Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file defines FunctionScopeInfo and its subclasses, which contain
  10. // information about a single function, block, lambda, or method body.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
  15. #define LLVM_CLANG_SEMA_SCOPEINFO_H
  16.  
  17. #include "clang/AST/Expr.h"
  18. #include "clang/AST/ExprCXX.h"
  19. #include "clang/AST/Type.h"
  20. #include "clang/Basic/CapturedStmt.h"
  21. #include "clang/Basic/LLVM.h"
  22. #include "clang/Basic/PartialDiagnostic.h"
  23. #include "clang/Basic/SourceLocation.h"
  24. #include "clang/Sema/CleanupInfo.h"
  25. #include "clang/Sema/DeclSpec.h"
  26. #include "llvm/ADT/DenseMap.h"
  27. #include "llvm/ADT/DenseMapInfo.h"
  28. #include "llvm/ADT/MapVector.h"
  29. #include "llvm/ADT/PointerIntPair.h"
  30. #include "llvm/ADT/SmallPtrSet.h"
  31. #include "llvm/ADT/SmallSet.h"
  32. #include "llvm/ADT/SmallVector.h"
  33. #include "llvm/ADT/StringRef.h"
  34. #include "llvm/ADT/StringSwitch.h"
  35. #include "llvm/ADT/TinyPtrVector.h"
  36. #include "llvm/Support/Casting.h"
  37. #include "llvm/Support/ErrorHandling.h"
  38. #include <algorithm>
  39. #include <cassert>
  40. #include <utility>
  41.  
  42. namespace clang {
  43.  
  44. class BlockDecl;
  45. class CapturedDecl;
  46. class CXXMethodDecl;
  47. class CXXRecordDecl;
  48. class ImplicitParamDecl;
  49. class NamedDecl;
  50. class ObjCIvarRefExpr;
  51. class ObjCMessageExpr;
  52. class ObjCPropertyDecl;
  53. class ObjCPropertyRefExpr;
  54. class ParmVarDecl;
  55. class RecordDecl;
  56. class ReturnStmt;
  57. class Scope;
  58. class Stmt;
  59. class SwitchStmt;
  60. class TemplateParameterList;
  61. class VarDecl;
  62.  
  63. namespace sema {
  64.  
  65. /// Contains information about the compound statement currently being
  66. /// parsed.
  67. class CompoundScopeInfo {
  68. public:
  69.   /// Whether this compound stamement contains `for' or `while' loops
  70.   /// with empty bodies.
  71.   bool HasEmptyLoopBodies = false;
  72.  
  73.   /// Whether this compound statement corresponds to a GNU statement
  74.   /// expression.
  75.   bool IsStmtExpr;
  76.  
  77.   /// FP options at the beginning of the compound statement, prior to
  78.   /// any pragma.
  79.   FPOptions InitialFPFeatures;
  80.  
  81.   CompoundScopeInfo(bool IsStmtExpr, FPOptions FPO)
  82.       : IsStmtExpr(IsStmtExpr), InitialFPFeatures(FPO) {}
  83.  
  84.   void setHasEmptyLoopBodies() {
  85.     HasEmptyLoopBodies = true;
  86.   }
  87. };
  88.  
  89. class PossiblyUnreachableDiag {
  90. public:
  91.   PartialDiagnostic PD;
  92.   SourceLocation Loc;
  93.   llvm::TinyPtrVector<const Stmt*> Stmts;
  94.  
  95.   PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
  96.                           ArrayRef<const Stmt *> Stmts)
  97.       : PD(PD), Loc(Loc), Stmts(Stmts) {}
  98. };
  99.  
  100. /// Retains information about a function, method, or block that is
  101. /// currently being parsed.
  102. class FunctionScopeInfo {
  103. protected:
  104.   enum ScopeKind {
  105.     SK_Function,
  106.     SK_Block,
  107.     SK_Lambda,
  108.     SK_CapturedRegion
  109.   };
  110.  
  111. public:
  112.   /// What kind of scope we are describing.
  113.   ScopeKind Kind : 3;
  114.  
  115.   /// Whether this function contains a VLA, \@try, try, C++
  116.   /// initializer, or anything else that can't be jumped past.
  117.   bool HasBranchProtectedScope : 1;
  118.  
  119.   /// Whether this function contains any switches or direct gotos.
  120.   bool HasBranchIntoScope : 1;
  121.  
  122.   /// Whether this function contains any indirect gotos.
  123.   bool HasIndirectGoto : 1;
  124.  
  125.   /// Whether this function contains any statement marked with
  126.   /// \c [[clang::musttail]].
  127.   bool HasMustTail : 1;
  128.  
  129.   /// Whether a statement was dropped because it was invalid.
  130.   bool HasDroppedStmt : 1;
  131.  
  132.   /// True if current scope is for OpenMP declare reduction combiner.
  133.   bool HasOMPDeclareReductionCombiner : 1;
  134.  
  135.   /// Whether there is a fallthrough statement in this function.
  136.   bool HasFallthroughStmt : 1;
  137.  
  138.   /// Whether this function uses constrained floating point intrinsics
  139.   bool UsesFPIntrin : 1;
  140.  
  141.   /// Whether we make reference to a declaration that could be
  142.   /// unavailable.
  143.   bool HasPotentialAvailabilityViolations : 1;
  144.  
  145.   /// A flag that is set when parsing a method that must call super's
  146.   /// implementation, such as \c -dealloc, \c -finalize, or any method marked
  147.   /// with \c __attribute__((objc_requires_super)).
  148.   bool ObjCShouldCallSuper : 1;
  149.  
  150.   /// True when this is a method marked as a designated initializer.
  151.   bool ObjCIsDesignatedInit : 1;
  152.  
  153.   /// This starts true for a method marked as designated initializer and will
  154.   /// be set to false if there is an invocation to a designated initializer of
  155.   /// the super class.
  156.   bool ObjCWarnForNoDesignatedInitChain : 1;
  157.  
  158.   /// True when this is an initializer method not marked as a designated
  159.   /// initializer within a class that has at least one initializer marked as a
  160.   /// designated initializer.
  161.   bool ObjCIsSecondaryInit : 1;
  162.  
  163.   /// This starts true for a secondary initializer method and will be set to
  164.   /// false if there is an invocation of an initializer on 'self'.
  165.   bool ObjCWarnForNoInitDelegation : 1;
  166.  
  167.   /// True only when this function has not already built, or attempted
  168.   /// to build, the initial and final coroutine suspend points
  169.   bool NeedsCoroutineSuspends : 1;
  170.  
  171.   /// An enumeration represeting the kind of the first coroutine statement
  172.   /// in the function. One of co_return, co_await, or co_yield.
  173.   unsigned char FirstCoroutineStmtKind : 2;
  174.  
  175.   /// First coroutine statement in the current function.
  176.   /// (ex co_return, co_await, co_yield)
  177.   SourceLocation FirstCoroutineStmtLoc;
  178.  
  179.   /// First 'return' statement in the current function.
  180.   SourceLocation FirstReturnLoc;
  181.  
  182.   /// First C++ 'try' or ObjC @try statement in the current function.
  183.   SourceLocation FirstCXXOrObjCTryLoc;
  184.   enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
  185.  
  186.   /// First SEH '__try' statement in the current function.
  187.   SourceLocation FirstSEHTryLoc;
  188.  
  189. private:
  190.   /// Used to determine if errors occurred in this function or block.
  191.   DiagnosticErrorTrap ErrorTrap;
  192.  
  193. public:
  194.   /// A SwitchStmt, along with a flag indicating if its list of case statements
  195.   /// is incomplete (because we dropped an invalid one while parsing).
  196.   using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
  197.  
  198.   /// SwitchStack - This is the current set of active switch statements in the
  199.   /// block.
  200.   SmallVector<SwitchInfo, 8> SwitchStack;
  201.  
  202.   /// The list of return statements that occur within the function or
  203.   /// block, if there is any chance of applying the named return value
  204.   /// optimization, or if we need to infer a return type.
  205.   SmallVector<ReturnStmt*, 4> Returns;
  206.  
  207.   /// The promise object for this coroutine, if any.
  208.   VarDecl *CoroutinePromise = nullptr;
  209.  
  210.   /// A mapping between the coroutine function parameters that were moved
  211.   /// to the coroutine frame, and their move statements.
  212.   llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
  213.  
  214.   /// The initial and final coroutine suspend points.
  215.   std::pair<Stmt *, Stmt *> CoroutineSuspends;
  216.  
  217.   /// The stack of currently active compound stamement scopes in the
  218.   /// function.
  219.   SmallVector<CompoundScopeInfo, 4> CompoundScopes;
  220.  
  221.   /// The set of blocks that are introduced in this function.
  222.   llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
  223.  
  224.   /// The set of __block variables that are introduced in this function.
  225.   llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
  226.  
  227.   /// A list of PartialDiagnostics created but delayed within the
  228.   /// current function scope.  These diagnostics are vetted for reachability
  229.   /// prior to being emitted.
  230.   SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
  231.  
  232.   /// A list of parameters which have the nonnull attribute and are
  233.   /// modified in the function.
  234.   llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
  235.  
  236.   /// The set of GNU address of label extension "&&label".
  237.   llvm::SmallVector<AddrLabelExpr *, 4> AddrLabels;
  238.  
  239. public:
  240.   /// Represents a simple identification of a weak object.
  241.   ///
  242.   /// Part of the implementation of -Wrepeated-use-of-weak.
  243.   ///
  244.   /// This is used to determine if two weak accesses refer to the same object.
  245.   /// Here are some examples of how various accesses are "profiled":
  246.   ///
  247.   /// Access Expression |     "Base" Decl     |          "Property" Decl
  248.   /// :---------------: | :-----------------: | :------------------------------:
  249.   /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
  250.   /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
  251.   /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
  252.   /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
  253.   /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
  254.   /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
  255.   /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
  256.   /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
  257.   /// weakVar           | 0 (known)           | weakVar (VarDecl)
  258.   /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
  259.   ///
  260.   /// Objects are identified with only two Decls to make it reasonably fast to
  261.   /// compare them.
  262.   class WeakObjectProfileTy {
  263.     /// The base object decl, as described in the class documentation.
  264.     ///
  265.     /// The extra flag is "true" if the Base and Property are enough to uniquely
  266.     /// identify the object in memory.
  267.     ///
  268.     /// \sa isExactProfile()
  269.     using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
  270.     BaseInfoTy Base;
  271.  
  272.     /// The "property" decl, as described in the class documentation.
  273.     ///
  274.     /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
  275.     /// case of "implicit" properties (regular methods accessed via dot syntax).
  276.     const NamedDecl *Property = nullptr;
  277.  
  278.     /// Used to find the proper base profile for a given base expression.
  279.     static BaseInfoTy getBaseInfo(const Expr *BaseE);
  280.  
  281.     inline WeakObjectProfileTy();
  282.     static inline WeakObjectProfileTy getSentinel();
  283.  
  284.   public:
  285.     WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
  286.     WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
  287.     WeakObjectProfileTy(const DeclRefExpr *RE);
  288.     WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
  289.  
  290.     const NamedDecl *getBase() const { return Base.getPointer(); }
  291.     const NamedDecl *getProperty() const { return Property; }
  292.  
  293.     /// Returns true if the object base specifies a known object in memory,
  294.     /// rather than, say, an instance variable or property of another object.
  295.     ///
  296.     /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
  297.     /// considered an exact profile if \c foo is a local variable, even if
  298.     /// another variable \c foo2 refers to the same object as \c foo.
  299.     ///
  300.     /// For increased precision, accesses with base variables that are
  301.     /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
  302.     /// be exact, though this is not true for arbitrary variables
  303.     /// (foo.prop1.prop2).
  304.     bool isExactProfile() const {
  305.       return Base.getInt();
  306.     }
  307.  
  308.     bool operator==(const WeakObjectProfileTy &Other) const {
  309.       return Base == Other.Base && Property == Other.Property;
  310.     }
  311.  
  312.     // For use in DenseMap.
  313.     // We can't specialize the usual llvm::DenseMapInfo at the end of the file
  314.     // because by that point the DenseMap in FunctionScopeInfo has already been
  315.     // instantiated.
  316.     class DenseMapInfo {
  317.     public:
  318.       static inline WeakObjectProfileTy getEmptyKey() {
  319.         return WeakObjectProfileTy();
  320.       }
  321.  
  322.       static inline WeakObjectProfileTy getTombstoneKey() {
  323.         return WeakObjectProfileTy::getSentinel();
  324.       }
  325.  
  326.       static unsigned getHashValue(const WeakObjectProfileTy &Val) {
  327.         using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
  328.  
  329.         return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
  330.                                                            Val.Property));
  331.       }
  332.  
  333.       static bool isEqual(const WeakObjectProfileTy &LHS,
  334.                           const WeakObjectProfileTy &RHS) {
  335.         return LHS == RHS;
  336.       }
  337.     };
  338.   };
  339.  
  340.   /// Represents a single use of a weak object.
  341.   ///
  342.   /// Stores both the expression and whether the access is potentially unsafe
  343.   /// (i.e. it could potentially be warned about).
  344.   ///
  345.   /// Part of the implementation of -Wrepeated-use-of-weak.
  346.   class WeakUseTy {
  347.     llvm::PointerIntPair<const Expr *, 1, bool> Rep;
  348.  
  349.   public:
  350.     WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
  351.  
  352.     const Expr *getUseExpr() const { return Rep.getPointer(); }
  353.     bool isUnsafe() const { return Rep.getInt(); }
  354.     void markSafe() { Rep.setInt(false); }
  355.  
  356.     bool operator==(const WeakUseTy &Other) const {
  357.       return Rep == Other.Rep;
  358.     }
  359.   };
  360.  
  361.   /// Used to collect uses of a particular weak object in a function body.
  362.   ///
  363.   /// Part of the implementation of -Wrepeated-use-of-weak.
  364.   using WeakUseVector = SmallVector<WeakUseTy, 4>;
  365.  
  366.   /// Used to collect all uses of weak objects in a function body.
  367.   ///
  368.   /// Part of the implementation of -Wrepeated-use-of-weak.
  369.   using WeakObjectUseMap =
  370.       llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
  371.                           WeakObjectProfileTy::DenseMapInfo>;
  372.  
  373. private:
  374.   /// Used to collect all uses of weak objects in this function body.
  375.   ///
  376.   /// Part of the implementation of -Wrepeated-use-of-weak.
  377.   WeakObjectUseMap WeakObjectUses;
  378.  
  379. protected:
  380.   FunctionScopeInfo(const FunctionScopeInfo&) = default;
  381.  
  382. public:
  383.   FunctionScopeInfo(DiagnosticsEngine &Diag)
  384.       : Kind(SK_Function), HasBranchProtectedScope(false),
  385.         HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
  386.         HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
  387.         HasFallthroughStmt(false), UsesFPIntrin(false),
  388.         HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
  389.         ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
  390.         ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
  391.         NeedsCoroutineSuspends(true), ErrorTrap(Diag) {}
  392.  
  393.   virtual ~FunctionScopeInfo();
  394.  
  395.   /// Determine whether an unrecoverable error has occurred within this
  396.   /// function. Note that this may return false even if the function body is
  397.   /// invalid, because the errors may be suppressed if they're caused by prior
  398.   /// invalid declarations.
  399.   ///
  400.   /// FIXME: Migrate the caller of this to use containsErrors() instead once
  401.   /// it's ready.
  402.   bool hasUnrecoverableErrorOccurred() const {
  403.     return ErrorTrap.hasUnrecoverableErrorOccurred();
  404.   }
  405.  
  406.   /// Record that a weak object was accessed.
  407.   ///
  408.   /// Part of the implementation of -Wrepeated-use-of-weak.
  409.   template <typename ExprT>
  410.   inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
  411.  
  412.   void recordUseOfWeak(const ObjCMessageExpr *Msg,
  413.                        const ObjCPropertyDecl *Prop);
  414.  
  415.   /// Record that a given expression is a "safe" access of a weak object (e.g.
  416.   /// assigning it to a strong variable.)
  417.   ///
  418.   /// Part of the implementation of -Wrepeated-use-of-weak.
  419.   void markSafeWeakUse(const Expr *E);
  420.  
  421.   const WeakObjectUseMap &getWeakObjectUses() const {
  422.     return WeakObjectUses;
  423.   }
  424.  
  425.   void setHasBranchIntoScope() {
  426.     HasBranchIntoScope = true;
  427.   }
  428.  
  429.   void setHasBranchProtectedScope() {
  430.     HasBranchProtectedScope = true;
  431.   }
  432.  
  433.   void setHasIndirectGoto() {
  434.     HasIndirectGoto = true;
  435.   }
  436.  
  437.   void setHasMustTail() { HasMustTail = true; }
  438.  
  439.   void setHasDroppedStmt() {
  440.     HasDroppedStmt = true;
  441.   }
  442.  
  443.   void setHasOMPDeclareReductionCombiner() {
  444.     HasOMPDeclareReductionCombiner = true;
  445.   }
  446.  
  447.   void setHasFallthroughStmt() {
  448.     HasFallthroughStmt = true;
  449.   }
  450.  
  451.   void setUsesFPIntrin() {
  452.     UsesFPIntrin = true;
  453.   }
  454.  
  455.   void setHasCXXTry(SourceLocation TryLoc) {
  456.     setHasBranchProtectedScope();
  457.     FirstCXXOrObjCTryLoc = TryLoc;
  458.     FirstTryType = TryLocIsCXX;
  459.   }
  460.  
  461.   void setHasObjCTry(SourceLocation TryLoc) {
  462.     setHasBranchProtectedScope();
  463.     FirstCXXOrObjCTryLoc = TryLoc;
  464.     FirstTryType = TryLocIsObjC;
  465.   }
  466.  
  467.   void setHasSEHTry(SourceLocation TryLoc) {
  468.     setHasBranchProtectedScope();
  469.     FirstSEHTryLoc = TryLoc;
  470.   }
  471.  
  472.   bool NeedsScopeChecking() const {
  473.     return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
  474.                                (HasBranchProtectedScope && HasBranchIntoScope));
  475.   }
  476.  
  477.   // Add a block introduced in this function.
  478.   void addBlock(const BlockDecl *BD) {
  479.     Blocks.insert(BD);
  480.   }
  481.  
  482.   // Add a __block variable introduced in this function.
  483.   void addByrefBlockVar(VarDecl *VD) {
  484.     ByrefBlockVars.push_back(VD);
  485.   }
  486.  
  487.   bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
  488.  
  489.   void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
  490.     assert(FirstCoroutineStmtLoc.isInvalid() &&
  491.                    "first coroutine statement location already set");
  492.     FirstCoroutineStmtLoc = Loc;
  493.     FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
  494.             .Case("co_return", 0)
  495.             .Case("co_await", 1)
  496.             .Case("co_yield", 2);
  497.   }
  498.  
  499.   StringRef getFirstCoroutineStmtKeyword() const {
  500.     assert(FirstCoroutineStmtLoc.isValid()
  501.                    && "no coroutine statement available");
  502.     switch (FirstCoroutineStmtKind) {
  503.     case 0: return "co_return";
  504.     case 1: return "co_await";
  505.     case 2: return "co_yield";
  506.     default:
  507.       llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
  508.     };
  509.   }
  510.  
  511.   void setNeedsCoroutineSuspends(bool value = true) {
  512.     assert((!value || CoroutineSuspends.first == nullptr) &&
  513.             "we already have valid suspend points");
  514.     NeedsCoroutineSuspends = value;
  515.   }
  516.  
  517.   bool hasInvalidCoroutineSuspends() const {
  518.     return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
  519.   }
  520.  
  521.   void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
  522.     assert(Initial && Final && "suspend points cannot be null");
  523.     assert(CoroutineSuspends.first == nullptr && "suspend points already set");
  524.     NeedsCoroutineSuspends = false;
  525.     CoroutineSuspends.first = Initial;
  526.     CoroutineSuspends.second = Final;
  527.   }
  528.  
  529.   /// Clear out the information in this function scope, making it
  530.   /// suitable for reuse.
  531.   void Clear();
  532.  
  533.   bool isPlainFunction() const { return Kind == SK_Function; }
  534. };
  535.  
  536. class Capture {
  537.   // There are three categories of capture: capturing 'this', capturing
  538.   // local variables, and C++1y initialized captures (which can have an
  539.   // arbitrary initializer, and don't really capture in the traditional
  540.   // sense at all).
  541.   //
  542.   // There are three ways to capture a local variable:
  543.   //  - capture by copy in the C++11 sense,
  544.   //  - capture by reference in the C++11 sense, and
  545.   //  - __block capture.
  546.   // Lambdas explicitly specify capture by copy or capture by reference.
  547.   // For blocks, __block capture applies to variables with that annotation,
  548.   // variables of reference type are captured by reference, and other
  549.   // variables are captured by copy.
  550.   enum CaptureKind {
  551.     Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
  552.   };
  553.  
  554.   union {
  555.     /// If Kind == Cap_VLA, the captured type.
  556.     const VariableArrayType *CapturedVLA;
  557.  
  558.     /// Otherwise, the captured variable (if any).
  559.     ValueDecl *CapturedVar;
  560.   };
  561.  
  562.   /// The source location at which the first capture occurred.
  563.   SourceLocation Loc;
  564.  
  565.   /// The location of the ellipsis that expands a parameter pack.
  566.   SourceLocation EllipsisLoc;
  567.  
  568.   /// The type as it was captured, which is the type of the non-static data
  569.   /// member that would hold the capture.
  570.   QualType CaptureType;
  571.  
  572.   /// The CaptureKind of this capture.
  573.   unsigned Kind : 2;
  574.  
  575.   /// Whether this is a nested capture (a capture of an enclosing capturing
  576.   /// scope's capture).
  577.   unsigned Nested : 1;
  578.  
  579.   /// Whether this is a capture of '*this'.
  580.   unsigned CapturesThis : 1;
  581.  
  582.   /// Whether an explicit capture has been odr-used in the body of the
  583.   /// lambda.
  584.   unsigned ODRUsed : 1;
  585.  
  586.   /// Whether an explicit capture has been non-odr-used in the body of
  587.   /// the lambda.
  588.   unsigned NonODRUsed : 1;
  589.  
  590.   /// Whether the capture is invalid (a capture was required but the entity is
  591.   /// non-capturable).
  592.   unsigned Invalid : 1;
  593.  
  594. public:
  595.   Capture(ValueDecl *Var, bool Block, bool ByRef, bool IsNested,
  596.           SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
  597.           bool Invalid)
  598.       : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
  599.         CaptureType(CaptureType), Kind(Block   ? Cap_Block
  600.                                        : ByRef ? Cap_ByRef
  601.                                                : Cap_ByCopy),
  602.         Nested(IsNested), CapturesThis(false), ODRUsed(false),
  603.         NonODRUsed(false), Invalid(Invalid) {}
  604.  
  605.   enum IsThisCapture { ThisCapture };
  606.   Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
  607.           QualType CaptureType, const bool ByCopy, bool Invalid)
  608.       : Loc(Loc), CaptureType(CaptureType),
  609.         Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
  610.         CapturesThis(true), ODRUsed(false), NonODRUsed(false),
  611.         Invalid(Invalid) {}
  612.  
  613.   enum IsVLACapture { VLACapture };
  614.   Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
  615.           SourceLocation Loc, QualType CaptureType)
  616.       : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
  617.         Nested(IsNested), CapturesThis(false), ODRUsed(false),
  618.         NonODRUsed(false), Invalid(false) {}
  619.  
  620.   bool isThisCapture() const { return CapturesThis; }
  621.   bool isVariableCapture() const {
  622.     return !isThisCapture() && !isVLATypeCapture();
  623.   }
  624.  
  625.   bool isCopyCapture() const { return Kind == Cap_ByCopy; }
  626.   bool isReferenceCapture() const { return Kind == Cap_ByRef; }
  627.   bool isBlockCapture() const { return Kind == Cap_Block; }
  628.   bool isVLATypeCapture() const { return Kind == Cap_VLA; }
  629.  
  630.   bool isNested() const { return Nested; }
  631.  
  632.   bool isInvalid() const { return Invalid; }
  633.  
  634.   /// Determine whether this capture is an init-capture.
  635.   bool isInitCapture() const;
  636.  
  637.   bool isODRUsed() const { return ODRUsed; }
  638.   bool isNonODRUsed() const { return NonODRUsed; }
  639.   void markUsed(bool IsODRUse) {
  640.     if (IsODRUse)
  641.       ODRUsed = true;
  642.     else
  643.       NonODRUsed = true;
  644.   }
  645.  
  646.   ValueDecl *getVariable() const {
  647.     assert(isVariableCapture());
  648.     return CapturedVar;
  649.   }
  650.  
  651.   const VariableArrayType *getCapturedVLAType() const {
  652.     assert(isVLATypeCapture());
  653.     return CapturedVLA;
  654.   }
  655.  
  656.   /// Retrieve the location at which this variable was captured.
  657.   SourceLocation getLocation() const { return Loc; }
  658.  
  659.   /// Retrieve the source location of the ellipsis, whose presence
  660.   /// indicates that the capture is a pack expansion.
  661.   SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
  662.  
  663.   /// Retrieve the capture type for this capture, which is effectively
  664.   /// the type of the non-static data member in the lambda/block structure
  665.   /// that would store this capture.
  666.   QualType getCaptureType() const { return CaptureType; }
  667. };
  668.  
  669. class CapturingScopeInfo : public FunctionScopeInfo {
  670. protected:
  671.   CapturingScopeInfo(const CapturingScopeInfo&) = default;
  672.  
  673. public:
  674.   enum ImplicitCaptureStyle {
  675.     ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
  676.     ImpCap_CapturedRegion
  677.   };
  678.  
  679.   ImplicitCaptureStyle ImpCaptureStyle;
  680.  
  681.   CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
  682.       : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
  683.  
  684.   /// CaptureMap - A map of captured variables to (index+1) into Captures.
  685.   llvm::DenseMap<ValueDecl *, unsigned> CaptureMap;
  686.  
  687.   /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
  688.   /// zero if 'this' is not captured.
  689.   unsigned CXXThisCaptureIndex = 0;
  690.  
  691.   /// Captures - The captures.
  692.   SmallVector<Capture, 4> Captures;
  693.  
  694.   /// - Whether the target type of return statements in this context
  695.   /// is deduced (e.g. a lambda or block with omitted return type).
  696.   bool HasImplicitReturnType = false;
  697.  
  698.   /// ReturnType - The target type of return statements in this context,
  699.   /// or null if unknown.
  700.   QualType ReturnType;
  701.  
  702.   void addCapture(ValueDecl *Var, bool isBlock, bool isByref, bool isNested,
  703.                   SourceLocation Loc, SourceLocation EllipsisLoc,
  704.                   QualType CaptureType, bool Invalid) {
  705.     Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
  706.                                EllipsisLoc, CaptureType, Invalid));
  707.     CaptureMap[Var] = Captures.size();
  708.   }
  709.  
  710.   void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
  711.                          QualType CaptureType) {
  712.     Captures.push_back(Capture(Capture::VLACapture, VLAType,
  713.                                /*FIXME: IsNested*/ false, Loc, CaptureType));
  714.   }
  715.  
  716.   void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
  717.                       bool ByCopy);
  718.  
  719.   /// Determine whether the C++ 'this' is captured.
  720.   bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
  721.  
  722.   /// Retrieve the capture of C++ 'this', if it has been captured.
  723.   Capture &getCXXThisCapture() {
  724.     assert(isCXXThisCaptured() && "this has not been captured");
  725.     return Captures[CXXThisCaptureIndex - 1];
  726.   }
  727.  
  728.   /// Determine whether the given variable has been captured.
  729.   bool isCaptured(ValueDecl *Var) const { return CaptureMap.count(Var); }
  730.  
  731.   /// Determine whether the given variable-array type has been captured.
  732.   bool isVLATypeCaptured(const VariableArrayType *VAT) const;
  733.  
  734.   /// Retrieve the capture of the given variable, if it has been
  735.   /// captured already.
  736.   Capture &getCapture(ValueDecl *Var) {
  737.     assert(isCaptured(Var) && "Variable has not been captured");
  738.     return Captures[CaptureMap[Var] - 1];
  739.   }
  740.  
  741.   const Capture &getCapture(ValueDecl *Var) const {
  742.     llvm::DenseMap<ValueDecl *, unsigned>::const_iterator Known =
  743.         CaptureMap.find(Var);
  744.     assert(Known != CaptureMap.end() && "Variable has not been captured");
  745.     return Captures[Known->second - 1];
  746.   }
  747.  
  748.   static bool classof(const FunctionScopeInfo *FSI) {
  749.     return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
  750.                                  || FSI->Kind == SK_CapturedRegion;
  751.   }
  752. };
  753.  
  754. /// Retains information about a block that is currently being parsed.
  755. class BlockScopeInfo final : public CapturingScopeInfo {
  756. public:
  757.   BlockDecl *TheDecl;
  758.  
  759.   /// TheScope - This is the scope for the block itself, which contains
  760.   /// arguments etc.
  761.   Scope *TheScope;
  762.  
  763.   /// BlockType - The function type of the block, if one was given.
  764.   /// Its return type may be BuiltinType::Dependent.
  765.   QualType FunctionType;
  766.  
  767.   BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
  768.       : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
  769.         TheScope(BlockScope) {
  770.     Kind = SK_Block;
  771.   }
  772.  
  773.   ~BlockScopeInfo() override;
  774.  
  775.   static bool classof(const FunctionScopeInfo *FSI) {
  776.     return FSI->Kind == SK_Block;
  777.   }
  778. };
  779.  
  780. /// Retains information about a captured region.
  781. class CapturedRegionScopeInfo final : public CapturingScopeInfo {
  782. public:
  783.   /// The CapturedDecl for this statement.
  784.   CapturedDecl *TheCapturedDecl;
  785.  
  786.   /// The captured record type.
  787.   RecordDecl *TheRecordDecl;
  788.  
  789.   /// This is the enclosing scope of the captured region.
  790.   Scope *TheScope;
  791.  
  792.   /// The implicit parameter for the captured variables.
  793.   ImplicitParamDecl *ContextParam;
  794.  
  795.   /// The kind of captured region.
  796.   unsigned short CapRegionKind;
  797.  
  798.   unsigned short OpenMPLevel;
  799.   unsigned short OpenMPCaptureLevel;
  800.  
  801.   CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
  802.                           RecordDecl *RD, ImplicitParamDecl *Context,
  803.                           CapturedRegionKind K, unsigned OpenMPLevel,
  804.                           unsigned OpenMPCaptureLevel)
  805.       : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
  806.         TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
  807.         ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
  808.         OpenMPCaptureLevel(OpenMPCaptureLevel) {
  809.     Kind = SK_CapturedRegion;
  810.   }
  811.  
  812.   ~CapturedRegionScopeInfo() override;
  813.  
  814.   /// A descriptive name for the kind of captured region this is.
  815.   StringRef getRegionName() const {
  816.     switch (CapRegionKind) {
  817.     case CR_Default:
  818.       return "default captured statement";
  819.     case CR_ObjCAtFinally:
  820.       return "Objective-C @finally statement";
  821.     case CR_OpenMP:
  822.       return "OpenMP region";
  823.     }
  824.     llvm_unreachable("Invalid captured region kind!");
  825.   }
  826.  
  827.   static bool classof(const FunctionScopeInfo *FSI) {
  828.     return FSI->Kind == SK_CapturedRegion;
  829.   }
  830. };
  831.  
  832. class LambdaScopeInfo final :
  833.     public CapturingScopeInfo, public InventedTemplateParameterInfo {
  834. public:
  835.   /// The class that describes the lambda.
  836.   CXXRecordDecl *Lambda = nullptr;
  837.  
  838.   /// The lambda's compiler-generated \c operator().
  839.   CXXMethodDecl *CallOperator = nullptr;
  840.  
  841.   /// Source range covering the lambda introducer [...].
  842.   SourceRange IntroducerRange;
  843.  
  844.   /// Source location of the '&' or '=' specifying the default capture
  845.   /// type, if any.
  846.   SourceLocation CaptureDefaultLoc;
  847.  
  848.   /// The number of captures in the \c Captures list that are
  849.   /// explicit captures.
  850.   unsigned NumExplicitCaptures = 0;
  851.  
  852.   /// Whether this is a mutable lambda.
  853.   bool Mutable = false;
  854.  
  855.   /// Whether the (empty) parameter list is explicit.
  856.   bool ExplicitParams = false;
  857.  
  858.   /// Whether any of the capture expressions requires cleanups.
  859.   CleanupInfo Cleanup;
  860.  
  861.   /// Whether the lambda contains an unexpanded parameter pack.
  862.   bool ContainsUnexpandedParameterPack = false;
  863.  
  864.   /// Packs introduced by this lambda, if any.
  865.   SmallVector<NamedDecl*, 4> LocalPacks;
  866.  
  867.   /// Source range covering the explicit template parameter list (if it exists).
  868.   SourceRange ExplicitTemplateParamsRange;
  869.  
  870.   /// The requires-clause immediately following the explicit template parameter
  871.   /// list, if any. (Note that there may be another requires-clause included as
  872.   /// part of the lambda-declarator.)
  873.   ExprResult RequiresClause;
  874.  
  875.   /// If this is a generic lambda, and the template parameter
  876.   /// list has been created (from the TemplateParams) then store
  877.   /// a reference to it (cache it to avoid reconstructing it).
  878.   TemplateParameterList *GLTemplateParameterList = nullptr;
  879.  
  880.   /// Contains all variable-referring-expressions (i.e. DeclRefExprs
  881.   ///  or MemberExprs) that refer to local variables in a generic lambda
  882.   ///  or a lambda in a potentially-evaluated-if-used context.
  883.   ///
  884.   ///  Potentially capturable variables of a nested lambda that might need
  885.   ///   to be captured by the lambda are housed here.
  886.   ///  This is specifically useful for generic lambdas or
  887.   ///  lambdas within a potentially evaluated-if-used context.
  888.   ///  If an enclosing variable is named in an expression of a lambda nested
  889.   ///  within a generic lambda, we don't always know whether the variable
  890.   ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
  891.   ///  until its instantiation. But we still need to capture it in the
  892.   ///  enclosing lambda if all intervening lambdas can capture the variable.
  893.   llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
  894.  
  895.   /// Contains all variable-referring-expressions that refer
  896.   ///  to local variables that are usable as constant expressions and
  897.   ///  do not involve an odr-use (they may still need to be captured
  898.   ///  if the enclosing full-expression is instantiation dependent).
  899.   llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
  900.  
  901.   /// A map of explicit capture indices to their introducer source ranges.
  902.   llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
  903.  
  904.   /// Contains all of the variables defined in this lambda that shadow variables
  905.   /// that were defined in parent contexts. Used to avoid warnings when the
  906.   /// shadowed variables are uncaptured by this lambda.
  907.   struct ShadowedOuterDecl {
  908.     const VarDecl *VD;
  909.     const VarDecl *ShadowedDecl;
  910.   };
  911.   llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
  912.  
  913.   SourceLocation PotentialThisCaptureLocation;
  914.  
  915.   LambdaScopeInfo(DiagnosticsEngine &Diag)
  916.       : CapturingScopeInfo(Diag, ImpCap_None) {
  917.     Kind = SK_Lambda;
  918.   }
  919.  
  920.   /// Note when all explicit captures have been added.
  921.   void finishedExplicitCaptures() {
  922.     NumExplicitCaptures = Captures.size();
  923.   }
  924.  
  925.   static bool classof(const FunctionScopeInfo *FSI) {
  926.     return FSI->Kind == SK_Lambda;
  927.   }
  928.  
  929.   /// Is this scope known to be for a generic lambda? (This will be false until
  930.   /// we parse a template parameter list or the first 'auto'-typed parameter).
  931.   bool isGenericLambda() const {
  932.     return !TemplateParams.empty() || GLTemplateParameterList;
  933.   }
  934.  
  935.   /// Add a variable that might potentially be captured by the
  936.   /// lambda and therefore the enclosing lambdas.
  937.   ///
  938.   /// This is also used by enclosing lambda's to speculatively capture
  939.   /// variables that nested lambda's - depending on their enclosing
  940.   /// specialization - might need to capture.
  941.   /// Consider:
  942.   /// void f(int, int); <-- don't capture
  943.   /// void f(const int&, double); <-- capture
  944.   /// void foo() {
  945.   ///   const int x = 10;
  946.   ///   auto L = [=](auto a) { // capture 'x'
  947.   ///      return [=](auto b) {
  948.   ///        f(x, a);  // we may or may not need to capture 'x'
  949.   ///      };
  950.   ///   };
  951.   /// }
  952.   void addPotentialCapture(Expr *VarExpr) {
  953.     assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
  954.            isa<FunctionParmPackExpr>(VarExpr));
  955.     PotentiallyCapturingExprs.push_back(VarExpr);
  956.   }
  957.  
  958.   void addPotentialThisCapture(SourceLocation Loc) {
  959.     PotentialThisCaptureLocation = Loc;
  960.   }
  961.  
  962.   bool hasPotentialThisCapture() const {
  963.     return PotentialThisCaptureLocation.isValid();
  964.   }
  965.  
  966.   /// Mark a variable's reference in a lambda as non-odr using.
  967.   ///
  968.   /// For generic lambdas, if a variable is named in a potentially evaluated
  969.   /// expression, where the enclosing full expression is dependent then we
  970.   /// must capture the variable (given a default capture).
  971.   /// This is accomplished by recording all references to variables
  972.   /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
  973.   /// PotentialCaptures. All such variables have to be captured by that lambda,
  974.   /// except for as described below.
  975.   /// If that variable is usable as a constant expression and is named in a
  976.   /// manner that does not involve its odr-use (e.g. undergoes
  977.   /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
  978.   /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
  979.   /// if we can determine that the full expression is not instantiation-
  980.   /// dependent, then we can entirely avoid its capture.
  981.   ///
  982.   ///   const int n = 0;
  983.   ///   [&] (auto x) {
  984.   ///     (void)+n + x;
  985.   ///   };
  986.   /// Interestingly, this strategy would involve a capture of n, even though
  987.   /// it's obviously not odr-used here, because the full-expression is
  988.   /// instantiation-dependent.  It could be useful to avoid capturing such
  989.   /// variables, even when they are referred to in an instantiation-dependent
  990.   /// expression, if we can unambiguously determine that they shall never be
  991.   /// odr-used.  This would involve removal of the variable-referring-expression
  992.   /// from the array of PotentialCaptures during the lvalue-to-rvalue
  993.   /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
  994.   /// capture such variables.
  995.   /// Before anyone is tempted to implement a strategy for not-capturing 'n',
  996.   /// consider the insightful warning in:
  997.   ///    /cfe-commits/Week-of-Mon-20131104/092596.html
  998.   /// "The problem is that the set of captures for a lambda is part of the ABI
  999.   ///  (since lambda layout can be made visible through inline functions and the
  1000.   ///  like), and there are no guarantees as to which cases we'll manage to build
  1001.   ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
  1002.   ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
  1003.   ///  building such a node. So we need a rule that anyone can implement and get
  1004.   ///  exactly the same result".
  1005.   void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
  1006.     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
  1007.            isa<MemberExpr>(CapturingVarExpr) ||
  1008.            isa<FunctionParmPackExpr>(CapturingVarExpr));
  1009.     NonODRUsedCapturingExprs.insert(CapturingVarExpr);
  1010.   }
  1011.   bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
  1012.     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
  1013.            isa<MemberExpr>(CapturingVarExpr) ||
  1014.            isa<FunctionParmPackExpr>(CapturingVarExpr));
  1015.     return NonODRUsedCapturingExprs.count(CapturingVarExpr);
  1016.   }
  1017.   void removePotentialCapture(Expr *E) {
  1018.     llvm::erase_value(PotentiallyCapturingExprs, E);
  1019.   }
  1020.   void clearPotentialCaptures() {
  1021.     PotentiallyCapturingExprs.clear();
  1022.     PotentialThisCaptureLocation = SourceLocation();
  1023.   }
  1024.   unsigned getNumPotentialVariableCaptures() const {
  1025.     return PotentiallyCapturingExprs.size();
  1026.   }
  1027.  
  1028.   bool hasPotentialCaptures() const {
  1029.     return getNumPotentialVariableCaptures() ||
  1030.                                   PotentialThisCaptureLocation.isValid();
  1031.   }
  1032.  
  1033.   void visitPotentialCaptures(
  1034.       llvm::function_ref<void(ValueDecl *, Expr *)> Callback) const;
  1035. };
  1036.  
  1037. FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
  1038.     : Base(nullptr, false) {}
  1039.  
  1040. FunctionScopeInfo::WeakObjectProfileTy
  1041. FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
  1042.   FunctionScopeInfo::WeakObjectProfileTy Result;
  1043.   Result.Base.setInt(true);
  1044.   return Result;
  1045. }
  1046.  
  1047. template <typename ExprT>
  1048. void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
  1049.   assert(E);
  1050.   WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
  1051.   Uses.push_back(WeakUseTy(E, IsRead));
  1052. }
  1053.  
  1054. inline void CapturingScopeInfo::addThisCapture(bool isNested,
  1055.                                                SourceLocation Loc,
  1056.                                                QualType CaptureType,
  1057.                                                bool ByCopy) {
  1058.   Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
  1059.                              ByCopy, /*Invalid*/ false));
  1060.   CXXThisCaptureIndex = Captures.size();
  1061. }
  1062.  
  1063. } // namespace sema
  1064.  
  1065. } // namespace clang
  1066.  
  1067. #endif // LLVM_CLANG_SEMA_SCOPEINFO_H
  1068.