expression co_await promise.final_suspend() shall not be
/// potentially-throwing.
bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
//===--------------------------------------------------------------------===//
// OpenMP directives and clauses.
//
private:
void *VarDataSharingAttributesStack;
struct DeclareTargetContextInfo {
struct MapInfo {
OMPDeclareTargetDeclAttr::MapTypeTy MT;
SourceLocation Loc;
};
/// Explicitly listed variables and functions in a 'to' or 'link' clause.
llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
/// The 'device_type' as parsed from the clause.
OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
/// The directive kind, `begin declare target` or `declare target`.
OpenMPDirectiveKind Kind;
/// The directive with indirect clause.
std::optional<Expr *> Indirect;
/// The directive location.
SourceLocation Loc;
DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
: Kind(Kind), Loc(Loc) {}
};
/// Number of nested '#pragma omp declare target' directives.
SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
/// Initialization of data-sharing attributes stack.
void InitDataSharingAttributesStack();
void DestroyDataSharingAttributesStack();
ExprResult
VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
bool StrictlyPositive = true,
bool SuppressExprDiags = false);
/// Returns OpenMP nesting level for current directive.
unsigned getOpenMPNestingLevel() const;
/// Adjusts the function scopes index for the target-based regions.
void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
unsigned Level) const;
/// Returns the number of scopes associated with the construct on the given
/// OpenMP level.
int getNumberOfConstructScopes(unsigned Level) const;
/// Push new OpenMP function region for non-capturing function.
void pushOpenMPFunctionRegion();
/// Pop OpenMP function region for non-capturing function.
void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
/// Analyzes and checks a loop nest for use by a loop transformation.
///
/// \param Kind The loop transformation directive kind.
/// \param NumLoops How many nested loops the directive is expecting.
/// \param AStmt Associated statement of the transformation directive.
/// \param LoopHelpers [out] The loop analysis result.
/// \param Body [out] The body code nested in \p NumLoops loop.
/// \param OriginalInits [out] Collection of statements and declarations that
/// must have been executed/declared before entering the
/// loop.
///
/// \return Whether there was any error.
bool checkTransformableLoopNest(
OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
Stmt *&Body,
SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
&OriginalInits);
/// Helper to keep information about the current `omp begin/end declare
/// variant` nesting.
struct OMPDeclareVariantScope {
/// The associated OpenMP context selector.
OMPTraitInfo *TI;
/// The associated OpenMP context selector mangling.
std::string NameSuffix;
OMPDeclareVariantScope(OMPTraitInfo &TI);
};
/// Return the OMPTraitInfo for the surrounding scope, if any.
OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
return OMPDeclareVariantScopes.empty() ? nullptr
: OMPDeclareVariantScopes.back().TI;
}
/// The current `omp begin/end declare variant` scopes.
SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
/// The current `omp begin/end assumes` scopes.
SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
/// All `omp assumes` we encountered so far.
SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
public:
/// The declarator \p D defines a function in the scope \p S which is nested
/// in an `omp begin/end declare variant` scope. In this method we create a
/// declaration for \p D and rename \p D according to the OpenMP context
/// selector of the surrounding scope. Return all base functions in \p Bases.
void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
SmallVectorImpl<FunctionDecl *> &Bases);
/// Register \p D as specialization of all base functions in \p Bases in the
/// current `omp begin/end declare variant` scope.
void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
/// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
/// Can we exit an OpenMP declare variant scope at the moment.
bool isInOpenMPDeclareVariantScope() const {
return !OMPDeclareVariantScopes.empty();
}
/// Given the potential call expression \p Call, determine if there is a
/// specialization via the OpenMP declare variant mechanism available. If
/// there is, return the specialized call expression, otherwise return the
/// original \p Call.
ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
SourceLocation LParenLoc, MultiExprArg ArgExprs,
SourceLocation RParenLoc, Expr *ExecConfig);
/// Handle a `omp begin declare variant`.
void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
/// Handle a `omp end declare variant`.
void ActOnOpenMPEndDeclareVariant();
/// Checks if the variant/multiversion functions are compatible.
bool areMultiversionVariantFunctionsCompatible(
const FunctionDecl *OldFD, const FunctionDecl *NewFD,
const PartialDiagnostic &NoProtoDiagID,
const PartialDiagnosticAt &NoteCausedDiagIDAt,
const PartialDiagnosticAt &NoSupportDiagIDAt,
const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
bool ConstexprSupported, bool CLinkageMayDiffer);
/// Function tries to capture lambda's captured variables in the OpenMP region
/// before the original lambda is captured.
void tryCaptureOpenMPLambdas(ValueDecl *V);
/// Return true if the provided declaration \a VD should be captured by
/// reference.
/// \param Level Relative level of nested OpenMP construct for that the check
/// is performed.
/// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
unsigned OpenMPCaptureLevel) const;
/// Check if the specified variable is used in one of the private
/// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
/// constructs.
VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
unsigned StopAt = 0);
/// The member expression(this->fd) needs to be rebuilt in the template
/// instantiation to generate private copy for OpenMP when default
/// clause is used. The function will return true if default
/// cluse is used.
bool isOpenMPRebuildMemberExpr(ValueDecl *D);
ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
ExprObjectKind OK, SourceLocation Loc);
/// If the current region is a loop-based region, mark the start of the loop
/// construct.
void startOpenMPLoop();
/// If the current region is a range loop-based region, mark the start of the
/// loop construct.
void startOpenMPCXXRangeFor();
/// Check if the specified variable is used in 'private' clause.
/// \param Level Relative level of nested OpenMP construct for that the check
/// is performed.
OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
unsigned CapLevel) const;
/// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
/// for \p FD based on DSA for the provided corresponding captured declaration
/// \p D.
void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
/// Check if the specified variable is captured by 'target' directive.
/// \param Level Relative level of nested OpenMP construct for that the check
/// is performed.
bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
unsigned CaptureLevel) const;
/// Check if the specified global variable must be captured by outer capture
/// regions.
/// \param Level Relative level of nested OpenMP construct for that
/// the check is performed.
bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
unsigned CaptureLevel) const;
ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
Expr *Op);
/// Called on start of new data sharing attribute block.
void StartOpenMPDSABlock(OpenMPDirectiveKind K,
const DeclarationNameInfo &DirName, Scope *CurScope,
SourceLocation Loc);
/// Start analysis of clauses.
void StartOpenMPClause(OpenMPClauseKind K);
/// End analysis of clauses.
void EndOpenMPClause();
/// Called on end of data sharing attribute block.
void EndOpenMPDSABlock(Stmt *CurDirective);
/// Check if the current region is an OpenMP loop region and if it is,
/// mark loop control variable, used in \p Init for loop initialization, as
/// private by default.
/// \param Init First part of the for loop.
void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
/// Called on well-formed '\#pragma omp metadirective' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPMetaDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
// OpenMP directives and clauses.
/// Called on correct id-expression from the '#pragma omp
/// threadprivate'.
ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
const DeclarationNameInfo &Id,
OpenMPDirectiveKind Kind);
/// Called on well-formed '#pragma omp threadprivate'.
DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
SourceLocation Loc,
ArrayRef<Expr *> VarList);
/// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
ArrayRef<Expr *> VarList);
/// Called on well-formed '#pragma omp allocate'.
DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
ArrayRef<Expr *> VarList,
ArrayRef<OMPClause *> Clauses,
DeclContext *Owner = nullptr);
/// Called on well-formed '#pragma omp [begin] assume[s]'.
void ActOnOpenMPAssumesDirective(SourceLocation Loc,
OpenMPDirectiveKind DKind,
ArrayRef<std::string> Assumptions,
bool SkippedClauses);
/// Check if there is an active global `omp begin assumes` directive.
bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
/// Check if there is an active global `omp assumes` directive.
bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
/// Called on well-formed '#pragma omp end assumes'.
void ActOnOpenMPEndAssumesDirective();
/// Called on well-formed '#pragma omp requires'.
DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
ArrayRef<OMPClause *> ClauseList);
/// Check restrictions on Requires directive
OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
ArrayRef<OMPClause *> Clauses);
/// Check if the specified type is allowed to be used in 'omp declare
/// reduction' construct.
QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
TypeResult ParsedType);
/// Called on start of '#pragma omp declare reduction'.
DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
Scope *S, DeclContext *DC, DeclarationName Name,
ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
/// Initialize declare reduction construct initializer.
void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
/// Finish current declare reduction construct initializer.
void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
/// Initialize declare reduction construct initializer.
/// \return omp_priv variable.
VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
/// Finish current declare reduction construct initializer.
void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
VarDecl *OmpPrivParm);
/// Called at the end of '#pragma omp declare reduction'.
DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
/// Check variable declaration in 'omp declare mapper' construct.
TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
/// Check if the specified type is allowed to be used in 'omp declare
/// mapper' construct.
QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
TypeResult ParsedType);
/// Called on start of '#pragma omp declare mapper'.
DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
Decl *PrevDeclInScope = nullptr);
/// Build the mapper variable of '#pragma omp declare mapper'.
ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
QualType MapperType,
SourceLocation StartLoc,
DeclarationName VN);
void ActOnOpenMPIteratorVarDecl(VarDecl *VD);
bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
const ValueDecl *getOpenMPDeclareMapperVarName() const;
/// Called on the start of target region i.e. '#pragma omp declare target'.
bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
/// Called at the end of target region i.e. '#pragma omp end declare target'.
const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
/// Called once a target context is completed, that can be when a
/// '#pragma omp end declare target' was encountered or when a
/// '#pragma omp declare target' without declaration-definition-seq was
/// encountered.
void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
/// Report unterminated 'omp declare target' or 'omp begin declare target' at
/// the end of a compilation unit.
void DiagnoseUnterminatedOpenMPDeclareTarget();
/// Searches for the provided declaration name for OpenMP declare target
/// directive.
NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
CXXScopeSpec &ScopeSpec,
const DeclarationNameInfo &Id);
/// Called on correct id-expression from the '#pragma omp declare target'.
void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
OMPDeclareTargetDeclAttr::MapTypeTy MT,
DeclareTargetContextInfo &DTCI);
/// Check declaration inside target region.
void
checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
SourceLocation IdLoc = SourceLocation());
/// Finishes analysis of the deferred functions calls that may be declared as
/// host/nohost during device/host compilation.
void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
const FunctionDecl *Callee,
SourceLocation Loc);
/// Return true if currently in OpenMP task with untied clause context.
bool isInOpenMPTaskUntiedContext() const;
/// Return true inside OpenMP declare target region.
bool isInOpenMPDeclareTargetContext() const {
return !DeclareTargetNesting.empty();
}
/// Return true inside OpenMP target region.
bool isInOpenMPTargetExecutionDirective() const;
/// Return the number of captured regions created for an OpenMP directive.
static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
/// Initialization of captured region for OpenMP region.
void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
/// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
/// an OpenMP loop directive.
StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
/// Process a canonical OpenMP loop nest that can either be a canonical
/// literal loop (ForStmt or CXXForRangeStmt), or the generated loop of an
/// OpenMP loop transformation construct.
StmtResult ActOnOpenMPLoopnest(Stmt *AStmt);
/// End of OpenMP region.
///
/// \param S Statement associated with the current OpenMP region.
/// \param Clauses List of clauses for the current OpenMP region.
///
/// \returns Statement for finished OpenMP region.
StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
StmtResult ActOnOpenMPExecutableDirective(
OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp parallel' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
using VarsWithInheritedDSAType =
llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
/// Called on well-formed '\#pragma omp simd' after parsing
/// of the associated statement.
StmtResult
ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '#pragma omp tile' after parsing of its clauses and
/// the associated statement.
StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '#pragma omp unroll' after parsing of its clauses
/// and the associated statement.
StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp for' after parsing
/// of the associated statement.
StmtResult
ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp for simd' after parsing
/// of the associated statement.
StmtResult
ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp sections' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp section' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp single' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp master' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp critical' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp parallel for' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp parallel for simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp parallel master' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp parallel masked' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelMaskedDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp parallel sections' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp task' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp taskyield'.
StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp error'.
/// Error direcitive is allowed in both declared and excutable contexts.
/// Adding InExContext to identify which context is called from.
StmtResult ActOnOpenMPErrorDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
bool InExContext = true);
/// Called on well-formed '\#pragma omp barrier'.
StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp taskwait'.
StmtResult ActOnOpenMPTaskwaitDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp taskgroup'.
StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp flush'.
StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp depobj'.
StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp scan'.
StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp ordered' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp atomic' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp target' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp target data' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp target enter data' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AStmt);
/// Called on well-formed '\#pragma omp target exit data' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AStmt);
/// Called on well-formed '\#pragma omp target parallel' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp target parallel for' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp teams' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp teams loop' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTeamsGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target teams loop' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTargetTeamsGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp parallel loop' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPParallelGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target parallel loop' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPTargetParallelGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp cancellation point'.
StmtResult
ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion);
/// Called on well-formed '\#pragma omp cancel'.
StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion);
/// Called on well-formed '\#pragma omp taskloop' after parsing of the
/// associated statement.
StmtResult
ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp taskloop simd' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp master taskloop' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPMasterTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp parallel master taskloop' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp parallel master taskloop simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp masked taskloop' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPMaskedTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp masked taskloop simd' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPMaskedTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp parallel masked taskloop' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelMaskedTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp parallel masked taskloop simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPParallelMaskedTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp distribute' after parsing
/// of the associated statement.
StmtResult
ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target update'.
StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AStmt);
/// Called on well-formed '\#pragma omp distribute parallel for' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPDistributeParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp distribute parallel for simd'
/// after parsing of the associated statement.
StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp distribute simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPDistributeSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target parallel for simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target simd' after parsing of
/// the associated statement.
StmtResult
ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp teams distribute' after parsing of
/// the associated statement.
StmtResult ActOnOpenMPTeamsDistributeDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp teams distribute simd' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp teams distribute parallel for simd'
/// after parsing of the associated statement.
StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp teams distribute parallel for'
/// after parsing of the associated statement.
StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target teams' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp target teams distribute' after parsing
/// of the associated statement.
StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target teams distribute parallel for'
/// after parsing of the associated statement.
StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target teams distribute parallel for
/// simd' after parsing of the associated statement.
StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp target teams distribute simd' after
/// parsing of the associated statement.
StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Called on well-formed '\#pragma omp interop'.
StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp dispatch' after parsing of the
// /associated statement.
StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp masked' after parsing of the
// /associated statement.
StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed '\#pragma omp loop' after parsing of the
/// associated statement.
StmtResult ActOnOpenMPGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
/// Checks correctness of linear modifiers.
bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
SourceLocation LinLoc);
/// Checks that the specified declaration matches requirements for the linear
/// decls.
bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
OpenMPLinearClauseKind LinKind, QualType Type,
bool IsDeclareSimd = false);
/// Called on well-formed '\#pragma omp declare simd' after parsing of
/// the associated method/function.
DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
/// Checks '\#pragma omp declare variant' variant function and original
/// functions after parsing of the associated method/function.
/// \param DG Function declaration to which declare variant directive is
/// applied to.
/// \param VariantRef Expression that references the variant function, which
/// must be used instead of the original one, specified in \p DG.
/// \param TI The trait info object representing the match clause.
/// \param NumAppendArgs The number of omp_interop_t arguments to account for
/// in checking.
/// \returns std::nullopt, if the function/variant function are not compatible
/// with the pragma, pair of original function/variant ref expression
/// otherwise.
std::optional<std::pair<FunctionDecl *, Expr *>>
checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
OMPTraitInfo &TI, unsigned NumAppendArgs,
SourceRange SR);
/// Called on well-formed '\#pragma omp declare variant' after parsing of
/// the associated method/function.
/// \param FD Function declaration to which declare variant directive is
/// applied to.
/// \param VariantRef Expression that references the variant function, which
/// must be used instead of the original one, specified in \p DG.
/// \param TI The context traits associated with the function variant.
/// \param AdjustArgsNothing The list of 'nothing' arguments.
/// \param AdjustArgsNeedDevicePtr The list of 'need_device_ptr' arguments.
/// \param AppendArgs The list of 'append_args' arguments.
/// \param AdjustArgsLoc The Location of an 'adjust_args' clause.
/// \param AppendArgsLoc The Location of an 'append_args' clause.
/// \param SR The SourceRange of the 'declare variant' directive.
void ActOnOpenMPDeclareVariantDirective(
FunctionDecl *FD, Expr *VariantRef, OMPTraitInfo &TI,
ArrayRef<Expr *> AdjustArgsNothing,
ArrayRef<Expr *> AdjustArgsNeedDevicePtr,
ArrayRef<OMPInteropInfo> AppendArgs, SourceLocation AdjustArgsLoc,
SourceLocation AppendArgsLoc, SourceRange SR);
OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
Expr *Expr,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'allocator' clause.
OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'if' clause.
OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation NameModifierLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc);
/// Called on well-formed 'final' clause.
OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'num_threads' clause.
OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'align' clause.
OMPClause *ActOnOpenMPAlignClause(Expr *Alignment, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'safelen' clause.
OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'simdlen' clause.
OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-form 'sizes' clause.
OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-form 'full' clauses.
OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-form 'partial' clauses.
OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'collapse' clause.
OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'ordered' clause.
OMPClause *
ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
SourceLocation LParenLoc = SourceLocation(),
Expr *NumForLoops = nullptr);
/// Called on well-formed 'grainsize' clause.
OMPClause *ActOnOpenMPGrainsizeClause(OpenMPGrainsizeClauseModifier Modifier,
Expr *Size, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ModifierLoc,
SourceLocation EndLoc);
/// Called on well-formed 'num_tasks' clause.
OMPClause *ActOnOpenMPNumTasksClause(OpenMPNumTasksClauseModifier Modifier,
Expr *NumTasks, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ModifierLoc,
SourceLocation EndLoc);
/// Called on well-formed 'hint' clause.
OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'detach' clause.
OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
unsigned Argument,
SourceLocation ArgumentLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'when' clause.
OMPClause *ActOnOpenMPWhenClause(OMPTraitInfo &TI, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'default' clause.
OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'proc_bind' clause.
OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'order' clause.
OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseModifier Modifier,
OpenMPOrderClauseKind Kind,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation MLoc, SourceLocation KindLoc,
SourceLocation EndLoc);
/// Called on well-formed 'update' clause.
OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
OMPClause *ActOnOpenMPSingleExprWithArgClause(
OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
SourceLocation StartLoc, SourceLocation LParenLoc,
ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
SourceLocation EndLoc);
/// Called on well-formed 'schedule' clause.
OMPClause *ActOnOpenMPScheduleClause(
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'nowait' clause.
OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'untied' clause.
OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'mergeable' clause.
OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'read' clause.
OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'write' clause.
OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'update' clause.
OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'capture' clause.
OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'compare' clause.
OMPClause *ActOnOpenMPCompareClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'seq_cst' clause.
OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'acq_rel' clause.
OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'acquire' clause.
OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'release' clause.
OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'relaxed' clause.
OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'init' clause.
OMPClause *
ActOnOpenMPInitClause(Expr *InteropVar, OMPInteropInfo &InteropInfo,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation VarLoc, SourceLocation EndLoc);
/// Called on well-formed 'use' clause.
OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation VarLoc, SourceLocation EndLoc);
/// Called on well-formed 'destroy' clause.
OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation VarLoc,
SourceLocation EndLoc);
/// Called on well-formed 'novariants' clause.
OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'nocontext' clause.
OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'filter' clause.
OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'threads' clause.
OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'simd' clause.
OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'nogroup' clause.
OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'unified_address' clause.
OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'unified_address' clause.
OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'reverse_offload' clause.
OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'dynamic_allocators' clause.
OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
SourceLocation EndLoc);
/// Called on well-formed 'atomic_default_mem_order' clause.
OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
/// Called on well-formed 'at' clause.
OMPClause *ActOnOpenMPAtClause(OpenMPAtClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'severity' clause.
OMPClause *ActOnOpenMPSeverityClause(OpenMPSeverityClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'message' clause.
/// passing string for message.
OMPClause *ActOnOpenMPMessageClause(Expr *MS, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Data used for processing a list of variables in OpenMP clauses.
struct OpenMPVarListDataTy final {
Expr *DepModOrTailExpr = nullptr;
Expr *IteratorExpr = nullptr;
SourceLocation ColonLoc;
SourceLocation RLoc;
CXXScopeSpec ReductionOrMapperIdScopeSpec;
DeclarationNameInfo ReductionOrMapperId;
int ExtraModifier = -1; ///< Additional modifier for linear, map, depend or
///< lastprivate clause.
SmallVector<OpenMPMapModifierKind, NumberOfOMPMapClauseModifiers>
MapTypeModifiers;
SmallVector<SourceLocation, NumberOfOMPMapClauseModifiers>
MapTypeModifiersLoc;
SmallVector<OpenMPMotionModifierKind, NumberOfOMPMotionModifiers>
MotionModifiers;
SmallVector<SourceLocation, NumberOfOMPMotionModifiers> MotionModifiersLoc;
bool IsMapTypeImplicit = false;
SourceLocation ExtraModifierLoc;
SourceLocation OmpAllMemoryLoc;
};
OMPClause *ActOnOpenMPVarListClause(OpenMPClauseKind Kind,
ArrayRef<Expr *> Vars,
const OMPVarListLocTy &Locs,
OpenMPVarListDataTy &Data);
/// Called on well-formed 'inclusive' clause.
OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'exclusive' clause.
OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'allocate' clause.
OMPClause *
ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
SourceLocation StartLoc, SourceLocation ColonLoc,
SourceLocation LParenLoc, SourceLocation EndLoc);
/// Called on well-formed 'private' clause.
OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'firstprivate' clause.
OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'lastprivate' clause.
OMPClause *ActOnOpenMPLastprivateClause(
ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
SourceLocation LPKindLoc, SourceLocation ColonLoc,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
/// Called on well-formed 'shared' clause.
OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'reduction' clause.
OMPClause *ActOnOpenMPReductionClause(
ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ModifierLoc, SourceLocation ColonLoc,
SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions = std::nullopt);
/// Called on well-formed 'task_reduction' clause.
OMPClause *ActOnOpenMPTaskReductionClause(
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions = std::nullopt);
/// Called on well-formed 'in_reduction' clause.
OMPClause *ActOnOpenMPInReductionClause(
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions = std::nullopt);
/// Called on well-formed 'linear' clause.
OMPClause *
ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
SourceLocation StartLoc, SourceLocation LParenLoc,
OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
SourceLocation ColonLoc, SourceLocation EndLoc);
/// Called on well-formed 'aligned' clause.
OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
Expr *Alignment,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc);
/// Called on well-formed 'copyin' clause.
OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'copyprivate' clause.
OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'flush' pseudo clause.
OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'depobj' pseudo clause.
OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'depend' clause.
OMPClause *ActOnOpenMPDependClause(const OMPDependClause::DependDataTy &Data,
Expr *DepModifier,
ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'device' clause.
OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
Expr *Device, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ModifierLoc,
SourceLocation EndLoc);
/// Called on well-formed 'map' clause.
OMPClause *ActOnOpenMPMapClause(
Expr *IteratorModifier, ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
ArrayRef<SourceLocation> MapTypeModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs, bool NoDiagnose = false,
ArrayRef<Expr *> UnresolvedMappers = std::nullopt);
/// Called on well-formed 'num_teams' clause.
OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'thread_limit' clause.
OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'priority' clause.
OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on well-formed 'dist_schedule' clause.
OMPClause *ActOnOpenMPDistScheduleClause(
OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
SourceLocation CommaLoc, SourceLocation EndLoc);
/// Called on well-formed 'defaultmap' clause.
OMPClause *ActOnOpenMPDefaultmapClause(
OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
SourceLocation KindLoc, SourceLocation EndLoc);
/// Called on well-formed 'to' clause.
OMPClause *
ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
ArrayRef<SourceLocation> MotionModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec,
DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
ArrayRef<Expr *> UnresolvedMappers = std::nullopt);
/// Called on well-formed 'from' clause.
OMPClause *
ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
ArrayRef<SourceLocation> MotionModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec,
DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
ArrayRef<Expr *> UnresolvedMappers = std::nullopt);
/// Called on well-formed 'use_device_ptr' clause.
OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs);
/// Called on well-formed 'use_device_addr' clause.
OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs);
/// Called on well-formed 'is_device_ptr' clause.
OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs);
/// Called on well-formed 'has_device_addr' clause.
OMPClause *ActOnOpenMPHasDeviceAddrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs);
/// Called on well-formed 'nontemporal' clause.
OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Data for list of allocators.
struct UsesAllocatorsData {
/// Allocator.
Expr *Allocator = nullptr;
/// Allocator traits.
Expr *AllocatorTraits = nullptr;
/// Locations of '(' and ')' symbols.
SourceLocation LParenLoc, RParenLoc;
};
/// Called on well-formed 'uses_allocators' clause.
OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc,
ArrayRef<UsesAllocatorsData> Data);
/// Called on well-formed 'affinity' clause.
OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc, Expr *Modifier,
ArrayRef<Expr *> Locators);
/// Called on a well-formed 'bind' clause.
OMPClause *ActOnOpenMPBindClause(OpenMPBindClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// Called on a well-formed 'ompx_dyn_cgroup_mem' clause.
OMPClause *ActOnOpenMPXDynCGroupMemClause(Expr *Size, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc);
/// The kind of conversion being performed.
enum CheckedConversionKind {
/// An implicit conversion.
CCK_ImplicitConversion,
/// A C-style cast.
CCK_CStyleCast,
/// A functional-style cast.
CCK_FunctionalCast,
/// A cast other than a C-style cast.
CCK_OtherCast,
/// A conversion for an operand of a builtin overloaded operator.
CCK_ForBuiltinOverloadedOp
};
static bool isCast(CheckedConversionKind CCK) {
return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
CCK == CCK_OtherCast;
}
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
/// cast. If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
ExprResult
ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
ExprValueKind VK = VK_PRValue,
const CXXCastPath *BasePath = nullptr,
CheckedConversionKind CCK = CCK_ImplicitConversion);
/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
/// to the conversion from scalar type ScalarTy to the Boolean type.
static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
/// IgnoredValueConversions - Given that an expression's result is
/// syntactically ignored, perform any conversions that are
/// required.
ExprResult IgnoredValueConversions(Expr *E);
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
// functions and arrays to their respective pointers (C99 6.3.2.1).
ExprResult UsualUnaryConversions(Expr *E);
/// CallExprUnaryConversions - a special case of an unary conversion
/// performed on a function designator of a call expression.
ExprResult CallExprUnaryConversions(Expr *E);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
// DefaultFunctionArrayLvalueConversion - converts functions and
// arrays to their respective pointers and performs the
// lvalue-to-rvalue conversion.
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
bool Diagnose = true);
// DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
// the operand. This function is a no-op if the operand has a function type
// or an array type.
ExprResult DefaultLvalueConversion(Expr *E);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
ExprResult DefaultArgumentPromotion(Expr *E);
/// If \p E is a prvalue denoting an unmaterialized temporary, materialize
/// it as an xvalue. In C++98, the result will still be a prvalue, because
/// we don't have xvalues there.
ExprResult TemporaryMaterializationConversion(Expr *E);
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
enum VariadicCallType {
VariadicFunction,
VariadicBlock,
VariadicMethod,
VariadicConstructor,
VariadicDoesNotApply
};
VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr *Fn);
// Used for determining in which context a type is allowed to be passed to a
// vararg function.
enum VarArgKind {
VAK_Valid,
VAK_ValidInCXX11,
VAK_Undefined,
VAK_MSVCUndefined,
VAK_Invalid
};
// Determines which VarArgKind fits an expression.
VarArgKind isValidVarArgType(const QualType &Ty);
/// Check to see if the given expression is a valid argument to a variadic
/// function, issuing a diagnostic if not.
void checkVariadicArgument(const Expr *E, VariadicCallType CT);
/// Check whether the given statement can have musttail applied to it,
/// issuing a diagnostic and returning false if not. In the success case,
/// the statement is rewritten to remove implicit nodes from the return
/// value.
bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
private:
/// Check whether the given statement can have musttail applied to it,
/// issuing a diagnostic and returning false if not.
bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
public:
/// Check to see if a given expression could have '.c_str()' called on it.
bool hasCStrMethod(const Expr *E);
/// GatherArgumentsForCall - Collector argument expressions for various
/// form of call prototypes.
bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
const FunctionProtoType *Proto,
unsigned FirstParam, ArrayRef<Expr *> Args,
SmallVectorImpl<Expr *> &AllArgs,
VariadicCallType CallType = VariadicDoesNotApply,
bool AllowExplicit = false,
bool IsListInitialization = false);
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will create a runtime trap if the resulting type is not a POD type.
ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl);
/// Context in which we're performing a usual arithmetic conversion.
enum ArithConvKind {
/// An arithmetic operation.
ACK_Arithmetic,
/// A bitwise operation.
ACK_BitwiseOp,
/// A comparison.
ACK_Comparison,
/// A conditional (?:) operator.
ACK_Conditional,
/// A compound assignment expression.
ACK_CompAssign,
};
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, ArithConvKind ACK);
/// AssignConvertType - All of the 'assignment' semantic checks return this
/// enum to indicate whether the assignment was allowed. These checks are
/// done for simple assignments, as well as initialization, return from
/// function, argument passing, etc. The query is phrased in terms of a
/// source and destination type.
enum AssignConvertType {
/// Compatible - the types are compatible according to the standard.
Compatible,
/// PointerToInt - The assignment converts a pointer to an int, which we
/// accept as an extension.
PointerToInt,
/// IntToPointer - The assignment converts an int to a pointer, which we
/// accept as an extension.
IntToPointer,
/// FunctionVoidPointer - The assignment is between a function pointer and
/// void*, which the standard doesn't allow, but we accept as an extension.
FunctionVoidPointer,
/// IncompatiblePointer - The assignment is between two pointers types that
/// are not compatible, but we accept them as an extension.
IncompatiblePointer,
/// IncompatibleFunctionPointer - The assignment is between two function
/// pointers types that are not compatible, but we accept them as an
/// extension.
IncompatibleFunctionPointer,
/// IncompatibleFunctionPointerStrict - The assignment is between two
/// function pointer types that are not identical, but are compatible,
/// unless compiled with -fsanitize=cfi, in which case the type mismatch
/// may trip an indirect call runtime check.
IncompatibleFunctionPointerStrict,
/// IncompatiblePointerSign - The assignment is between two pointers types
/// which point to integers which have a different sign, but are otherwise
/// identical. This is a subset of the above, but broken out because it's by
/// far the most common case of incompatible pointers.
IncompatiblePointerSign,
/// CompatiblePointerDiscardsQualifiers - The assignment discards
/// c/v/r qualifiers, which we accept as an extension.
CompatiblePointerDiscardsQualifiers,
/// IncompatiblePointerDiscardsQualifiers - The assignment
/// discards qualifiers that we don't permit to be discarded,
/// like address spaces.
IncompatiblePointerDiscardsQualifiers,
/// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
/// changes address spaces in nested pointer types which is not allowed.
/// For instance, converting __private int ** to __generic int ** is
/// illegal even though __private could be converted to __generic.
IncompatibleNestedPointerAddressSpaceMismatch,
/// IncompatibleNestedPointerQualifiers - The assignment is between two
/// nested pointer types, and the qualifiers other than the first two
/// levels differ e.g. char ** -> const char **, but we accept them as an
/// extension.
IncompatibleNestedPointerQualifiers,
/// IncompatibleVectors - The assignment is between two vector types that
/// have the same size, which we accept as an extension.
IncompatibleVectors,
/// IntToBlockPointer - The assignment converts an int to a block
/// pointer. We disallow this.
IntToBlockPointer,
/// IncompatibleBlockPointer - The assignment is between two block
/// pointers types that are not compatible.
IncompatibleBlockPointer,
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
/// id type and something else (that is incompatible with it). For example,
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
IncompatibleObjCQualifiedId,
/// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
/// object with __weak qualifier.
IncompatibleObjCWeakRef,
/// Incompatible - We reject this conversion outright, it is invalid to
/// represent it in the AST.
Incompatible
};
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
/// assignment conversion type specified by ConvTy. This returns true if the
/// conversion was invalid or false if the conversion was accepted.
bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, AssignmentAction Action,
bool *Complained = nullptr);
/// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
/// enum. If AllowMask is true, then we also allow the complement of a valid
/// value, to be used as a mask.
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
bool AllowMask) const;
/// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
/// integer not in the range of enum values.
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
Expr *SrcExpr);
/// CheckAssignmentConstraints - Perform type checking for assignment,
/// argument passing, variable initialization, and function return values.
/// C99 6.5.16.
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
QualType LHSType,
QualType RHSType);
/// Check assignment constraints and optionally prepare for a conversion of
/// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
/// is true.
AssignConvertType CheckAssignmentConstraints(QualType LHSType,
ExprResult &RHS,
CastKind &Kind,
bool ConvertRHS = true);
/// Check assignment constraints for an assignment of RHS to LHSType.
///
/// \param LHSType The destination type for the assignment.
/// \param RHS The source expression for the assignment.
/// \param Diagnose If \c true, diagnostics may be produced when checking
/// for assignability. If a diagnostic is produced, \p RHS will be
/// set to ExprError(). Note that this function may still return
/// without producing a diagnostic, even for an invalid assignment.
/// \param DiagnoseCFAudited If \c true, the target is a function parameter
/// in an audited Core Foundation API and does not need to be checked
/// for ARC retain issues.
/// \param ConvertRHS If \c true, \p RHS will be updated to model the
/// conversions necessary to perform the assignment. If \c false,
/// \p Diagnose must also be \c false.
AssignConvertType CheckSingleAssignmentConstraints(
QualType LHSType, ExprResult &RHS, bool Diagnose = true,
bool DiagnoseCFAudited = false, bool ConvertRHS = true);
// If the lhs type is a transparent union, check whether we
// can initialize the transparent union with the given expression.
AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
ExprResult &RHS);
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
AssignmentAction Action,
bool AllowExplicit = false);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
const ImplicitConversionSequence& ICS,
AssignmentAction Action,
CheckedConversionKind CCK
= CCK_ImplicitConversion);
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
const StandardConversionSequence& SCS,
AssignmentAction Action,
CheckedConversionKind CCK);
ExprResult PerformQualificationConversion(
Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
CheckedConversionKind CCK = CCK_ImplicitConversion);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of CreateBuiltinBinOp).
QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS);
QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS);
QualType CheckPointerToMemberOperands( // C++ 5.5
ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
SourceLocation OpLoc, bool isIndirect);
QualType CheckMultiplyDivideOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
bool IsDivide);
QualType CheckRemainderOperands( // C99 6.5.5
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
bool IsCompAssign = false);
QualType CheckAdditionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
QualType CheckSubtractionOperands( // C99 6.5.6
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
QualType* CompLHSTy = nullptr);
QualType CheckShiftOperands( // C99 6.5.7
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc, bool IsCompAssign = false);
void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
QualType CheckCompareOperands( // C99 6.5.8/9
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckBitwiseOperands( // C99 6.5.[10...12]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckLogicalOperands( // C99 6.5.[13,14]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType,
BinaryOperatorKind Opc);
ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opcode, Expr *Op);
ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opcode,
Expr *LHS, Expr *RHS);
ExprResult checkPseudoObjectRValue(Expr *E);
Expr *recreateSyntacticForm(PseudoObjectExpr *E);
QualType CheckConditionalOperands( // C99 6.5.15
ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
QualType CXXCheckConditionalOperands( // C++ 5.16
ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
ExprResult &RHS,
SourceLocation QuestionLoc);
QualType CheckSizelessVectorConditionalTypes(ExprResult &Cond,
ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc);
QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
bool ConvertArgs = true);
QualType FindCompositePointerType(SourceLocation Loc,
ExprResult &E1, ExprResult &E2,
bool ConvertArgs = true) {
Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
QualType Composite =
FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
E1 = E1Tmp;
E2 = E2Tmp;
return Composite;
}
QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc);
bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
SourceLocation QuestionLoc);
void DiagnoseAlwaysNonNullPointer(Expr *E,
Expr::NullPointerConstantKind NullType,
bool IsEqual, SourceRange Range);
/// type checking for vector binary operators.
QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign,
bool AllowBothBool, bool AllowBoolConversion,
bool AllowBoolOperation, bool ReportInvalid);
QualType GetSignedVectorType(QualType V);
QualType GetSignedSizelessVectorType(QualType V);
QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckSizelessVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc);
QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc);
// type checking for sizeless vector binary operators.
QualType CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign,
ArithConvKind OperationKind);
/// Type checking for matrix binary operators.
QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
bool IsCompAssign);
QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign);
bool isValidSveBitcast(QualType srcType, QualType destType);
bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
bool areVectorTypesSameSize(QualType srcType, QualType destType);
bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
bool isLaxVectorConversion(QualType srcType, QualType destType);
bool areSameVectorElemTypes(QualType srcType, QualType destType);
bool anyAltivecTypes(QualType srcType, QualType destType);
/// type checking declaration initializers (C99 6.7.8)
bool CheckForConstantInitializer(Expr *e, QualType t);
// type checking C++ declaration initializers (C++ [dcl.init]).
/// ReferenceCompareResult - Expresses the result of comparing two
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
enum ReferenceCompareResult {
/// Ref_Incompatible - The two types are incompatible, so direct
/// reference binding is not possible.
Ref_Incompatible = 0,
/// Ref_Related - The two types are reference-related, which means
/// that their unqualified forms (T1 and T2) are either the same
/// or T1 is a base class of T2.
Ref_Related,
/// Ref_Compatible - The two types are reference-compatible.
Ref_Compatible
};
// Fake up a scoped enumeration that still contextually converts to bool.
struct ReferenceConversionsScope {
/// The conversions that would be performed on an lvalue of type T2 when
/// binding a reference of type T1 to it, as determined when evaluating
/// whether T1 is reference-compatible with T2.
enum ReferenceConversions {
Qualification = 0x1,
NestedQualification = 0x2,
Function = 0x4,
DerivedToBase = 0x8,
ObjC = 0x10,
ObjCLifetime = 0x20,
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)
};
};
using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
ReferenceConversions *Conv = nullptr);
ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
Expr *CastExpr, CastKind &CastKind,
ExprValueKind &VK, CXXCastPath &Path);
/// Force an expression with unknown-type to an expression of the
/// given type.
ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
/// Type-check an expression that's being passed to an
/// __unknown_anytype parameter.
ExprResult checkUnknownAnyArg(SourceLocation callLoc,
Expr *result, QualType ¶mType);
// CheckMatrixCast - Check type constraints for matrix casts.
// We allow casting between matrixes of the same dimensions i.e. when they
// have the same number of rows and column. Returns true if the cast is
// invalid.
bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
CastKind &Kind);
// CheckVectorCast - check type constraints for vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size.
// returns true if the cast is invalid
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
CastKind &Kind);
/// Prepare `SplattedExpr` for a vector splat operation, adding
/// implicit casts if necessary.
ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
// CheckExtVectorCast - check type constraints for extended vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size,
// or vectors and the element type of that vector.
// returns the cast expr
ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
CastKind &Kind);
ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
SourceLocation LParenLoc,
Expr *CastExpr,
SourceLocation RParenLoc);
enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
/// Checks for invalid conversions and casts between
/// retainable pointers and other pointer kinds for ARC and Weak.
ARCConversionResult CheckObjCConversion(SourceRange castRange,
QualType castType, Expr *&op,
CheckedConversionKind CCK,
bool Diagnose = true,
bool DiagnoseCFAudited = false,
BinaryOperatorKind Opc = BO_PtrMemD
);
Expr *stripARCUnbridgedCast(Expr *e);
void diagnoseARCUnbridgedCast(Expr *e);
bool CheckObjCARCUnavailableWeakConversion(QualType castType,
QualType ExprType);
/// checkRetainCycles - Check whether an Objective-C message send
/// might create an obvious retain cycle.
void checkRetainCycles(ObjCMessageExpr *msg);
void checkRetainCycles(Expr *receiver, Expr *argument);
void checkRetainCycles(VarDecl *Var, Expr *Init);
/// checkUnsafeAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained type.
bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
/// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
/// to weak/__unsafe_unretained expression.
void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
/// CheckMessageArgumentTypes - Check types in an Obj-C message send.
/// \param Method - May be null.
/// \param [out] ReturnType - The return type of the send.
/// \return true iff there were any incompatible types.
bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
MultiExprArg Args, Selector Sel,
ArrayRef<SourceLocation> SelectorLocs,
ObjCMethodDecl *Method, bool isClassMessage,
bool isSuperMessage, SourceLocation lbrac,
SourceLocation rbrac, SourceRange RecRange,
QualType &ReturnType, ExprValueKind &VK);
/// Determine the result of a message send expression based on
/// the type of the receiver, the method expected to receive the message,
/// and the form of the message send.
QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
ObjCMethodDecl *Method, bool isClassMessage,
bool isSuperMessage);
/// If the given expression involves a message send to a method
/// with a related result type, emit a note describing what happened.
void EmitRelatedResultTypeNote(const Expr *E);
/// Given that we had incompatible pointer types in a return
/// statement, check whether we're in a method with a related result
/// type, and if so, emit a note describing what happened.
void EmitRelatedResultTypeNoteForReturn(QualType destType);
class ConditionResult {
Decl *ConditionVar;
FullExprArg Condition;
bool Invalid;
bool HasKnownValue;
bool KnownValue;
friend class Sema;
ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
bool IsConstexpr)
: ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
HasKnownValue(IsConstexpr && Condition.get() &&
!Condition.get()->isValueDependent()),
KnownValue(HasKnownValue &&
!!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
explicit ConditionResult(bool Invalid)
: ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
HasKnownValue(false), KnownValue(false) {}
public:
ConditionResult() : ConditionResult(false) {}
bool isInvalid() const { return Invalid; }
std::pair<VarDecl *, Expr *> get() const {
return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
Condition.get());
}
std::optional<bool> getKnownValue() const {
if (!HasKnownValue)
return std::nullopt;
return KnownValue;
}
};
static ConditionResult ConditionError() { return ConditionResult(true); }
enum class ConditionKind {
Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
Switch ///< An integral condition for a 'switch' statement.
};
QualType PreferredConditionType(ConditionKind K) const {
return K == ConditionKind::Switch ? Context.IntTy : Context.BoolTy;
}
ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr,
ConditionKind CK, bool MissingOK = false);
ConditionResult ActOnConditionVariable(Decl *ConditionVar,
SourceLocation StmtLoc,
ConditionKind CK);
DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
ExprResult CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc,
ConditionKind CK);
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
/// CheckBooleanCondition - Diagnose problems involving the use of
/// the given expression as a boolean condition (e.g. in an if
/// statement). Also performs the standard function and array
/// decays, possibly changing the input variable.
///
/// \param Loc - A location associated with the condition, e.g. the
/// 'if' keyword.
/// \return true iff there were any errors
ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
bool IsConstexpr = false);
/// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
/// found in an explicit(bool) specifier.
ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
/// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
/// Returns true if the explicit specifier is now resolved.
bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
/// DiagnoseAssignmentAsCondition - Given that an expression is
/// being used as a boolean condition, warn if it's an assignment.
void DiagnoseAssignmentAsCondition(Expr *E);
/// Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
unsigned NewWidth, bool NewSign,
SourceLocation Loc, unsigned DiagID);
/// Checks that the Objective-C declaration is declared in the global scope.
/// Emits an error and marks the declaration as invalid if it's not declared
/// in the global scope.
bool CheckObjCDeclScope(Decl *D);
/// Abstract base class used for diagnosing integer constant
/// expression violations.
class VerifyICEDiagnoser {
public:
bool Suppress;
VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
virtual SemaDiagnosticBuilder
diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
SourceLocation Loc) = 0;
virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
virtual ~VerifyICEDiagnoser() {}
};
enum AllowFoldKind {
NoFold,
AllowFold,
};
/// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
/// and reports the appropriate diagnostics. Returns false on success.
/// Can optionally return the value of the expression.
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
VerifyICEDiagnoser &Diagnoser,
AllowFoldKind CanFold = NoFold);
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
unsigned DiagID,
AllowFoldKind CanFold = NoFold);
ExprResult VerifyIntegerConstantExpression(Expr *E,
llvm::APSInt *Result = nullptr,
AllowFoldKind CanFold = NoFold);
ExprResult VerifyIntegerConstantExpression(Expr *E,
AllowFoldKind CanFold = NoFold) {
return VerifyIntegerConstantExpression(E, nullptr, CanFold);
}
/// VerifyBitField - verifies that a bit field expression is an ICE and has
/// the correct width, and that the field type is valid.
/// Returns false on success.
ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
QualType FieldTy, bool IsMsStruct, Expr *BitWidth);
private:
unsigned ForceCUDAHostDeviceDepth = 0;
public:
/// Increments our count of the number of times we've seen a pragma forcing
/// functions to be __host__ __device__. So long as this count is greater
/// than zero, all functions encountered will be __host__ __device__.
void PushForceCUDAHostDevice();
/// Decrements our count of the number of times we've seen a pragma forcing
/// functions to be __host__ __device__. Returns false if the count is 0
/// before incrementing, so you can emit an error.
bool PopForceCUDAHostDevice();
/// Diagnostics that are emitted only if we discover that the given function
/// must be codegen'ed. Because handling these correctly adds overhead to
/// compilation, this is currently only enabled for CUDA compilations.
llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
std::vector<PartialDiagnosticAt>>
DeviceDeferredDiags;
/// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
/// key in a hashtable, both the FD and location are hashed.
struct FunctionDeclAndLoc {
CanonicalDeclPtr<FunctionDecl> FD;
SourceLocation Loc;
};
/// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
/// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
/// same deferred diag twice.
llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
/// An inverse call graph, mapping known-emitted functions to one of their
/// known-emitted callers (plus the location of the call).
///
/// Functions that we can tell a priori must be emitted aren't added to this
/// map.
llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
/* Caller = */ FunctionDeclAndLoc>
DeviceKnownEmittedFns;
/// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
/// context is "used as device code".
///
/// - If CurContext is a __host__ function, does not emit any diagnostics
/// unless \p EmitOnBothSides is true.
/// - If CurContext is a __device__ or __global__ function, emits the
/// diagnostics immediately.
/// - If CurContext is a __host__ __device__ function and we are compiling for
/// the device, creates a diagnostic which is emitted if and when we realize
/// that the function will be codegen'ed.
///
/// Example usage:
///
/// // Variable-length arrays are not allowed in CUDA device code.
/// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
/// return ExprError();
/// // Otherwise, continue parsing as normal.
SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
unsigned DiagID);
/// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
/// context is "used as host code".
///
/// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
/// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
/// context is "used as device code".
///
/// - If CurContext is a `declare target` function or it is known that the
/// function is emitted for the device, emits the diagnostics immediately.
/// - If CurContext is a non-`declare target` function and we are compiling
/// for the device, creates a diagnostic which is emitted if and when we
/// realize that the function will be codegen'ed.
///
/// Example usage:
///
/// // Variable-length arrays are not allowed in NVPTX device code.
/// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
/// return ExprError();
/// // Otherwise, continue parsing as normal.
SemaDiagnosticBuilder
diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
/// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
/// context is "used as host code".
///
/// - If CurContext is a `declare target` function or it is known that the
/// function is emitted for the host, emits the diagnostics immediately.
/// - If CurContext is a non-host function, just ignore it.
///
/// Example usage:
///
/// // Variable-length arrays are not allowed in NVPTX device code.
/// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
/// return ExprError();
/// // Otherwise, continue parsing as normal.
SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
unsigned DiagID, FunctionDecl *FD);
SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
FunctionDecl *FD = nullptr);
SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
const PartialDiagnostic &PD,
FunctionDecl *FD = nullptr) {
return targetDiag(Loc, PD.getDiagID(), FD) << PD;
}
/// Check if the type is allowed to be used for the current target.
void checkTypeSupport(QualType Ty, SourceLocation Loc,
ValueDecl *D = nullptr);
enum CUDAFunctionTarget {
CFT_Device,
CFT_Global,
CFT_Host,
CFT_HostDevice,
CFT_InvalidTarget
};
/// Determines whether the given function is a CUDA device/host/kernel/etc.
/// function.
///
/// Use this rather than examining the function's attributes yourself -- you
/// will get it wrong. Returns CFT_Host if D is null.
CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
bool IgnoreImplicitHDAttr = false);
CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
enum CUDAVariableTarget {
CVT_Device, /// Emitted on device side with a shadow variable on host side
CVT_Host, /// Emitted on host side only
CVT_Both, /// Emitted on both sides with different addresses
CVT_Unified, /// Emitted as a unified address, e.g. managed variables
};
/// Determines whether the given variable is emitted on host or device side.
CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
/// Gets the CUDA target for the current context.
CUDAFunctionTarget CurrentCUDATarget() {
return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
}
static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
// CUDA function call preference. Must be ordered numerically from
// worst to best.
enum CUDAFunctionPreference {
CFP_Never, // Invalid caller/callee combination.
CFP_WrongSide, // Calls from host-device to host or device
// function that do not match current compilation
// mode.
CFP_HostDevice, // Any calls to host/device functions.
CFP_SameSide, // Calls from host-device to host or device
// function matching current compilation mode.
CFP_Native, // host-to-host or device-to-device calls.
};
/// Identifies relative preference of a given Caller/Callee
/// combination, based on their host/device attributes.
/// \param Caller function which needs address of \p Callee.
/// nullptr in case of global context.
/// \param Callee target function
///
/// \returns preference value for particular Caller/Callee combination.
CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
const FunctionDecl *Callee);
/// Determines whether Caller may invoke Callee, based on their CUDA
/// host/device attributes. Returns false if the call is not allowed.
///
/// Note: Will return true for CFP_WrongSide calls. These may appear in
/// semantically correct CUDA programs, but only if they're never codegen'ed.
bool IsAllowedCUDACall(const FunctionDecl *Caller,
const FunctionDecl *Callee) {
return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
}
/// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
/// depending on FD and the current compilation settings.
void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
const LookupResult &Previous);
/// May add implicit CUDAConstantAttr attribute to VD, depending on VD
/// and current compilation settings.
void MaybeAddCUDAConstantAttr(VarDecl *VD);
public:
/// Check whether we're allowed to call Callee from the current context.
///
/// - If the call is never allowed in a semantically-correct program
/// (CFP_Never), emits an error and returns false.
///
/// - If the call is allowed in semantically-correct programs, but only if
/// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
/// be emitted if and when the caller is codegen'ed, and returns true.
///
/// Will only create deferred diagnostics for a given SourceLocation once,
/// so you can safely call this multiple times without generating duplicate
/// deferred errors.
///
/// - Otherwise, returns true without emitting any diagnostics.
bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
/// Set __device__ or __host__ __device__ attributes on the given lambda
/// operator() method.
///
/// CUDA lambdas by default is host device function unless it has explicit
/// host or device attribute.
void CUDASetLambdaAttrs(CXXMethodDecl *Method);
/// Finds a function in \p Matches with highest calling priority
/// from \p Caller context and erases all functions with lower
/// calling priority.
void EraseUnwantedCUDAMatches(
const FunctionDecl *Caller,
SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
/// Given a implicit special member, infer its CUDA target from the
/// calls it needs to make to underlying base/field special members.
/// \param ClassDecl the class for which the member is being created.
/// \param CSM the kind of special member.
/// \param MemberDecl the special member itself.
/// \param ConstRHS true if this is a copy operation with a const object on
/// its RHS.
/// \param Diagnose true if this call should emit diagnostics.
/// \return true if there was an error inferring.
/// The result of this call is implicit CUDA target attribute(s) attached to
/// the member declaration.
bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
CXXSpecialMember CSM,
CXXMethodDecl *MemberDecl,
bool ConstRHS,
bool Diagnose);
/// \return true if \p CD can be considered empty according to CUDA
/// (E.2.3.1 in CUDA 7.5 Programming guide).
bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
// \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
// case of error emits appropriate diagnostic and invalidates \p Var.
//
// \details CUDA allows only empty constructors as initializers for global
// variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
// __shared__ variables whether they are local or not (they all are implicitly
// static in CUDA). One exception is that CUDA allows constant initializers
// for __constant__ and __device__ variables.
void checkAllowedCUDAInitializer(VarDecl *VD);
/// Check whether NewFD is a valid overload for CUDA. Emits
/// diagnostics and invalidates NewFD if not.
void checkCUDATargetOverload(FunctionDecl *NewFD,
const LookupResult &Previous);
/// Copies target attributes from the template TD to the function FD.
void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
/// Returns the name of the launch configuration function. This is the name
/// of the function that will be called to configure kernel call, with the
/// parameters specified via <<<>>>.
std::string getCudaConfigureFuncName() const;
/// \name Code completion
//@{
/// Describes the context in which code completion occurs.
enum ParserCompletionContext {
/// Code completion occurs at top-level or namespace context.
PCC_Namespace,
/// Code completion occurs within a class, struct, or union.
PCC_Class,
/// Code completion occurs within an Objective-C interface, protocol,
/// or category.
PCC_ObjCInterface,
/// Code completion occurs within an Objective-C implementation or
/// category implementation
PCC_ObjCImplementation,
/// Code completion occurs within the list of instance variables
/// in an Objective-C interface, protocol, category, or implementation.
PCC_ObjCInstanceVariableList,
/// Code completion occurs following one or more template
/// headers.
PCC_Template,
/// Code completion occurs following one or more template
/// headers within a class.
PCC_MemberTemplate,
/// Code completion occurs within an expression.
PCC_Expression,
/// Code completion occurs within a statement, which may
/// also be an expression or a declaration.
PCC_Statement,
/// Code completion occurs at the beginning of the
/// initialization statement (or expression) in a for loop.
PCC_ForInit,
/// Code completion occurs within the condition of an if,
/// while, switch, or for statement.
PCC_Condition,
/// Code completion occurs within the body of a function on a
/// recovery path, where we do not have a specific handle on our position
/// in the grammar.
PCC_RecoveryInFunction,
/// Code completion occurs where only a type is permitted.
PCC_Type,
/// Code completion occurs in a parenthesized expression, which
/// might also be a type cast.
PCC_ParenthesizedExpression,
/// Code completion occurs within a sequence of declaration
/// specifiers within a function, method, or block.
PCC_LocalDeclarationSpecifiers
};
void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
void CodeCompleteOrdinaryName(Scope *S,
ParserCompletionContext CompletionContext);
void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
bool AllowNonIdentifiers,
bool AllowNestedNameSpecifiers);
struct CodeCompleteExpressionData;
void CodeCompleteExpression(Scope *S,
const CodeCompleteExpressionData &Data);
void CodeCompleteExpression(Scope *S, QualType PreferredType,
bool IsParenthesized = false);
void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
SourceLocation OpLoc, bool IsArrow,
bool IsBaseExprStatement,
QualType PreferredType);
void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
QualType PreferredType);
void CodeCompleteTag(Scope *S, unsigned TagSpec);
void CodeCompleteTypeQualifiers(DeclSpec &DS);
void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
const VirtSpecifiers *VS = nullptr);
void CodeCompleteBracketDeclarator(Scope *S);
void CodeCompleteCase(Scope *S);
enum class AttributeCompletion {
Attribute,
Scope,
None,
};
void CodeCompleteAttribute(
AttributeCommonInfo::Syntax Syntax,
AttributeCompletion Completion = AttributeCompletion::Attribute,
const IdentifierInfo *Scope = nullptr);
/// Determines the preferred type of the current function argument, by
/// examining the signatures of all possible overloads.
/// Returns null if unknown or ambiguous, or if code completion is off.
///
/// If the code completion point has been reached, also reports the function
/// signatures that were considered.
///
/// FIXME: rename to GuessCallArgumentType to reduce confusion.
QualType ProduceCallSignatureHelp(Expr *Fn, ArrayRef<Expr *> Args,
SourceLocation OpenParLoc);
QualType ProduceConstructorSignatureHelp(QualType Type, SourceLocation Loc,
ArrayRef<Expr *> Args,
SourceLocation OpenParLoc,
bool Braced);
QualType ProduceCtorInitMemberSignatureHelp(
Decl *ConstructorDecl, CXXScopeSpec SS, ParsedType TemplateTypeTy,
ArrayRef<Expr *> ArgExprs, IdentifierInfo *II, SourceLocation OpenParLoc,
bool Braced);
QualType ProduceTemplateArgumentSignatureHelp(
TemplateTy, ArrayRef<ParsedTemplateArgument>, SourceLocation LAngleLoc);
void CodeCompleteInitializer(Scope *S, Decl *D);
/// Trigger code completion for a record of \p BaseType. \p InitExprs are
/// expressions in the initializer list seen so far and \p D is the current
/// Designation being parsed.
void CodeCompleteDesignator(const QualType BaseType,
llvm::ArrayRef<Expr *> InitExprs,
const Designation &D);
void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
bool IsUsingDeclaration, QualType BaseType,
QualType PreferredType);
void CodeCompleteUsing(Scope *S);
void CodeCompleteUsingDirective(Scope *S);
void CodeCompleteNamespaceDecl(Scope *S);
void CodeCompleteNamespaceAliasDecl(Scope *S);
void CodeCompleteOperatorName(Scope *S);
void CodeCompleteConstructorInitializer(
Decl *Constructor,
ArrayRef<CXXCtorInitializer *> Initializers);
void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
bool AfterAmpersand);
void CodeCompleteAfterFunctionEquals(Declarator &D);
void CodeCompleteObjCAtDirective(Scope *S);
void CodeCompleteObjCAtVisibility(Scope *S);
void CodeCompleteObjCAtStatement(Scope *S);
void CodeCompleteObjCAtExpression(Scope *S);
void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
void CodeCompleteObjCPropertyGetter(Scope *S);
void CodeCompleteObjCPropertySetter(Scope *S);
void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
bool IsParameter);
void CodeCompleteObjCMessageReceiver(Scope *S);
void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
ArrayRef<IdentifierInfo *> SelIdents,
bool AtArgumentExpression);
void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
ArrayRef<IdentifierInfo *> SelIdents,
bool AtArgumentExpression,
bool IsSuper = false);
void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
ArrayRef<IdentifierInfo *> SelIdents,
bool AtArgumentExpression,
ObjCInterfaceDecl *Super = nullptr);
void CodeCompleteObjCForCollection(Scope *S,
DeclGroupPtrTy IterationVar);
void CodeCompleteObjCSelector(Scope *S,
ArrayRef<IdentifierInfo *> SelIdents);
void CodeCompleteObjCProtocolReferences(
ArrayRef<IdentifierLocPair> Protocols);
void CodeCompleteObjCProtocolDecl(Scope *S);
void CodeCompleteObjCInterfaceDecl(Scope *S);
void CodeCompleteObjCSuperclass(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCImplementationDecl(Scope *S);
void CodeCompleteObjCInterfaceCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCImplementationCategory(Scope *S,
IdentifierInfo *ClassName,
SourceLocation ClassNameLoc);
void CodeCompleteObjCPropertyDefinition(Scope *S);
void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
IdentifierInfo *PropertyName);
void CodeCompleteObjCMethodDecl(Scope *S,
std::optional<bool> IsInstanceMethod,
ParsedType ReturnType);
void CodeCompleteObjCMethodDeclSelector(Scope *S,
bool IsInstanceMethod,
bool AtParameterName,
ParsedType ReturnType,
ArrayRef<IdentifierInfo *> SelIdents);
void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
SourceLocation ClassNameLoc,
bool IsBaseExprStatement);
void CodeCompletePreprocessorDirective(bool InConditional);
void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
void CodeCompletePreprocessorMacroName(bool IsDefinition);
void CodeCompletePreprocessorExpression();
void CodeCompletePreprocessorMacroArgument(Scope *S,
IdentifierInfo *Macro,
MacroInfo *MacroInfo,
unsigned Argument);
void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
void CodeCompleteNaturalLanguage();
void CodeCompleteAvailabilityPlatformName();
void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
CodeCompletionTUInfo &CCTUInfo,
SmallVectorImpl<CodeCompletionResult> &Results);
//@}
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
public:
SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const;
enum FormatArgumentPassingKind {
FAPK_Fixed, // values to format are fixed (no C-style variadic arguments)
FAPK_Variadic, // values to format are passed as variadic arguments
FAPK_VAList, // values to format are passed in a va_list
};
// Used to grab the relevant information from a FormatAttr and a
// FunctionDeclaration.
struct FormatStringInfo {
unsigned FormatIdx;
unsigned FirstDataArg;
FormatArgumentPassingKind ArgPassingKind;
};
static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
bool IsVariadic, FormatStringInfo *FSI);
private:
void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
const ArraySubscriptExpr *ASE = nullptr,
bool AllowOnePastEnd = true, bool IndexNegated = false);
void CheckArrayAccess(const Expr *E);
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
ArrayRef<const Expr *> Args);
bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
const FunctionProtoType *Proto);
bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
ArrayRef<const Expr *> Args,
const FunctionProtoType *Proto, SourceLocation Loc);
void checkAIXMemberAlignment(SourceLocation Loc, const Expr *Arg);
void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
StringRef ParamName, QualType ArgTy, QualType ParamTy);
void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
const Expr *ThisArg, ArrayRef<const Expr *> Args,
bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
VariadicCallType CallType);
bool CheckObjCString(Expr *Arg);
ExprResult CheckOSLogFormatStringArg(Expr *Arg);
ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
unsigned BuiltinID, CallExpr *TheCall);
bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
unsigned MaxWidth);
bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
bool WantCDE);
bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
ArrayRef<int> ArgNums);
bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
ArrayRef<int> ArgNums);
bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall);
bool CheckLoongArchBuiltinFunctionCall(const TargetInfo &TI,
unsigned BuiltinID, CallExpr *TheCall);
bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
bool SemaBuiltinComplex(CallExpr *TheCall);
bool SemaBuiltinVSX(CallExpr *TheCall);
bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
public:
// Used by C++ template instantiation.
ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc);
private:
bool SemaBuiltinPrefetch(CallExpr *TheCall);
bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
bool SemaBuiltinAssume(CallExpr *TheCall);
bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
bool SemaBuiltinLongjmp(CallExpr *TheCall);
bool SemaBuiltinSetjmp(CallExpr *TheCall);
ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
AtomicExpr::AtomicOp Op);
ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
bool IsDelete);
bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
llvm::APSInt &Result);
bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
int High, bool RangeIsError = true);
bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
unsigned Multiple);
bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
unsigned ArgBits);
bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
unsigned ArgBits);
bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
int ArgNum, unsigned ExpectedFieldNum,
bool AllowName);
bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
bool SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
const char *TypeDesc);
bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
bool SemaBuiltinElementwiseMath(CallExpr *TheCall);
bool PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall);
bool PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall);
// Matrix builtin handling.
ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
ExprResult CallResult);
ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
ExprResult CallResult);
ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
ExprResult CallResult);
public:
enum FormatStringType {
FST_Scanf,
FST_Printf,
FST_NSString,
FST_Strftime,
FST_Strfmon,
FST_Kprintf,
FST_FreeBSDKPrintf,
FST_OSTrace,
FST_OSLog,
FST_Unknown
};
static FormatStringType GetFormatStringType(const FormatAttr *Format);
bool FormatStringHasSArg(const StringLiteral *FExpr);
static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
private:
bool CheckFormatArguments(const FormatAttr *Format,
ArrayRef<const Expr *> Args, bool IsCXXMember,
VariadicCallType CallType, SourceLocation Loc,
SourceRange Range,
llvm::SmallBitVector &CheckedVarArgs);
bool CheckFormatArguments(ArrayRef<const Expr *> Args,
FormatArgumentPassingKind FAPK, unsigned format_idx,
unsigned firstDataArg, FormatStringType Type,
VariadicCallType CallType, SourceLocation Loc,
SourceRange range,
llvm::SmallBitVector &CheckedVarArgs);
void CheckAbsoluteValueFunction(const CallExpr *Call,
const FunctionDecl *FDecl);
void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
void CheckMemaccessArguments(const CallExpr *Call,
unsigned BId,
IdentifierInfo *FnName);
void CheckStrlcpycatArguments(const CallExpr *Call,
IdentifierInfo *FnName);
void CheckStrncatArguments(const CallExpr *Call,
IdentifierInfo *FnName);
void CheckFreeArguments(const CallExpr *E);
void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc,
bool isObjCMethod = false,
const AttrVec *Attrs = nullptr,
const FunctionDecl *FD = nullptr);
public:
void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
BinaryOperatorKind Opcode);
private:
void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
void CheckForIntOverflow(Expr *E);
void CheckUnsequencedOperations(const Expr *E);
/// Perform semantic checks on a completed expression. This will either
/// be a full-expression or a default argument expression.
void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
bool IsConstexpr = false);
void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
Expr *Init);
/// Check if there is a field shadowing.
void CheckShadowInheritedFields(const SourceLocation &Loc,
DeclarationName FieldName,
const CXXRecordDecl *RD,
bool DeclIsField = true);
/// Check if the given expression contains 'break' or 'continue'
/// statement that produces control flow different from GCC.
void CheckBreakContinueBinding(Expr *E);
/// Check whether receiver is mutable ObjC container which
/// attempts to add itself into the container
void CheckObjCCircularContainer(ObjCMessageExpr *Message);
void CheckTCBEnforcement(const SourceLocation CallExprLoc,
const NamedDecl *Callee);
void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
bool DeleteWasArrayForm);
public:
/// Register a magic integral constant to be used as a type tag.
void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
uint64_t MagicValue, QualType Type,
bool LayoutCompatible, bool MustBeNull);
struct TypeTagData {
TypeTagData() {}
TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
Type(Type), LayoutCompatible(LayoutCompatible),
MustBeNull(MustBeNull)
{}
QualType Type;
/// If true, \c Type should be compared with other expression's types for
/// layout-compatibility.
unsigned LayoutCompatible : 1;
unsigned MustBeNull : 1;
};
/// A pair of ArgumentKind identifier and magic value. This uniquely
/// identifies the magic value.
typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
private:
/// A map from magic value to type information.
std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
TypeTagForDatatypeMagicValues;
/// Peform checks on a call of a function with argument_with_type_tag
/// or pointer_with_type_tag attributes.
void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
const ArrayRef<const Expr *> ExprArgs,
SourceLocation CallSiteLoc);
/// Check if we are taking the address of a packed field
/// as this may be a problem if the pointer value is dereferenced.
void CheckAddressOfPackedMember(Expr *rhs);
/// The parser's current scope.
///
/// The parser maintains this state here.
Scope *CurScope;
mutable IdentifierInfo *Ident_super;
mutable IdentifierInfo *Ident___float128;
/// Nullability type specifiers.
IdentifierInfo *Ident__Nonnull = nullptr;
IdentifierInfo *Ident__Nullable = nullptr;
IdentifierInfo *Ident__Nullable_result = nullptr;
IdentifierInfo *Ident__Null_unspecified = nullptr;
IdentifierInfo *Ident_NSError = nullptr;
/// The handler for the FileChanged preprocessor events.
///
/// Used for diagnostics that implement custom semantic analysis for #include
/// directives, like -Wpragma-pack.
sema::SemaPPCallbacks *SemaPPCallbackHandler;
protected:
friend class Parser;
friend class InitializationSequence;
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTWriter;
public:
/// Retrieve the keyword associated
IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
/// The struct behind the CFErrorRef pointer.
RecordDecl *CFError = nullptr;
bool isCFError(RecordDecl *D);
/// Retrieve the identifier "NSError".
IdentifierInfo *getNSErrorIdent();
/// Retrieve the parser's current scope.
///
/// This routine must only be used when it is certain that semantic analysis
/// and the parser are in precisely the same context, which is not the case
/// when, e.g., we are performing any kind of template instantiation.
/// Therefore, the only safe places to use this scope are in the parser
/// itself and in routines directly invoked from the parser and *never* from
/// template substitution or instantiation.
Scope *getCurScope() const { return CurScope; }
void incrementMSManglingNumber() const {
return CurScope->incrementMSManglingNumber();
}
IdentifierInfo *getSuperIdentifier() const;
IdentifierInfo *getFloat128Identifier() const;
ObjCContainerDecl *getObjCDeclContext() const;
DeclContext *getCurLexicalContext() const {
return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
}
const DeclContext *getCurObjCLexicalContext() const {
const DeclContext *DC = getCurLexicalContext();
// A category implicitly has the attribute of the interface.
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
DC = CatD->getClassInterface();
return DC;
}
/// Determine the number of levels of enclosing template parameters. This is
/// only usable while parsing. Note that this does not include dependent
/// contexts in which no template parameters have yet been declared, such as
/// in a terse function template or generic lambda before the first 'auto' is
/// encountered.
unsigned getTemplateDepth(Scope *S) const;
/// To be used for checking whether the arguments being passed to
/// function exceeds the number of parameters expected for it.
static bool TooManyArguments(size_t NumParams, size_t NumArgs,
bool PartialOverloading = false) {
// We check whether we're just after a comma in code-completion.
if (NumArgs > 0 && PartialOverloading)
return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
return NumArgs > NumParams;
}
// Emitting members of dllexported classes is delayed until the class
// (including field initializers) is fully parsed.
SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
private:
int ParsingClassDepth = 0;
class SavePendingParsedClassStateRAII {
public:
SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
~SavePendingParsedClassStateRAII() {
assert(S.DelayedOverridingExceptionSpecChecks.empty() &&
"there shouldn't be any pending delayed exception spec checks");
assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&
"there shouldn't be any pending delayed exception spec checks");
swapSavedState();
}
private:
Sema &S;
decltype(DelayedOverridingExceptionSpecChecks)
SavedOverridingExceptionSpecChecks;
decltype(DelayedEquivalentExceptionSpecChecks)
SavedEquivalentExceptionSpecChecks;
void swapSavedState() {
SavedOverridingExceptionSpecChecks.swap(
S.DelayedOverridingExceptionSpecChecks);
SavedEquivalentExceptionSpecChecks.swap(
S.DelayedEquivalentExceptionSpecChecks);
}
};
/// Helper class that collects misaligned member designations and
/// their location info for delayed diagnostics.
struct MisalignedMember {
Expr *E;
RecordDecl *RD;
ValueDecl *MD;
CharUnits Alignment;
MisalignedMember() : E(), RD(), MD() {}
MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
CharUnits Alignment)
: E(E), RD(RD), MD(MD), Alignment(Alignment) {}
explicit MisalignedMember(Expr *E)
: MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
bool operator==(const MisalignedMember &m) { return this->E == m.E; }
};
/// Small set of gathered accesses to potentially misaligned members
/// due to the packed attribute.
SmallVector<MisalignedMember, 4> MisalignedMembers;
/// Adds an expression to the set of gathered misaligned members.
void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
CharUnits Alignment);
public:
/// Diagnoses the current set of gathered accesses. This typically
/// happens at full expression level. The set is cleared after emitting the
/// diagnostics.
void DiagnoseMisalignedMembers();
/// This function checks if the expression is in the sef of potentially
/// misaligned members and it is converted to some pointer type T with lower
/// or equal alignment requirements. If so it removes it. This is used when
/// we do not want to diagnose such misaligned access (e.g. in conversions to
/// void*).
void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
/// This function calls Action when it determines that E designates a
/// misaligned member due to the packed attribute. This is used to emit
/// local diagnostics like in reference binding.
void RefersToMemberWithReducedAlignment(
Expr *E,
llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
Action);
/// Describes the reason a calling convention specification was ignored, used
/// for diagnostics.
enum class CallingConventionIgnoredReason {
ForThisTarget = 0,
VariadicFunction,
ConstructorDestructor,
BuiltinFunction
};
/// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
/// context is "used as device code".
///
/// - If CurLexicalContext is a kernel function or it is known that the
/// function will be emitted for the device, emits the diagnostics
/// immediately.
/// - If CurLexicalContext is a function and we are compiling
/// for the device, but we don't know that this function will be codegen'ed
/// for devive yet, creates a diagnostic which is emitted if and when we
/// realize that the function will be codegen'ed.
///
/// Example usage:
///
/// Diagnose __float128 type usage only from SYCL device code if the current
/// target doesn't support it
/// if (!S.Context.getTargetInfo().hasFloat128Type() &&
/// S.getLangOpts().SYCLIsDevice)
/// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
unsigned DiagID);
/// Check whether we're allowed to call Callee from the current context.
///
/// - If the call is never allowed in a semantically-correct program
/// emits an error and returns false.
///
/// - If the call is allowed in semantically-correct programs, but only if
/// it's never codegen'ed, creates a deferred diagnostic to be emitted if
/// and when the caller is codegen'ed, and returns true.
///
/// - Otherwise, returns true without emitting any diagnostics.
///
/// Adds Callee to DeviceCallGraph if we don't know if its caller will be
/// codegen'ed yet.
bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
void deepTypeCheckForSYCLDevice(SourceLocation UsedAt,
llvm::DenseSet<QualType> Visited,
ValueDecl *DeclToCheck);
};
/// RAII object that enters a new expression evaluation context.
class EnterExpressionEvaluationContext {
Sema &Actions;
bool Entered = true;
public:
EnterExpressionEvaluationContext(
Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
Decl *LambdaContextDecl = nullptr,
Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
Sema::ExpressionEvaluationContextRecord::EK_Other,
bool ShouldEnter = true)
: Actions(Actions), Entered(ShouldEnter) {
if (Entered)
Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
ExprContext);
}
EnterExpressionEvaluationContext(
Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
Sema::ReuseLambdaContextDecl_t,
Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
Sema::ExpressionEvaluationContextRecord::EK_Other)
: Actions(Actions) {
Actions.PushExpressionEvaluationContext(
NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
}
enum InitListTag { InitList };
EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
bool ShouldEnter = true)
: Actions(Actions), Entered(false) {
// In C++11 onwards, narrowing checks are performed on the contents of
// braced-init-lists, even when they occur within unevaluated operands.
// Therefore we still need to instantiate constexpr functions used in such
// a context.
if (ShouldEnter && Actions.isUnevaluatedContext() &&
Actions.getLangOpts().CPlusPlus11) {
Actions.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::UnevaluatedList);
Entered = true;
}
}
~EnterExpressionEvaluationContext() {
if (Entered)
Actions.PopExpressionEvaluationContext();
}
};
DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
sema::TemplateDeductionInfo &Info);
/// Contains a late templated function.
/// Will be parsed at the end of the translation unit, used by Sema & Parser.
struct LateParsedTemplate {
CachedTokens Toks;
/// The template function declaration to be late parsed.
Decl *D;
};
template <>
void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
PragmaMsStackAction Action,
llvm::StringRef StackSlotLabel,
AlignPackInfo Value);
std::unique_ptr<sema::RISCVIntrinsicManager>
CreateRISCVIntrinsicManager(Sema &S);
} // end namespace clang
namespace llvm {
// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
// SourceLocation.
template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
static FunctionDeclAndLoc getEmptyKey() {
return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
}
static FunctionDeclAndLoc getTombstoneKey() {
return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
}
static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
FDL.Loc.getHashValue());
}
static bool isEqual(const FunctionDeclAndLoc &LHS,
const FunctionDeclAndLoc &RHS) {
return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
}
};
} // namespace llvm
#endif