//===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines FunctionScopeInfo and its subclasses, which contain
 
// information about a single function, block, lambda, or method body.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
 
#define LLVM_CLANG_SEMA_SCOPEINFO_H
 
 
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/ExprCXX.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Basic/CapturedStmt.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Basic/PartialDiagnostic.h"
 
#include "clang/Basic/SourceLocation.h"
 
#include "clang/Sema/CleanupInfo.h"
 
#include "clang/Sema/DeclSpec.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseMapInfo.h"
 
#include "llvm/ADT/MapVector.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/StringSwitch.h"
 
#include "llvm/ADT/TinyPtrVector.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <utility>
 
 
 
namespace clang {
 
 
 
class BlockDecl;
 
class CapturedDecl;
 
class CXXMethodDecl;
 
class CXXRecordDecl;
 
class ImplicitParamDecl;
 
class NamedDecl;
 
class ObjCIvarRefExpr;
 
class ObjCMessageExpr;
 
class ObjCPropertyDecl;
 
class ObjCPropertyRefExpr;
 
class ParmVarDecl;
 
class RecordDecl;
 
class ReturnStmt;
 
class Scope;
 
class Stmt;
 
class SwitchStmt;
 
class TemplateParameterList;
 
class VarDecl;
 
 
 
namespace sema {
 
 
 
/// Contains information about the compound statement currently being
 
/// parsed.
 
class CompoundScopeInfo {
 
public:
 
  /// Whether this compound stamement contains `for' or `while' loops
 
  /// with empty bodies.
 
  bool HasEmptyLoopBodies = false;
 
 
 
  /// Whether this compound statement corresponds to a GNU statement
 
  /// expression.
 
  bool IsStmtExpr;
 
 
 
  /// FP options at the beginning of the compound statement, prior to
 
  /// any pragma.
 
  FPOptions InitialFPFeatures;
 
 
 
  CompoundScopeInfo(bool IsStmtExpr, FPOptions FPO)
 
      : IsStmtExpr(IsStmtExpr), InitialFPFeatures(FPO) {}
 
 
 
  void setHasEmptyLoopBodies() {
 
    HasEmptyLoopBodies = true;
 
  }
 
};
 
 
 
class PossiblyUnreachableDiag {
 
public:
 
  PartialDiagnostic PD;
 
  SourceLocation Loc;
 
  llvm::TinyPtrVector<const Stmt*> Stmts;
 
 
 
  PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
 
                          ArrayRef<const Stmt *> Stmts)
 
      : PD(PD), Loc(Loc), Stmts(Stmts) {}
 
};
 
 
 
/// Retains information about a function, method, or block that is
 
/// currently being parsed.
 
class FunctionScopeInfo {
 
protected:
 
  enum ScopeKind {
 
    SK_Function,
 
    SK_Block,
 
    SK_Lambda,
 
    SK_CapturedRegion
 
  };
 
 
 
public:
 
  /// What kind of scope we are describing.
 
  ScopeKind Kind : 3;
 
 
 
  /// Whether this function contains a VLA, \@try, try, C++
 
  /// initializer, or anything else that can't be jumped past.
 
  bool HasBranchProtectedScope : 1;
 
 
 
  /// Whether this function contains any switches or direct gotos.
 
  bool HasBranchIntoScope : 1;
 
 
 
  /// Whether this function contains any indirect gotos.
 
  bool HasIndirectGoto : 1;
 
 
 
  /// Whether this function contains any statement marked with
 
  /// \c [[clang::musttail]].
 
  bool HasMustTail : 1;
 
 
 
  /// Whether a statement was dropped because it was invalid.
 
  bool HasDroppedStmt : 1;
 
 
 
  /// True if current scope is for OpenMP declare reduction combiner.
 
  bool HasOMPDeclareReductionCombiner : 1;
 
 
 
  /// Whether there is a fallthrough statement in this function.
 
  bool HasFallthroughStmt : 1;
 
 
 
  /// Whether this function uses constrained floating point intrinsics
 
  bool UsesFPIntrin : 1;
 
 
 
  /// Whether we make reference to a declaration that could be
 
  /// unavailable.
 
  bool HasPotentialAvailabilityViolations : 1;
 
 
 
  /// A flag that is set when parsing a method that must call super's
 
  /// implementation, such as \c -dealloc, \c -finalize, or any method marked
 
  /// with \c __attribute__((objc_requires_super)).
 
  bool ObjCShouldCallSuper : 1;
 
 
 
  /// True when this is a method marked as a designated initializer.
 
  bool ObjCIsDesignatedInit : 1;
 
 
 
  /// This starts true for a method marked as designated initializer and will
 
  /// be set to false if there is an invocation to a designated initializer of
 
  /// the super class.
 
  bool ObjCWarnForNoDesignatedInitChain : 1;
 
 
 
  /// True when this is an initializer method not marked as a designated
 
  /// initializer within a class that has at least one initializer marked as a
 
  /// designated initializer.
 
  bool ObjCIsSecondaryInit : 1;
 
 
 
  /// This starts true for a secondary initializer method and will be set to
 
  /// false if there is an invocation of an initializer on 'self'.
 
  bool ObjCWarnForNoInitDelegation : 1;
 
 
 
  /// True only when this function has not already built, or attempted
 
  /// to build, the initial and final coroutine suspend points
 
  bool NeedsCoroutineSuspends : 1;
 
 
 
  /// An enumeration represeting the kind of the first coroutine statement
 
  /// in the function. One of co_return, co_await, or co_yield.
 
  unsigned char FirstCoroutineStmtKind : 2;
 
 
 
  /// First coroutine statement in the current function.
 
  /// (ex co_return, co_await, co_yield)
 
  SourceLocation FirstCoroutineStmtLoc;
 
 
 
  /// First 'return' statement in the current function.
 
  SourceLocation FirstReturnLoc;
 
 
 
  /// First C++ 'try' or ObjC @try statement in the current function.
 
  SourceLocation FirstCXXOrObjCTryLoc;
 
  enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
 
 
 
  /// First SEH '__try' statement in the current function.
 
  SourceLocation FirstSEHTryLoc;
 
 
 
private:
 
  /// Used to determine if errors occurred in this function or block.
 
  DiagnosticErrorTrap ErrorTrap;
 
 
 
public:
 
  /// A SwitchStmt, along with a flag indicating if its list of case statements
 
  /// is incomplete (because we dropped an invalid one while parsing).
 
  using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
 
 
 
  /// SwitchStack - This is the current set of active switch statements in the
 
  /// block.
 
  SmallVector<SwitchInfo, 8> SwitchStack;
 
 
 
  /// The list of return statements that occur within the function or
 
  /// block, if there is any chance of applying the named return value
 
  /// optimization, or if we need to infer a return type.
 
  SmallVector<ReturnStmt*, 4> Returns;
 
 
 
  /// The promise object for this coroutine, if any.
 
  VarDecl *CoroutinePromise = nullptr;
 
 
 
  /// A mapping between the coroutine function parameters that were moved
 
  /// to the coroutine frame, and their move statements.
 
  llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
 
 
 
  /// The initial and final coroutine suspend points.
 
  std::pair<Stmt *, Stmt *> CoroutineSuspends;
 
 
 
  /// The stack of currently active compound stamement scopes in the
 
  /// function.
 
  SmallVector<CompoundScopeInfo, 4> CompoundScopes;
 
 
 
  /// The set of blocks that are introduced in this function.
 
  llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
 
 
 
  /// The set of __block variables that are introduced in this function.
 
  llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
 
 
 
  /// A list of PartialDiagnostics created but delayed within the
 
  /// current function scope.  These diagnostics are vetted for reachability
 
  /// prior to being emitted.
 
  SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
 
 
 
  /// A list of parameters which have the nonnull attribute and are
 
  /// modified in the function.
 
  llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
 
 
 
  /// The set of GNU address of label extension "&&label".
 
  llvm::SmallVector<AddrLabelExpr *, 4> AddrLabels;
 
 
 
public:
 
  /// Represents a simple identification of a weak object.
 
  ///
 
  /// Part of the implementation of -Wrepeated-use-of-weak.
 
  ///
 
  /// This is used to determine if two weak accesses refer to the same object.
 
  /// Here are some examples of how various accesses are "profiled":
 
  ///
 
  /// Access Expression |     "Base" Decl     |          "Property" Decl
 
  /// :---------------: | :-----------------: | :------------------------------:
 
  /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
 
  /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
 
  /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
 
  /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
 
  /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
 
  /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
 
  /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
 
  /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
 
  /// weakVar           | 0 (known)           | weakVar (VarDecl)
 
  /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
 
  ///
 
  /// Objects are identified with only two Decls to make it reasonably fast to
 
  /// compare them.
 
  class WeakObjectProfileTy {
 
    /// The base object decl, as described in the class documentation.
 
    ///
 
    /// The extra flag is "true" if the Base and Property are enough to uniquely
 
    /// identify the object in memory.
 
    ///
 
    /// \sa isExactProfile()
 
    using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
 
    BaseInfoTy Base;
 
 
 
    /// The "property" decl, as described in the class documentation.
 
    ///
 
    /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
 
    /// case of "implicit" properties (regular methods accessed via dot syntax).
 
    const NamedDecl *Property = nullptr;
 
 
 
    /// Used to find the proper base profile for a given base expression.
 
    static BaseInfoTy getBaseInfo(const Expr *BaseE);
 
 
 
    inline WeakObjectProfileTy();
 
    static inline WeakObjectProfileTy getSentinel();
 
 
 
  public:
 
    WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
 
    WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
 
    WeakObjectProfileTy(const DeclRefExpr *RE);
 
    WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
 
 
 
    const NamedDecl *getBase() const { return Base.getPointer(); }
 
    const NamedDecl *getProperty() const { return Property; }
 
 
 
    /// Returns true if the object base specifies a known object in memory,
 
    /// rather than, say, an instance variable or property of another object.
 
    ///
 
    /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
 
    /// considered an exact profile if \c foo is a local variable, even if
 
    /// another variable \c foo2 refers to the same object as \c foo.
 
    ///
 
    /// For increased precision, accesses with base variables that are
 
    /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
 
    /// be exact, though this is not true for arbitrary variables
 
    /// (foo.prop1.prop2).
 
    bool isExactProfile() const {
 
      return Base.getInt();
 
    }
 
 
 
    bool operator==(const WeakObjectProfileTy &Other) const {
 
      return Base == Other.Base && Property == Other.Property;
 
    }
 
 
 
    // For use in DenseMap.
 
    // We can't specialize the usual llvm::DenseMapInfo at the end of the file
 
    // because by that point the DenseMap in FunctionScopeInfo has already been
 
    // instantiated.
 
    class DenseMapInfo {
 
    public:
 
      static inline WeakObjectProfileTy getEmptyKey() {
 
        return WeakObjectProfileTy();
 
      }
 
 
 
      static inline WeakObjectProfileTy getTombstoneKey() {
 
        return WeakObjectProfileTy::getSentinel();
 
      }
 
 
 
      static unsigned getHashValue(const WeakObjectProfileTy &Val) {
 
        using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
 
 
 
        return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
 
                                                           Val.Property));
 
      }
 
 
 
      static bool isEqual(const WeakObjectProfileTy &LHS,
 
                          const WeakObjectProfileTy &RHS) {
 
        return LHS == RHS;
 
      }
 
    };
 
  };
 
 
 
  /// Represents a single use of a weak object.
 
  ///
 
  /// Stores both the expression and whether the access is potentially unsafe
 
  /// (i.e. it could potentially be warned about).
 
  ///
 
  /// Part of the implementation of -Wrepeated-use-of-weak.
 
  class WeakUseTy {
 
    llvm::PointerIntPair<const Expr *, 1, bool> Rep;
 
 
 
  public:
 
    WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
 
 
 
    const Expr *getUseExpr() const { return Rep.getPointer(); }
 
    bool isUnsafe() const { return Rep.getInt(); }
 
    void markSafe() { Rep.setInt(false); }
 
 
 
    bool operator==(const WeakUseTy &Other) const {
 
      return Rep == Other.Rep;
 
    }
 
  };
 
 
 
  /// Used to collect uses of a particular weak object in a function body.
 
  ///
 
  /// Part of the implementation of -Wrepeated-use-of-weak.
 
  using WeakUseVector = SmallVector<WeakUseTy, 4>;
 
 
 
  /// Used to collect all uses of weak objects in a function body.
 
  ///
 
  /// Part of the implementation of -Wrepeated-use-of-weak.
 
  using WeakObjectUseMap =
 
      llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
 
                          WeakObjectProfileTy::DenseMapInfo>;
 
 
 
private:
 
  /// Used to collect all uses of weak objects in this function body.
 
  ///
 
  /// Part of the implementation of -Wrepeated-use-of-weak.
 
  WeakObjectUseMap WeakObjectUses;
 
 
 
protected:
 
  FunctionScopeInfo(const FunctionScopeInfo&) = default;
 
 
 
public:
 
  FunctionScopeInfo(DiagnosticsEngine &Diag)
 
      : Kind(SK_Function), HasBranchProtectedScope(false),
 
        HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
 
        HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
 
        HasFallthroughStmt(false), UsesFPIntrin(false),
 
        HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
 
        ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
 
        ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
 
        NeedsCoroutineSuspends(true), ErrorTrap(Diag) {}
 
 
 
  virtual ~FunctionScopeInfo();
 
 
 
  /// Determine whether an unrecoverable error has occurred within this
 
  /// function. Note that this may return false even if the function body is
 
  /// invalid, because the errors may be suppressed if they're caused by prior
 
  /// invalid declarations.
 
  ///
 
  /// FIXME: Migrate the caller of this to use containsErrors() instead once
 
  /// it's ready.
 
  bool hasUnrecoverableErrorOccurred() const {
 
    return ErrorTrap.hasUnrecoverableErrorOccurred();
 
  }
 
 
 
  /// Record that a weak object was accessed.
 
  ///
 
  /// Part of the implementation of -Wrepeated-use-of-weak.
 
  template <typename ExprT>
 
  inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
 
 
 
  void recordUseOfWeak(const ObjCMessageExpr *Msg,
 
                       const ObjCPropertyDecl *Prop);
 
 
 
  /// Record that a given expression is a "safe" access of a weak object (e.g.
 
  /// assigning it to a strong variable.)
 
  ///
 
  /// Part of the implementation of -Wrepeated-use-of-weak.
 
  void markSafeWeakUse(const Expr *E);
 
 
 
  const WeakObjectUseMap &getWeakObjectUses() const {
 
    return WeakObjectUses;
 
  }
 
 
 
  void setHasBranchIntoScope() {
 
    HasBranchIntoScope = true;
 
  }
 
 
 
  void setHasBranchProtectedScope() {
 
    HasBranchProtectedScope = true;
 
  }
 
 
 
  void setHasIndirectGoto() {
 
    HasIndirectGoto = true;
 
  }
 
 
 
  void setHasMustTail() { HasMustTail = true; }
 
 
 
  void setHasDroppedStmt() {
 
    HasDroppedStmt = true;
 
  }
 
 
 
  void setHasOMPDeclareReductionCombiner() {
 
    HasOMPDeclareReductionCombiner = true;
 
  }
 
 
 
  void setHasFallthroughStmt() {
 
    HasFallthroughStmt = true;
 
  }
 
 
 
  void setUsesFPIntrin() {
 
    UsesFPIntrin = true;
 
  }
 
 
 
  void setHasCXXTry(SourceLocation TryLoc) {
 
    setHasBranchProtectedScope();
 
    FirstCXXOrObjCTryLoc = TryLoc;
 
    FirstTryType = TryLocIsCXX;
 
  }
 
 
 
  void setHasObjCTry(SourceLocation TryLoc) {
 
    setHasBranchProtectedScope();
 
    FirstCXXOrObjCTryLoc = TryLoc;
 
    FirstTryType = TryLocIsObjC;
 
  }
 
 
 
  void setHasSEHTry(SourceLocation TryLoc) {
 
    setHasBranchProtectedScope();
 
    FirstSEHTryLoc = TryLoc;
 
  }
 
 
 
  bool NeedsScopeChecking() const {
 
    return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
 
                               (HasBranchProtectedScope && HasBranchIntoScope));
 
  }
 
 
 
  // Add a block introduced in this function.
 
  void addBlock(const BlockDecl *BD) {
 
    Blocks.insert(BD);
 
  }
 
 
 
  // Add a __block variable introduced in this function.
 
  void addByrefBlockVar(VarDecl *VD) {
 
    ByrefBlockVars.push_back(VD);
 
  }
 
 
 
  bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
 
 
 
  void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
 
    assert(FirstCoroutineStmtLoc.isInvalid() &&
 
                   "first coroutine statement location already set");
 
    FirstCoroutineStmtLoc = Loc;
 
    FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
 
            .Case("co_return", 0)
 
            .Case("co_await", 1)
 
            .Case("co_yield", 2);
 
  }
 
 
 
  StringRef getFirstCoroutineStmtKeyword() const {
 
    assert(FirstCoroutineStmtLoc.isValid()
 
                   && "no coroutine statement available");
 
    switch (FirstCoroutineStmtKind) {
 
    case 0: return "co_return";
 
    case 1: return "co_await";
 
    case 2: return "co_yield";
 
    default:
 
      llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
 
    };
 
  }
 
 
 
  void setNeedsCoroutineSuspends(bool value = true) {
 
    assert((!value || CoroutineSuspends.first == nullptr) &&
 
            "we already have valid suspend points");
 
    NeedsCoroutineSuspends = value;
 
  }
 
 
 
  bool hasInvalidCoroutineSuspends() const {
 
    return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
 
  }
 
 
 
  void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
 
    assert(Initial && Final && "suspend points cannot be null");
 
    assert(CoroutineSuspends.first == nullptr && "suspend points already set");
 
    NeedsCoroutineSuspends = false;
 
    CoroutineSuspends.first = Initial;
 
    CoroutineSuspends.second = Final;
 
  }
 
 
 
  /// Clear out the information in this function scope, making it
 
  /// suitable for reuse.
 
  void Clear();
 
 
 
  bool isPlainFunction() const { return Kind == SK_Function; }
 
};
 
 
 
class Capture {
 
  // There are three categories of capture: capturing 'this', capturing
 
  // local variables, and C++1y initialized captures (which can have an
 
  // arbitrary initializer, and don't really capture in the traditional
 
  // sense at all).
 
  //
 
  // There are three ways to capture a local variable:
 
  //  - capture by copy in the C++11 sense,
 
  //  - capture by reference in the C++11 sense, and
 
  //  - __block capture.
 
  // Lambdas explicitly specify capture by copy or capture by reference.
 
  // For blocks, __block capture applies to variables with that annotation,
 
  // variables of reference type are captured by reference, and other
 
  // variables are captured by copy.
 
  enum CaptureKind {
 
    Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
 
  };
 
 
 
  union {
 
    /// If Kind == Cap_VLA, the captured type.
 
    const VariableArrayType *CapturedVLA;
 
 
 
    /// Otherwise, the captured variable (if any).
 
    ValueDecl *CapturedVar;
 
  };
 
 
 
  /// The source location at which the first capture occurred.
 
  SourceLocation Loc;
 
 
 
  /// The location of the ellipsis that expands a parameter pack.
 
  SourceLocation EllipsisLoc;
 
 
 
  /// The type as it was captured, which is the type of the non-static data
 
  /// member that would hold the capture.
 
  QualType CaptureType;
 
 
 
  /// The CaptureKind of this capture.
 
  unsigned Kind : 2;
 
 
 
  /// Whether this is a nested capture (a capture of an enclosing capturing
 
  /// scope's capture).
 
  unsigned Nested : 1;
 
 
 
  /// Whether this is a capture of '*this'.
 
  unsigned CapturesThis : 1;
 
 
 
  /// Whether an explicit capture has been odr-used in the body of the
 
  /// lambda.
 
  unsigned ODRUsed : 1;
 
 
 
  /// Whether an explicit capture has been non-odr-used in the body of
 
  /// the lambda.
 
  unsigned NonODRUsed : 1;
 
 
 
  /// Whether the capture is invalid (a capture was required but the entity is
 
  /// non-capturable).
 
  unsigned Invalid : 1;
 
 
 
public:
 
  Capture(ValueDecl *Var, bool Block, bool ByRef, bool IsNested,
 
          SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
 
          bool Invalid)
 
      : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
 
        CaptureType(CaptureType), Kind(Block   ? Cap_Block
 
                                       : ByRef ? Cap_ByRef
 
                                               : Cap_ByCopy),
 
        Nested(IsNested), CapturesThis(false), ODRUsed(false),
 
        NonODRUsed(false), Invalid(Invalid) {}
 
 
 
  enum IsThisCapture { ThisCapture };
 
  Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
 
          QualType CaptureType, const bool ByCopy, bool Invalid)
 
      : Loc(Loc), CaptureType(CaptureType),
 
        Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
 
        CapturesThis(true), ODRUsed(false), NonODRUsed(false),
 
        Invalid(Invalid) {}
 
 
 
  enum IsVLACapture { VLACapture };
 
  Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
 
          SourceLocation Loc, QualType CaptureType)
 
      : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
 
        Nested(IsNested), CapturesThis(false), ODRUsed(false),
 
        NonODRUsed(false), Invalid(false) {}
 
 
 
  bool isThisCapture() const { return CapturesThis; }
 
  bool isVariableCapture() const {
 
    return !isThisCapture() && !isVLATypeCapture();
 
  }
 
 
 
  bool isCopyCapture() const { return Kind == Cap_ByCopy; }
 
  bool isReferenceCapture() const { return Kind == Cap_ByRef; }
 
  bool isBlockCapture() const { return Kind == Cap_Block; }
 
  bool isVLATypeCapture() const { return Kind == Cap_VLA; }
 
 
 
  bool isNested() const { return Nested; }
 
 
 
  bool isInvalid() const { return Invalid; }
 
 
 
  /// Determine whether this capture is an init-capture.
 
  bool isInitCapture() const;
 
 
 
  bool isODRUsed() const { return ODRUsed; }
 
  bool isNonODRUsed() const { return NonODRUsed; }
 
  void markUsed(bool IsODRUse) {
 
    if (IsODRUse)
 
      ODRUsed = true;
 
    else
 
      NonODRUsed = true;
 
  }
 
 
 
  ValueDecl *getVariable() const {
 
    assert(isVariableCapture());
 
    return CapturedVar;
 
  }
 
 
 
  const VariableArrayType *getCapturedVLAType() const {
 
    assert(isVLATypeCapture());
 
    return CapturedVLA;
 
  }
 
 
 
  /// Retrieve the location at which this variable was captured.
 
  SourceLocation getLocation() const { return Loc; }
 
 
 
  /// Retrieve the source location of the ellipsis, whose presence
 
  /// indicates that the capture is a pack expansion.
 
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
 
 
 
  /// Retrieve the capture type for this capture, which is effectively
 
  /// the type of the non-static data member in the lambda/block structure
 
  /// that would store this capture.
 
  QualType getCaptureType() const { return CaptureType; }
 
};
 
 
 
class CapturingScopeInfo : public FunctionScopeInfo {
 
protected:
 
  CapturingScopeInfo(const CapturingScopeInfo&) = default;
 
 
 
public:
 
  enum ImplicitCaptureStyle {
 
    ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
 
    ImpCap_CapturedRegion
 
  };
 
 
 
  ImplicitCaptureStyle ImpCaptureStyle;
 
 
 
  CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
 
      : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
 
 
 
  /// CaptureMap - A map of captured variables to (index+1) into Captures.
 
  llvm::DenseMap<ValueDecl *, unsigned> CaptureMap;
 
 
 
  /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
 
  /// zero if 'this' is not captured.
 
  unsigned CXXThisCaptureIndex = 0;
 
 
 
  /// Captures - The captures.
 
  SmallVector<Capture, 4> Captures;
 
 
 
  /// - Whether the target type of return statements in this context
 
  /// is deduced (e.g. a lambda or block with omitted return type).
 
  bool HasImplicitReturnType = false;
 
 
 
  /// ReturnType - The target type of return statements in this context,
 
  /// or null if unknown.
 
  QualType ReturnType;
 
 
 
  void addCapture(ValueDecl *Var, bool isBlock, bool isByref, bool isNested,
 
                  SourceLocation Loc, SourceLocation EllipsisLoc,
 
                  QualType CaptureType, bool Invalid) {
 
    Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
 
                               EllipsisLoc, CaptureType, Invalid));
 
    CaptureMap[Var] = Captures.size();
 
  }
 
 
 
  void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
 
                         QualType CaptureType) {
 
    Captures.push_back(Capture(Capture::VLACapture, VLAType,
 
                               /*FIXME: IsNested*/ false, Loc, CaptureType));
 
  }
 
 
 
  void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
 
                      bool ByCopy);
 
 
 
  /// Determine whether the C++ 'this' is captured.
 
  bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
 
 
 
  /// Retrieve the capture of C++ 'this', if it has been captured.
 
  Capture &getCXXThisCapture() {
 
    assert(isCXXThisCaptured() && "this has not been captured");
 
    return Captures[CXXThisCaptureIndex - 1];
 
  }
 
 
 
  /// Determine whether the given variable has been captured.
 
  bool isCaptured(ValueDecl *Var) const { return CaptureMap.count(Var); }
 
 
 
  /// Determine whether the given variable-array type has been captured.
 
  bool isVLATypeCaptured(const VariableArrayType *VAT) const;
 
 
 
  /// Retrieve the capture of the given variable, if it has been
 
  /// captured already.
 
  Capture &getCapture(ValueDecl *Var) {
 
    assert(isCaptured(Var) && "Variable has not been captured");
 
    return Captures[CaptureMap[Var] - 1];
 
  }
 
 
 
  const Capture &getCapture(ValueDecl *Var) const {
 
    llvm::DenseMap<ValueDecl *, unsigned>::const_iterator Known =
 
        CaptureMap.find(Var);
 
    assert(Known != CaptureMap.end() && "Variable has not been captured");
 
    return Captures[Known->second - 1];
 
  }
 
 
 
  static bool classof(const FunctionScopeInfo *FSI) {
 
    return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
 
                                 || FSI->Kind == SK_CapturedRegion;
 
  }
 
};
 
 
 
/// Retains information about a block that is currently being parsed.
 
class BlockScopeInfo final : public CapturingScopeInfo {
 
public:
 
  BlockDecl *TheDecl;
 
 
 
  /// TheScope - This is the scope for the block itself, which contains
 
  /// arguments etc.
 
  Scope *TheScope;
 
 
 
  /// BlockType - The function type of the block, if one was given.
 
  /// Its return type may be BuiltinType::Dependent.
 
  QualType FunctionType;
 
 
 
  BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
 
      : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
 
        TheScope(BlockScope) {
 
    Kind = SK_Block;
 
  }
 
 
 
  ~BlockScopeInfo() override;
 
 
 
  static bool classof(const FunctionScopeInfo *FSI) {
 
    return FSI->Kind == SK_Block;
 
  }
 
};
 
 
 
/// Retains information about a captured region.
 
class CapturedRegionScopeInfo final : public CapturingScopeInfo {
 
public:
 
  /// The CapturedDecl for this statement.
 
  CapturedDecl *TheCapturedDecl;
 
 
 
  /// The captured record type.
 
  RecordDecl *TheRecordDecl;
 
 
 
  /// This is the enclosing scope of the captured region.
 
  Scope *TheScope;
 
 
 
  /// The implicit parameter for the captured variables.
 
  ImplicitParamDecl *ContextParam;
 
 
 
  /// The kind of captured region.
 
  unsigned short CapRegionKind;
 
 
 
  unsigned short OpenMPLevel;
 
  unsigned short OpenMPCaptureLevel;
 
 
 
  CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
 
                          RecordDecl *RD, ImplicitParamDecl *Context,
 
                          CapturedRegionKind K, unsigned OpenMPLevel,
 
                          unsigned OpenMPCaptureLevel)
 
      : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
 
        TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
 
        ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
 
        OpenMPCaptureLevel(OpenMPCaptureLevel) {
 
    Kind = SK_CapturedRegion;
 
  }
 
 
 
  ~CapturedRegionScopeInfo() override;
 
 
 
  /// A descriptive name for the kind of captured region this is.
 
  StringRef getRegionName() const {
 
    switch (CapRegionKind) {
 
    case CR_Default:
 
      return "default captured statement";
 
    case CR_ObjCAtFinally:
 
      return "Objective-C @finally statement";
 
    case CR_OpenMP:
 
      return "OpenMP region";
 
    }
 
    llvm_unreachable("Invalid captured region kind!");
 
  }
 
 
 
  static bool classof(const FunctionScopeInfo *FSI) {
 
    return FSI->Kind == SK_CapturedRegion;
 
  }
 
};
 
 
 
class LambdaScopeInfo final :
 
    public CapturingScopeInfo, public InventedTemplateParameterInfo {
 
public:
 
  /// The class that describes the lambda.
 
  CXXRecordDecl *Lambda = nullptr;
 
 
 
  /// The lambda's compiler-generated \c operator().
 
  CXXMethodDecl *CallOperator = nullptr;
 
 
 
  /// Source range covering the lambda introducer [...].
 
  SourceRange IntroducerRange;
 
 
 
  /// Source location of the '&' or '=' specifying the default capture
 
  /// type, if any.
 
  SourceLocation CaptureDefaultLoc;
 
 
 
  /// The number of captures in the \c Captures list that are
 
  /// explicit captures.
 
  unsigned NumExplicitCaptures = 0;
 
 
 
  /// Whether this is a mutable lambda.
 
  bool Mutable = false;
 
 
 
  /// Whether the (empty) parameter list is explicit.
 
  bool ExplicitParams = false;
 
 
 
  /// Whether any of the capture expressions requires cleanups.
 
  CleanupInfo Cleanup;
 
 
 
  /// Whether the lambda contains an unexpanded parameter pack.
 
  bool ContainsUnexpandedParameterPack = false;
 
 
 
  /// Packs introduced by this lambda, if any.
 
  SmallVector<NamedDecl*, 4> LocalPacks;
 
 
 
  /// Source range covering the explicit template parameter list (if it exists).
 
  SourceRange ExplicitTemplateParamsRange;
 
 
 
  /// The requires-clause immediately following the explicit template parameter
 
  /// list, if any. (Note that there may be another requires-clause included as
 
  /// part of the lambda-declarator.)
 
  ExprResult RequiresClause;
 
 
 
  /// If this is a generic lambda, and the template parameter
 
  /// list has been created (from the TemplateParams) then store
 
  /// a reference to it (cache it to avoid reconstructing it).
 
  TemplateParameterList *GLTemplateParameterList = nullptr;
 
 
 
  /// Contains all variable-referring-expressions (i.e. DeclRefExprs
 
  ///  or MemberExprs) that refer to local variables in a generic lambda
 
  ///  or a lambda in a potentially-evaluated-if-used context.
 
  ///
 
  ///  Potentially capturable variables of a nested lambda that might need
 
  ///   to be captured by the lambda are housed here.
 
  ///  This is specifically useful for generic lambdas or
 
  ///  lambdas within a potentially evaluated-if-used context.
 
  ///  If an enclosing variable is named in an expression of a lambda nested
 
  ///  within a generic lambda, we don't always know whether the variable
 
  ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
 
  ///  until its instantiation. But we still need to capture it in the
 
  ///  enclosing lambda if all intervening lambdas can capture the variable.
 
  llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
 
 
 
  /// Contains all variable-referring-expressions that refer
 
  ///  to local variables that are usable as constant expressions and
 
  ///  do not involve an odr-use (they may still need to be captured
 
  ///  if the enclosing full-expression is instantiation dependent).
 
  llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
 
 
 
  /// A map of explicit capture indices to their introducer source ranges.
 
  llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
 
 
 
  /// Contains all of the variables defined in this lambda that shadow variables
 
  /// that were defined in parent contexts. Used to avoid warnings when the
 
  /// shadowed variables are uncaptured by this lambda.
 
  struct ShadowedOuterDecl {
 
    const VarDecl *VD;
 
    const VarDecl *ShadowedDecl;
 
  };
 
  llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
 
 
 
  SourceLocation PotentialThisCaptureLocation;
 
 
 
  LambdaScopeInfo(DiagnosticsEngine &Diag)
 
      : CapturingScopeInfo(Diag, ImpCap_None) {
 
    Kind = SK_Lambda;
 
  }
 
 
 
  /// Note when all explicit captures have been added.
 
  void finishedExplicitCaptures() {
 
    NumExplicitCaptures = Captures.size();
 
  }
 
 
 
  static bool classof(const FunctionScopeInfo *FSI) {
 
    return FSI->Kind == SK_Lambda;
 
  }
 
 
 
  /// Is this scope known to be for a generic lambda? (This will be false until
 
  /// we parse a template parameter list or the first 'auto'-typed parameter).
 
  bool isGenericLambda() const {
 
    return !TemplateParams.empty() || GLTemplateParameterList;
 
  }
 
 
 
  /// Add a variable that might potentially be captured by the
 
  /// lambda and therefore the enclosing lambdas.
 
  ///
 
  /// This is also used by enclosing lambda's to speculatively capture
 
  /// variables that nested lambda's - depending on their enclosing
 
  /// specialization - might need to capture.
 
  /// Consider:
 
  /// void f(int, int); <-- don't capture
 
  /// void f(const int&, double); <-- capture
 
  /// void foo() {
 
  ///   const int x = 10;
 
  ///   auto L = [=](auto a) { // capture 'x'
 
  ///      return [=](auto b) {
 
  ///        f(x, a);  // we may or may not need to capture 'x'
 
  ///      };
 
  ///   };
 
  /// }
 
  void addPotentialCapture(Expr *VarExpr) {
 
    assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
 
           isa<FunctionParmPackExpr>(VarExpr));
 
    PotentiallyCapturingExprs.push_back(VarExpr);
 
  }
 
 
 
  void addPotentialThisCapture(SourceLocation Loc) {
 
    PotentialThisCaptureLocation = Loc;
 
  }
 
 
 
  bool hasPotentialThisCapture() const {
 
    return PotentialThisCaptureLocation.isValid();
 
  }
 
 
 
  /// Mark a variable's reference in a lambda as non-odr using.
 
  ///
 
  /// For generic lambdas, if a variable is named in a potentially evaluated
 
  /// expression, where the enclosing full expression is dependent then we
 
  /// must capture the variable (given a default capture).
 
  /// This is accomplished by recording all references to variables
 
  /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
 
  /// PotentialCaptures. All such variables have to be captured by that lambda,
 
  /// except for as described below.
 
  /// If that variable is usable as a constant expression and is named in a
 
  /// manner that does not involve its odr-use (e.g. undergoes
 
  /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
 
  /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
 
  /// if we can determine that the full expression is not instantiation-
 
  /// dependent, then we can entirely avoid its capture.
 
  ///
 
  ///   const int n = 0;
 
  ///   [&] (auto x) {
 
  ///     (void)+n + x;
 
  ///   };
 
  /// Interestingly, this strategy would involve a capture of n, even though
 
  /// it's obviously not odr-used here, because the full-expression is
 
  /// instantiation-dependent.  It could be useful to avoid capturing such
 
  /// variables, even when they are referred to in an instantiation-dependent
 
  /// expression, if we can unambiguously determine that they shall never be
 
  /// odr-used.  This would involve removal of the variable-referring-expression
 
  /// from the array of PotentialCaptures during the lvalue-to-rvalue
 
  /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
 
  /// capture such variables.
 
  /// Before anyone is tempted to implement a strategy for not-capturing 'n',
 
  /// consider the insightful warning in:
 
  ///    /cfe-commits/Week-of-Mon-20131104/092596.html
 
  /// "The problem is that the set of captures for a lambda is part of the ABI
 
  ///  (since lambda layout can be made visible through inline functions and the
 
  ///  like), and there are no guarantees as to which cases we'll manage to build
 
  ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
 
  ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
 
  ///  building such a node. So we need a rule that anyone can implement and get
 
  ///  exactly the same result".
 
  void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
 
    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
 
           isa<MemberExpr>(CapturingVarExpr) ||
 
           isa<FunctionParmPackExpr>(CapturingVarExpr));
 
    NonODRUsedCapturingExprs.insert(CapturingVarExpr);
 
  }
 
  bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
 
    assert(isa<DeclRefExpr>(CapturingVarExpr) ||
 
           isa<MemberExpr>(CapturingVarExpr) ||
 
           isa<FunctionParmPackExpr>(CapturingVarExpr));
 
    return NonODRUsedCapturingExprs.count(CapturingVarExpr);
 
  }
 
  void removePotentialCapture(Expr *E) {
 
    llvm::erase_value(PotentiallyCapturingExprs, E);
 
  }
 
  void clearPotentialCaptures() {
 
    PotentiallyCapturingExprs.clear();
 
    PotentialThisCaptureLocation = SourceLocation();
 
  }
 
  unsigned getNumPotentialVariableCaptures() const {
 
    return PotentiallyCapturingExprs.size();
 
  }
 
 
 
  bool hasPotentialCaptures() const {
 
    return getNumPotentialVariableCaptures() ||
 
                                  PotentialThisCaptureLocation.isValid();
 
  }
 
 
 
  void visitPotentialCaptures(
 
      llvm::function_ref<void(ValueDecl *, Expr *)> Callback) const;
 
};
 
 
 
FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
 
    : Base(nullptr, false) {}
 
 
 
FunctionScopeInfo::WeakObjectProfileTy
 
FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
 
  FunctionScopeInfo::WeakObjectProfileTy Result;
 
  Result.Base.setInt(true);
 
  return Result;
 
}
 
 
 
template <typename ExprT>
 
void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
 
  assert(E);
 
  WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
 
  Uses.push_back(WeakUseTy(E, IsRead));
 
}
 
 
 
inline void CapturingScopeInfo::addThisCapture(bool isNested,
 
                                               SourceLocation Loc,
 
                                               QualType CaptureType,
 
                                               bool ByCopy) {
 
  Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
 
                             ByCopy, /*Invalid*/ false));
 
  CXXThisCaptureIndex = Captures.size();
 
}
 
 
 
} // namespace sema
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_SEMA_SCOPEINFO_H