//===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the data structures and types used in C++
 
// overload resolution.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_SEMA_OVERLOAD_H
 
#define LLVM_CLANG_SEMA_OVERLOAD_H
 
 
 
#include "clang/AST/Decl.h"
 
#include "clang/AST/DeclAccessPair.h"
 
#include "clang/AST/DeclBase.h"
 
#include "clang/AST/DeclCXX.h"
 
#include "clang/AST/DeclTemplate.h"
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Basic/SourceLocation.h"
 
#include "clang/Sema/SemaFixItUtils.h"
 
#include "clang/Sema/TemplateDeduction.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Support/AlignOf.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <utility>
 
 
 
namespace clang {
 
 
 
class APValue;
 
class ASTContext;
 
class Sema;
 
 
 
  /// OverloadingResult - Capture the result of performing overload
 
  /// resolution.
 
  enum OverloadingResult {
 
    /// Overload resolution succeeded.
 
    OR_Success,
 
 
 
    /// No viable function found.
 
    OR_No_Viable_Function,
 
 
 
    /// Ambiguous candidates found.
 
    OR_Ambiguous,
 
 
 
    /// Succeeded, but refers to a deleted function.
 
    OR_Deleted
 
  };
 
 
 
  enum OverloadCandidateDisplayKind {
 
    /// Requests that all candidates be shown.  Viable candidates will
 
    /// be printed first.
 
    OCD_AllCandidates,
 
 
 
    /// Requests that only viable candidates be shown.
 
    OCD_ViableCandidates,
 
 
 
    /// Requests that only tied-for-best candidates be shown.
 
    OCD_AmbiguousCandidates
 
  };
 
 
 
  /// The parameter ordering that will be used for the candidate. This is
 
  /// used to represent C++20 binary operator rewrites that reverse the order
 
  /// of the arguments. If the parameter ordering is Reversed, the Args list is
 
  /// reversed (but obviously the ParamDecls for the function are not).
 
  ///
 
  /// After forming an OverloadCandidate with reversed parameters, the list
 
  /// of conversions will (as always) be indexed by argument, so will be
 
  /// in reverse parameter order.
 
  enum class OverloadCandidateParamOrder : char { Normal, Reversed };
 
 
 
  /// The kinds of rewrite we perform on overload candidates. Note that the
 
  /// values here are chosen to serve as both bitflags and as a rank (lower
 
  /// values are preferred by overload resolution).
 
  enum OverloadCandidateRewriteKind : unsigned {
 
    /// Candidate is not a rewritten candidate.
 
    CRK_None = 0x0,
 
 
 
    /// Candidate is a rewritten candidate with a different operator name.
 
    CRK_DifferentOperator = 0x1,
 
 
 
    /// Candidate is a rewritten candidate with a reversed order of parameters.
 
    CRK_Reversed = 0x2,
 
  };
 
 
 
  /// ImplicitConversionKind - The kind of implicit conversion used to
 
  /// convert an argument to a parameter's type. The enumerator values
 
  /// match with the table titled 'Conversions' in [over.ics.scs] and are listed
 
  /// such that better conversion kinds have smaller values.
 
  enum ImplicitConversionKind {
 
    /// Identity conversion (no conversion)
 
    ICK_Identity = 0,
 
 
 
    /// Lvalue-to-rvalue conversion (C++ [conv.lval])
 
    ICK_Lvalue_To_Rvalue,
 
 
 
    /// Array-to-pointer conversion (C++ [conv.array])
 
    ICK_Array_To_Pointer,
 
 
 
    /// Function-to-pointer (C++ [conv.array])
 
    ICK_Function_To_Pointer,
 
 
 
    /// Function pointer conversion (C++17 [conv.fctptr])
 
    ICK_Function_Conversion,
 
 
 
    /// Qualification conversions (C++ [conv.qual])
 
    ICK_Qualification,
 
 
 
    /// Integral promotions (C++ [conv.prom])
 
    ICK_Integral_Promotion,
 
 
 
    /// Floating point promotions (C++ [conv.fpprom])
 
    ICK_Floating_Promotion,
 
 
 
    /// Complex promotions (Clang extension)
 
    ICK_Complex_Promotion,
 
 
 
    /// Integral conversions (C++ [conv.integral])
 
    ICK_Integral_Conversion,
 
 
 
    /// Floating point conversions (C++ [conv.double]
 
    ICK_Floating_Conversion,
 
 
 
    /// Complex conversions (C99 6.3.1.6)
 
    ICK_Complex_Conversion,
 
 
 
    /// Floating-integral conversions (C++ [conv.fpint])
 
    ICK_Floating_Integral,
 
 
 
    /// Pointer conversions (C++ [conv.ptr])
 
    ICK_Pointer_Conversion,
 
 
 
    /// Pointer-to-member conversions (C++ [conv.mem])
 
    ICK_Pointer_Member,
 
 
 
    /// Boolean conversions (C++ [conv.bool])
 
    ICK_Boolean_Conversion,
 
 
 
    /// Conversions between compatible types in C99
 
    ICK_Compatible_Conversion,
 
 
 
    /// Derived-to-base (C++ [over.best.ics])
 
    ICK_Derived_To_Base,
 
 
 
    /// Vector conversions
 
    ICK_Vector_Conversion,
 
 
 
    /// Arm SVE Vector conversions
 
    ICK_SVE_Vector_Conversion,
 
 
 
    /// A vector splat from an arithmetic type
 
    ICK_Vector_Splat,
 
 
 
    /// Complex-real conversions (C99 6.3.1.7)
 
    ICK_Complex_Real,
 
 
 
    /// Block Pointer conversions
 
    ICK_Block_Pointer_Conversion,
 
 
 
    /// Transparent Union Conversions
 
    ICK_TransparentUnionConversion,
 
 
 
    /// Objective-C ARC writeback conversion
 
    ICK_Writeback_Conversion,
 
 
 
    /// Zero constant to event (OpenCL1.2 6.12.10)
 
    ICK_Zero_Event_Conversion,
 
 
 
    /// Zero constant to queue
 
    ICK_Zero_Queue_Conversion,
 
 
 
    /// Conversions allowed in C, but not C++
 
    ICK_C_Only_Conversion,
 
 
 
    /// C-only conversion between pointers with incompatible types
 
    ICK_Incompatible_Pointer_Conversion,
 
 
 
    /// The number of conversion kinds
 
    ICK_Num_Conversion_Kinds,
 
  };
 
 
 
  /// ImplicitConversionRank - The rank of an implicit conversion
 
  /// kind. The enumerator values match with Table 9 of (C++
 
  /// 13.3.3.1.1) and are listed such that better conversion ranks
 
  /// have smaller values.
 
  enum ImplicitConversionRank {
 
    /// Exact Match
 
    ICR_Exact_Match = 0,
 
 
 
    /// Promotion
 
    ICR_Promotion,
 
 
 
    /// Conversion
 
    ICR_Conversion,
 
 
 
    /// OpenCL Scalar Widening
 
    ICR_OCL_Scalar_Widening,
 
 
 
    /// Complex <-> Real conversion
 
    ICR_Complex_Real_Conversion,
 
 
 
    /// ObjC ARC writeback conversion
 
    ICR_Writeback_Conversion,
 
 
 
    /// Conversion only allowed in the C standard (e.g. void* to char*).
 
    ICR_C_Conversion,
 
 
 
    /// Conversion not allowed by the C standard, but that we accept as an
 
    /// extension anyway.
 
    ICR_C_Conversion_Extension
 
  };
 
 
 
  ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
 
 
 
  /// NarrowingKind - The kind of narrowing conversion being performed by a
 
  /// standard conversion sequence according to C++11 [dcl.init.list]p7.
 
  enum NarrowingKind {
 
    /// Not a narrowing conversion.
 
    NK_Not_Narrowing,
 
 
 
    /// A narrowing conversion by virtue of the source and destination types.
 
    NK_Type_Narrowing,
 
 
 
    /// A narrowing conversion, because a constant expression got narrowed.
 
    NK_Constant_Narrowing,
 
 
 
    /// A narrowing conversion, because a non-constant-expression variable might
 
    /// have got narrowed.
 
    NK_Variable_Narrowing,
 
 
 
    /// Cannot tell whether this is a narrowing conversion because the
 
    /// expression is value-dependent.
 
    NK_Dependent_Narrowing,
 
  };
 
 
 
  /// StandardConversionSequence - represents a standard conversion
 
  /// sequence (C++ 13.3.3.1.1). A standard conversion sequence
 
  /// contains between zero and three conversions. If a particular
 
  /// conversion is not needed, it will be set to the identity conversion
 
  /// (ICK_Identity). Note that the three conversions are
 
  /// specified as separate members (rather than in an array) so that
 
  /// we can keep the size of a standard conversion sequence to a
 
  /// single word.
 
  class StandardConversionSequence {
 
  public:
 
    /// First -- The first conversion can be an lvalue-to-rvalue
 
    /// conversion, array-to-pointer conversion, or
 
    /// function-to-pointer conversion.
 
    ImplicitConversionKind First : 8;
 
 
 
    /// Second - The second conversion can be an integral promotion,
 
    /// floating point promotion, integral conversion, floating point
 
    /// conversion, floating-integral conversion, pointer conversion,
 
    /// pointer-to-member conversion, or boolean conversion.
 
    ImplicitConversionKind Second : 8;
 
 
 
    /// Third - The third conversion can be a qualification conversion
 
    /// or a function conversion.
 
    ImplicitConversionKind Third : 8;
 
 
 
    /// Whether this is the deprecated conversion of a
 
    /// string literal to a pointer to non-const character data
 
    /// (C++ 4.2p2).
 
    unsigned DeprecatedStringLiteralToCharPtr : 1;
 
 
 
    /// Whether the qualification conversion involves a change in the
 
    /// Objective-C lifetime (for automatic reference counting).
 
    unsigned QualificationIncludesObjCLifetime : 1;
 
 
 
    /// IncompatibleObjC - Whether this is an Objective-C conversion
 
    /// that we should warn about (if we actually use it).
 
    unsigned IncompatibleObjC : 1;
 
 
 
    /// ReferenceBinding - True when this is a reference binding
 
    /// (C++ [over.ics.ref]).
 
    unsigned ReferenceBinding : 1;
 
 
 
    /// DirectBinding - True when this is a reference binding that is a
 
    /// direct binding (C++ [dcl.init.ref]).
 
    unsigned DirectBinding : 1;
 
 
 
    /// Whether this is an lvalue reference binding (otherwise, it's
 
    /// an rvalue reference binding).
 
    unsigned IsLvalueReference : 1;
 
 
 
    /// Whether we're binding to a function lvalue.
 
    unsigned BindsToFunctionLvalue : 1;
 
 
 
    /// Whether we're binding to an rvalue.
 
    unsigned BindsToRvalue : 1;
 
 
 
    /// Whether this binds an implicit object argument to a
 
    /// non-static member function without a ref-qualifier.
 
    unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1;
 
 
 
    /// Whether this binds a reference to an object with a different
 
    /// Objective-C lifetime qualifier.
 
    unsigned ObjCLifetimeConversionBinding : 1;
 
 
 
    /// FromType - The type that this conversion is converting
 
    /// from. This is an opaque pointer that can be translated into a
 
    /// QualType.
 
    void *FromTypePtr;
 
 
 
    /// ToType - The types that this conversion is converting to in
 
    /// each step. This is an opaque pointer that can be translated
 
    /// into a QualType.
 
    void *ToTypePtrs[3];
 
 
 
    /// CopyConstructor - The copy constructor that is used to perform
 
    /// this conversion, when the conversion is actually just the
 
    /// initialization of an object via copy constructor. Such
 
    /// conversions are either identity conversions or derived-to-base
 
    /// conversions.
 
    CXXConstructorDecl *CopyConstructor;
 
    DeclAccessPair FoundCopyConstructor;
 
 
 
    void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
 
 
 
    void setToType(unsigned Idx, QualType T) {
 
      assert(Idx < 3 && "To type index is out of range");
 
      ToTypePtrs[Idx] = T.getAsOpaquePtr();
 
    }
 
 
 
    void setAllToTypes(QualType T) {
 
      ToTypePtrs[0] = T.getAsOpaquePtr();
 
      ToTypePtrs[1] = ToTypePtrs[0];
 
      ToTypePtrs[2] = ToTypePtrs[0];
 
    }
 
 
 
    QualType getFromType() const {
 
      return QualType::getFromOpaquePtr(FromTypePtr);
 
    }
 
 
 
    QualType getToType(unsigned Idx) const {
 
      assert(Idx < 3 && "To type index is out of range");
 
      return QualType::getFromOpaquePtr(ToTypePtrs[Idx]);
 
    }
 
 
 
    void setAsIdentityConversion();
 
 
 
    bool isIdentityConversion() const {
 
      return Second == ICK_Identity && Third == ICK_Identity;
 
    }
 
 
 
    ImplicitConversionRank getRank() const;
 
    NarrowingKind
 
    getNarrowingKind(ASTContext &Context, const Expr *Converted,
 
                     APValue &ConstantValue, QualType &ConstantType,
 
                     bool IgnoreFloatToIntegralConversion = false) const;
 
    bool isPointerConversionToBool() const;
 
    bool isPointerConversionToVoidPointer(ASTContext& Context) const;
 
    void dump() const;
 
  };
 
 
 
  /// UserDefinedConversionSequence - Represents a user-defined
 
  /// conversion sequence (C++ 13.3.3.1.2).
 
  struct UserDefinedConversionSequence {
 
    /// Represents the standard conversion that occurs before
 
    /// the actual user-defined conversion.
 
    ///
 
    /// C++11 13.3.3.1.2p1:
 
    ///   If the user-defined conversion is specified by a constructor
 
    ///   (12.3.1), the initial standard conversion sequence converts
 
    ///   the source type to the type required by the argument of the
 
    ///   constructor. If the user-defined conversion is specified by
 
    ///   a conversion function (12.3.2), the initial standard
 
    ///   conversion sequence converts the source type to the implicit
 
    ///   object parameter of the conversion function.
 
    StandardConversionSequence Before;
 
 
 
    /// EllipsisConversion - When this is true, it means user-defined
 
    /// conversion sequence starts with a ... (ellipsis) conversion, instead of
 
    /// a standard conversion. In this case, 'Before' field must be ignored.
 
    // FIXME. I much rather put this as the first field. But there seems to be
 
    // a gcc code gen. bug which causes a crash in a test. Putting it here seems
 
    // to work around the crash.
 
    bool EllipsisConversion : 1;
 
 
 
    /// HadMultipleCandidates - When this is true, it means that the
 
    /// conversion function was resolved from an overloaded set having
 
    /// size greater than 1.
 
    bool HadMultipleCandidates : 1;
 
 
 
    /// After - Represents the standard conversion that occurs after
 
    /// the actual user-defined conversion.
 
    StandardConversionSequence After;
 
 
 
    /// ConversionFunction - The function that will perform the
 
    /// user-defined conversion. Null if the conversion is an
 
    /// aggregate initialization from an initializer list.
 
    FunctionDecl* ConversionFunction;
 
 
 
    /// The declaration that we found via name lookup, which might be
 
    /// the same as \c ConversionFunction or it might be a using declaration
 
    /// that refers to \c ConversionFunction.
 
    DeclAccessPair FoundConversionFunction;
 
 
 
    void dump() const;
 
  };
 
 
 
  /// Represents an ambiguous user-defined conversion sequence.
 
  struct AmbiguousConversionSequence {
 
    using ConversionSet =
 
        SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>;
 
 
 
    void *FromTypePtr;
 
    void *ToTypePtr;
 
    char Buffer[sizeof(ConversionSet)];
 
 
 
    QualType getFromType() const {
 
      return QualType::getFromOpaquePtr(FromTypePtr);
 
    }
 
 
 
    QualType getToType() const {
 
      return QualType::getFromOpaquePtr(ToTypePtr);
 
    }
 
 
 
    void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
 
    void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); }
 
 
 
    ConversionSet &conversions() {
 
      return *reinterpret_cast<ConversionSet*>(Buffer);
 
    }
 
 
 
    const ConversionSet &conversions() const {
 
      return *reinterpret_cast<const ConversionSet*>(Buffer);
 
    }
 
 
 
    void addConversion(NamedDecl *Found, FunctionDecl *D) {
 
      conversions().push_back(std::make_pair(Found, D));
 
    }
 
 
 
    using iterator = ConversionSet::iterator;
 
 
 
    iterator begin() { return conversions().begin(); }
 
    iterator end() { return conversions().end(); }
 
 
 
    using const_iterator = ConversionSet::const_iterator;
 
 
 
    const_iterator begin() const { return conversions().begin(); }
 
    const_iterator end() const { return conversions().end(); }
 
 
 
    void construct();
 
    void destruct();
 
    void copyFrom(const AmbiguousConversionSequence &);
 
  };
 
 
 
  /// BadConversionSequence - Records information about an invalid
 
  /// conversion sequence.
 
  struct BadConversionSequence {
 
    enum FailureKind {
 
      no_conversion,
 
      unrelated_class,
 
      bad_qualifiers,
 
      lvalue_ref_to_rvalue,
 
      rvalue_ref_to_lvalue,
 
      too_few_initializers,
 
      too_many_initializers,
 
    };
 
 
 
    // This can be null, e.g. for implicit object arguments.
 
    Expr *FromExpr;
 
 
 
    FailureKind Kind;
 
 
 
  private:
 
    // The type we're converting from (an opaque QualType).
 
    void *FromTy;
 
 
 
    // The type we're converting to (an opaque QualType).
 
    void *ToTy;
 
 
 
  public:
 
    void init(FailureKind K, Expr *From, QualType To) {
 
      init(K, From->getType(), To);
 
      FromExpr = From;
 
    }
 
 
 
    void init(FailureKind K, QualType From, QualType To) {
 
      Kind = K;
 
      FromExpr = nullptr;
 
      setFromType(From);
 
      setToType(To);
 
    }
 
 
 
    QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); }
 
    QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); }
 
 
 
    void setFromExpr(Expr *E) {
 
      FromExpr = E;
 
      setFromType(E->getType());
 
    }
 
 
 
    void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); }
 
    void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); }
 
  };
 
 
 
  /// ImplicitConversionSequence - Represents an implicit conversion
 
  /// sequence, which may be a standard conversion sequence
 
  /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
 
  /// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
 
  class ImplicitConversionSequence {
 
  public:
 
    /// Kind - The kind of implicit conversion sequence. BadConversion
 
    /// specifies that there is no conversion from the source type to
 
    /// the target type.  AmbiguousConversion represents the unique
 
    /// ambiguous conversion (C++0x [over.best.ics]p10).
 
    /// StaticObjectArgumentConversion represents the conversion rules for
 
    /// the synthesized first argument of calls to static member functions
 
    /// ([over.best.ics.general]p8).
 
    enum Kind {
 
      StandardConversion = 0,
 
      StaticObjectArgumentConversion,
 
      UserDefinedConversion,
 
      AmbiguousConversion,
 
      EllipsisConversion,
 
      BadConversion
 
    };
 
 
 
  private:
 
    enum {
 
      Uninitialized = BadConversion + 1
 
    };
 
 
 
    /// ConversionKind - The kind of implicit conversion sequence.
 
    unsigned ConversionKind : 31;
 
 
 
    // Whether the initializer list was of an incomplete array.
 
    unsigned InitializerListOfIncompleteArray : 1;
 
 
 
    /// When initializing an array or std::initializer_list from an
 
    /// initializer-list, this is the array or std::initializer_list type being
 
    /// initialized. The remainder of the conversion sequence, including ToType,
 
    /// describe the worst conversion of an initializer to an element of the
 
    /// array or std::initializer_list. (Note, 'worst' is not well defined.)
 
    QualType InitializerListContainerType;
 
 
 
    void setKind(Kind K) {
 
      destruct();
 
      ConversionKind = K;
 
    }
 
 
 
    void destruct() {
 
      if (ConversionKind == AmbiguousConversion) Ambiguous.destruct();
 
    }
 
 
 
  public:
 
    union {
 
      /// When ConversionKind == StandardConversion, provides the
 
      /// details of the standard conversion sequence.
 
      StandardConversionSequence Standard;
 
 
 
      /// When ConversionKind == UserDefinedConversion, provides the
 
      /// details of the user-defined conversion sequence.
 
      UserDefinedConversionSequence UserDefined;
 
 
 
      /// When ConversionKind == AmbiguousConversion, provides the
 
      /// details of the ambiguous conversion.
 
      AmbiguousConversionSequence Ambiguous;
 
 
 
      /// When ConversionKind == BadConversion, provides the details
 
      /// of the bad conversion.
 
      BadConversionSequence Bad;
 
    };
 
 
 
    ImplicitConversionSequence()
 
        : ConversionKind(Uninitialized),
 
          InitializerListOfIncompleteArray(false) {
 
      Standard.setAsIdentityConversion();
 
    }
 
 
 
    ImplicitConversionSequence(const ImplicitConversionSequence &Other)
 
        : ConversionKind(Other.ConversionKind),
 
          InitializerListOfIncompleteArray(
 
              Other.InitializerListOfIncompleteArray),
 
          InitializerListContainerType(Other.InitializerListContainerType) {
 
      switch (ConversionKind) {
 
      case Uninitialized: break;
 
      case StandardConversion: Standard = Other.Standard; break;
 
      case StaticObjectArgumentConversion:
 
        break;
 
      case UserDefinedConversion: UserDefined = Other.UserDefined; break;
 
      case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break;
 
      case EllipsisConversion: break;
 
      case BadConversion: Bad = Other.Bad; break;
 
      }
 
    }
 
 
 
    ImplicitConversionSequence &
 
    operator=(const ImplicitConversionSequence &Other) {
 
      destruct();
 
      new (this) ImplicitConversionSequence(Other);
 
      return *this;
 
    }
 
 
 
    ~ImplicitConversionSequence() {
 
      destruct();
 
    }
 
 
 
    Kind getKind() const {
 
      assert(isInitialized() && "querying uninitialized conversion");
 
      return Kind(ConversionKind);
 
    }
 
 
 
    /// Return a ranking of the implicit conversion sequence
 
    /// kind, where smaller ranks represent better conversion
 
    /// sequences.
 
    ///
 
    /// In particular, this routine gives user-defined conversion
 
    /// sequences and ambiguous conversion sequences the same rank,
 
    /// per C++ [over.best.ics]p10.
 
    unsigned getKindRank() const {
 
      switch (getKind()) {
 
      case StandardConversion:
 
      case StaticObjectArgumentConversion:
 
        return 0;
 
 
 
      case UserDefinedConversion:
 
      case AmbiguousConversion:
 
        return 1;
 
 
 
      case EllipsisConversion:
 
        return 2;
 
 
 
      case BadConversion:
 
        return 3;
 
      }
 
 
 
      llvm_unreachable("Invalid ImplicitConversionSequence::Kind!");
 
    }
 
 
 
    bool isBad() const { return getKind() == BadConversion; }
 
    bool isStandard() const { return getKind() == StandardConversion; }
 
    bool isStaticObjectArgument() const {
 
      return getKind() == StaticObjectArgumentConversion;
 
    }
 
    bool isEllipsis() const { return getKind() == EllipsisConversion; }
 
    bool isAmbiguous() const { return getKind() == AmbiguousConversion; }
 
    bool isUserDefined() const { return getKind() == UserDefinedConversion; }
 
    bool isFailure() const { return isBad() || isAmbiguous(); }
 
 
 
    /// Determines whether this conversion sequence has been
 
    /// initialized.  Most operations should never need to query
 
    /// uninitialized conversions and should assert as above.
 
    bool isInitialized() const { return ConversionKind != Uninitialized; }
 
 
 
    /// Sets this sequence as a bad conversion for an explicit argument.
 
    void setBad(BadConversionSequence::FailureKind Failure,
 
                Expr *FromExpr, QualType ToType) {
 
      setKind(BadConversion);
 
      Bad.init(Failure, FromExpr, ToType);
 
    }
 
 
 
    /// Sets this sequence as a bad conversion for an implicit argument.
 
    void setBad(BadConversionSequence::FailureKind Failure,
 
                QualType FromType, QualType ToType) {
 
      setKind(BadConversion);
 
      Bad.init(Failure, FromType, ToType);
 
    }
 
 
 
    void setStandard() { setKind(StandardConversion); }
 
    void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); }
 
    void setEllipsis() { setKind(EllipsisConversion); }
 
    void setUserDefined() { setKind(UserDefinedConversion); }
 
 
 
    void setAmbiguous() {
 
      if (ConversionKind == AmbiguousConversion) return;
 
      ConversionKind = AmbiguousConversion;
 
      Ambiguous.construct();
 
    }
 
 
 
    void setAsIdentityConversion(QualType T) {
 
      setStandard();
 
      Standard.setAsIdentityConversion();
 
      Standard.setFromType(T);
 
      Standard.setAllToTypes(T);
 
    }
 
 
 
    // True iff this is a conversion sequence from an initializer list to an
 
    // array or std::initializer.
 
    bool hasInitializerListContainerType() const {
 
      return !InitializerListContainerType.isNull();
 
    }
 
    void setInitializerListContainerType(QualType T, bool IA) {
 
      InitializerListContainerType = T;
 
      InitializerListOfIncompleteArray = IA;
 
    }
 
    bool isInitializerListOfIncompleteArray() const {
 
      return InitializerListOfIncompleteArray;
 
    }
 
    QualType getInitializerListContainerType() const {
 
      assert(hasInitializerListContainerType() &&
 
             "not initializer list container");
 
      return InitializerListContainerType;
 
    }
 
 
 
    /// Form an "implicit" conversion sequence from nullptr_t to bool, for a
 
    /// direct-initialization of a bool object from nullptr_t.
 
    static ImplicitConversionSequence getNullptrToBool(QualType SourceType,
 
                                                       QualType DestType,
 
                                                       bool NeedLValToRVal) {
 
      ImplicitConversionSequence ICS;
 
      ICS.setStandard();
 
      ICS.Standard.setAsIdentityConversion();
 
      ICS.Standard.setFromType(SourceType);
 
      if (NeedLValToRVal)
 
        ICS.Standard.First = ICK_Lvalue_To_Rvalue;
 
      ICS.Standard.setToType(0, SourceType);
 
      ICS.Standard.Second = ICK_Boolean_Conversion;
 
      ICS.Standard.setToType(1, DestType);
 
      ICS.Standard.setToType(2, DestType);
 
      return ICS;
 
    }
 
 
 
    // The result of a comparison between implicit conversion
 
    // sequences. Use Sema::CompareImplicitConversionSequences to
 
    // actually perform the comparison.
 
    enum CompareKind {
 
      Better = -1,
 
      Indistinguishable = 0,
 
      Worse = 1
 
    };
 
 
 
    void DiagnoseAmbiguousConversion(Sema &S,
 
                                     SourceLocation CaretLoc,
 
                                     const PartialDiagnostic &PDiag) const;
 
 
 
    void dump() const;
 
  };
 
 
 
  enum OverloadFailureKind {
 
    ovl_fail_too_many_arguments,
 
    ovl_fail_too_few_arguments,
 
    ovl_fail_bad_conversion,
 
    ovl_fail_bad_deduction,
 
 
 
    /// This conversion candidate was not considered because it
 
    /// duplicates the work of a trivial or derived-to-base
 
    /// conversion.
 
    ovl_fail_trivial_conversion,
 
 
 
    /// This conversion candidate was not considered because it is
 
    /// an illegal instantiation of a constructor temploid: it is
 
    /// callable with one argument, we only have one argument, and
 
    /// its first parameter type is exactly the type of the class.
 
    ///
 
    /// Defining such a constructor directly is illegal, and
 
    /// template-argument deduction is supposed to ignore such
 
    /// instantiations, but we can still get one with the right
 
    /// kind of implicit instantiation.
 
    ovl_fail_illegal_constructor,
 
 
 
    /// This conversion candidate is not viable because its result
 
    /// type is not implicitly convertible to the desired type.
 
    ovl_fail_bad_final_conversion,
 
 
 
    /// This conversion function template specialization candidate is not
 
    /// viable because the final conversion was not an exact match.
 
    ovl_fail_final_conversion_not_exact,
 
 
 
    /// (CUDA) This candidate was not viable because the callee
 
    /// was not accessible from the caller's target (i.e. host->device,
 
    /// global->host, device->host).
 
    ovl_fail_bad_target,
 
 
 
    /// This candidate function was not viable because an enable_if
 
    /// attribute disabled it.
 
    ovl_fail_enable_if,
 
 
 
    /// This candidate constructor or conversion function is explicit but
 
    /// the context doesn't permit explicit functions.
 
    ovl_fail_explicit,
 
 
 
    /// This candidate was not viable because its address could not be taken.
 
    ovl_fail_addr_not_available,
 
 
 
    /// This inherited constructor is not viable because it would slice the
 
    /// argument.
 
    ovl_fail_inhctor_slice,
 
 
 
    /// This candidate was not viable because it is a non-default multiversioned
 
    /// function.
 
    ovl_non_default_multiversion_function,
 
 
 
    /// This constructor/conversion candidate fail due to an address space
 
    /// mismatch between the object being constructed and the overload
 
    /// candidate.
 
    ovl_fail_object_addrspace_mismatch,
 
 
 
    /// This candidate was not viable because its associated constraints were
 
    /// not satisfied.
 
    ovl_fail_constraints_not_satisfied,
 
 
 
    /// This candidate was not viable because it has internal linkage and is
 
    /// from a different module unit than the use.
 
    ovl_fail_module_mismatched,
 
  };
 
 
 
  /// A list of implicit conversion sequences for the arguments of an
 
  /// OverloadCandidate.
 
  using ConversionSequenceList =
 
      llvm::MutableArrayRef<ImplicitConversionSequence>;
 
 
 
  /// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
 
  struct OverloadCandidate {
 
    /// Function - The actual function that this candidate
 
    /// represents. When NULL, this is a built-in candidate
 
    /// (C++ [over.oper]) or a surrogate for a conversion to a
 
    /// function pointer or reference (C++ [over.call.object]).
 
    FunctionDecl *Function;
 
 
 
    /// FoundDecl - The original declaration that was looked up /
 
    /// invented / otherwise found, together with its access.
 
    /// Might be a UsingShadowDecl or a FunctionTemplateDecl.
 
    DeclAccessPair FoundDecl;
 
 
 
    /// BuiltinParamTypes - Provides the parameter types of a built-in overload
 
    /// candidate. Only valid when Function is NULL.
 
    QualType BuiltinParamTypes[3];
 
 
 
    /// Surrogate - The conversion function for which this candidate
 
    /// is a surrogate, but only if IsSurrogate is true.
 
    CXXConversionDecl *Surrogate;
 
 
 
    /// The conversion sequences used to convert the function arguments
 
    /// to the function parameters. Note that these are indexed by argument,
 
    /// so may not match the parameter order of Function.
 
    ConversionSequenceList Conversions;
 
 
 
    /// The FixIt hints which can be used to fix the Bad candidate.
 
    ConversionFixItGenerator Fix;
 
 
 
    /// Viable - True to indicate that this overload candidate is viable.
 
    bool Viable : 1;
 
 
 
    /// Whether this candidate is the best viable function, or tied for being
 
    /// the best viable function.
 
    ///
 
    /// For an ambiguous overload resolution, indicates whether this candidate
 
    /// was part of the ambiguity kernel: the minimal non-empty set of viable
 
    /// candidates such that all elements of the ambiguity kernel are better
 
    /// than all viable candidates not in the ambiguity kernel.
 
    bool Best : 1;
 
 
 
    /// IsSurrogate - True to indicate that this candidate is a
 
    /// surrogate for a conversion to a function pointer or reference
 
    /// (C++ [over.call.object]).
 
    bool IsSurrogate : 1;
 
 
 
    /// IgnoreObjectArgument - True to indicate that the first
 
    /// argument's conversion, which for this function represents the
 
    /// implicit object argument, should be ignored. This will be true
 
    /// when the candidate is a static member function (where the
 
    /// implicit object argument is just a placeholder) or a
 
    /// non-static member function when the call doesn't have an
 
    /// object argument.
 
    bool IgnoreObjectArgument : 1;
 
 
 
    /// True if the candidate was found using ADL.
 
    CallExpr::ADLCallKind IsADLCandidate : 1;
 
 
 
    /// Whether this is a rewritten candidate, and if so, of what kind?
 
    unsigned RewriteKind : 2;
 
 
 
    /// FailureKind - The reason why this candidate is not viable.
 
    /// Actually an OverloadFailureKind.
 
    unsigned char FailureKind;
 
 
 
    /// The number of call arguments that were explicitly provided,
 
    /// to be used while performing partial ordering of function templates.
 
    unsigned ExplicitCallArguments;
 
 
 
    union {
 
      DeductionFailureInfo DeductionFailure;
 
 
 
      /// FinalConversion - For a conversion function (where Function is
 
      /// a CXXConversionDecl), the standard conversion that occurs
 
      /// after the call to the overload candidate to convert the result
 
      /// of calling the conversion function to the required type.
 
      StandardConversionSequence FinalConversion;
 
    };
 
 
 
    /// Get RewriteKind value in OverloadCandidateRewriteKind type (This
 
    /// function is to workaround the spurious GCC bitfield enum warning)
 
    OverloadCandidateRewriteKind getRewriteKind() const {
 
      return static_cast<OverloadCandidateRewriteKind>(RewriteKind);
 
    }
 
 
 
    bool isReversed() const { return getRewriteKind() & CRK_Reversed; }
 
 
 
    /// hasAmbiguousConversion - Returns whether this overload
 
    /// candidate requires an ambiguous conversion or not.
 
    bool hasAmbiguousConversion() const {
 
      for (auto &C : Conversions) {
 
        if (!C.isInitialized()) return false;
 
        if (C.isAmbiguous()) return true;
 
      }
 
      return false;
 
    }
 
 
 
    bool TryToFixBadConversion(unsigned Idx, Sema &S) {
 
      bool CanFix = Fix.tryToFixConversion(
 
                      Conversions[Idx].Bad.FromExpr,
 
                      Conversions[Idx].Bad.getFromType(),
 
                      Conversions[Idx].Bad.getToType(), S);
 
 
 
      // If at least one conversion fails, the candidate cannot be fixed.
 
      if (!CanFix)
 
        Fix.clear();
 
 
 
      return CanFix;
 
    }
 
 
 
    unsigned getNumParams() const {
 
      if (IsSurrogate) {
 
        QualType STy = Surrogate->getConversionType();
 
        while (STy->isPointerType() || STy->isReferenceType())
 
          STy = STy->getPointeeType();
 
        return STy->castAs<FunctionProtoType>()->getNumParams();
 
      }
 
      if (Function)
 
        return Function->getNumParams();
 
      return ExplicitCallArguments;
 
    }
 
 
 
    bool NotValidBecauseConstraintExprHasError() const;
 
 
 
  private:
 
    friend class OverloadCandidateSet;
 
    OverloadCandidate()
 
        : IsSurrogate(false), IsADLCandidate(CallExpr::NotADL), RewriteKind(CRK_None) {}
 
  };
 
 
 
  /// OverloadCandidateSet - A set of overload candidates, used in C++
 
  /// overload resolution (C++ 13.3).
 
  class OverloadCandidateSet {
 
  public:
 
    enum CandidateSetKind {
 
      /// Normal lookup.
 
      CSK_Normal,
 
 
 
      /// C++ [over.match.oper]:
 
      /// Lookup of operator function candidates in a call using operator
 
      /// syntax. Candidates that have no parameters of class type will be
 
      /// skipped unless there is a parameter of (reference to) enum type and
 
      /// the corresponding argument is of the same enum type.
 
      CSK_Operator,
 
 
 
      /// C++ [over.match.copy]:
 
      /// Copy-initialization of an object of class type by user-defined
 
      /// conversion.
 
      CSK_InitByUserDefinedConversion,
 
 
 
      /// C++ [over.match.ctor], [over.match.list]
 
      /// Initialization of an object of class type by constructor,
 
      /// using either a parenthesized or braced list of arguments.
 
      CSK_InitByConstructor,
 
    };
 
 
 
    /// Information about operator rewrites to consider when adding operator
 
    /// functions to a candidate set.
 
    struct OperatorRewriteInfo {
 
      OperatorRewriteInfo()
 
          : OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {}
 
      OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc,
 
                          bool AllowRewritten)
 
          : OriginalOperator(Op), OpLoc(OpLoc),
 
            AllowRewrittenCandidates(AllowRewritten) {}
 
 
 
      /// The original operator as written in the source.
 
      OverloadedOperatorKind OriginalOperator;
 
      /// The source location of the operator.
 
      SourceLocation OpLoc;
 
      /// Whether we should include rewritten candidates in the overload set.
 
      bool AllowRewrittenCandidates;
 
 
 
      /// Would use of this function result in a rewrite using a different
 
      /// operator?
 
      bool isRewrittenOperator(const FunctionDecl *FD) {
 
        return OriginalOperator &&
 
               FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator;
 
      }
 
 
 
      bool isAcceptableCandidate(const FunctionDecl *FD) {
 
        if (!OriginalOperator)
 
          return true;
 
 
 
        // For an overloaded operator, we can have candidates with a different
 
        // name in our unqualified lookup set. Make sure we only consider the
 
        // ones we're supposed to.
 
        OverloadedOperatorKind OO =
 
            FD->getDeclName().getCXXOverloadedOperator();
 
        return OO && (OO == OriginalOperator ||
 
                      (AllowRewrittenCandidates &&
 
                       OO == getRewrittenOverloadedOperator(OriginalOperator)));
 
      }
 
 
 
      /// Determine the kind of rewrite that should be performed for this
 
      /// candidate.
 
      OverloadCandidateRewriteKind
 
      getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) {
 
        OverloadCandidateRewriteKind CRK = CRK_None;
 
        if (isRewrittenOperator(FD))
 
          CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator);
 
        if (PO == OverloadCandidateParamOrder::Reversed)
 
          CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed);
 
        return CRK;
 
      }
 
      /// Determines whether this operator could be implemented by a function
 
      /// with reversed parameter order.
 
      bool isReversible() {
 
        return AllowRewrittenCandidates && OriginalOperator &&
 
               (getRewrittenOverloadedOperator(OriginalOperator) != OO_None ||
 
                allowsReversed(OriginalOperator));
 
      }
 
 
 
      /// Determine whether reversing parameter order is allowed for operator
 
      /// Op.
 
      bool allowsReversed(OverloadedOperatorKind Op);
 
 
 
      /// Determine whether we should add a rewritten candidate for \p FD with
 
      /// reversed parameter order.
 
      /// \param OriginalArgs are the original non reversed arguments.
 
      bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs,
 
                             FunctionDecl *FD);
 
    };
 
 
 
  private:
 
    SmallVector<OverloadCandidate, 16> Candidates;
 
    llvm::SmallPtrSet<uintptr_t, 16> Functions;
 
 
 
    // Allocator for ConversionSequenceLists. We store the first few of these
 
    // inline to avoid allocation for small sets.
 
    llvm::BumpPtrAllocator SlabAllocator;
 
 
 
    SourceLocation Loc;
 
    CandidateSetKind Kind;
 
    OperatorRewriteInfo RewriteInfo;
 
 
 
    constexpr static unsigned NumInlineBytes =
 
        24 * sizeof(ImplicitConversionSequence);
 
    unsigned NumInlineBytesUsed = 0;
 
    alignas(void *) char InlineSpace[NumInlineBytes];
 
 
 
    // Address space of the object being constructed.
 
    LangAS DestAS = LangAS::Default;
 
 
 
    /// If we have space, allocates from inline storage. Otherwise, allocates
 
    /// from the slab allocator.
 
    /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
 
    /// instead.
 
    /// FIXME: Now that this only allocates ImplicitConversionSequences, do we
 
    /// want to un-generalize this?
 
    template <typename T>
 
    T *slabAllocate(unsigned N) {
 
      // It's simpler if this doesn't need to consider alignment.
 
      static_assert(alignof(T) == alignof(void *),
 
                    "Only works for pointer-aligned types.");
 
      static_assert(std::is_trivial<T>::value ||
 
                        std::is_same<ImplicitConversionSequence, T>::value,
 
                    "Add destruction logic to OverloadCandidateSet::clear().");
 
 
 
      unsigned NBytes = sizeof(T) * N;
 
      if (NBytes > NumInlineBytes - NumInlineBytesUsed)
 
        return SlabAllocator.Allocate<T>(N);
 
      char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed;
 
      assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
 
             "Misaligned storage!");
 
 
 
      NumInlineBytesUsed += NBytes;
 
      return reinterpret_cast<T *>(FreeSpaceStart);
 
    }
 
 
 
    void destroyCandidates();
 
 
 
  public:
 
    OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK,
 
                         OperatorRewriteInfo RewriteInfo = {})
 
        : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {}
 
    OverloadCandidateSet(const OverloadCandidateSet &) = delete;
 
    OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete;
 
    ~OverloadCandidateSet() { destroyCandidates(); }
 
 
 
    SourceLocation getLocation() const { return Loc; }
 
    CandidateSetKind getKind() const { return Kind; }
 
    OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; }
 
 
 
    /// Whether diagnostics should be deferred.
 
    bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc);
 
 
 
    /// Determine when this overload candidate will be new to the
 
    /// overload set.
 
    bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO =
 
                                     OverloadCandidateParamOrder::Normal) {
 
      uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl());
 
      Key |= static_cast<uintptr_t>(PO);
 
      return Functions.insert(Key).second;
 
    }
 
 
 
    /// Exclude a function from being considered by overload resolution.
 
    void exclude(Decl *F) {
 
      isNewCandidate(F, OverloadCandidateParamOrder::Normal);
 
      isNewCandidate(F, OverloadCandidateParamOrder::Reversed);
 
    }
 
 
 
    /// Clear out all of the candidates.
 
    void clear(CandidateSetKind CSK);
 
 
 
    using iterator = SmallVectorImpl<OverloadCandidate>::iterator;
 
 
 
    iterator begin() { return Candidates.begin(); }
 
    iterator end() { return Candidates.end(); }
 
 
 
    size_t size() const { return Candidates.size(); }
 
    bool empty() const { return Candidates.empty(); }
 
 
 
    /// Allocate storage for conversion sequences for NumConversions
 
    /// conversions.
 
    ConversionSequenceList
 
    allocateConversionSequences(unsigned NumConversions) {
 
      ImplicitConversionSequence *Conversions =
 
          slabAllocate<ImplicitConversionSequence>(NumConversions);
 
 
 
      // Construct the new objects.
 
      for (unsigned I = 0; I != NumConversions; ++I)
 
        new (&Conversions[I]) ImplicitConversionSequence();
 
 
 
      return ConversionSequenceList(Conversions, NumConversions);
 
    }
 
 
 
    /// Add a new candidate with NumConversions conversion sequence slots
 
    /// to the overload set.
 
    OverloadCandidate &
 
    addCandidate(unsigned NumConversions = 0,
 
                 ConversionSequenceList Conversions = std::nullopt) {
 
      assert((Conversions.empty() || Conversions.size() == NumConversions) &&
 
             "preallocated conversion sequence has wrong length");
 
 
 
      Candidates.push_back(OverloadCandidate());
 
      OverloadCandidate &C = Candidates.back();
 
      C.Conversions = Conversions.empty()
 
                          ? allocateConversionSequences(NumConversions)
 
                          : Conversions;
 
      return C;
 
    }
 
 
 
    /// Find the best viable function on this overload set, if it exists.
 
    OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc,
 
                                         OverloadCandidateSet::iterator& Best);
 
 
 
    SmallVector<OverloadCandidate *, 32> CompleteCandidates(
 
        Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
 
        SourceLocation OpLoc = SourceLocation(),
 
        llvm::function_ref<bool(OverloadCandidate &)> Filter =
 
            [](OverloadCandidate &) { return true; });
 
 
 
    void NoteCandidates(
 
        PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD,
 
        ArrayRef<Expr *> Args, StringRef Opc = "",
 
        SourceLocation Loc = SourceLocation(),
 
        llvm::function_ref<bool(OverloadCandidate &)> Filter =
 
            [](OverloadCandidate &) { return true; });
 
 
 
    void NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
 
                        ArrayRef<OverloadCandidate *> Cands,
 
                        StringRef Opc = "",
 
                        SourceLocation OpLoc = SourceLocation());
 
 
 
    LangAS getDestAS() { return DestAS; }
 
 
 
    void setDestAS(LangAS AS) {
 
      assert((Kind == CSK_InitByConstructor ||
 
              Kind == CSK_InitByUserDefinedConversion) &&
 
             "can't set the destination address space when not constructing an "
 
             "object");
 
      DestAS = AS;
 
    }
 
 
 
  };
 
 
 
  bool isBetterOverloadCandidate(Sema &S,
 
                                 const OverloadCandidate &Cand1,
 
                                 const OverloadCandidate &Cand2,
 
                                 SourceLocation Loc,
 
                                 OverloadCandidateSet::CandidateSetKind Kind);
 
 
 
  struct ConstructorInfo {
 
    DeclAccessPair FoundDecl;
 
    CXXConstructorDecl *Constructor;
 
    FunctionTemplateDecl *ConstructorTmpl;
 
 
 
    explicit operator bool() const { return Constructor; }
 
  };
 
 
 
  // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload
 
  // that takes one of these.
 
  inline ConstructorInfo getConstructorInfo(NamedDecl *ND) {
 
    if (isa<UsingDecl>(ND))
 
      return ConstructorInfo{};
 
 
 
    // For constructors, the access check is performed against the underlying
 
    // declaration, not the found declaration.
 
    auto *D = ND->getUnderlyingDecl();
 
    ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr,
 
                            nullptr};
 
    Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
 
    if (Info.ConstructorTmpl)
 
      D = Info.ConstructorTmpl->getTemplatedDecl();
 
    Info.Constructor = dyn_cast<CXXConstructorDecl>(D);
 
    return Info;
 
  }
 
 
 
  // Returns false if signature help is relevant despite number of arguments
 
  // exceeding parameters. Specifically, it returns false when
 
  // PartialOverloading is true and one of the following:
 
  // * Function is variadic
 
  // * Function is template variadic
 
  // * Function is an instantiation of template variadic function
 
  // The last case may seem strange. The idea is that if we added one more
 
  // argument, we'd end up with a function similar to Function. Since, in the
 
  // context of signature help and/or code completion, we do not know what the
 
  // type of the next argument (that the user is typing) will be, this is as
 
  // good candidate as we can get, despite the fact that it takes one less
 
  // parameter.
 
  bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function);
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_SEMA_OVERLOAD_H