//===--- DeclSpec.h - Parsed declaration specifiers -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the classes used to store parsed information about
/// declaration-specifiers and declarators.
///
/// \verbatim
/// static const int volatile x, *y, *(*(*z)[10])(const void *x);
/// ------------------------- - -- ---------------------------
/// declaration-specifiers \ | /
/// declarators
/// \endverbatim
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_DECLSPEC_H
#define LLVM_CLANG_SEMA_DECLSPEC_H
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjCCommon.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Lex/Token.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/ParsedAttr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
class ASTContext;
class CXXRecordDecl;
class TypeLoc;
class LangOptions;
class IdentifierInfo;
class NamespaceAliasDecl;
class NamespaceDecl;
class ObjCDeclSpec;
class Sema;
class Declarator;
struct TemplateIdAnnotation;
/// Represents a C++ nested-name-specifier or a global scope specifier.
///
/// These can be in 3 states:
/// 1) Not present, identified by isEmpty()
/// 2) Present, identified by isNotEmpty()
/// 2.a) Valid, identified by isValid()
/// 2.b) Invalid, identified by isInvalid().
///
/// isSet() is deprecated because it mostly corresponded to "valid" but was
/// often used as if it meant "present".
///
/// The actual scope is described by getScopeRep().
class CXXScopeSpec {
SourceRange Range;
NestedNameSpecifierLocBuilder Builder;
public:
SourceRange getRange() const { return Range; }
void setRange(SourceRange R) { Range = R; }
void setBeginLoc(SourceLocation Loc) { Range.setBegin(Loc); }
void setEndLoc(SourceLocation Loc) { Range.setEnd(Loc); }
SourceLocation getBeginLoc() const { return Range.getBegin(); }
SourceLocation getEndLoc() const { return Range.getEnd(); }
/// Retrieve the representation of the nested-name-specifier.
NestedNameSpecifier *getScopeRep() const {
return Builder.getRepresentation();
}
/// Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'type::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param TemplateKWLoc The location of the 'template' keyword, if present.
///
/// \param TL The TypeLoc that describes the type preceding the '::'.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, SourceLocation TemplateKWLoc, TypeLoc TL,
SourceLocation ColonColonLoc);
/// Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'identifier::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Identifier The identifier.
///
/// \param IdentifierLoc The location of the identifier.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, IdentifierInfo *Identifier,
SourceLocation IdentifierLoc, SourceLocation ColonColonLoc);
/// Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'namespace::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Namespace The namespace.
///
/// \param NamespaceLoc The location of the namespace name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, NamespaceDecl *Namespace,
SourceLocation NamespaceLoc, SourceLocation ColonColonLoc);
/// Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'namespace-alias::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Alias The namespace alias.
///
/// \param AliasLoc The location of the namespace alias
/// name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
SourceLocation AliasLoc, SourceLocation ColonColonLoc);
/// Turn this (empty) nested-name-specifier into the global
/// nested-name-specifier '::'.
void MakeGlobal(ASTContext &Context, SourceLocation ColonColonLoc);
/// Turns this (empty) nested-name-specifier into '__super'
/// nested-name-specifier.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param RD The declaration of the class in which nested-name-specifier
/// appeared.
///
/// \param SuperLoc The location of the '__super' keyword.
/// name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void MakeSuper(ASTContext &Context, CXXRecordDecl *RD,
SourceLocation SuperLoc, SourceLocation ColonColonLoc);
/// Make a new nested-name-specifier from incomplete source-location
/// information.
///
/// FIXME: This routine should be used very, very rarely, in cases where we
/// need to synthesize a nested-name-specifier. Most code should instead use
/// \c Adopt() with a proper \c NestedNameSpecifierLoc.
void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier,
SourceRange R);
/// Adopt an existing nested-name-specifier (with source-range
/// information).
void Adopt(NestedNameSpecifierLoc Other);
/// Retrieve a nested-name-specifier with location information, copied
/// into the given AST context.
///
/// \param Context The context into which this nested-name-specifier will be
/// copied.
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const;
/// Retrieve the location of the name in the last qualifier
/// in this nested name specifier.
///
/// For example, the location of \c bar
/// in
/// \verbatim
/// \::foo::bar<0>::
/// ^~~
/// \endverbatim
SourceLocation getLastQualifierNameLoc() const;
/// No scope specifier.
bool isEmpty() const { return Range.isInvalid() && getScopeRep() == nullptr; }
/// A scope specifier is present, but may be valid or invalid.
bool isNotEmpty() const { return !isEmpty(); }
/// An error occurred during parsing of the scope specifier.
bool isInvalid() const { return Range.isValid() && getScopeRep() == nullptr; }
/// A scope specifier is present, and it refers to a real scope.
bool isValid() const { return getScopeRep() != nullptr; }
/// Indicate that this nested-name-specifier is invalid.
void SetInvalid(SourceRange R) {
assert(R.isValid() && "Must have a valid source range");
if (Range.getBegin().isInvalid())
Range.setBegin(R.getBegin());
Range.setEnd(R.getEnd());
Builder.Clear();
}
/// Deprecated. Some call sites intend isNotEmpty() while others intend
/// isValid().
bool isSet() const { return getScopeRep() != nullptr; }
void clear() {
Range = SourceRange();
Builder.Clear();
}
/// Retrieve the data associated with the source-location information.
char *location_data() const { return Builder.getBuffer().first; }
/// Retrieve the size of the data associated with source-location
/// information.
unsigned location_size() const { return Builder.getBuffer().second; }
};
/// Captures information about "declaration specifiers".
///
/// "Declaration specifiers" encompasses storage-class-specifiers,
/// type-specifiers, type-qualifiers, and function-specifiers.
class DeclSpec {
public:
/// storage-class-specifier
/// \note The order of these enumerators is important for diagnostics.
enum SCS {
SCS_unspecified = 0,
SCS_typedef,
SCS_extern,
SCS_static,
SCS_auto,
SCS_register,
SCS_private_extern,
SCS_mutable
};
// Import thread storage class specifier enumeration and constants.
// These can be combined with SCS_extern and SCS_static.
typedef ThreadStorageClassSpecifier TSCS;
static const TSCS TSCS_unspecified = clang::TSCS_unspecified;
static const TSCS TSCS___thread = clang::TSCS___thread;
static const TSCS TSCS_thread_local = clang::TSCS_thread_local;
static const TSCS TSCS__Thread_local = clang::TSCS__Thread_local;
enum TSC {
TSC_unspecified,
TSC_imaginary,
TSC_complex
};
// Import type specifier type enumeration and constants.
typedef TypeSpecifierType TST;
static const TST TST_unspecified = clang::TST_unspecified;
static const TST TST_void = clang::TST_void;
static const TST TST_char = clang::TST_char;
static const TST TST_wchar = clang::TST_wchar;
static const TST TST_char8 = clang::TST_char8;
static const TST TST_char16 = clang::TST_char16;
static const TST TST_char32 = clang::TST_char32;
static const TST TST_int = clang::TST_int;
static const TST TST_int128 = clang::TST_int128;
static const TST TST_bitint = clang::TST_bitint;
static const TST TST_half = clang::TST_half;
static const TST TST_BFloat16 = clang::TST_BFloat16;
static const TST TST_float = clang::TST_float;
static const TST TST_double = clang::TST_double;
static const TST TST_float16 = clang::TST_Float16;
static const TST TST_accum = clang::TST_Accum;
static const TST TST_fract = clang::TST_Fract;
static const TST TST_float128 = clang::TST_float128;
static const TST TST_ibm128 = clang::TST_ibm128;
static const TST TST_bool = clang::TST_bool;
static const TST TST_decimal32 = clang::TST_decimal32;
static const TST TST_decimal64 = clang::TST_decimal64;
static const TST TST_decimal128 = clang::TST_decimal128;
static const TST TST_enum = clang::TST_enum;
static const TST TST_union = clang::TST_union;
static const TST TST_struct = clang::TST_struct;
static const TST TST_interface = clang::TST_interface;
static const TST TST_class = clang::TST_class;
static const TST TST_typename = clang::TST_typename;
static const TST TST_typeofType = clang::TST_typeofType;
static const TST TST_typeofExpr = clang::TST_typeofExpr;
static const TST TST_typeof_unqualType = clang::TST_typeof_unqualType;
static const TST TST_typeof_unqualExpr = clang::TST_typeof_unqualExpr;
static const TST TST_decltype = clang::TST_decltype;
static const TST TST_decltype_auto = clang::TST_decltype_auto;
#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) \
static const TST TST_##Trait = clang::TST_##Trait;
#include "clang/Basic/TransformTypeTraits.def"
static const TST TST_auto = clang::TST_auto;
static const TST TST_auto_type = clang::TST_auto_type;
static const TST TST_unknown_anytype = clang::TST_unknown_anytype;
static const TST TST_atomic = clang::TST_atomic;
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
static const TST TST_##ImgType##_t = clang::TST_##ImgType##_t;
#include "clang/Basic/OpenCLImageTypes.def"
static const TST TST_error = clang::TST_error;
// type-qualifiers
enum TQ { // NOTE: These flags must be kept in sync with Qualifiers::TQ.
TQ_unspecified = 0,
TQ_const = 1,
TQ_restrict = 2,
TQ_volatile = 4,
TQ_unaligned = 8,
// This has no corresponding Qualifiers::TQ value, because it's not treated
// as a qualifier in our type system.
TQ_atomic = 16
};
/// ParsedSpecifiers - Flags to query which specifiers were applied. This is
/// returned by getParsedSpecifiers.
enum ParsedSpecifiers {
PQ_None = 0,
PQ_StorageClassSpecifier = 1,
PQ_TypeSpecifier = 2,
PQ_TypeQualifier = 4,
PQ_FunctionSpecifier = 8
// FIXME: Attributes should be included here.
};
enum FriendSpecified : bool {
No,
Yes,
};
private:
// storage-class-specifier
/*SCS*/unsigned StorageClassSpec : 3;
/*TSCS*/unsigned ThreadStorageClassSpec : 2;
unsigned SCS_extern_in_linkage_spec : 1;
// type-specifier
/*TypeSpecifierWidth*/ unsigned TypeSpecWidth : 2;
/*TSC*/unsigned TypeSpecComplex : 2;
/*TSS*/unsigned TypeSpecSign : 2;
/*TST*/unsigned TypeSpecType : 7;
unsigned TypeAltiVecVector : 1;
unsigned TypeAltiVecPixel : 1;
unsigned TypeAltiVecBool : 1;
unsigned TypeSpecOwned : 1;
unsigned TypeSpecPipe : 1;
unsigned TypeSpecSat : 1;
unsigned ConstrainedAuto : 1;
// type-qualifiers
unsigned TypeQualifiers : 5; // Bitwise OR of TQ.
// function-specifier
unsigned FS_inline_specified : 1;
unsigned FS_forceinline_specified: 1;
unsigned FS_virtual_specified : 1;
unsigned FS_noreturn_specified : 1;
// friend-specifier
unsigned Friend_specified : 1;
// constexpr-specifier
unsigned ConstexprSpecifier : 2;
union {
UnionParsedType TypeRep;
Decl *DeclRep;
Expr *ExprRep;
TemplateIdAnnotation *TemplateIdRep;
};
/// ExplicitSpecifier - Store information about explicit spicifer.
ExplicitSpecifier FS_explicit_specifier;
// attributes.
ParsedAttributes Attrs;
// Scope specifier for the type spec, if applicable.
CXXScopeSpec TypeScope;
// SourceLocation info. These are null if the item wasn't specified or if
// the setting was synthesized.
SourceRange Range;
SourceLocation StorageClassSpecLoc, ThreadStorageClassSpecLoc;
SourceRange TSWRange;
SourceLocation TSCLoc, TSSLoc, TSTLoc, AltiVecLoc, TSSatLoc;
/// TSTNameLoc - If TypeSpecType is any of class, enum, struct, union,
/// typename, then this is the location of the named type (if present);
/// otherwise, it is the same as TSTLoc. Hence, the pair TSTLoc and
/// TSTNameLoc provides source range info for tag types.
SourceLocation TSTNameLoc;
SourceRange TypeofParensRange;
SourceLocation TQ_constLoc, TQ_restrictLoc, TQ_volatileLoc, TQ_atomicLoc,
TQ_unalignedLoc;
SourceLocation FS_inlineLoc, FS_virtualLoc, FS_explicitLoc, FS_noreturnLoc;
SourceLocation FS_explicitCloseParenLoc;
SourceLocation FS_forceinlineLoc;
SourceLocation FriendLoc, ModulePrivateLoc, ConstexprLoc;
SourceLocation TQ_pipeLoc;
WrittenBuiltinSpecs writtenBS;
void SaveWrittenBuiltinSpecs();
ObjCDeclSpec *ObjCQualifiers;
static bool isTypeRep(TST T) {
return T == TST_atomic || T == TST_typename || T == TST_typeofType ||
T == TST_typeof_unqualType || isTransformTypeTrait(T);
}
static bool isExprRep(TST T) {
return T == TST_typeofExpr || T == TST_typeof_unqualExpr ||
T == TST_decltype || T == TST_bitint;
}
static bool isTemplateIdRep(TST T) {
return (T == TST_auto || T == TST_decltype_auto);
}
DeclSpec(const DeclSpec &) = delete;
void operator=(const DeclSpec &) = delete;
public:
static bool isDeclRep(TST T) {
return (T == TST_enum || T == TST_struct ||
T == TST_interface || T == TST_union ||
T == TST_class);
}
static bool isTransformTypeTrait(TST T) {
constexpr std::array<TST, 16> Traits = {
#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) TST_##Trait,
#include "clang/Basic/TransformTypeTraits.def"
};
return T >= Traits.front() && T <= Traits.back();
}
DeclSpec(AttributeFactory &attrFactory)
: StorageClassSpec(SCS_unspecified),
ThreadStorageClassSpec(TSCS_unspecified),
SCS_extern_in_linkage_spec(false),
TypeSpecWidth(static_cast<unsigned>(TypeSpecifierWidth::Unspecified)),
TypeSpecComplex(TSC_unspecified),
TypeSpecSign(static_cast<unsigned>(TypeSpecifierSign::Unspecified)),
TypeSpecType(TST_unspecified), TypeAltiVecVector(false),
TypeAltiVecPixel(false), TypeAltiVecBool(false), TypeSpecOwned(false),
TypeSpecPipe(false), TypeSpecSat(false), ConstrainedAuto(false),
TypeQualifiers(TQ_unspecified), FS_inline_specified(false),
FS_forceinline_specified(false), FS_virtual_specified(false),
FS_noreturn_specified(false), Friend_specified(false),
ConstexprSpecifier(
static_cast<unsigned>(ConstexprSpecKind::Unspecified)),
Attrs(attrFactory), writtenBS(), ObjCQualifiers(nullptr) {}
// storage-class-specifier
SCS getStorageClassSpec() const { return (SCS)StorageClassSpec; }
TSCS getThreadStorageClassSpec() const {
return (TSCS)ThreadStorageClassSpec;
}
bool isExternInLinkageSpec() const { return SCS_extern_in_linkage_spec; }
void setExternInLinkageSpec(bool Value) {
SCS_extern_in_linkage_spec = Value;
}
SourceLocation getStorageClassSpecLoc() const { return StorageClassSpecLoc; }
SourceLocation getThreadStorageClassSpecLoc() const {
return ThreadStorageClassSpecLoc;
}
void ClearStorageClassSpecs() {
StorageClassSpec = DeclSpec::SCS_unspecified;
ThreadStorageClassSpec = DeclSpec::TSCS_unspecified;
SCS_extern_in_linkage_spec = false;
StorageClassSpecLoc = SourceLocation();
ThreadStorageClassSpecLoc = SourceLocation();
}
void ClearTypeSpecType() {
TypeSpecType = DeclSpec::TST_unspecified;
TypeSpecOwned = false;
TSTLoc = SourceLocation();
}
// type-specifier
TypeSpecifierWidth getTypeSpecWidth() const {
return static_cast<TypeSpecifierWidth>(TypeSpecWidth);
}
TSC getTypeSpecComplex() const { return (TSC)TypeSpecComplex; }
TypeSpecifierSign getTypeSpecSign() const {
return static_cast<TypeSpecifierSign>(TypeSpecSign);
}
TST getTypeSpecType() const { return (TST)TypeSpecType; }
bool isTypeAltiVecVector() const { return TypeAltiVecVector; }
bool isTypeAltiVecPixel() const { return TypeAltiVecPixel; }
bool isTypeAltiVecBool() const { return TypeAltiVecBool; }
bool isTypeSpecOwned() const { return TypeSpecOwned; }
bool isTypeRep() const { return isTypeRep((TST) TypeSpecType); }
bool isTypeSpecPipe() const { return TypeSpecPipe; }
bool isTypeSpecSat() const { return TypeSpecSat; }
bool isConstrainedAuto() const { return ConstrainedAuto; }
ParsedType getRepAsType() const {
assert(isTypeRep((TST) TypeSpecType) && "DeclSpec does not store a type");
return TypeRep;
}
Decl *getRepAsDecl() const {
assert(isDeclRep((TST) TypeSpecType) && "DeclSpec does not store a decl");
return DeclRep;
}
Expr *getRepAsExpr() const {
assert(isExprRep((TST) TypeSpecType) && "DeclSpec does not store an expr");
return ExprRep;
}
TemplateIdAnnotation *getRepAsTemplateId() const {
assert(isTemplateIdRep((TST) TypeSpecType) &&
"DeclSpec does not store a template id");
return TemplateIdRep;
}
CXXScopeSpec &getTypeSpecScope() { return TypeScope; }
const CXXScopeSpec &getTypeSpecScope() const { return TypeScope; }
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
SourceLocation getTypeSpecWidthLoc() const { return TSWRange.getBegin(); }
SourceRange getTypeSpecWidthRange() const { return TSWRange; }
SourceLocation getTypeSpecComplexLoc() const { return TSCLoc; }
SourceLocation getTypeSpecSignLoc() const { return TSSLoc; }
SourceLocation getTypeSpecTypeLoc() const { return TSTLoc; }
SourceLocation getAltiVecLoc() const { return AltiVecLoc; }
SourceLocation getTypeSpecSatLoc() const { return TSSatLoc; }
SourceLocation getTypeSpecTypeNameLoc() const {
assert(isDeclRep((TST)TypeSpecType) || isTypeRep((TST)TypeSpecType) ||
isExprRep((TST)TypeSpecType));
return TSTNameLoc;
}
SourceRange getTypeofParensRange() const { return TypeofParensRange; }
void setTypeArgumentRange(SourceRange range) { TypeofParensRange = range; }
bool hasAutoTypeSpec() const {
return (TypeSpecType == TST_auto || TypeSpecType == TST_auto_type ||
TypeSpecType == TST_decltype_auto);
}
bool hasTagDefinition() const;
/// Turn a type-specifier-type into a string like "_Bool" or "union".
static const char *getSpecifierName(DeclSpec::TST T,
const PrintingPolicy &Policy);
static const char *getSpecifierName(DeclSpec::TQ Q);
static const char *getSpecifierName(TypeSpecifierSign S);
static const char *getSpecifierName(DeclSpec::TSC C);
static const char *getSpecifierName(TypeSpecifierWidth W);
static const char *getSpecifierName(DeclSpec::SCS S);
static const char *getSpecifierName(DeclSpec::TSCS S);
static const char *getSpecifierName(ConstexprSpecKind C);
// type-qualifiers
/// getTypeQualifiers - Return a set of TQs.
unsigned getTypeQualifiers() const { return TypeQualifiers; }
SourceLocation getConstSpecLoc() const { return TQ_constLoc; }
SourceLocation getRestrictSpecLoc() const { return TQ_restrictLoc; }
SourceLocation getVolatileSpecLoc() const { return TQ_volatileLoc; }
SourceLocation getAtomicSpecLoc() const { return TQ_atomicLoc; }
SourceLocation getUnalignedSpecLoc() const { return TQ_unalignedLoc; }
SourceLocation getPipeLoc() const { return TQ_pipeLoc; }
/// Clear out all of the type qualifiers.
void ClearTypeQualifiers() {
TypeQualifiers = 0;
TQ_constLoc = SourceLocation();
TQ_restrictLoc = SourceLocation();
TQ_volatileLoc = SourceLocation();
TQ_atomicLoc = SourceLocation();
TQ_unalignedLoc = SourceLocation();
TQ_pipeLoc = SourceLocation();
}
// function-specifier
bool isInlineSpecified() const {
return FS_inline_specified | FS_forceinline_specified;
}
SourceLocation getInlineSpecLoc() const {
return FS_inline_specified ? FS_inlineLoc : FS_forceinlineLoc;
}
ExplicitSpecifier getExplicitSpecifier() const {
return FS_explicit_specifier;
}
bool isVirtualSpecified() const { return FS_virtual_specified; }
SourceLocation getVirtualSpecLoc() const { return FS_virtualLoc; }
bool hasExplicitSpecifier() const {
return FS_explicit_specifier.isSpecified();
}
SourceLocation getExplicitSpecLoc() const { return FS_explicitLoc; }
SourceRange getExplicitSpecRange() const {
return FS_explicit_specifier.getExpr()
? SourceRange(FS_explicitLoc, FS_explicitCloseParenLoc)
: SourceRange(FS_explicitLoc);
}
bool isNoreturnSpecified() const { return FS_noreturn_specified; }
SourceLocation getNoreturnSpecLoc() const { return FS_noreturnLoc; }
void ClearFunctionSpecs() {
FS_inline_specified = false;
FS_inlineLoc = SourceLocation();
FS_forceinline_specified = false;
FS_forceinlineLoc = SourceLocation();
FS_virtual_specified = false;
FS_virtualLoc = SourceLocation();
FS_explicit_specifier = ExplicitSpecifier();
FS_explicitLoc = SourceLocation();
FS_explicitCloseParenLoc = SourceLocation();
FS_noreturn_specified = false;
FS_noreturnLoc = SourceLocation();
}
/// This method calls the passed in handler on each CVRU qual being
/// set.
/// Handle - a handler to be invoked.
void forEachCVRUQualifier(
llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
/// This method calls the passed in handler on each qual being
/// set.
/// Handle - a handler to be invoked.
void forEachQualifier(
llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
/// Return true if any type-specifier has been found.
bool hasTypeSpecifier() const {
return getTypeSpecType() != DeclSpec::TST_unspecified ||
getTypeSpecWidth() != TypeSpecifierWidth::Unspecified ||
getTypeSpecComplex() != DeclSpec::TSC_unspecified ||
getTypeSpecSign() != TypeSpecifierSign::Unspecified;
}
/// Return a bitmask of which flavors of specifiers this
/// DeclSpec includes.
unsigned getParsedSpecifiers() const;
/// isEmpty - Return true if this declaration specifier is completely empty:
/// no tokens were parsed in the production of it.
bool isEmpty() const {
return getParsedSpecifiers() == DeclSpec::PQ_None;
}
void SetRangeStart(SourceLocation Loc) { Range.setBegin(Loc); }
void SetRangeEnd(SourceLocation Loc) { Range.setEnd(Loc); }
/// These methods set the specified attribute of the DeclSpec and
/// return false if there was no error. If an error occurs (for
/// example, if we tried to set "auto" on a spec with "extern"
/// already set), they return true and set PrevSpec and DiagID
/// such that
/// Diag(Loc, DiagID) << PrevSpec;
/// will yield a useful result.
///
/// TODO: use a more general approach that still allows these
/// diagnostics to be ignored when desired.
bool SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy);
bool SetStorageClassSpecThread(TSCS TSC, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID);
bool SetTypeSpecWidth(TypeSpecifierWidth W, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy);
bool SetTypeSpecComplex(TSC C, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetTypeSpecSign(TypeSpecifierSign S, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, const PrintingPolicy &Policy);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, ParsedType Rep,
const PrintingPolicy &Policy);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, TypeResult Rep,
const PrintingPolicy &Policy) {
if (Rep.isInvalid())
return SetTypeSpecError();
return SetTypeSpecType(T, Loc, PrevSpec, DiagID, Rep.get(), Policy);
}
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, Decl *Rep, bool Owned,
const PrintingPolicy &Policy);
bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
SourceLocation TagNameLoc, const char *&PrevSpec,
unsigned &DiagID, ParsedType Rep,
const PrintingPolicy &Policy);
bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
SourceLocation TagNameLoc, const char *&PrevSpec,
unsigned &DiagID, Decl *Rep, bool Owned,
const PrintingPolicy &Policy);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, TemplateIdAnnotation *Rep,
const PrintingPolicy &Policy);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, Expr *Rep,
const PrintingPolicy &policy);
bool SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy);
bool SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy);
bool SetTypeAltiVecBool(bool isAltiVecBool, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy);
bool SetTypePipe(bool isPipe, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy);
bool SetBitIntType(SourceLocation KWLoc, Expr *BitWidth,
const char *&PrevSpec, unsigned &DiagID,
const PrintingPolicy &Policy);
bool SetTypeSpecSat(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetTypeSpecError();
void UpdateDeclRep(Decl *Rep) {
assert(isDeclRep((TST) TypeSpecType));
DeclRep = Rep;
}
void UpdateTypeRep(ParsedType Rep) {
assert(isTypeRep((TST) TypeSpecType));
TypeRep = Rep;
}
void UpdateExprRep(Expr *Rep) {
assert(isExprRep((TST) TypeSpecType));
ExprRep = Rep;
}
bool SetTypeQual(TQ T, SourceLocation Loc);
bool SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, const LangOptions &Lang);
bool setFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool setFunctionSpecForceInline(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool setFunctionSpecVirtual(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool setFunctionSpecExplicit(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, ExplicitSpecifier ExplicitSpec,
SourceLocation CloseParenLoc);
bool setFunctionSpecNoreturn(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetFriendSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetConstexprSpec(ConstexprSpecKind ConstexprKind, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID);
FriendSpecified isFriendSpecified() const {
return static_cast<FriendSpecified>(Friend_specified);
}
SourceLocation getFriendSpecLoc() const { return FriendLoc; }
bool isModulePrivateSpecified() const { return ModulePrivateLoc.isValid(); }
SourceLocation getModulePrivateSpecLoc() const { return ModulePrivateLoc; }
ConstexprSpecKind getConstexprSpecifier() const {
return ConstexprSpecKind(ConstexprSpecifier);
}
SourceLocation getConstexprSpecLoc() const { return ConstexprLoc; }
bool hasConstexprSpecifier() const {
return getConstexprSpecifier() != ConstexprSpecKind::Unspecified;
}
void ClearConstexprSpec() {
ConstexprSpecifier = static_cast<unsigned>(ConstexprSpecKind::Unspecified);
ConstexprLoc = SourceLocation();
}
AttributePool &getAttributePool() const {
return Attrs.getPool();
}
/// Concatenates two attribute lists.
///
/// The GCC attribute syntax allows for the following:
///
/// \code
/// short __attribute__(( unused, deprecated ))
/// int __attribute__(( may_alias, aligned(16) )) var;
/// \endcode
///
/// This declares 4 attributes using 2 lists. The following syntax is
/// also allowed and equivalent to the previous declaration.
///
/// \code
/// short __attribute__((unused)) __attribute__((deprecated))
/// int __attribute__((may_alias)) __attribute__((aligned(16))) var;
/// \endcode
///
void addAttributes(const ParsedAttributesView &AL) {
Attrs.addAll(AL.begin(), AL.end());
}
bool hasAttributes() const { return !Attrs.empty(); }
ParsedAttributes &getAttributes() { return Attrs; }
const ParsedAttributes &getAttributes() const { return Attrs; }
void takeAttributesFrom(ParsedAttributes &attrs) {
Attrs.takeAllFrom(attrs);
}
/// Finish - This does final analysis of the declspec, issuing diagnostics for
/// things like "_Imaginary" (lacking an FP type). After calling this method,
/// DeclSpec is guaranteed self-consistent, even if an error occurred.
void Finish(Sema &S, const PrintingPolicy &Policy);
const WrittenBuiltinSpecs& getWrittenBuiltinSpecs() const {
return writtenBS;
}
ObjCDeclSpec *getObjCQualifiers() const { return ObjCQualifiers; }
void setObjCQualifiers(ObjCDeclSpec *quals) { ObjCQualifiers = quals; }
/// Checks if this DeclSpec can stand alone, without a Declarator.
///
/// Only tag declspecs can stand alone.
bool isMissingDeclaratorOk();
};
/// Captures information about "declaration specifiers" specific to
/// Objective-C.
class ObjCDeclSpec {
public:
/// ObjCDeclQualifier - Qualifier used on types in method
/// declarations. Not all combinations are sensible. Parameters
/// can be one of { in, out, inout } with one of { bycopy, byref }.
/// Returns can either be { oneway } or not.
///
/// This should be kept in sync with Decl::ObjCDeclQualifier.
enum ObjCDeclQualifier {
DQ_None = 0x0,
DQ_In = 0x1,
DQ_Inout = 0x2,
DQ_Out = 0x4,
DQ_Bycopy = 0x8,
DQ_Byref = 0x10,
DQ_Oneway = 0x20,
DQ_CSNullability = 0x40
};
ObjCDeclSpec()
: objcDeclQualifier(DQ_None),
PropertyAttributes(ObjCPropertyAttribute::kind_noattr), Nullability(0),
GetterName(nullptr), SetterName(nullptr) {}
ObjCDeclQualifier getObjCDeclQualifier() const {
return (ObjCDeclQualifier)objcDeclQualifier;
}
void setObjCDeclQualifier(ObjCDeclQualifier DQVal) {
objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier | DQVal);
}
void clearObjCDeclQualifier(ObjCDeclQualifier DQVal) {
objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier & ~DQVal);
}
ObjCPropertyAttribute::Kind getPropertyAttributes() const {
return ObjCPropertyAttribute::Kind(PropertyAttributes);
}
void setPropertyAttributes(ObjCPropertyAttribute::Kind PRVal) {
PropertyAttributes =
(ObjCPropertyAttribute::Kind)(PropertyAttributes | PRVal);
}
NullabilityKind getNullability() const {
assert(
((getObjCDeclQualifier() & DQ_CSNullability) ||
(getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&
"Objective-C declspec doesn't have nullability");
return static_cast<NullabilityKind>(Nullability);
}
SourceLocation getNullabilityLoc() const {
assert(
((getObjCDeclQualifier() & DQ_CSNullability) ||
(getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&
"Objective-C declspec doesn't have nullability");
return NullabilityLoc;
}
void setNullability(SourceLocation loc, NullabilityKind kind) {
assert(
((getObjCDeclQualifier() & DQ_CSNullability) ||
(getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&
"Set the nullability declspec or property attribute first");
Nullability = static_cast<unsigned>(kind);
NullabilityLoc = loc;
}
const IdentifierInfo *getGetterName() const { return GetterName; }
IdentifierInfo *getGetterName() { return GetterName; }
SourceLocation getGetterNameLoc() const { return GetterNameLoc; }
void setGetterName(IdentifierInfo *name, SourceLocation loc) {
GetterName = name;
GetterNameLoc = loc;
}
const IdentifierInfo *getSetterName() const { return SetterName; }
IdentifierInfo *getSetterName() { return SetterName; }
SourceLocation getSetterNameLoc() const { return SetterNameLoc; }
void setSetterName(IdentifierInfo *name, SourceLocation loc) {
SetterName = name;
SetterNameLoc = loc;
}
private:
// FIXME: These two are unrelated and mutually exclusive. So perhaps
// we can put them in a union to reflect their mutual exclusivity
// (space saving is negligible).
unsigned objcDeclQualifier : 7;
// NOTE: VC++ treats enums as signed, avoid using ObjCPropertyAttribute::Kind
unsigned PropertyAttributes : NumObjCPropertyAttrsBits;
unsigned Nullability : 2;
SourceLocation NullabilityLoc;
IdentifierInfo *GetterName; // getter name or NULL if no getter
IdentifierInfo *SetterName; // setter name or NULL if no setter
SourceLocation GetterNameLoc; // location of the getter attribute's value
SourceLocation SetterNameLoc; // location of the setter attribute's value
};
/// Describes the kind of unqualified-id parsed.
enum class UnqualifiedIdKind {
/// An identifier.
IK_Identifier,
/// An overloaded operator name, e.g., operator+.
IK_OperatorFunctionId,
/// A conversion function name, e.g., operator int.
IK_ConversionFunctionId,
/// A user-defined literal name, e.g., operator "" _i.
IK_LiteralOperatorId,
/// A constructor name.
IK_ConstructorName,
/// A constructor named via a template-id.
IK_ConstructorTemplateId,
/// A destructor name.
IK_DestructorName,
/// A template-id, e.g., f<int>.
IK_TemplateId,
/// An implicit 'self' parameter
IK_ImplicitSelfParam,
/// A deduction-guide name (a template-name)
IK_DeductionGuideName
};
/// Represents a C++ unqualified-id that has been parsed.
class UnqualifiedId {
private:
UnqualifiedId(const UnqualifiedId &Other) = delete;
const UnqualifiedId &operator=(const UnqualifiedId &) = delete;
/// Describes the kind of unqualified-id parsed.
UnqualifiedIdKind Kind;
public:
struct OFI {
/// The kind of overloaded operator.
OverloadedOperatorKind Operator;
/// The source locations of the individual tokens that name
/// the operator, e.g., the "new", "[", and "]" tokens in
/// operator new [].
///
/// Different operators have different numbers of tokens in their name,
/// up to three. Any remaining source locations in this array will be
/// set to an invalid value for operators with fewer than three tokens.
SourceLocation SymbolLocations[3];
};
/// Anonymous union that holds extra data associated with the
/// parsed unqualified-id.
union {
/// When Kind == IK_Identifier, the parsed identifier, or when
/// Kind == IK_UserLiteralId, the identifier suffix.
IdentifierInfo *Identifier;
/// When Kind == IK_OperatorFunctionId, the overloaded operator
/// that we parsed.
struct OFI OperatorFunctionId;
/// When Kind == IK_ConversionFunctionId, the type that the
/// conversion function names.
UnionParsedType ConversionFunctionId;
/// When Kind == IK_ConstructorName, the class-name of the type
/// whose constructor is being referenced.
UnionParsedType ConstructorName;
/// When Kind == IK_DestructorName, the type referred to by the
/// class-name.
UnionParsedType DestructorName;
/// When Kind == IK_DeductionGuideName, the parsed template-name.
UnionParsedTemplateTy TemplateName;
/// When Kind == IK_TemplateId or IK_ConstructorTemplateId,
/// the template-id annotation that contains the template name and
/// template arguments.
TemplateIdAnnotation *TemplateId;
};
/// The location of the first token that describes this unqualified-id,
/// which will be the location of the identifier, "operator" keyword,
/// tilde (for a destructor), or the template name of a template-id.
SourceLocation StartLocation;
/// The location of the last token that describes this unqualified-id.
SourceLocation EndLocation;
UnqualifiedId()
: Kind(UnqualifiedIdKind::IK_Identifier), Identifier(nullptr) {}
/// Clear out this unqualified-id, setting it to default (invalid)
/// state.
void clear() {
Kind = UnqualifiedIdKind::IK_Identifier;
Identifier = nullptr;
StartLocation = SourceLocation();
EndLocation = SourceLocation();
}
/// Determine whether this unqualified-id refers to a valid name.
bool isValid() const { return StartLocation.isValid(); }
/// Determine whether this unqualified-id refers to an invalid name.
bool isInvalid() const { return !isValid(); }
/// Determine what kind of name we have.
UnqualifiedIdKind getKind() const { return Kind; }
/// Specify that this unqualified-id was parsed as an identifier.
///
/// \param Id the parsed identifier.
/// \param IdLoc the location of the parsed identifier.
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc) {
Kind = UnqualifiedIdKind::IK_Identifier;
Identifier = const_cast<IdentifierInfo *>(Id);
StartLocation = EndLocation = IdLoc;
}
/// Specify that this unqualified-id was parsed as an
/// operator-function-id.
///
/// \param OperatorLoc the location of the 'operator' keyword.
///
/// \param Op the overloaded operator.
///
/// \param SymbolLocations the locations of the individual operator symbols
/// in the operator.
void setOperatorFunctionId(SourceLocation OperatorLoc,
OverloadedOperatorKind Op,
SourceLocation SymbolLocations[3]);
/// Specify that this unqualified-id was parsed as a
/// conversion-function-id.
///
/// \param OperatorLoc the location of the 'operator' keyword.
///
/// \param Ty the type to which this conversion function is converting.
///
/// \param EndLoc the location of the last token that makes up the type name.
void setConversionFunctionId(SourceLocation OperatorLoc,
ParsedType Ty,
SourceLocation EndLoc) {
Kind = UnqualifiedIdKind::IK_ConversionFunctionId;
StartLocation = OperatorLoc;
EndLocation = EndLoc;
ConversionFunctionId = Ty;
}
/// Specific that this unqualified-id was parsed as a
/// literal-operator-id.
///
/// \param Id the parsed identifier.
///
/// \param OpLoc the location of the 'operator' keyword.
///
/// \param IdLoc the location of the identifier.
void setLiteralOperatorId(const IdentifierInfo *Id, SourceLocation OpLoc,
SourceLocation IdLoc) {
Kind = UnqualifiedIdKind::IK_LiteralOperatorId;
Identifier = const_cast<IdentifierInfo *>(Id);
StartLocation = OpLoc;
EndLocation = IdLoc;
}
/// Specify that this unqualified-id was parsed as a constructor name.
///
/// \param ClassType the class type referred to by the constructor name.
///
/// \param ClassNameLoc the location of the class name.
///
/// \param EndLoc the location of the last token that makes up the type name.
void setConstructorName(ParsedType ClassType,
SourceLocation ClassNameLoc,
SourceLocation EndLoc) {
Kind = UnqualifiedIdKind::IK_ConstructorName;
StartLocation = ClassNameLoc;
EndLocation = EndLoc;
ConstructorName = ClassType;
}
/// Specify that this unqualified-id was parsed as a
/// template-id that names a constructor.
///
/// \param TemplateId the template-id annotation that describes the parsed
/// template-id. This UnqualifiedId instance will take ownership of the
/// \p TemplateId and will free it on destruction.
void setConstructorTemplateId(TemplateIdAnnotation *TemplateId);
/// Specify that this unqualified-id was parsed as a destructor name.
///
/// \param TildeLoc the location of the '~' that introduces the destructor
/// name.
///
/// \param ClassType the name of the class referred to by the destructor name.
void setDestructorName(SourceLocation TildeLoc,
ParsedType ClassType,
SourceLocation EndLoc) {
Kind = UnqualifiedIdKind::IK_DestructorName;
StartLocation = TildeLoc;
EndLocation = EndLoc;
DestructorName = ClassType;
}
/// Specify that this unqualified-id was parsed as a template-id.
///
/// \param TemplateId the template-id annotation that describes the parsed
/// template-id. This UnqualifiedId instance will take ownership of the
/// \p TemplateId and will free it on destruction.
void setTemplateId(TemplateIdAnnotation *TemplateId);
/// Specify that this unqualified-id was parsed as a template-name for
/// a deduction-guide.
///
/// \param Template The parsed template-name.
/// \param TemplateLoc The location of the parsed template-name.
void setDeductionGuideName(ParsedTemplateTy Template,
SourceLocation TemplateLoc) {
Kind = UnqualifiedIdKind::IK_DeductionGuideName;
TemplateName = Template;
StartLocation = EndLocation = TemplateLoc;
}
/// Specify that this unqualified-id is an implicit 'self'
/// parameter.
///
/// \param Id the identifier.
void setImplicitSelfParam(const IdentifierInfo *Id) {
Kind = UnqualifiedIdKind::IK_ImplicitSelfParam;
Identifier = const_cast<IdentifierInfo *>(Id);
StartLocation = EndLocation = SourceLocation();
}
/// Return the source range that covers this unqualified-id.
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(StartLocation, EndLocation);
}
SourceLocation getBeginLoc() const LLVM_READONLY { return StartLocation; }
SourceLocation getEndLoc() const LLVM_READONLY { return EndLocation; }
};
/// A set of tokens that has been cached for later parsing.
typedef SmallVector<Token, 4> CachedTokens;
/// One instance of this struct is used for each type in a
/// declarator that is parsed.
///
/// This is intended to be a small value object.
struct DeclaratorChunk {
DeclaratorChunk() {};
enum {
Pointer, Reference, Array, Function, BlockPointer, MemberPointer, Paren, Pipe
} Kind;
/// Loc - The place where this type was defined.
SourceLocation Loc;
/// EndLoc - If valid, the place where this chunck ends.
SourceLocation EndLoc;
SourceRange getSourceRange() const {
if (EndLoc.isInvalid())
return SourceRange(Loc, Loc);
return SourceRange(Loc, EndLoc);
}
ParsedAttributesView AttrList;
struct PointerTypeInfo {
/// The type qualifiers: const/volatile/restrict/unaligned/atomic.
unsigned TypeQuals : 5;
/// The location of the const-qualifier, if any.
SourceLocation ConstQualLoc;
/// The location of the volatile-qualifier, if any.
SourceLocation VolatileQualLoc;
/// The location of the restrict-qualifier, if any.
SourceLocation RestrictQualLoc;
/// The location of the _Atomic-qualifier, if any.
SourceLocation AtomicQualLoc;
/// The location of the __unaligned-qualifier, if any.
SourceLocation UnalignedQualLoc;
void destroy() {
}
};
struct ReferenceTypeInfo {
/// The type qualifier: restrict. [GNU] C++ extension
bool HasRestrict : 1;
/// True if this is an lvalue reference, false if it's an rvalue reference.
bool LValueRef : 1;
void destroy() {
}
};
struct ArrayTypeInfo {
/// The type qualifiers for the array:
/// const/volatile/restrict/__unaligned/_Atomic.
unsigned TypeQuals : 5;
/// True if this dimension included the 'static' keyword.
unsigned hasStatic : 1;
/// True if this dimension was [*]. In this case, NumElts is null.
unsigned isStar : 1;
/// This is the size of the array, or null if [] or [*] was specified.
/// Since the parser is multi-purpose, and we don't want to impose a root
/// expression class on all clients, NumElts is untyped.
Expr *NumElts;
void destroy() {}
};
/// ParamInfo - An array of paraminfo objects is allocated whenever a function
/// declarator is parsed. There are two interesting styles of parameters
/// here:
/// K&R-style identifier lists and parameter type lists. K&R-style identifier
/// lists will have information about the identifier, but no type information.
/// Parameter type lists will have type info (if the actions module provides
/// it), but may have null identifier info: e.g. for 'void foo(int X, int)'.
struct ParamInfo {
IdentifierInfo *Ident;
SourceLocation IdentLoc;
Decl *Param;
/// DefaultArgTokens - When the parameter's default argument
/// cannot be parsed immediately (because it occurs within the
/// declaration of a member function), it will be stored here as a
/// sequence of tokens to be parsed once the class definition is
/// complete. Non-NULL indicates that there is a default argument.
std::unique_ptr<CachedTokens> DefaultArgTokens;
ParamInfo() = default;
ParamInfo(IdentifierInfo *ident, SourceLocation iloc,
Decl *param,
std::unique_ptr<CachedTokens> DefArgTokens = nullptr)
: Ident(ident), IdentLoc(iloc), Param(param),
DefaultArgTokens(std::move(DefArgTokens)) {}
};
struct TypeAndRange {
ParsedType Ty;
SourceRange Range;
};
struct FunctionTypeInfo {
/// hasPrototype - This is true if the function had at least one typed
/// parameter. If the function is () or (a,b,c), then it has no prototype,
/// and is treated as a K&R-style function.
unsigned hasPrototype : 1;
/// isVariadic - If this function has a prototype, and if that
/// proto ends with ',...)', this is true. When true, EllipsisLoc
/// contains the location of the ellipsis.
unsigned isVariadic : 1;
/// Can this declaration be a constructor-style initializer?
unsigned isAmbiguous : 1;
/// Whether the ref-qualifier (if any) is an lvalue reference.
/// Otherwise, it's an rvalue reference.
unsigned RefQualifierIsLValueRef : 1;
/// ExceptionSpecType - An ExceptionSpecificationType value.
unsigned ExceptionSpecType : 4;
/// DeleteParams - If this is true, we need to delete[] Params.
unsigned DeleteParams : 1;
/// HasTrailingReturnType - If this is true, a trailing return type was
/// specified.
unsigned HasTrailingReturnType : 1;
/// The location of the left parenthesis in the source.
SourceLocation LParenLoc;
/// When isVariadic is true, the location of the ellipsis in the source.
SourceLocation EllipsisLoc;
/// The location of the right parenthesis in the source.
SourceLocation RParenLoc;
/// NumParams - This is the number of formal parameters specified by the
/// declarator.
unsigned NumParams;
/// NumExceptionsOrDecls - This is the number of types in the
/// dynamic-exception-decl, if the function has one. In C, this is the
/// number of declarations in the function prototype.
unsigned NumExceptionsOrDecls;
/// The location of the ref-qualifier, if any.
///
/// If this is an invalid location, there is no ref-qualifier.
SourceLocation RefQualifierLoc;
/// The location of the 'mutable' qualifer in a lambda-declarator, if
/// any.
SourceLocation MutableLoc;
/// The beginning location of the exception specification, if any.
SourceLocation ExceptionSpecLocBeg;
/// The end location of the exception specification, if any.
SourceLocation ExceptionSpecLocEnd;
/// Params - This is a pointer to a new[]'d array of ParamInfo objects that
/// describe the parameters specified by this function declarator. null if
/// there are no parameters specified.
ParamInfo *Params;
/// DeclSpec for the function with the qualifier related info.
DeclSpec *MethodQualifiers;
/// AttributeFactory for the MethodQualifiers.
AttributeFactory *QualAttrFactory;
union {
/// Pointer to a new[]'d array of TypeAndRange objects that
/// contain the types in the function's dynamic exception specification
/// and their locations, if there is one.
TypeAndRange *Exceptions;
/// Pointer to the expression in the noexcept-specifier of this
/// function, if it has one.
Expr *NoexceptExpr;
/// Pointer to the cached tokens for an exception-specification
/// that has not yet been parsed.
CachedTokens *ExceptionSpecTokens;
/// Pointer to a new[]'d array of declarations that need to be available
/// for lookup inside the function body, if one exists. Does not exist in
/// C++.
NamedDecl **DeclsInPrototype;
};
/// If HasTrailingReturnType is true, this is the trailing return
/// type specified.
UnionParsedType TrailingReturnType;
/// If HasTrailingReturnType is true, this is the location of the trailing
/// return type.
SourceLocation TrailingReturnTypeLoc;
/// Reset the parameter list to having zero parameters.
///
/// This is used in various places for error recovery.
void freeParams() {
for (unsigned I = 0; I < NumParams; ++I)
Params[I].DefaultArgTokens.reset();
if (DeleteParams) {
delete[] Params;
DeleteParams = false;
}
NumParams = 0;
}
void destroy() {
freeParams();
delete QualAttrFactory;
delete MethodQualifiers;
switch (getExceptionSpecType()) {
default:
break;
case EST_Dynamic:
delete[] Exceptions;
break;
case EST_Unparsed:
delete ExceptionSpecTokens;
break;
case EST_None:
if (NumExceptionsOrDecls != 0)
delete[] DeclsInPrototype;
break;
}
}
DeclSpec &getOrCreateMethodQualifiers() {
if (!MethodQualifiers) {
QualAttrFactory = new AttributeFactory();
MethodQualifiers = new DeclSpec(*QualAttrFactory);
}
return *MethodQualifiers;
}
/// isKNRPrototype - Return true if this is a K&R style identifier list,
/// like "void foo(a,b,c)". In a function definition, this will be followed
/// by the parameter type definitions.
bool isKNRPrototype() const { return !hasPrototype && NumParams != 0; }
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getExceptionSpecLocBeg() const {
return ExceptionSpecLocBeg;
}
SourceLocation getExceptionSpecLocEnd() const {
return ExceptionSpecLocEnd;
}
SourceRange getExceptionSpecRange() const {
return SourceRange(getExceptionSpecLocBeg(), getExceptionSpecLocEnd());
}
/// Retrieve the location of the ref-qualifier, if any.
SourceLocation getRefQualifierLoc() const { return RefQualifierLoc; }
/// Retrieve the location of the 'const' qualifier.
SourceLocation getConstQualifierLoc() const {
assert(MethodQualifiers);
return MethodQualifiers->getConstSpecLoc();
}
/// Retrieve the location of the 'volatile' qualifier.
SourceLocation getVolatileQualifierLoc() const {
assert(MethodQualifiers);
return MethodQualifiers->getVolatileSpecLoc();
}
/// Retrieve the location of the 'restrict' qualifier.
SourceLocation getRestrictQualifierLoc() const {
assert(MethodQualifiers);
return MethodQualifiers->getRestrictSpecLoc();
}
/// Retrieve the location of the 'mutable' qualifier, if any.
SourceLocation getMutableLoc() const { return MutableLoc; }
/// Determine whether this function declaration contains a
/// ref-qualifier.
bool hasRefQualifier() const { return getRefQualifierLoc().isValid(); }
/// Determine whether this lambda-declarator contains a 'mutable'
/// qualifier.
bool hasMutableQualifier() const { return getMutableLoc().isValid(); }
/// Determine whether this method has qualifiers.
bool hasMethodTypeQualifiers() const {
return MethodQualifiers && (MethodQualifiers->getTypeQualifiers() ||
MethodQualifiers->getAttributes().size());
}
/// Get the type of exception specification this function has.
ExceptionSpecificationType getExceptionSpecType() const {
return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
}
/// Get the number of dynamic exception specifications.
unsigned getNumExceptions() const {
assert(ExceptionSpecType != EST_None);
return NumExceptionsOrDecls;
}
/// Get the non-parameter decls defined within this function
/// prototype. Typically these are tag declarations.
ArrayRef<NamedDecl *> getDeclsInPrototype() const {
assert(ExceptionSpecType == EST_None);
return llvm::ArrayRef(DeclsInPrototype, NumExceptionsOrDecls);
}
/// Determine whether this function declarator had a
/// trailing-return-type.
bool hasTrailingReturnType() const { return HasTrailingReturnType; }
/// Get the trailing-return-type for this function declarator.
ParsedType getTrailingReturnType() const {
assert(HasTrailingReturnType);
return TrailingReturnType;
}
/// Get the trailing-return-type location for this function declarator.
SourceLocation getTrailingReturnTypeLoc() const {
assert(HasTrailingReturnType);
return TrailingReturnTypeLoc;
}
};
struct BlockPointerTypeInfo {
/// For now, sema will catch these as invalid.
/// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
unsigned TypeQuals : 5;
void destroy() {
}
};
struct MemberPointerTypeInfo {
/// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
unsigned TypeQuals : 5;
/// Location of the '*' token.
SourceLocation StarLoc;
// CXXScopeSpec has a constructor, so it can't be a direct member.
// So we need some pointer-aligned storage and a bit of trickery.
alignas(CXXScopeSpec) char ScopeMem[sizeof(CXXScopeSpec)];
CXXScopeSpec &Scope() {
return *reinterpret_cast<CXXScopeSpec *>(ScopeMem);
}
const CXXScopeSpec &Scope() const {
return *reinterpret_cast<const CXXScopeSpec *>(ScopeMem);
}
void destroy() {
Scope().~CXXScopeSpec();
}
};
struct PipeTypeInfo {
/// The access writes.
unsigned AccessWrites : 3;
void destroy() {}
};
union {
PointerTypeInfo Ptr;
ReferenceTypeInfo Ref;
ArrayTypeInfo Arr;
FunctionTypeInfo Fun;
BlockPointerTypeInfo Cls;
MemberPointerTypeInfo Mem;
PipeTypeInfo PipeInfo;
};
void destroy() {
switch (Kind) {
case DeclaratorChunk::Function: return Fun.destroy();
case DeclaratorChunk::Pointer: return Ptr.destroy();
case DeclaratorChunk::BlockPointer: return Cls.destroy();
case DeclaratorChunk::Reference: return Ref.destroy();
case DeclaratorChunk::Array: return Arr.destroy();
case DeclaratorChunk::MemberPointer: return Mem.destroy();
case DeclaratorChunk::Paren: return;
case DeclaratorChunk::Pipe: return PipeInfo.destroy();
}
}
/// If there are attributes applied to this declaratorchunk, return
/// them.
const ParsedAttributesView &getAttrs() const { return AttrList; }
ParsedAttributesView &getAttrs() { return AttrList; }
/// Return a DeclaratorChunk for a pointer.
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc,
SourceLocation ConstQualLoc,
SourceLocation VolatileQualLoc,
SourceLocation RestrictQualLoc,
SourceLocation AtomicQualLoc,
SourceLocation UnalignedQualLoc) {
DeclaratorChunk I;
I.Kind = Pointer;
I.Loc = Loc;
new (&I.Ptr) PointerTypeInfo;
I.Ptr.TypeQuals = TypeQuals;
I.Ptr.ConstQualLoc = ConstQualLoc;
I.Ptr.VolatileQualLoc = VolatileQualLoc;
I.Ptr.RestrictQualLoc = RestrictQualLoc;
I.Ptr.AtomicQualLoc = AtomicQualLoc;
I.Ptr.UnalignedQualLoc = UnalignedQualLoc;
return I;
}
/// Return a DeclaratorChunk for a reference.
static DeclaratorChunk getReference(unsigned TypeQuals, SourceLocation Loc,
bool lvalue) {
DeclaratorChunk I;
I.Kind = Reference;
I.Loc = Loc;
I.Ref.HasRestrict = (TypeQuals & DeclSpec::TQ_restrict) != 0;
I.Ref.LValueRef = lvalue;
return I;
}
/// Return a DeclaratorChunk for an array.
static DeclaratorChunk getArray(unsigned TypeQuals,
bool isStatic, bool isStar, Expr *NumElts,
SourceLocation LBLoc, SourceLocation RBLoc) {
DeclaratorChunk I;
I.Kind = Array;
I.Loc = LBLoc;
I.EndLoc = RBLoc;
I.Arr.TypeQuals = TypeQuals;
I.Arr.hasStatic = isStatic;
I.Arr.isStar = isStar;
I.Arr.NumElts = NumElts;
return I;
}
/// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
/// "TheDeclarator" is the declarator that this will be added to.
static DeclaratorChunk getFunction(bool HasProto,
bool IsAmbiguous,
SourceLocation LParenLoc,
ParamInfo *Params, unsigned NumParams,
SourceLocation EllipsisLoc,
SourceLocation RParenLoc,
bool RefQualifierIsLvalueRef,
SourceLocation RefQualifierLoc,
SourceLocation MutableLoc,
ExceptionSpecificationType ESpecType,
SourceRange ESpecRange,
ParsedType *Exceptions,
SourceRange *ExceptionRanges,
unsigned NumExceptions,
Expr *NoexceptExpr,
CachedTokens *ExceptionSpecTokens,
ArrayRef<NamedDecl *> DeclsInPrototype,
SourceLocation LocalRangeBegin,
SourceLocation LocalRangeEnd,
Declarator &TheDeclarator,
TypeResult TrailingReturnType =
TypeResult(),
SourceLocation TrailingReturnTypeLoc =
SourceLocation(),
DeclSpec *MethodQualifiers = nullptr);
/// Return a DeclaratorChunk for a block.
static DeclaratorChunk getBlockPointer(unsigned TypeQuals,
SourceLocation Loc) {
DeclaratorChunk I;
I.Kind = BlockPointer;
I.Loc = Loc;
I.Cls.TypeQuals = TypeQuals;
return I;
}
/// Return a DeclaratorChunk for a block.
static DeclaratorChunk getPipe(unsigned TypeQuals,
SourceLocation Loc) {
DeclaratorChunk I;
I.Kind = Pipe;
I.Loc = Loc;
I.Cls.TypeQuals = TypeQuals;
return I;
}
static DeclaratorChunk getMemberPointer(const CXXScopeSpec &SS,
unsigned TypeQuals,
SourceLocation StarLoc,
SourceLocation EndLoc) {
DeclaratorChunk I;
I.Kind = MemberPointer;
I.Loc = SS.getBeginLoc();
I.EndLoc = EndLoc;
new (&I.Mem) MemberPointerTypeInfo;
I.Mem.StarLoc = StarLoc;
I.Mem.TypeQuals = TypeQuals;
new (I.Mem.ScopeMem) CXXScopeSpec(SS);
return I;
}
/// Return a DeclaratorChunk for a paren.
static DeclaratorChunk getParen(SourceLocation LParenLoc,
SourceLocation RParenLoc) {
DeclaratorChunk I;
I.Kind = Paren;
I.Loc = LParenLoc;
I.EndLoc = RParenLoc;
return I;
}
bool isParen() const {
return Kind == Paren;
}
};
/// A parsed C++17 decomposition declarator of the form
/// '[' identifier-list ']'
class DecompositionDeclarator {
public:
struct Binding {
IdentifierInfo *Name;
SourceLocation NameLoc;
};
private:
/// The locations of the '[' and ']' tokens.
SourceLocation LSquareLoc, RSquareLoc;
/// The bindings.
Binding *Bindings;
unsigned NumBindings : 31;
unsigned DeleteBindings : 1;
friend class Declarator;
public:
DecompositionDeclarator()
: Bindings(nullptr), NumBindings(0), DeleteBindings(false) {}
DecompositionDeclarator(const DecompositionDeclarator &G) = delete;
DecompositionDeclarator &operator=(const DecompositionDeclarator &G) = delete;
~DecompositionDeclarator() {
if (DeleteBindings)
delete[] Bindings;
}
void clear() {
LSquareLoc = RSquareLoc = SourceLocation();
if (DeleteBindings)
delete[] Bindings;
Bindings = nullptr;
NumBindings = 0;
DeleteBindings = false;
}
ArrayRef<Binding> bindings() const {
return llvm::ArrayRef(Bindings, NumBindings);
}
bool isSet() const { return LSquareLoc.isValid(); }
SourceLocation getLSquareLoc() const { return LSquareLoc; }
SourceLocation getRSquareLoc() const { return RSquareLoc; }
SourceRange getSourceRange() const {
return SourceRange(LSquareLoc, RSquareLoc);
}
};
/// Described the kind of function definition (if any) provided for
/// a function.
enum class FunctionDefinitionKind {
Declaration,
Definition,
Defaulted,
Deleted
};
enum class DeclaratorContext {
File, // File scope declaration.
Prototype, // Within a function prototype.
ObjCResult, // An ObjC method result type.
ObjCParameter, // An ObjC method parameter type.
KNRTypeList, // K&R type definition list for formals.
TypeName, // Abstract declarator for types.
FunctionalCast, // Type in a C++ functional cast expression.
Member, // Struct/Union field.
Block, // Declaration within a block in a function.
ForInit, // Declaration within first part of a for loop.
SelectionInit, // Declaration within optional init stmt of if/switch.
Condition, // Condition declaration in a C++ if/switch/while/for.
TemplateParam, // Within a template parameter list.
CXXNew, // C++ new-expression.
CXXCatch, // C++ catch exception-declaration
ObjCCatch, // Objective-C catch exception-declaration
BlockLiteral, // Block literal declarator.
LambdaExpr, // Lambda-expression declarator.
LambdaExprParameter, // Lambda-expression parameter declarator.
ConversionId, // C++ conversion-type-id.
TrailingReturn, // C++11 trailing-type-specifier.
TrailingReturnVar, // C++11 trailing-type-specifier for variable.
TemplateArg, // Any template argument (in template argument list).
TemplateTypeArg, // Template type argument (in default argument).
AliasDecl, // C++11 alias-declaration.
AliasTemplate, // C++11 alias-declaration template.
RequiresExpr, // C++2a requires-expression.
Association // C11 _Generic selection expression association.
};
// Describes whether the current context is a context where an implicit
// typename is allowed (C++2a [temp.res]p5]).
enum class ImplicitTypenameContext {
No,
Yes,
};
/// Information about one declarator, including the parsed type
/// information and the identifier.
///
/// When the declarator is fully formed, this is turned into the appropriate
/// Decl object.
///
/// Declarators come in two types: normal declarators and abstract declarators.
/// Abstract declarators are used when parsing types, and don't have an
/// identifier. Normal declarators do have ID's.
///
/// Instances of this class should be a transient object that lives on the
/// stack, not objects that are allocated in large quantities on the heap.
class Declarator {
private:
const DeclSpec &DS;
CXXScopeSpec SS;
UnqualifiedId Name;
SourceRange Range;
/// Where we are parsing this declarator.
DeclaratorContext Context;
/// The C++17 structured binding, if any. This is an alternative to a Name.
DecompositionDeclarator BindingGroup;
/// DeclTypeInfo - This holds each type that the declarator includes as it is
/// parsed. This is pushed from the identifier out, which means that element
/// #0 will be the most closely bound to the identifier, and
/// DeclTypeInfo.back() will be the least closely bound.
SmallVector<DeclaratorChunk, 8> DeclTypeInfo;
/// InvalidType - Set by Sema::GetTypeForDeclarator().
unsigned InvalidType : 1;
/// GroupingParens - Set by Parser::ParseParenDeclarator().
unsigned GroupingParens : 1;
/// FunctionDefinition - Is this Declarator for a function or member
/// definition and, if so, what kind?
///
/// Actually a FunctionDefinitionKind.
unsigned FunctionDefinition : 2;
/// Is this Declarator a redeclaration?
unsigned Redeclaration : 1;
/// true if the declaration is preceded by \c __extension__.
unsigned Extension : 1;
/// Indicates whether this is an Objective-C instance variable.
unsigned ObjCIvar : 1;
/// Indicates whether this is an Objective-C 'weak' property.
unsigned ObjCWeakProperty : 1;
/// Indicates whether the InlineParams / InlineBindings storage has been used.
unsigned InlineStorageUsed : 1;
/// Indicates whether this declarator has an initializer.
unsigned HasInitializer : 1;
/// Attributes attached to the declarator.
ParsedAttributes Attrs;
/// Attributes attached to the declaration. See also documentation for the
/// corresponding constructor parameter.
const ParsedAttributesView &DeclarationAttrs;
/// The asm label, if specified.
Expr *AsmLabel;
/// \brief The constraint-expression specified by the trailing
/// requires-clause, or null if no such clause was specified.
Expr *TrailingRequiresClause;
/// If this declarator declares a template, its template parameter lists.
ArrayRef<TemplateParameterList *> TemplateParameterLists;
/// If the declarator declares an abbreviated function template, the innermost
/// template parameter list containing the invented and explicit template
/// parameters (if any).
TemplateParameterList *InventedTemplateParameterList;
#ifndef _MSC_VER
union {
#endif
/// InlineParams - This is a local array used for the first function decl
/// chunk to avoid going to the heap for the common case when we have one
/// function chunk in the declarator.
DeclaratorChunk::ParamInfo InlineParams[16];
DecompositionDeclarator::Binding InlineBindings[16];
#ifndef _MSC_VER
};
#endif
/// If this is the second or subsequent declarator in this declaration,
/// the location of the comma before this declarator.
SourceLocation CommaLoc;
/// If provided, the source location of the ellipsis used to describe
/// this declarator as a parameter pack.
SourceLocation EllipsisLoc;
friend struct DeclaratorChunk;
public:
/// `DS` and `DeclarationAttrs` must outlive the `Declarator`. In particular,
/// take care not to pass temporary objects for these parameters.
///
/// `DeclarationAttrs` contains [[]] attributes from the
/// attribute-specifier-seq at the beginning of a declaration, which appertain
/// to the declared entity itself. Attributes with other syntax (e.g. GNU)
/// should not be placed in this attribute list; if they occur at the
/// beginning of a declaration, they apply to the `DeclSpec` and should be
/// attached to that instead.
///
/// Here is an example of an attribute associated with a declaration:
///
/// [[deprecated]] int x, y;
///
/// This attribute appertains to all of the entities declared in the
/// declaration, i.e. `x` and `y` in this case.
Declarator(const DeclSpec &DS, const ParsedAttributesView &DeclarationAttrs,
DeclaratorContext C)
: DS(DS), Range(DS.getSourceRange()), Context(C),
InvalidType(DS.getTypeSpecType() == DeclSpec::TST_error),
GroupingParens(false), FunctionDefinition(static_cast<unsigned>(
FunctionDefinitionKind::Declaration)),
Redeclaration(false), Extension(false), ObjCIvar(false),
ObjCWeakProperty(false), InlineStorageUsed(false),
HasInitializer(false), Attrs(DS.getAttributePool().getFactory()),
DeclarationAttrs(DeclarationAttrs), AsmLabel(nullptr),
TrailingRequiresClause(nullptr),
InventedTemplateParameterList(nullptr) {
assert(llvm::all_of(DeclarationAttrs,
[](const ParsedAttr &AL) {
return AL.isStandardAttributeSyntax();
}) &&
"DeclarationAttrs may only contain [[]] attributes");
}
~Declarator() {
clear();
}
/// getDeclSpec - Return the declaration-specifier that this declarator was
/// declared with.
const DeclSpec &getDeclSpec() const { return DS; }
/// getMutableDeclSpec - Return a non-const version of the DeclSpec. This
/// should be used with extreme care: declspecs can often be shared between
/// multiple declarators, so mutating the DeclSpec affects all of the
/// Declarators. This should only be done when the declspec is known to not
/// be shared or when in error recovery etc.
DeclSpec &getMutableDeclSpec() { return const_cast<DeclSpec &>(DS); }
AttributePool &getAttributePool() const {
return Attrs.getPool();
}
/// getCXXScopeSpec - Return the C++ scope specifier (global scope or
/// nested-name-specifier) that is part of the declarator-id.
const CXXScopeSpec &getCXXScopeSpec() const { return SS; }
CXXScopeSpec &getCXXScopeSpec() { return SS; }
/// Retrieve the name specified by this declarator.
UnqualifiedId &getName() { return Name; }
const DecompositionDeclarator &getDecompositionDeclarator() const {
return BindingGroup;
}
DeclaratorContext getContext() const { return Context; }
bool isPrototypeContext() const {
return (Context == DeclaratorContext::Prototype ||
Context == DeclaratorContext::ObjCParameter ||
Context == DeclaratorContext::ObjCResult ||
Context == DeclaratorContext::LambdaExprParameter);
}
/// Get the source range that spans this declarator.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
void SetSourceRange(SourceRange R) { Range = R; }
/// SetRangeBegin - Set the start of the source range to Loc, unless it's
/// invalid.
void SetRangeBegin(SourceLocation Loc) {
if (!Loc.isInvalid())
Range.setBegin(Loc);
}
/// SetRangeEnd - Set the end of the source range to Loc, unless it's invalid.
void SetRangeEnd(SourceLocation Loc) {
if (!Loc.isInvalid())
Range.setEnd(Loc);
}
/// ExtendWithDeclSpec - Extend the declarator source range to include the
/// given declspec, unless its location is invalid. Adopts the range start if
/// the current range start is invalid.
void ExtendWithDeclSpec(const DeclSpec &DS) {
SourceRange SR = DS.getSourceRange();
if (Range.getBegin().isInvalid())
Range.setBegin(SR.getBegin());
if (!SR.getEnd().isInvalid())
Range.setEnd(SR.getEnd());
}
/// Reset the contents of this Declarator.
void clear() {
SS.clear();
Name.clear();
Range = DS.getSourceRange();
BindingGroup.clear();
for (unsigned i = 0, e = DeclTypeInfo.size(); i != e; ++i)
DeclTypeInfo[i].destroy();
DeclTypeInfo.clear();
Attrs.clear();
AsmLabel = nullptr;
InlineStorageUsed = false;
HasInitializer = false;
ObjCIvar = false;
ObjCWeakProperty = false;
CommaLoc = SourceLocation();
EllipsisLoc = SourceLocation();
}
/// mayOmitIdentifier - Return true if the identifier is either optional or
/// not allowed. This is true for typenames, prototypes, and template
/// parameter lists.
bool mayOmitIdentifier() const {
switch (Context) {
case DeclaratorContext::File:
case DeclaratorContext::KNRTypeList:
case DeclaratorContext::Member:
case DeclaratorContext::Block:
case DeclaratorContext::ForInit:
case DeclaratorContext::SelectionInit:
case DeclaratorContext::Condition:
return false;
case DeclaratorContext::TypeName:
case DeclaratorContext::FunctionalCast:
case DeclaratorContext::AliasDecl:
case DeclaratorContext::AliasTemplate:
case DeclaratorContext::Prototype:
case DeclaratorContext::LambdaExprParameter:
case DeclaratorContext::ObjCParameter:
case DeclaratorContext::ObjCResult:
case DeclaratorContext::TemplateParam:
case DeclaratorContext::CXXNew:
case DeclaratorContext::CXXCatch:
case DeclaratorContext::ObjCCatch:
case DeclaratorContext::BlockLiteral:
case DeclaratorContext::LambdaExpr:
case DeclaratorContext::ConversionId:
case DeclaratorContext::TemplateArg:
case DeclaratorContext::TemplateTypeArg:
case DeclaratorContext::TrailingReturn:
case DeclaratorContext::TrailingReturnVar:
case DeclaratorContext::RequiresExpr:
case DeclaratorContext::Association:
return true;
}
llvm_unreachable("unknown context kind!");
}
/// mayHaveIdentifier - Return true if the identifier is either optional or
/// required. This is true for normal declarators and prototypes, but not
/// typenames.
bool mayHaveIdentifier() const {
switch (Context) {
case DeclaratorContext::File:
case DeclaratorContext::KNRTypeList:
case DeclaratorContext::Member:
case DeclaratorContext::Block:
case DeclaratorContext::ForInit:
case DeclaratorContext::SelectionInit:
case DeclaratorContext::Condition:
case DeclaratorContext::Prototype:
case DeclaratorContext::LambdaExprParameter:
case DeclaratorContext::TemplateParam:
case DeclaratorContext::CXXCatch:
case DeclaratorContext::ObjCCatch:
case DeclaratorContext::RequiresExpr:
return true;
case DeclaratorContext::TypeName:
case DeclaratorContext::FunctionalCast:
case DeclaratorContext::CXXNew:
case DeclaratorContext::AliasDecl:
case DeclaratorContext::AliasTemplate:
case DeclaratorContext::ObjCParameter:
case DeclaratorContext::ObjCResult:
case DeclaratorContext::BlockLiteral:
case DeclaratorContext::LambdaExpr:
case DeclaratorContext::ConversionId:
case DeclaratorContext::TemplateArg:
case DeclaratorContext::TemplateTypeArg:
case DeclaratorContext::TrailingReturn:
case DeclaratorContext::TrailingReturnVar:
case DeclaratorContext::Association:
return false;
}
llvm_unreachable("unknown context kind!");
}
/// Return true if the context permits a C++17 decomposition declarator.
bool mayHaveDecompositionDeclarator() const {
switch (Context) {
case DeclaratorContext::File:
// FIXME: It's not clear that the proposal meant to allow file-scope
// structured bindings, but it does.
case DeclaratorContext::Block:
case DeclaratorContext::ForInit:
case DeclaratorContext::SelectionInit:
case DeclaratorContext::Condition:
return true;
case DeclaratorContext::Member:
case DeclaratorContext::Prototype:
case DeclaratorContext::TemplateParam:
case DeclaratorContext::RequiresExpr:
// Maybe one day...
return false;
// These contexts don't allow any kind of non-abstract declarator.
case DeclaratorContext::KNRTypeList:
case DeclaratorContext::TypeName:
case DeclaratorContext::FunctionalCast:
case DeclaratorContext::AliasDecl:
case DeclaratorContext::AliasTemplate:
case DeclaratorContext::LambdaExprParameter:
case DeclaratorContext::ObjCParameter:
case DeclaratorContext::ObjCResult:
case DeclaratorContext::CXXNew:
case DeclaratorContext::CXXCatch:
case DeclaratorContext::ObjCCatch:
case DeclaratorContext::BlockLiteral:
case DeclaratorContext::LambdaExpr:
case DeclaratorContext::ConversionId:
case DeclaratorContext::TemplateArg:
case DeclaratorContext::TemplateTypeArg:
case DeclaratorContext::TrailingReturn:
case DeclaratorContext::TrailingReturnVar:
case DeclaratorContext::Association:
return false;
}
llvm_unreachable("unknown context kind!");
}
/// mayBeFollowedByCXXDirectInit - Return true if the declarator can be
/// followed by a C++ direct initializer, e.g. "int x(1);".
bool mayBeFollowedByCXXDirectInit() const {
if (hasGroupingParens()) return false;
if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
return false;
if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern &&
Context != DeclaratorContext::File)
return false;
// Special names can't have direct initializers.
if (Name.getKind() != UnqualifiedIdKind::IK_Identifier)
return false;
switch (Context) {
case DeclaratorContext::File:
case DeclaratorContext::Block:
case DeclaratorContext::ForInit:
case DeclaratorContext::SelectionInit:
case DeclaratorContext::TrailingReturnVar:
return true;
case DeclaratorContext::Condition:
// This may not be followed by a direct initializer, but it can't be a
// function declaration either, and we'd prefer to perform a tentative
// parse in order to produce the right diagnostic.
return true;
case DeclaratorContext::KNRTypeList:
case DeclaratorContext::Member:
case DeclaratorContext::Prototype:
case DeclaratorContext::LambdaExprParameter:
case DeclaratorContext::ObjCParameter:
case DeclaratorContext::ObjCResult:
case DeclaratorContext::TemplateParam:
case DeclaratorContext::CXXCatch:
case DeclaratorContext::ObjCCatch:
case DeclaratorContext::TypeName:
case DeclaratorContext::FunctionalCast: // FIXME
case DeclaratorContext::CXXNew:
case DeclaratorContext::AliasDecl:
case DeclaratorContext::AliasTemplate:
case DeclaratorContext::BlockLiteral:
case DeclaratorContext::LambdaExpr:
case DeclaratorContext::ConversionId:
case DeclaratorContext::TemplateArg:
case DeclaratorContext::TemplateTypeArg:
case DeclaratorContext::TrailingReturn:
case DeclaratorContext::RequiresExpr:
case DeclaratorContext::Association:
return false;
}
llvm_unreachable("unknown context kind!");
}
/// isPastIdentifier - Return true if we have parsed beyond the point where
/// the name would appear. (This may happen even if we haven't actually parsed
/// a name, perhaps because this context doesn't require one.)
bool isPastIdentifier() const { return Name.isValid(); }
/// hasName - Whether this declarator has a name, which might be an
/// identifier (accessible via getIdentifier()) or some kind of
/// special C++ name (constructor, destructor, etc.), or a structured
/// binding (which is not exactly a name, but occupies the same position).
bool hasName() const {
return Name.getKind() != UnqualifiedIdKind::IK_Identifier ||
Name.Identifier || isDecompositionDeclarator();
}
/// Return whether this declarator is a decomposition declarator.
bool isDecompositionDeclarator() const {
return BindingGroup.isSet();
}
IdentifierInfo *getIdentifier() const {
if (Name.getKind() == UnqualifiedIdKind::IK_Identifier)
return Name.Identifier;
return nullptr;
}
SourceLocation getIdentifierLoc() const { return Name.StartLocation; }
/// Set the name of this declarator to be the given identifier.
void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc) {
Name.setIdentifier(Id, IdLoc);
}
/// Set the decomposition bindings for this declarator.
void
setDecompositionBindings(SourceLocation LSquareLoc,
ArrayRef<DecompositionDeclarator::Binding> Bindings,
SourceLocation RSquareLoc);
/// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
/// EndLoc, which should be the last token of the chunk.
/// This function takes attrs by R-Value reference because it takes ownership
/// of those attributes from the parameter.
void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs,
SourceLocation EndLoc) {
DeclTypeInfo.push_back(TI);
DeclTypeInfo.back().getAttrs().addAll(attrs.begin(), attrs.end());
getAttributePool().takeAllFrom(attrs.getPool());
if (!EndLoc.isInvalid())
SetRangeEnd(EndLoc);
}
/// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
/// EndLoc, which should be the last token of the chunk.
void AddTypeInfo(const DeclaratorChunk &TI, SourceLocation EndLoc) {
DeclTypeInfo.push_back(TI);
if (!EndLoc.isInvalid())
SetRangeEnd(EndLoc);
}
/// Add a new innermost chunk to this declarator.
void AddInnermostTypeInfo(const DeclaratorChunk &TI) {
DeclTypeInfo.insert(DeclTypeInfo.begin(), TI);
}
/// Return the number of types applied to this declarator.
unsigned getNumTypeObjects() const { return DeclTypeInfo.size(); }
/// Return the specified TypeInfo from this declarator. TypeInfo #0 is
/// closest to the identifier.
const DeclaratorChunk &getTypeObject(unsigned i) const {
assert(i < DeclTypeInfo.size() && "Invalid type chunk");
return DeclTypeInfo[i];
}
DeclaratorChunk &getTypeObject(unsigned i) {
assert(i < DeclTypeInfo.size() && "Invalid type chunk");
return DeclTypeInfo[i];
}
typedef SmallVectorImpl<DeclaratorChunk>::const_iterator type_object_iterator;
typedef llvm::iterator_range<type_object_iterator> type_object_range;
/// Returns the range of type objects, from the identifier outwards.
type_object_range type_objects() const {
return type_object_range(DeclTypeInfo.begin(), DeclTypeInfo.end());
}
void DropFirstTypeObject() {
assert(!DeclTypeInfo.empty() && "No type chunks to drop.");
DeclTypeInfo.front().destroy();
DeclTypeInfo.erase(DeclTypeInfo.begin());
}
/// Return the innermost (closest to the declarator) chunk of this
/// declarator that is not a parens chunk, or null if there are no
/// non-parens chunks.
const DeclaratorChunk *getInnermostNonParenChunk() const {
for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
if (!DeclTypeInfo[i].isParen())
return &DeclTypeInfo[i];
}
return nullptr;
}
/// Return the outermost (furthest from the declarator) chunk of
/// this declarator that is not a parens chunk, or null if there are
/// no non-parens chunks.
const DeclaratorChunk *getOutermostNonParenChunk() const {
for (unsigned i = DeclTypeInfo.size(), i_end = 0; i != i_end; --i) {
if (!DeclTypeInfo[i-1].isParen())
return &DeclTypeInfo[i-1];
}
return nullptr;
}
/// isArrayOfUnknownBound - This method returns true if the declarator
/// is a declarator for an array of unknown bound (looking through
/// parentheses).
bool isArrayOfUnknownBound() const {
const DeclaratorChunk *chunk = getInnermostNonParenChunk();
return (chunk && chunk->Kind == DeclaratorChunk::Array &&
!chunk->Arr.NumElts);
}
/// isFunctionDeclarator - This method returns true if the declarator
/// is a function declarator (looking through parentheses).
/// If true is returned, then the reference type parameter idx is
/// assigned with the index of the declaration chunk.
bool isFunctionDeclarator(unsigned& idx) const {
for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
switch (DeclTypeInfo[i].Kind) {
case DeclaratorChunk::Function:
idx = i;
return true;
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Array:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Pipe:
return false;
}
llvm_unreachable("Invalid type chunk");
}
return false;
}
/// isFunctionDeclarator - Once this declarator is fully parsed and formed,
/// this method returns true if the identifier is a function declarator
/// (looking through parentheses).
bool isFunctionDeclarator() const {
unsigned index;
return isFunctionDeclarator(index);
}
/// getFunctionTypeInfo - Retrieves the function type info object
/// (looking through parentheses).
DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() {
assert(isFunctionDeclarator() && "Not a function declarator!");
unsigned index = 0;
isFunctionDeclarator(index);
return DeclTypeInfo[index].Fun;
}
/// getFunctionTypeInfo - Retrieves the function type info object
/// (looking through parentheses).
const DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() const {
return const_cast<Declarator*>(this)->getFunctionTypeInfo();
}
/// Determine whether the declaration that will be produced from
/// this declaration will be a function.
///
/// A declaration can declare a function even if the declarator itself
/// isn't a function declarator, if the type specifier refers to a function
/// type. This routine checks for both cases.
bool isDeclarationOfFunction() const;
/// Return true if this declaration appears in a context where a
/// function declarator would be a function declaration.
bool isFunctionDeclarationContext() const {
if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
return false;
switch (Context) {
case DeclaratorContext::File:
case DeclaratorContext::Member:
case DeclaratorContext::Block:
case DeclaratorContext::ForInit:
case DeclaratorContext::SelectionInit:
return true;
case DeclaratorContext::Condition:
case DeclaratorContext::KNRTypeList:
case DeclaratorContext::TypeName:
case DeclaratorContext::FunctionalCast:
case DeclaratorContext::AliasDecl:
case DeclaratorContext::AliasTemplate:
case DeclaratorContext::Prototype:
case DeclaratorContext::LambdaExprParameter:
case DeclaratorContext::ObjCParameter:
case DeclaratorContext::ObjCResult:
case DeclaratorContext::TemplateParam:
case DeclaratorContext::CXXNew:
case DeclaratorContext::CXXCatch:
case DeclaratorContext::ObjCCatch:
case DeclaratorContext::BlockLiteral:
case DeclaratorContext::LambdaExpr:
case DeclaratorContext::ConversionId:
case DeclaratorContext::TemplateArg:
case DeclaratorContext::TemplateTypeArg:
case DeclaratorContext::TrailingReturn:
case DeclaratorContext::TrailingReturnVar:
case DeclaratorContext::RequiresExpr:
case DeclaratorContext::Association:
return false;
}
llvm_unreachable("unknown context kind!");
}
/// Determine whether this declaration appears in a context where an
/// expression could appear.
bool isExpressionContext() const {
switch (Context) {
case DeclaratorContext::File:
case DeclaratorContext::KNRTypeList:
case DeclaratorContext::Member:
// FIXME: sizeof(...) permits an expression.
case DeclaratorContext::TypeName:
case DeclaratorContext::FunctionalCast:
case DeclaratorContext::AliasDecl:
case DeclaratorContext::AliasTemplate:
case DeclaratorContext::Prototype:
case DeclaratorContext::LambdaExprParameter:
case DeclaratorContext::ObjCParameter:
case DeclaratorContext::ObjCResult:
case DeclaratorContext::TemplateParam:
case DeclaratorContext::CXXNew:
case DeclaratorContext::CXXCatch:
case DeclaratorContext::ObjCCatch:
case DeclaratorContext::BlockLiteral:
case DeclaratorContext::LambdaExpr:
case DeclaratorContext::ConversionId:
case DeclaratorContext::TrailingReturn:
case DeclaratorContext::TrailingReturnVar:
case DeclaratorContext::TemplateTypeArg:
case DeclaratorContext::RequiresExpr:
case DeclaratorContext::Association:
return false;
case DeclaratorContext::Block:
case DeclaratorContext::ForInit:
case DeclaratorContext::SelectionInit:
case DeclaratorContext::Condition:
case DeclaratorContext::TemplateArg:
return true;
}
llvm_unreachable("unknown context kind!");
}
/// Return true if a function declarator at this position would be a
/// function declaration.
bool isFunctionDeclaratorAFunctionDeclaration() const {
if (!isFunctionDeclarationContext())
return false;
for (unsigned I = 0, N = getNumTypeObjects(); I != N; ++I)
if (getTypeObject(I).Kind != DeclaratorChunk::Paren)
return false;
return true;
}
/// Determine whether a trailing return type was written (at any
/// level) within this declarator.
bool hasTrailingReturnType() const {
for (const auto &Chunk : type_objects())
if (Chunk.Kind == DeclaratorChunk::Function &&
Chunk.Fun.hasTrailingReturnType())
return true;
return false;
}
/// Get the trailing return type appearing (at any level) within this
/// declarator.
ParsedType getTrailingReturnType() const {
for (const auto &Chunk : type_objects())
if (Chunk.Kind == DeclaratorChunk::Function &&
Chunk.Fun.hasTrailingReturnType())
return Chunk.Fun.getTrailingReturnType();
return ParsedType();
}
/// \brief Sets a trailing requires clause for this declarator.
void setTrailingRequiresClause(Expr *TRC) {
TrailingRequiresClause = TRC;
SetRangeEnd(TRC->getEndLoc());
}
/// \brief Sets a trailing requires clause for this declarator.
Expr *getTrailingRequiresClause() {
return TrailingRequiresClause;
}
/// \brief Determine whether a trailing requires clause was written in this
/// declarator.
bool hasTrailingRequiresClause() const {
return TrailingRequiresClause != nullptr;
}
/// Sets the template parameter lists that preceded the declarator.
void setTemplateParameterLists(ArrayRef<TemplateParameterList *> TPLs) {
TemplateParameterLists = TPLs;
}
/// The template parameter lists that preceded the declarator.
ArrayRef<TemplateParameterList *> getTemplateParameterLists() const {
return TemplateParameterLists;
}
/// Sets the template parameter list generated from the explicit template
/// parameters along with any invented template parameters from
/// placeholder-typed parameters.
void setInventedTemplateParameterList(TemplateParameterList *Invented) {
InventedTemplateParameterList = Invented;
}
/// The template parameter list generated from the explicit template
/// parameters along with any invented template parameters from
/// placeholder-typed parameters, if there were any such parameters.
TemplateParameterList * getInventedTemplateParameterList() const {
return InventedTemplateParameterList;
}
/// takeAttributes - Takes attributes from the given parsed-attributes
/// set and add them to this declarator.
///
/// These examples both add 3 attributes to "var":
/// short int var __attribute__((aligned(16),common,deprecated));
/// short int x, __attribute__((aligned(16)) var
/// __attribute__((common,deprecated));
///
/// Also extends the range of the declarator.
void takeAttributes(ParsedAttributes &attrs) {
Attrs.takeAllFrom(attrs);
if (attrs.Range.getEnd().isValid())
SetRangeEnd(attrs.Range.getEnd());
}
const ParsedAttributes &getAttributes() const { return Attrs; }
ParsedAttributes &getAttributes() { return Attrs; }
const ParsedAttributesView &getDeclarationAttributes() const {
return DeclarationAttrs;
}
/// hasAttributes - do we contain any attributes?
bool hasAttributes() const {
if (!getAttributes().empty() || !getDeclarationAttributes().empty() ||
getDeclSpec().hasAttributes())
return true;
for (unsigned i = 0, e = getNumTypeObjects(); i != e; ++i)
if (!getTypeObject(i).getAttrs().empty())
return true;
return false;
}
/// Return a source range list of C++11 attributes associated
/// with the declarator.
void getCXX11AttributeRanges(SmallVectorImpl<SourceRange> &Ranges) {
for (const ParsedAttr &AL : Attrs)
if (AL.isCXX11Attribute())
Ranges.push_back(AL.getRange());
}
void setAsmLabel(Expr *E) { AsmLabel = E; }
Expr *getAsmLabel() const { return AsmLabel; }
void setExtension(bool Val = true) { Extension = Val; }
bool getExtension() const { return Extension; }
void setObjCIvar(bool Val = true) { ObjCIvar = Val; }
bool isObjCIvar() const { return ObjCIvar; }
void setObjCWeakProperty(bool Val = true) { ObjCWeakProperty = Val; }
bool isObjCWeakProperty() const { return ObjCWeakProperty; }
void setInvalidType(bool Val = true) { InvalidType = Val; }
bool isInvalidType() const {
return InvalidType || DS.getTypeSpecType() == DeclSpec::TST_error;
}
void setGroupingParens(bool flag) { GroupingParens = flag; }
bool hasGroupingParens() const { return GroupingParens; }
bool isFirstDeclarator() const { return !CommaLoc.isValid(); }
SourceLocation getCommaLoc() const { return CommaLoc; }
void setCommaLoc(SourceLocation CL) { CommaLoc = CL; }
bool hasEllipsis() const { return EllipsisLoc.isValid(); }
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
void setEllipsisLoc(SourceLocation EL) { EllipsisLoc = EL; }
void setFunctionDefinitionKind(FunctionDefinitionKind Val) {
FunctionDefinition = static_cast<unsigned>(Val);
}
bool isFunctionDefinition() const {
return getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration;
}
FunctionDefinitionKind getFunctionDefinitionKind() const {
return (FunctionDefinitionKind)FunctionDefinition;
}
void setHasInitializer(bool Val = true) { HasInitializer = Val; }
bool hasInitializer() const { return HasInitializer; }
/// Returns true if this declares a real member and not a friend.
bool isFirstDeclarationOfMember() {
return getContext() == DeclaratorContext::Member &&
!getDeclSpec().isFriendSpecified();
}
/// Returns true if this declares a static member. This cannot be called on a
/// declarator outside of a MemberContext because we won't know until
/// redeclaration time if the decl is static.
bool isStaticMember();
/// Returns true if this declares a constructor or a destructor.
bool isCtorOrDtor();
void setRedeclaration(bool Val) { Redeclaration = Val; }
bool isRedeclaration() const { return Redeclaration; }
};
/// This little struct is used to capture information about
/// structure field declarators, which is basically just a bitfield size.
struct FieldDeclarator {
Declarator D;
Expr *BitfieldSize;
explicit FieldDeclarator(const DeclSpec &DS,
const ParsedAttributes &DeclarationAttrs)
: D(DS, DeclarationAttrs, DeclaratorContext::Member),
BitfieldSize(nullptr) {}
};
/// Represents a C++11 virt-specifier-seq.
class VirtSpecifiers {
public:
enum Specifier {
VS_None = 0,
VS_Override = 1,
VS_Final = 2,
VS_Sealed = 4,
// Represents the __final keyword, which is legal for gcc in pre-C++11 mode.
VS_GNU_Final = 8,
VS_Abstract = 16
};
VirtSpecifiers() : Specifiers(0), LastSpecifier(VS_None) { }
bool SetSpecifier(Specifier VS, SourceLocation Loc,
const char *&PrevSpec);
bool isUnset() const { return Specifiers == 0; }
bool isOverrideSpecified() const { return Specifiers & VS_Override; }
SourceLocation getOverrideLoc() const { return VS_overrideLoc; }
bool isFinalSpecified() const { return Specifiers & (VS_Final | VS_Sealed | VS_GNU_Final); }
bool isFinalSpelledSealed() const { return Specifiers & VS_Sealed; }
SourceLocation getFinalLoc() const { return VS_finalLoc; }
SourceLocation getAbstractLoc() const { return VS_abstractLoc; }
void clear() { Specifiers = 0; }
static const char *getSpecifierName(Specifier VS);
SourceLocation getFirstLocation() const { return FirstLocation; }
SourceLocation getLastLocation() const { return LastLocation; }
Specifier getLastSpecifier() const { return LastSpecifier; }
private:
unsigned Specifiers;
Specifier LastSpecifier;
SourceLocation VS_overrideLoc, VS_finalLoc, VS_abstractLoc;
SourceLocation FirstLocation;
SourceLocation LastLocation;
};
enum class LambdaCaptureInitKind {
NoInit, //!< [a]
CopyInit, //!< [a = b], [a = {b}]
DirectInit, //!< [a(b)]
ListInit //!< [a{b}]
};
/// Represents a complete lambda introducer.
struct LambdaIntroducer {
/// An individual capture in a lambda introducer.
struct LambdaCapture {
LambdaCaptureKind Kind;
SourceLocation Loc;
IdentifierInfo *Id;
SourceLocation EllipsisLoc;
LambdaCaptureInitKind InitKind;
ExprResult Init;
ParsedType InitCaptureType;
SourceRange ExplicitRange;
LambdaCapture(LambdaCaptureKind Kind, SourceLocation Loc,
IdentifierInfo *Id, SourceLocation EllipsisLoc,
LambdaCaptureInitKind InitKind, ExprResult Init,
ParsedType InitCaptureType,
SourceRange ExplicitRange)
: Kind(Kind), Loc(Loc), Id(Id), EllipsisLoc(EllipsisLoc),
InitKind(InitKind), Init(Init), InitCaptureType(InitCaptureType),
ExplicitRange(ExplicitRange) {}
};
SourceRange Range;
SourceLocation DefaultLoc;
LambdaCaptureDefault Default;
SmallVector<LambdaCapture, 4> Captures;
LambdaIntroducer()
: Default(LCD_None) {}
bool hasLambdaCapture() const {
return Captures.size() > 0 || Default != LCD_None;
}
/// Append a capture in a lambda introducer.
void addCapture(LambdaCaptureKind Kind,
SourceLocation Loc,
IdentifierInfo* Id,
SourceLocation EllipsisLoc,
LambdaCaptureInitKind InitKind,
ExprResult Init,
ParsedType InitCaptureType,
SourceRange ExplicitRange) {
Captures.push_back(LambdaCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
InitCaptureType, ExplicitRange));
}
};
struct InventedTemplateParameterInfo {
/// The number of parameters in the template parameter list that were
/// explicitly specified by the user, as opposed to being invented by use
/// of an auto parameter.
unsigned NumExplicitTemplateParams = 0;
/// If this is a generic lambda or abbreviated function template, use this
/// as the depth of each 'auto' parameter, during initial AST construction.
unsigned AutoTemplateParameterDepth = 0;
/// Store the list of the template parameters for a generic lambda or an
/// abbreviated function template.
/// If this is a generic lambda or abbreviated function template, this holds
/// the explicit template parameters followed by the auto parameters
/// converted into TemplateTypeParmDecls.
/// It can be used to construct the generic lambda or abbreviated template's
/// template parameter list during initial AST construction.
SmallVector<NamedDecl*, 4> TemplateParams;
};
} // end namespace clang
#endif // LLVM_CLANG_SEMA_DECLSPEC_H