//===--- DeclSpec.h - Parsed declaration specifiers -------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines the classes used to store parsed information about
 
/// declaration-specifiers and declarators.
 
///
 
/// \verbatim
 
///   static const int volatile x, *y, *(*(*z)[10])(const void *x);
 
///   ------------------------- -  --  ---------------------------
 
///     declaration-specifiers  \  |   /
 
///                            declarators
 
/// \endverbatim
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_SEMA_DECLSPEC_H
 
#define LLVM_CLANG_SEMA_DECLSPEC_H
 
 
 
#include "clang/AST/DeclCXX.h"
 
#include "clang/AST/DeclObjCCommon.h"
 
#include "clang/AST/NestedNameSpecifier.h"
 
#include "clang/Basic/ExceptionSpecificationType.h"
 
#include "clang/Basic/Lambda.h"
 
#include "clang/Basic/OperatorKinds.h"
 
#include "clang/Basic/Specifiers.h"
 
#include "clang/Lex/Token.h"
 
#include "clang/Sema/Ownership.h"
 
#include "clang/Sema/ParsedAttr.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/ErrorHandling.h"
 
 
 
namespace clang {
 
  class ASTContext;
 
  class CXXRecordDecl;
 
  class TypeLoc;
 
  class LangOptions;
 
  class IdentifierInfo;
 
  class NamespaceAliasDecl;
 
  class NamespaceDecl;
 
  class ObjCDeclSpec;
 
  class Sema;
 
  class Declarator;
 
  struct TemplateIdAnnotation;
 
 
 
/// Represents a C++ nested-name-specifier or a global scope specifier.
 
///
 
/// These can be in 3 states:
 
///   1) Not present, identified by isEmpty()
 
///   2) Present, identified by isNotEmpty()
 
///      2.a) Valid, identified by isValid()
 
///      2.b) Invalid, identified by isInvalid().
 
///
 
/// isSet() is deprecated because it mostly corresponded to "valid" but was
 
/// often used as if it meant "present".
 
///
 
/// The actual scope is described by getScopeRep().
 
class CXXScopeSpec {
 
  SourceRange Range;
 
  NestedNameSpecifierLocBuilder Builder;
 
 
 
public:
 
  SourceRange getRange() const { return Range; }
 
  void setRange(SourceRange R) { Range = R; }
 
  void setBeginLoc(SourceLocation Loc) { Range.setBegin(Loc); }
 
  void setEndLoc(SourceLocation Loc) { Range.setEnd(Loc); }
 
  SourceLocation getBeginLoc() const { return Range.getBegin(); }
 
  SourceLocation getEndLoc() const { return Range.getEnd(); }
 
 
 
  /// Retrieve the representation of the nested-name-specifier.
 
  NestedNameSpecifier *getScopeRep() const {
 
    return Builder.getRepresentation();
 
  }
 
 
 
  /// Extend the current nested-name-specifier by another
 
  /// nested-name-specifier component of the form 'type::'.
 
  ///
 
  /// \param Context The AST context in which this nested-name-specifier
 
  /// resides.
 
  ///
 
  /// \param TemplateKWLoc The location of the 'template' keyword, if present.
 
  ///
 
  /// \param TL The TypeLoc that describes the type preceding the '::'.
 
  ///
 
  /// \param ColonColonLoc The location of the trailing '::'.
 
  void Extend(ASTContext &Context, SourceLocation TemplateKWLoc, TypeLoc TL,
 
              SourceLocation ColonColonLoc);
 
 
 
  /// Extend the current nested-name-specifier by another
 
  /// nested-name-specifier component of the form 'identifier::'.
 
  ///
 
  /// \param Context The AST context in which this nested-name-specifier
 
  /// resides.
 
  ///
 
  /// \param Identifier The identifier.
 
  ///
 
  /// \param IdentifierLoc The location of the identifier.
 
  ///
 
  /// \param ColonColonLoc The location of the trailing '::'.
 
  void Extend(ASTContext &Context, IdentifierInfo *Identifier,
 
              SourceLocation IdentifierLoc, SourceLocation ColonColonLoc);
 
 
 
  /// Extend the current nested-name-specifier by another
 
  /// nested-name-specifier component of the form 'namespace::'.
 
  ///
 
  /// \param Context The AST context in which this nested-name-specifier
 
  /// resides.
 
  ///
 
  /// \param Namespace The namespace.
 
  ///
 
  /// \param NamespaceLoc The location of the namespace name.
 
  ///
 
  /// \param ColonColonLoc The location of the trailing '::'.
 
  void Extend(ASTContext &Context, NamespaceDecl *Namespace,
 
              SourceLocation NamespaceLoc, SourceLocation ColonColonLoc);
 
 
 
  /// Extend the current nested-name-specifier by another
 
  /// nested-name-specifier component of the form 'namespace-alias::'.
 
  ///
 
  /// \param Context The AST context in which this nested-name-specifier
 
  /// resides.
 
  ///
 
  /// \param Alias The namespace alias.
 
  ///
 
  /// \param AliasLoc The location of the namespace alias
 
  /// name.
 
  ///
 
  /// \param ColonColonLoc The location of the trailing '::'.
 
  void Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
 
              SourceLocation AliasLoc, SourceLocation ColonColonLoc);
 
 
 
  /// Turn this (empty) nested-name-specifier into the global
 
  /// nested-name-specifier '::'.
 
  void MakeGlobal(ASTContext &Context, SourceLocation ColonColonLoc);
 
 
 
  /// Turns this (empty) nested-name-specifier into '__super'
 
  /// nested-name-specifier.
 
  ///
 
  /// \param Context The AST context in which this nested-name-specifier
 
  /// resides.
 
  ///
 
  /// \param RD The declaration of the class in which nested-name-specifier
 
  /// appeared.
 
  ///
 
  /// \param SuperLoc The location of the '__super' keyword.
 
  /// name.
 
  ///
 
  /// \param ColonColonLoc The location of the trailing '::'.
 
  void MakeSuper(ASTContext &Context, CXXRecordDecl *RD,
 
                 SourceLocation SuperLoc, SourceLocation ColonColonLoc);
 
 
 
  /// Make a new nested-name-specifier from incomplete source-location
 
  /// information.
 
  ///
 
  /// FIXME: This routine should be used very, very rarely, in cases where we
 
  /// need to synthesize a nested-name-specifier. Most code should instead use
 
  /// \c Adopt() with a proper \c NestedNameSpecifierLoc.
 
  void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier,
 
                   SourceRange R);
 
 
 
  /// Adopt an existing nested-name-specifier (with source-range
 
  /// information).
 
  void Adopt(NestedNameSpecifierLoc Other);
 
 
 
  /// Retrieve a nested-name-specifier with location information, copied
 
  /// into the given AST context.
 
  ///
 
  /// \param Context The context into which this nested-name-specifier will be
 
  /// copied.
 
  NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const;
 
 
 
  /// Retrieve the location of the name in the last qualifier
 
  /// in this nested name specifier.
 
  ///
 
  /// For example, the location of \c bar
 
  /// in
 
  /// \verbatim
 
  ///   \::foo::bar<0>::
 
  ///           ^~~
 
  /// \endverbatim
 
  SourceLocation getLastQualifierNameLoc() const;
 
 
 
  /// No scope specifier.
 
  bool isEmpty() const { return Range.isInvalid() && getScopeRep() == nullptr; }
 
  /// A scope specifier is present, but may be valid or invalid.
 
  bool isNotEmpty() const { return !isEmpty(); }
 
 
 
  /// An error occurred during parsing of the scope specifier.
 
  bool isInvalid() const { return Range.isValid() && getScopeRep() == nullptr; }
 
  /// A scope specifier is present, and it refers to a real scope.
 
  bool isValid() const { return getScopeRep() != nullptr; }
 
 
 
  /// Indicate that this nested-name-specifier is invalid.
 
  void SetInvalid(SourceRange R) {
 
    assert(R.isValid() && "Must have a valid source range");
 
    if (Range.getBegin().isInvalid())
 
      Range.setBegin(R.getBegin());
 
    Range.setEnd(R.getEnd());
 
    Builder.Clear();
 
  }
 
 
 
  /// Deprecated.  Some call sites intend isNotEmpty() while others intend
 
  /// isValid().
 
  bool isSet() const { return getScopeRep() != nullptr; }
 
 
 
  void clear() {
 
    Range = SourceRange();
 
    Builder.Clear();
 
  }
 
 
 
  /// Retrieve the data associated with the source-location information.
 
  char *location_data() const { return Builder.getBuffer().first; }
 
 
 
  /// Retrieve the size of the data associated with source-location
 
  /// information.
 
  unsigned location_size() const { return Builder.getBuffer().second; }
 
};
 
 
 
/// Captures information about "declaration specifiers".
 
///
 
/// "Declaration specifiers" encompasses storage-class-specifiers,
 
/// type-specifiers, type-qualifiers, and function-specifiers.
 
class DeclSpec {
 
public:
 
  /// storage-class-specifier
 
  /// \note The order of these enumerators is important for diagnostics.
 
  enum SCS {
 
    SCS_unspecified = 0,
 
    SCS_typedef,
 
    SCS_extern,
 
    SCS_static,
 
    SCS_auto,
 
    SCS_register,
 
    SCS_private_extern,
 
    SCS_mutable
 
  };
 
 
 
  // Import thread storage class specifier enumeration and constants.
 
  // These can be combined with SCS_extern and SCS_static.
 
  typedef ThreadStorageClassSpecifier TSCS;
 
  static const TSCS TSCS_unspecified = clang::TSCS_unspecified;
 
  static const TSCS TSCS___thread = clang::TSCS___thread;
 
  static const TSCS TSCS_thread_local = clang::TSCS_thread_local;
 
  static const TSCS TSCS__Thread_local = clang::TSCS__Thread_local;
 
 
 
  enum TSC {
 
    TSC_unspecified,
 
    TSC_imaginary,
 
    TSC_complex
 
  };
 
 
 
  // Import type specifier type enumeration and constants.
 
  typedef TypeSpecifierType TST;
 
  static const TST TST_unspecified = clang::TST_unspecified;
 
  static const TST TST_void = clang::TST_void;
 
  static const TST TST_char = clang::TST_char;
 
  static const TST TST_wchar = clang::TST_wchar;
 
  static const TST TST_char8 = clang::TST_char8;
 
  static const TST TST_char16 = clang::TST_char16;
 
  static const TST TST_char32 = clang::TST_char32;
 
  static const TST TST_int = clang::TST_int;
 
  static const TST TST_int128 = clang::TST_int128;
 
  static const TST TST_bitint = clang::TST_bitint;
 
  static const TST TST_half = clang::TST_half;
 
  static const TST TST_BFloat16 = clang::TST_BFloat16;
 
  static const TST TST_float = clang::TST_float;
 
  static const TST TST_double = clang::TST_double;
 
  static const TST TST_float16 = clang::TST_Float16;
 
  static const TST TST_accum = clang::TST_Accum;
 
  static const TST TST_fract = clang::TST_Fract;
 
  static const TST TST_float128 = clang::TST_float128;
 
  static const TST TST_ibm128 = clang::TST_ibm128;
 
  static const TST TST_bool = clang::TST_bool;
 
  static const TST TST_decimal32 = clang::TST_decimal32;
 
  static const TST TST_decimal64 = clang::TST_decimal64;
 
  static const TST TST_decimal128 = clang::TST_decimal128;
 
  static const TST TST_enum = clang::TST_enum;
 
  static const TST TST_union = clang::TST_union;
 
  static const TST TST_struct = clang::TST_struct;
 
  static const TST TST_interface = clang::TST_interface;
 
  static const TST TST_class = clang::TST_class;
 
  static const TST TST_typename = clang::TST_typename;
 
  static const TST TST_typeofType = clang::TST_typeofType;
 
  static const TST TST_typeofExpr = clang::TST_typeofExpr;
 
  static const TST TST_typeof_unqualType = clang::TST_typeof_unqualType;
 
  static const TST TST_typeof_unqualExpr = clang::TST_typeof_unqualExpr;
 
  static const TST TST_decltype = clang::TST_decltype;
 
  static const TST TST_decltype_auto = clang::TST_decltype_auto;
 
#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait)                                     \
 
  static const TST TST_##Trait = clang::TST_##Trait;
 
#include "clang/Basic/TransformTypeTraits.def"
 
  static const TST TST_auto = clang::TST_auto;
 
  static const TST TST_auto_type = clang::TST_auto_type;
 
  static const TST TST_unknown_anytype = clang::TST_unknown_anytype;
 
  static const TST TST_atomic = clang::TST_atomic;
 
#define GENERIC_IMAGE_TYPE(ImgType, Id) \
 
  static const TST TST_##ImgType##_t = clang::TST_##ImgType##_t;
 
#include "clang/Basic/OpenCLImageTypes.def"
 
  static const TST TST_error = clang::TST_error;
 
 
 
  // type-qualifiers
 
  enum TQ {   // NOTE: These flags must be kept in sync with Qualifiers::TQ.
 
    TQ_unspecified = 0,
 
    TQ_const       = 1,
 
    TQ_restrict    = 2,
 
    TQ_volatile    = 4,
 
    TQ_unaligned   = 8,
 
    // This has no corresponding Qualifiers::TQ value, because it's not treated
 
    // as a qualifier in our type system.
 
    TQ_atomic      = 16
 
  };
 
 
 
  /// ParsedSpecifiers - Flags to query which specifiers were applied.  This is
 
  /// returned by getParsedSpecifiers.
 
  enum ParsedSpecifiers {
 
    PQ_None                  = 0,
 
    PQ_StorageClassSpecifier = 1,
 
    PQ_TypeSpecifier         = 2,
 
    PQ_TypeQualifier         = 4,
 
    PQ_FunctionSpecifier     = 8
 
    // FIXME: Attributes should be included here.
 
  };
 
 
 
  enum FriendSpecified : bool {
 
    No,
 
    Yes,
 
  };
 
 
 
private:
 
  // storage-class-specifier
 
  /*SCS*/unsigned StorageClassSpec : 3;
 
  /*TSCS*/unsigned ThreadStorageClassSpec : 2;
 
  unsigned SCS_extern_in_linkage_spec : 1;
 
 
 
  // type-specifier
 
  /*TypeSpecifierWidth*/ unsigned TypeSpecWidth : 2;
 
  /*TSC*/unsigned TypeSpecComplex : 2;
 
  /*TSS*/unsigned TypeSpecSign : 2;
 
  /*TST*/unsigned TypeSpecType : 7;
 
  unsigned TypeAltiVecVector : 1;
 
  unsigned TypeAltiVecPixel : 1;
 
  unsigned TypeAltiVecBool : 1;
 
  unsigned TypeSpecOwned : 1;
 
  unsigned TypeSpecPipe : 1;
 
  unsigned TypeSpecSat : 1;
 
  unsigned ConstrainedAuto : 1;
 
 
 
  // type-qualifiers
 
  unsigned TypeQualifiers : 5;  // Bitwise OR of TQ.
 
 
 
  // function-specifier
 
  unsigned FS_inline_specified : 1;
 
  unsigned FS_forceinline_specified: 1;
 
  unsigned FS_virtual_specified : 1;
 
  unsigned FS_noreturn_specified : 1;
 
 
 
  // friend-specifier
 
  unsigned Friend_specified : 1;
 
 
 
  // constexpr-specifier
 
  unsigned ConstexprSpecifier : 2;
 
 
 
  union {
 
    UnionParsedType TypeRep;
 
    Decl *DeclRep;
 
    Expr *ExprRep;
 
    TemplateIdAnnotation *TemplateIdRep;
 
  };
 
 
 
  /// ExplicitSpecifier - Store information about explicit spicifer.
 
  ExplicitSpecifier FS_explicit_specifier;
 
 
 
  // attributes.
 
  ParsedAttributes Attrs;
 
 
 
  // Scope specifier for the type spec, if applicable.
 
  CXXScopeSpec TypeScope;
 
 
 
  // SourceLocation info.  These are null if the item wasn't specified or if
 
  // the setting was synthesized.
 
  SourceRange Range;
 
 
 
  SourceLocation StorageClassSpecLoc, ThreadStorageClassSpecLoc;
 
  SourceRange TSWRange;
 
  SourceLocation TSCLoc, TSSLoc, TSTLoc, AltiVecLoc, TSSatLoc;
 
  /// TSTNameLoc - If TypeSpecType is any of class, enum, struct, union,
 
  /// typename, then this is the location of the named type (if present);
 
  /// otherwise, it is the same as TSTLoc. Hence, the pair TSTLoc and
 
  /// TSTNameLoc provides source range info for tag types.
 
  SourceLocation TSTNameLoc;
 
  SourceRange TypeofParensRange;
 
  SourceLocation TQ_constLoc, TQ_restrictLoc, TQ_volatileLoc, TQ_atomicLoc,
 
      TQ_unalignedLoc;
 
  SourceLocation FS_inlineLoc, FS_virtualLoc, FS_explicitLoc, FS_noreturnLoc;
 
  SourceLocation FS_explicitCloseParenLoc;
 
  SourceLocation FS_forceinlineLoc;
 
  SourceLocation FriendLoc, ModulePrivateLoc, ConstexprLoc;
 
  SourceLocation TQ_pipeLoc;
 
 
 
  WrittenBuiltinSpecs writtenBS;
 
  void SaveWrittenBuiltinSpecs();
 
 
 
  ObjCDeclSpec *ObjCQualifiers;
 
 
 
  static bool isTypeRep(TST T) {
 
    return T == TST_atomic || T == TST_typename || T == TST_typeofType ||
 
           T == TST_typeof_unqualType || isTransformTypeTrait(T);
 
  }
 
  static bool isExprRep(TST T) {
 
    return T == TST_typeofExpr || T == TST_typeof_unqualExpr ||
 
           T == TST_decltype || T == TST_bitint;
 
  }
 
  static bool isTemplateIdRep(TST T) {
 
    return (T == TST_auto || T == TST_decltype_auto);
 
  }
 
 
 
  DeclSpec(const DeclSpec &) = delete;
 
  void operator=(const DeclSpec &) = delete;
 
public:
 
  static bool isDeclRep(TST T) {
 
    return (T == TST_enum || T == TST_struct ||
 
            T == TST_interface || T == TST_union ||
 
            T == TST_class);
 
  }
 
  static bool isTransformTypeTrait(TST T) {
 
    constexpr std::array<TST, 16> Traits = {
 
#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) TST_##Trait,
 
#include "clang/Basic/TransformTypeTraits.def"
 
    };
 
 
 
    return T >= Traits.front() && T <= Traits.back();
 
  }
 
 
 
  DeclSpec(AttributeFactory &attrFactory)
 
      : StorageClassSpec(SCS_unspecified),
 
        ThreadStorageClassSpec(TSCS_unspecified),
 
        SCS_extern_in_linkage_spec(false),
 
        TypeSpecWidth(static_cast<unsigned>(TypeSpecifierWidth::Unspecified)),
 
        TypeSpecComplex(TSC_unspecified),
 
        TypeSpecSign(static_cast<unsigned>(TypeSpecifierSign::Unspecified)),
 
        TypeSpecType(TST_unspecified), TypeAltiVecVector(false),
 
        TypeAltiVecPixel(false), TypeAltiVecBool(false), TypeSpecOwned(false),
 
        TypeSpecPipe(false), TypeSpecSat(false), ConstrainedAuto(false),
 
        TypeQualifiers(TQ_unspecified), FS_inline_specified(false),
 
        FS_forceinline_specified(false), FS_virtual_specified(false),
 
        FS_noreturn_specified(false), Friend_specified(false),
 
        ConstexprSpecifier(
 
            static_cast<unsigned>(ConstexprSpecKind::Unspecified)),
 
        Attrs(attrFactory), writtenBS(), ObjCQualifiers(nullptr) {}
 
 
 
  // storage-class-specifier
 
  SCS getStorageClassSpec() const { return (SCS)StorageClassSpec; }
 
  TSCS getThreadStorageClassSpec() const {
 
    return (TSCS)ThreadStorageClassSpec;
 
  }
 
  bool isExternInLinkageSpec() const { return SCS_extern_in_linkage_spec; }
 
  void setExternInLinkageSpec(bool Value) {
 
    SCS_extern_in_linkage_spec = Value;
 
  }
 
 
 
  SourceLocation getStorageClassSpecLoc() const { return StorageClassSpecLoc; }
 
  SourceLocation getThreadStorageClassSpecLoc() const {
 
    return ThreadStorageClassSpecLoc;
 
  }
 
 
 
  void ClearStorageClassSpecs() {
 
    StorageClassSpec           = DeclSpec::SCS_unspecified;
 
    ThreadStorageClassSpec     = DeclSpec::TSCS_unspecified;
 
    SCS_extern_in_linkage_spec = false;
 
    StorageClassSpecLoc        = SourceLocation();
 
    ThreadStorageClassSpecLoc  = SourceLocation();
 
  }
 
 
 
  void ClearTypeSpecType() {
 
    TypeSpecType = DeclSpec::TST_unspecified;
 
    TypeSpecOwned = false;
 
    TSTLoc = SourceLocation();
 
  }
 
 
 
  // type-specifier
 
  TypeSpecifierWidth getTypeSpecWidth() const {
 
    return static_cast<TypeSpecifierWidth>(TypeSpecWidth);
 
  }
 
  TSC getTypeSpecComplex() const { return (TSC)TypeSpecComplex; }
 
  TypeSpecifierSign getTypeSpecSign() const {
 
    return static_cast<TypeSpecifierSign>(TypeSpecSign);
 
  }
 
  TST getTypeSpecType() const { return (TST)TypeSpecType; }
 
  bool isTypeAltiVecVector() const { return TypeAltiVecVector; }
 
  bool isTypeAltiVecPixel() const { return TypeAltiVecPixel; }
 
  bool isTypeAltiVecBool() const { return TypeAltiVecBool; }
 
  bool isTypeSpecOwned() const { return TypeSpecOwned; }
 
  bool isTypeRep() const { return isTypeRep((TST) TypeSpecType); }
 
  bool isTypeSpecPipe() const { return TypeSpecPipe; }
 
  bool isTypeSpecSat() const { return TypeSpecSat; }
 
  bool isConstrainedAuto() const { return ConstrainedAuto; }
 
 
 
  ParsedType getRepAsType() const {
 
    assert(isTypeRep((TST) TypeSpecType) && "DeclSpec does not store a type");
 
    return TypeRep;
 
  }
 
  Decl *getRepAsDecl() const {
 
    assert(isDeclRep((TST) TypeSpecType) && "DeclSpec does not store a decl");
 
    return DeclRep;
 
  }
 
  Expr *getRepAsExpr() const {
 
    assert(isExprRep((TST) TypeSpecType) && "DeclSpec does not store an expr");
 
    return ExprRep;
 
  }
 
  TemplateIdAnnotation *getRepAsTemplateId() const {
 
    assert(isTemplateIdRep((TST) TypeSpecType) &&
 
           "DeclSpec does not store a template id");
 
    return TemplateIdRep;
 
  }
 
  CXXScopeSpec &getTypeSpecScope() { return TypeScope; }
 
  const CXXScopeSpec &getTypeSpecScope() const { return TypeScope; }
 
 
 
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
 
  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
 
 
 
  SourceLocation getTypeSpecWidthLoc() const { return TSWRange.getBegin(); }
 
  SourceRange getTypeSpecWidthRange() const { return TSWRange; }
 
  SourceLocation getTypeSpecComplexLoc() const { return TSCLoc; }
 
  SourceLocation getTypeSpecSignLoc() const { return TSSLoc; }
 
  SourceLocation getTypeSpecTypeLoc() const { return TSTLoc; }
 
  SourceLocation getAltiVecLoc() const { return AltiVecLoc; }
 
  SourceLocation getTypeSpecSatLoc() const { return TSSatLoc; }
 
 
 
  SourceLocation getTypeSpecTypeNameLoc() const {
 
    assert(isDeclRep((TST)TypeSpecType) || isTypeRep((TST)TypeSpecType) ||
 
           isExprRep((TST)TypeSpecType));
 
    return TSTNameLoc;
 
  }
 
 
 
  SourceRange getTypeofParensRange() const { return TypeofParensRange; }
 
  void setTypeArgumentRange(SourceRange range) { TypeofParensRange = range; }
 
 
 
  bool hasAutoTypeSpec() const {
 
    return (TypeSpecType == TST_auto || TypeSpecType == TST_auto_type ||
 
            TypeSpecType == TST_decltype_auto);
 
  }
 
 
 
  bool hasTagDefinition() const;
 
 
 
  /// Turn a type-specifier-type into a string like "_Bool" or "union".
 
  static const char *getSpecifierName(DeclSpec::TST T,
 
                                      const PrintingPolicy &Policy);
 
  static const char *getSpecifierName(DeclSpec::TQ Q);
 
  static const char *getSpecifierName(TypeSpecifierSign S);
 
  static const char *getSpecifierName(DeclSpec::TSC C);
 
  static const char *getSpecifierName(TypeSpecifierWidth W);
 
  static const char *getSpecifierName(DeclSpec::SCS S);
 
  static const char *getSpecifierName(DeclSpec::TSCS S);
 
  static const char *getSpecifierName(ConstexprSpecKind C);
 
 
 
  // type-qualifiers
 
 
 
  /// getTypeQualifiers - Return a set of TQs.
 
  unsigned getTypeQualifiers() const { return TypeQualifiers; }
 
  SourceLocation getConstSpecLoc() const { return TQ_constLoc; }
 
  SourceLocation getRestrictSpecLoc() const { return TQ_restrictLoc; }
 
  SourceLocation getVolatileSpecLoc() const { return TQ_volatileLoc; }
 
  SourceLocation getAtomicSpecLoc() const { return TQ_atomicLoc; }
 
  SourceLocation getUnalignedSpecLoc() const { return TQ_unalignedLoc; }
 
  SourceLocation getPipeLoc() const { return TQ_pipeLoc; }
 
 
 
  /// Clear out all of the type qualifiers.
 
  void ClearTypeQualifiers() {
 
    TypeQualifiers = 0;
 
    TQ_constLoc = SourceLocation();
 
    TQ_restrictLoc = SourceLocation();
 
    TQ_volatileLoc = SourceLocation();
 
    TQ_atomicLoc = SourceLocation();
 
    TQ_unalignedLoc = SourceLocation();
 
    TQ_pipeLoc = SourceLocation();
 
  }
 
 
 
  // function-specifier
 
  bool isInlineSpecified() const {
 
    return FS_inline_specified | FS_forceinline_specified;
 
  }
 
  SourceLocation getInlineSpecLoc() const {
 
    return FS_inline_specified ? FS_inlineLoc : FS_forceinlineLoc;
 
  }
 
 
 
  ExplicitSpecifier getExplicitSpecifier() const {
 
    return FS_explicit_specifier;
 
  }
 
 
 
  bool isVirtualSpecified() const { return FS_virtual_specified; }
 
  SourceLocation getVirtualSpecLoc() const { return FS_virtualLoc; }
 
 
 
  bool hasExplicitSpecifier() const {
 
    return FS_explicit_specifier.isSpecified();
 
  }
 
  SourceLocation getExplicitSpecLoc() const { return FS_explicitLoc; }
 
  SourceRange getExplicitSpecRange() const {
 
    return FS_explicit_specifier.getExpr()
 
               ? SourceRange(FS_explicitLoc, FS_explicitCloseParenLoc)
 
               : SourceRange(FS_explicitLoc);
 
  }
 
 
 
  bool isNoreturnSpecified() const { return FS_noreturn_specified; }
 
  SourceLocation getNoreturnSpecLoc() const { return FS_noreturnLoc; }
 
 
 
  void ClearFunctionSpecs() {
 
    FS_inline_specified = false;
 
    FS_inlineLoc = SourceLocation();
 
    FS_forceinline_specified = false;
 
    FS_forceinlineLoc = SourceLocation();
 
    FS_virtual_specified = false;
 
    FS_virtualLoc = SourceLocation();
 
    FS_explicit_specifier = ExplicitSpecifier();
 
    FS_explicitLoc = SourceLocation();
 
    FS_explicitCloseParenLoc = SourceLocation();
 
    FS_noreturn_specified = false;
 
    FS_noreturnLoc = SourceLocation();
 
  }
 
 
 
  /// This method calls the passed in handler on each CVRU qual being
 
  /// set.
 
  /// Handle - a handler to be invoked.
 
  void forEachCVRUQualifier(
 
      llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
 
 
 
  /// This method calls the passed in handler on each qual being
 
  /// set.
 
  /// Handle - a handler to be invoked.
 
  void forEachQualifier(
 
      llvm::function_ref<void(TQ, StringRef, SourceLocation)> Handle);
 
 
 
  /// Return true if any type-specifier has been found.
 
  bool hasTypeSpecifier() const {
 
    return getTypeSpecType() != DeclSpec::TST_unspecified ||
 
           getTypeSpecWidth() != TypeSpecifierWidth::Unspecified ||
 
           getTypeSpecComplex() != DeclSpec::TSC_unspecified ||
 
           getTypeSpecSign() != TypeSpecifierSign::Unspecified;
 
  }
 
 
 
  /// Return a bitmask of which flavors of specifiers this
 
  /// DeclSpec includes.
 
  unsigned getParsedSpecifiers() const;
 
 
 
  /// isEmpty - Return true if this declaration specifier is completely empty:
 
  /// no tokens were parsed in the production of it.
 
  bool isEmpty() const {
 
    return getParsedSpecifiers() == DeclSpec::PQ_None;
 
  }
 
 
 
  void SetRangeStart(SourceLocation Loc) { Range.setBegin(Loc); }
 
  void SetRangeEnd(SourceLocation Loc) { Range.setEnd(Loc); }
 
 
 
  /// These methods set the specified attribute of the DeclSpec and
 
  /// return false if there was no error.  If an error occurs (for
 
  /// example, if we tried to set "auto" on a spec with "extern"
 
  /// already set), they return true and set PrevSpec and DiagID
 
  /// such that
 
  ///   Diag(Loc, DiagID) << PrevSpec;
 
  /// will yield a useful result.
 
  ///
 
  /// TODO: use a more general approach that still allows these
 
  /// diagnostics to be ignored when desired.
 
  bool SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc,
 
                           const char *&PrevSpec, unsigned &DiagID,
 
                           const PrintingPolicy &Policy);
 
  bool SetStorageClassSpecThread(TSCS TSC, SourceLocation Loc,
 
                                 const char *&PrevSpec, unsigned &DiagID);
 
  bool SetTypeSpecWidth(TypeSpecifierWidth W, SourceLocation Loc,
 
                        const char *&PrevSpec, unsigned &DiagID,
 
                        const PrintingPolicy &Policy);
 
  bool SetTypeSpecComplex(TSC C, SourceLocation Loc, const char *&PrevSpec,
 
                          unsigned &DiagID);
 
  bool SetTypeSpecSign(TypeSpecifierSign S, SourceLocation Loc,
 
                       const char *&PrevSpec, unsigned &DiagID);
 
  bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
 
                       unsigned &DiagID, const PrintingPolicy &Policy);
 
  bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
 
                       unsigned &DiagID, ParsedType Rep,
 
                       const PrintingPolicy &Policy);
 
  bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
 
                       unsigned &DiagID, TypeResult Rep,
 
                       const PrintingPolicy &Policy) {
 
    if (Rep.isInvalid())
 
      return SetTypeSpecError();
 
    return SetTypeSpecType(T, Loc, PrevSpec, DiagID, Rep.get(), Policy);
 
  }
 
  bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
 
                       unsigned &DiagID, Decl *Rep, bool Owned,
 
                       const PrintingPolicy &Policy);
 
  bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
 
                       SourceLocation TagNameLoc, const char *&PrevSpec,
 
                       unsigned &DiagID, ParsedType Rep,
 
                       const PrintingPolicy &Policy);
 
  bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
 
                       SourceLocation TagNameLoc, const char *&PrevSpec,
 
                       unsigned &DiagID, Decl *Rep, bool Owned,
 
                       const PrintingPolicy &Policy);
 
  bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
 
                       unsigned &DiagID, TemplateIdAnnotation *Rep,
 
                       const PrintingPolicy &Policy);
 
 
 
  bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
 
                       unsigned &DiagID, Expr *Rep,
 
                       const PrintingPolicy &policy);
 
  bool SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc,
 
                       const char *&PrevSpec, unsigned &DiagID,
 
                       const PrintingPolicy &Policy);
 
  bool SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc,
 
                       const char *&PrevSpec, unsigned &DiagID,
 
                       const PrintingPolicy &Policy);
 
  bool SetTypeAltiVecBool(bool isAltiVecBool, SourceLocation Loc,
 
                       const char *&PrevSpec, unsigned &DiagID,
 
                       const PrintingPolicy &Policy);
 
  bool SetTypePipe(bool isPipe, SourceLocation Loc,
 
                       const char *&PrevSpec, unsigned &DiagID,
 
                       const PrintingPolicy &Policy);
 
  bool SetBitIntType(SourceLocation KWLoc, Expr *BitWidth,
 
                     const char *&PrevSpec, unsigned &DiagID,
 
                     const PrintingPolicy &Policy);
 
  bool SetTypeSpecSat(SourceLocation Loc, const char *&PrevSpec,
 
                      unsigned &DiagID);
 
  bool SetTypeSpecError();
 
  void UpdateDeclRep(Decl *Rep) {
 
    assert(isDeclRep((TST) TypeSpecType));
 
    DeclRep = Rep;
 
  }
 
  void UpdateTypeRep(ParsedType Rep) {
 
    assert(isTypeRep((TST) TypeSpecType));
 
    TypeRep = Rep;
 
  }
 
  void UpdateExprRep(Expr *Rep) {
 
    assert(isExprRep((TST) TypeSpecType));
 
    ExprRep = Rep;
 
  }
 
 
 
  bool SetTypeQual(TQ T, SourceLocation Loc);
 
 
 
  bool SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
 
                   unsigned &DiagID, const LangOptions &Lang);
 
 
 
  bool setFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec,
 
                             unsigned &DiagID);
 
  bool setFunctionSpecForceInline(SourceLocation Loc, const char *&PrevSpec,
 
                                  unsigned &DiagID);
 
  bool setFunctionSpecVirtual(SourceLocation Loc, const char *&PrevSpec,
 
                              unsigned &DiagID);
 
  bool setFunctionSpecExplicit(SourceLocation Loc, const char *&PrevSpec,
 
                               unsigned &DiagID, ExplicitSpecifier ExplicitSpec,
 
                               SourceLocation CloseParenLoc);
 
  bool setFunctionSpecNoreturn(SourceLocation Loc, const char *&PrevSpec,
 
                               unsigned &DiagID);
 
 
 
  bool SetFriendSpec(SourceLocation Loc, const char *&PrevSpec,
 
                     unsigned &DiagID);
 
  bool setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec,
 
                            unsigned &DiagID);
 
  bool SetConstexprSpec(ConstexprSpecKind ConstexprKind, SourceLocation Loc,
 
                        const char *&PrevSpec, unsigned &DiagID);
 
 
 
  FriendSpecified isFriendSpecified() const {
 
    return static_cast<FriendSpecified>(Friend_specified);
 
  }
 
 
 
  SourceLocation getFriendSpecLoc() const { return FriendLoc; }
 
 
 
  bool isModulePrivateSpecified() const { return ModulePrivateLoc.isValid(); }
 
  SourceLocation getModulePrivateSpecLoc() const { return ModulePrivateLoc; }
 
 
 
  ConstexprSpecKind getConstexprSpecifier() const {
 
    return ConstexprSpecKind(ConstexprSpecifier);
 
  }
 
 
 
  SourceLocation getConstexprSpecLoc() const { return ConstexprLoc; }
 
  bool hasConstexprSpecifier() const {
 
    return getConstexprSpecifier() != ConstexprSpecKind::Unspecified;
 
  }
 
 
 
  void ClearConstexprSpec() {
 
    ConstexprSpecifier = static_cast<unsigned>(ConstexprSpecKind::Unspecified);
 
    ConstexprLoc = SourceLocation();
 
  }
 
 
 
  AttributePool &getAttributePool() const {
 
    return Attrs.getPool();
 
  }
 
 
 
  /// Concatenates two attribute lists.
 
  ///
 
  /// The GCC attribute syntax allows for the following:
 
  ///
 
  /// \code
 
  /// short __attribute__(( unused, deprecated ))
 
  /// int __attribute__(( may_alias, aligned(16) )) var;
 
  /// \endcode
 
  ///
 
  /// This declares 4 attributes using 2 lists. The following syntax is
 
  /// also allowed and equivalent to the previous declaration.
 
  ///
 
  /// \code
 
  /// short __attribute__((unused)) __attribute__((deprecated))
 
  /// int __attribute__((may_alias)) __attribute__((aligned(16))) var;
 
  /// \endcode
 
  ///
 
  void addAttributes(const ParsedAttributesView &AL) {
 
    Attrs.addAll(AL.begin(), AL.end());
 
  }
 
 
 
  bool hasAttributes() const { return !Attrs.empty(); }
 
 
 
  ParsedAttributes &getAttributes() { return Attrs; }
 
  const ParsedAttributes &getAttributes() const { return Attrs; }
 
 
 
  void takeAttributesFrom(ParsedAttributes &attrs) {
 
    Attrs.takeAllFrom(attrs);
 
  }
 
 
 
  /// Finish - This does final analysis of the declspec, issuing diagnostics for
 
  /// things like "_Imaginary" (lacking an FP type).  After calling this method,
 
  /// DeclSpec is guaranteed self-consistent, even if an error occurred.
 
  void Finish(Sema &S, const PrintingPolicy &Policy);
 
 
 
  const WrittenBuiltinSpecs& getWrittenBuiltinSpecs() const {
 
    return writtenBS;
 
  }
 
 
 
  ObjCDeclSpec *getObjCQualifiers() const { return ObjCQualifiers; }
 
  void setObjCQualifiers(ObjCDeclSpec *quals) { ObjCQualifiers = quals; }
 
 
 
  /// Checks if this DeclSpec can stand alone, without a Declarator.
 
  ///
 
  /// Only tag declspecs can stand alone.
 
  bool isMissingDeclaratorOk();
 
};
 
 
 
/// Captures information about "declaration specifiers" specific to
 
/// Objective-C.
 
class ObjCDeclSpec {
 
public:
 
  /// ObjCDeclQualifier - Qualifier used on types in method
 
  /// declarations.  Not all combinations are sensible.  Parameters
 
  /// can be one of { in, out, inout } with one of { bycopy, byref }.
 
  /// Returns can either be { oneway } or not.
 
  ///
 
  /// This should be kept in sync with Decl::ObjCDeclQualifier.
 
  enum ObjCDeclQualifier {
 
    DQ_None = 0x0,
 
    DQ_In = 0x1,
 
    DQ_Inout = 0x2,
 
    DQ_Out = 0x4,
 
    DQ_Bycopy = 0x8,
 
    DQ_Byref = 0x10,
 
    DQ_Oneway = 0x20,
 
    DQ_CSNullability = 0x40
 
  };
 
 
 
  ObjCDeclSpec()
 
      : objcDeclQualifier(DQ_None),
 
        PropertyAttributes(ObjCPropertyAttribute::kind_noattr), Nullability(0),
 
        GetterName(nullptr), SetterName(nullptr) {}
 
 
 
  ObjCDeclQualifier getObjCDeclQualifier() const {
 
    return (ObjCDeclQualifier)objcDeclQualifier;
 
  }
 
  void setObjCDeclQualifier(ObjCDeclQualifier DQVal) {
 
    objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier | DQVal);
 
  }
 
  void clearObjCDeclQualifier(ObjCDeclQualifier DQVal) {
 
    objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier & ~DQVal);
 
  }
 
 
 
  ObjCPropertyAttribute::Kind getPropertyAttributes() const {
 
    return ObjCPropertyAttribute::Kind(PropertyAttributes);
 
  }
 
  void setPropertyAttributes(ObjCPropertyAttribute::Kind PRVal) {
 
    PropertyAttributes =
 
        (ObjCPropertyAttribute::Kind)(PropertyAttributes | PRVal);
 
  }
 
 
 
  NullabilityKind getNullability() const {
 
    assert(
 
        ((getObjCDeclQualifier() & DQ_CSNullability) ||
 
         (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&
 
        "Objective-C declspec doesn't have nullability");
 
    return static_cast<NullabilityKind>(Nullability);
 
  }
 
 
 
  SourceLocation getNullabilityLoc() const {
 
    assert(
 
        ((getObjCDeclQualifier() & DQ_CSNullability) ||
 
         (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&
 
        "Objective-C declspec doesn't have nullability");
 
    return NullabilityLoc;
 
  }
 
 
 
  void setNullability(SourceLocation loc, NullabilityKind kind) {
 
    assert(
 
        ((getObjCDeclQualifier() & DQ_CSNullability) ||
 
         (getPropertyAttributes() & ObjCPropertyAttribute::kind_nullability)) &&
 
        "Set the nullability declspec or property attribute first");
 
    Nullability = static_cast<unsigned>(kind);
 
    NullabilityLoc = loc;
 
  }
 
 
 
  const IdentifierInfo *getGetterName() const { return GetterName; }
 
  IdentifierInfo *getGetterName() { return GetterName; }
 
  SourceLocation getGetterNameLoc() const { return GetterNameLoc; }
 
  void setGetterName(IdentifierInfo *name, SourceLocation loc) {
 
    GetterName = name;
 
    GetterNameLoc = loc;
 
  }
 
 
 
  const IdentifierInfo *getSetterName() const { return SetterName; }
 
  IdentifierInfo *getSetterName() { return SetterName; }
 
  SourceLocation getSetterNameLoc() const { return SetterNameLoc; }
 
  void setSetterName(IdentifierInfo *name, SourceLocation loc) {
 
    SetterName = name;
 
    SetterNameLoc = loc;
 
  }
 
 
 
private:
 
  // FIXME: These two are unrelated and mutually exclusive. So perhaps
 
  // we can put them in a union to reflect their mutual exclusivity
 
  // (space saving is negligible).
 
  unsigned objcDeclQualifier : 7;
 
 
 
  // NOTE: VC++ treats enums as signed, avoid using ObjCPropertyAttribute::Kind
 
  unsigned PropertyAttributes : NumObjCPropertyAttrsBits;
 
 
 
  unsigned Nullability : 2;
 
 
 
  SourceLocation NullabilityLoc;
 
 
 
  IdentifierInfo *GetterName;    // getter name or NULL if no getter
 
  IdentifierInfo *SetterName;    // setter name or NULL if no setter
 
  SourceLocation GetterNameLoc; // location of the getter attribute's value
 
  SourceLocation SetterNameLoc; // location of the setter attribute's value
 
 
 
};
 
 
 
/// Describes the kind of unqualified-id parsed.
 
enum class UnqualifiedIdKind {
 
  /// An identifier.
 
  IK_Identifier,
 
  /// An overloaded operator name, e.g., operator+.
 
  IK_OperatorFunctionId,
 
  /// A conversion function name, e.g., operator int.
 
  IK_ConversionFunctionId,
 
  /// A user-defined literal name, e.g., operator "" _i.
 
  IK_LiteralOperatorId,
 
  /// A constructor name.
 
  IK_ConstructorName,
 
  /// A constructor named via a template-id.
 
  IK_ConstructorTemplateId,
 
  /// A destructor name.
 
  IK_DestructorName,
 
  /// A template-id, e.g., f<int>.
 
  IK_TemplateId,
 
  /// An implicit 'self' parameter
 
  IK_ImplicitSelfParam,
 
  /// A deduction-guide name (a template-name)
 
  IK_DeductionGuideName
 
};
 
 
 
/// Represents a C++ unqualified-id that has been parsed.
 
class UnqualifiedId {
 
private:
 
  UnqualifiedId(const UnqualifiedId &Other) = delete;
 
  const UnqualifiedId &operator=(const UnqualifiedId &) = delete;
 
 
 
  /// Describes the kind of unqualified-id parsed.
 
  UnqualifiedIdKind Kind;
 
 
 
public:
 
  struct OFI {
 
    /// The kind of overloaded operator.
 
    OverloadedOperatorKind Operator;
 
 
 
    /// The source locations of the individual tokens that name
 
    /// the operator, e.g., the "new", "[", and "]" tokens in
 
    /// operator new [].
 
    ///
 
    /// Different operators have different numbers of tokens in their name,
 
    /// up to three. Any remaining source locations in this array will be
 
    /// set to an invalid value for operators with fewer than three tokens.
 
    SourceLocation SymbolLocations[3];
 
  };
 
 
 
  /// Anonymous union that holds extra data associated with the
 
  /// parsed unqualified-id.
 
  union {
 
    /// When Kind == IK_Identifier, the parsed identifier, or when
 
    /// Kind == IK_UserLiteralId, the identifier suffix.
 
    IdentifierInfo *Identifier;
 
 
 
    /// When Kind == IK_OperatorFunctionId, the overloaded operator
 
    /// that we parsed.
 
    struct OFI OperatorFunctionId;
 
 
 
    /// When Kind == IK_ConversionFunctionId, the type that the
 
    /// conversion function names.
 
    UnionParsedType ConversionFunctionId;
 
 
 
    /// When Kind == IK_ConstructorName, the class-name of the type
 
    /// whose constructor is being referenced.
 
    UnionParsedType ConstructorName;
 
 
 
    /// When Kind == IK_DestructorName, the type referred to by the
 
    /// class-name.
 
    UnionParsedType DestructorName;
 
 
 
    /// When Kind == IK_DeductionGuideName, the parsed template-name.
 
    UnionParsedTemplateTy TemplateName;
 
 
 
    /// When Kind == IK_TemplateId or IK_ConstructorTemplateId,
 
    /// the template-id annotation that contains the template name and
 
    /// template arguments.
 
    TemplateIdAnnotation *TemplateId;
 
  };
 
 
 
  /// The location of the first token that describes this unqualified-id,
 
  /// which will be the location of the identifier, "operator" keyword,
 
  /// tilde (for a destructor), or the template name of a template-id.
 
  SourceLocation StartLocation;
 
 
 
  /// The location of the last token that describes this unqualified-id.
 
  SourceLocation EndLocation;
 
 
 
  UnqualifiedId()
 
      : Kind(UnqualifiedIdKind::IK_Identifier), Identifier(nullptr) {}
 
 
 
  /// Clear out this unqualified-id, setting it to default (invalid)
 
  /// state.
 
  void clear() {
 
    Kind = UnqualifiedIdKind::IK_Identifier;
 
    Identifier = nullptr;
 
    StartLocation = SourceLocation();
 
    EndLocation = SourceLocation();
 
  }
 
 
 
  /// Determine whether this unqualified-id refers to a valid name.
 
  bool isValid() const { return StartLocation.isValid(); }
 
 
 
  /// Determine whether this unqualified-id refers to an invalid name.
 
  bool isInvalid() const { return !isValid(); }
 
 
 
  /// Determine what kind of name we have.
 
  UnqualifiedIdKind getKind() const { return Kind; }
 
 
 
  /// Specify that this unqualified-id was parsed as an identifier.
 
  ///
 
  /// \param Id the parsed identifier.
 
  /// \param IdLoc the location of the parsed identifier.
 
  void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc) {
 
    Kind = UnqualifiedIdKind::IK_Identifier;
 
    Identifier = const_cast<IdentifierInfo *>(Id);
 
    StartLocation = EndLocation = IdLoc;
 
  }
 
 
 
  /// Specify that this unqualified-id was parsed as an
 
  /// operator-function-id.
 
  ///
 
  /// \param OperatorLoc the location of the 'operator' keyword.
 
  ///
 
  /// \param Op the overloaded operator.
 
  ///
 
  /// \param SymbolLocations the locations of the individual operator symbols
 
  /// in the operator.
 
  void setOperatorFunctionId(SourceLocation OperatorLoc,
 
                             OverloadedOperatorKind Op,
 
                             SourceLocation SymbolLocations[3]);
 
 
 
  /// Specify that this unqualified-id was parsed as a
 
  /// conversion-function-id.
 
  ///
 
  /// \param OperatorLoc the location of the 'operator' keyword.
 
  ///
 
  /// \param Ty the type to which this conversion function is converting.
 
  ///
 
  /// \param EndLoc the location of the last token that makes up the type name.
 
  void setConversionFunctionId(SourceLocation OperatorLoc,
 
                               ParsedType Ty,
 
                               SourceLocation EndLoc) {
 
    Kind = UnqualifiedIdKind::IK_ConversionFunctionId;
 
    StartLocation = OperatorLoc;
 
    EndLocation = EndLoc;
 
    ConversionFunctionId = Ty;
 
  }
 
 
 
  /// Specific that this unqualified-id was parsed as a
 
  /// literal-operator-id.
 
  ///
 
  /// \param Id the parsed identifier.
 
  ///
 
  /// \param OpLoc the location of the 'operator' keyword.
 
  ///
 
  /// \param IdLoc the location of the identifier.
 
  void setLiteralOperatorId(const IdentifierInfo *Id, SourceLocation OpLoc,
 
                              SourceLocation IdLoc) {
 
    Kind = UnqualifiedIdKind::IK_LiteralOperatorId;
 
    Identifier = const_cast<IdentifierInfo *>(Id);
 
    StartLocation = OpLoc;
 
    EndLocation = IdLoc;
 
  }
 
 
 
  /// Specify that this unqualified-id was parsed as a constructor name.
 
  ///
 
  /// \param ClassType the class type referred to by the constructor name.
 
  ///
 
  /// \param ClassNameLoc the location of the class name.
 
  ///
 
  /// \param EndLoc the location of the last token that makes up the type name.
 
  void setConstructorName(ParsedType ClassType,
 
                          SourceLocation ClassNameLoc,
 
                          SourceLocation EndLoc) {
 
    Kind = UnqualifiedIdKind::IK_ConstructorName;
 
    StartLocation = ClassNameLoc;
 
    EndLocation = EndLoc;
 
    ConstructorName = ClassType;
 
  }
 
 
 
  /// Specify that this unqualified-id was parsed as a
 
  /// template-id that names a constructor.
 
  ///
 
  /// \param TemplateId the template-id annotation that describes the parsed
 
  /// template-id. This UnqualifiedId instance will take ownership of the
 
  /// \p TemplateId and will free it on destruction.
 
  void setConstructorTemplateId(TemplateIdAnnotation *TemplateId);
 
 
 
  /// Specify that this unqualified-id was parsed as a destructor name.
 
  ///
 
  /// \param TildeLoc the location of the '~' that introduces the destructor
 
  /// name.
 
  ///
 
  /// \param ClassType the name of the class referred to by the destructor name.
 
  void setDestructorName(SourceLocation TildeLoc,
 
                         ParsedType ClassType,
 
                         SourceLocation EndLoc) {
 
    Kind = UnqualifiedIdKind::IK_DestructorName;
 
    StartLocation = TildeLoc;
 
    EndLocation = EndLoc;
 
    DestructorName = ClassType;
 
  }
 
 
 
  /// Specify that this unqualified-id was parsed as a template-id.
 
  ///
 
  /// \param TemplateId the template-id annotation that describes the parsed
 
  /// template-id. This UnqualifiedId instance will take ownership of the
 
  /// \p TemplateId and will free it on destruction.
 
  void setTemplateId(TemplateIdAnnotation *TemplateId);
 
 
 
  /// Specify that this unqualified-id was parsed as a template-name for
 
  /// a deduction-guide.
 
  ///
 
  /// \param Template The parsed template-name.
 
  /// \param TemplateLoc The location of the parsed template-name.
 
  void setDeductionGuideName(ParsedTemplateTy Template,
 
                             SourceLocation TemplateLoc) {
 
    Kind = UnqualifiedIdKind::IK_DeductionGuideName;
 
    TemplateName = Template;
 
    StartLocation = EndLocation = TemplateLoc;
 
  }
 
 
 
  /// Specify that this unqualified-id is an implicit 'self'
 
  /// parameter.
 
  ///
 
  /// \param Id the identifier.
 
  void setImplicitSelfParam(const IdentifierInfo *Id) {
 
    Kind = UnqualifiedIdKind::IK_ImplicitSelfParam;
 
    Identifier = const_cast<IdentifierInfo *>(Id);
 
    StartLocation = EndLocation = SourceLocation();
 
  }
 
 
 
  /// Return the source range that covers this unqualified-id.
 
  SourceRange getSourceRange() const LLVM_READONLY {
 
    return SourceRange(StartLocation, EndLocation);
 
  }
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return StartLocation; }
 
  SourceLocation getEndLoc() const LLVM_READONLY { return EndLocation; }
 
};
 
 
 
/// A set of tokens that has been cached for later parsing.
 
typedef SmallVector<Token, 4> CachedTokens;
 
 
 
/// One instance of this struct is used for each type in a
 
/// declarator that is parsed.
 
///
 
/// This is intended to be a small value object.
 
struct DeclaratorChunk {
 
  DeclaratorChunk() {};
 
 
 
  enum {
 
    Pointer, Reference, Array, Function, BlockPointer, MemberPointer, Paren, Pipe
 
  } Kind;
 
 
 
  /// Loc - The place where this type was defined.
 
  SourceLocation Loc;
 
  /// EndLoc - If valid, the place where this chunck ends.
 
  SourceLocation EndLoc;
 
 
 
  SourceRange getSourceRange() const {
 
    if (EndLoc.isInvalid())
 
      return SourceRange(Loc, Loc);
 
    return SourceRange(Loc, EndLoc);
 
  }
 
 
 
  ParsedAttributesView AttrList;
 
 
 
  struct PointerTypeInfo {
 
    /// The type qualifiers: const/volatile/restrict/unaligned/atomic.
 
    unsigned TypeQuals : 5;
 
 
 
    /// The location of the const-qualifier, if any.
 
    SourceLocation ConstQualLoc;
 
 
 
    /// The location of the volatile-qualifier, if any.
 
    SourceLocation VolatileQualLoc;
 
 
 
    /// The location of the restrict-qualifier, if any.
 
    SourceLocation RestrictQualLoc;
 
 
 
    /// The location of the _Atomic-qualifier, if any.
 
    SourceLocation AtomicQualLoc;
 
 
 
    /// The location of the __unaligned-qualifier, if any.
 
    SourceLocation UnalignedQualLoc;
 
 
 
    void destroy() {
 
    }
 
  };
 
 
 
  struct ReferenceTypeInfo {
 
    /// The type qualifier: restrict. [GNU] C++ extension
 
    bool HasRestrict : 1;
 
    /// True if this is an lvalue reference, false if it's an rvalue reference.
 
    bool LValueRef : 1;
 
    void destroy() {
 
    }
 
  };
 
 
 
  struct ArrayTypeInfo {
 
    /// The type qualifiers for the array:
 
    /// const/volatile/restrict/__unaligned/_Atomic.
 
    unsigned TypeQuals : 5;
 
 
 
    /// True if this dimension included the 'static' keyword.
 
    unsigned hasStatic : 1;
 
 
 
    /// True if this dimension was [*].  In this case, NumElts is null.
 
    unsigned isStar : 1;
 
 
 
    /// This is the size of the array, or null if [] or [*] was specified.
 
    /// Since the parser is multi-purpose, and we don't want to impose a root
 
    /// expression class on all clients, NumElts is untyped.
 
    Expr *NumElts;
 
 
 
    void destroy() {}
 
  };
 
 
 
  /// ParamInfo - An array of paraminfo objects is allocated whenever a function
 
  /// declarator is parsed.  There are two interesting styles of parameters
 
  /// here:
 
  /// K&R-style identifier lists and parameter type lists.  K&R-style identifier
 
  /// lists will have information about the identifier, but no type information.
 
  /// Parameter type lists will have type info (if the actions module provides
 
  /// it), but may have null identifier info: e.g. for 'void foo(int X, int)'.
 
  struct ParamInfo {
 
    IdentifierInfo *Ident;
 
    SourceLocation IdentLoc;
 
    Decl *Param;
 
 
 
    /// DefaultArgTokens - When the parameter's default argument
 
    /// cannot be parsed immediately (because it occurs within the
 
    /// declaration of a member function), it will be stored here as a
 
    /// sequence of tokens to be parsed once the class definition is
 
    /// complete. Non-NULL indicates that there is a default argument.
 
    std::unique_ptr<CachedTokens> DefaultArgTokens;
 
 
 
    ParamInfo() = default;
 
    ParamInfo(IdentifierInfo *ident, SourceLocation iloc,
 
              Decl *param,
 
              std::unique_ptr<CachedTokens> DefArgTokens = nullptr)
 
      : Ident(ident), IdentLoc(iloc), Param(param),
 
        DefaultArgTokens(std::move(DefArgTokens)) {}
 
  };
 
 
 
  struct TypeAndRange {
 
    ParsedType Ty;
 
    SourceRange Range;
 
  };
 
 
 
  struct FunctionTypeInfo {
 
    /// hasPrototype - This is true if the function had at least one typed
 
    /// parameter.  If the function is () or (a,b,c), then it has no prototype,
 
    /// and is treated as a K&R-style function.
 
    unsigned hasPrototype : 1;
 
 
 
    /// isVariadic - If this function has a prototype, and if that
 
    /// proto ends with ',...)', this is true. When true, EllipsisLoc
 
    /// contains the location of the ellipsis.
 
    unsigned isVariadic : 1;
 
 
 
    /// Can this declaration be a constructor-style initializer?
 
    unsigned isAmbiguous : 1;
 
 
 
    /// Whether the ref-qualifier (if any) is an lvalue reference.
 
    /// Otherwise, it's an rvalue reference.
 
    unsigned RefQualifierIsLValueRef : 1;
 
 
 
    /// ExceptionSpecType - An ExceptionSpecificationType value.
 
    unsigned ExceptionSpecType : 4;
 
 
 
    /// DeleteParams - If this is true, we need to delete[] Params.
 
    unsigned DeleteParams : 1;
 
 
 
    /// HasTrailingReturnType - If this is true, a trailing return type was
 
    /// specified.
 
    unsigned HasTrailingReturnType : 1;
 
 
 
    /// The location of the left parenthesis in the source.
 
    SourceLocation LParenLoc;
 
 
 
    /// When isVariadic is true, the location of the ellipsis in the source.
 
    SourceLocation EllipsisLoc;
 
 
 
    /// The location of the right parenthesis in the source.
 
    SourceLocation RParenLoc;
 
 
 
    /// NumParams - This is the number of formal parameters specified by the
 
    /// declarator.
 
    unsigned NumParams;
 
 
 
    /// NumExceptionsOrDecls - This is the number of types in the
 
    /// dynamic-exception-decl, if the function has one. In C, this is the
 
    /// number of declarations in the function prototype.
 
    unsigned NumExceptionsOrDecls;
 
 
 
    /// The location of the ref-qualifier, if any.
 
    ///
 
    /// If this is an invalid location, there is no ref-qualifier.
 
    SourceLocation RefQualifierLoc;
 
 
 
    /// The location of the 'mutable' qualifer in a lambda-declarator, if
 
    /// any.
 
    SourceLocation MutableLoc;
 
 
 
    /// The beginning location of the exception specification, if any.
 
    SourceLocation ExceptionSpecLocBeg;
 
 
 
    /// The end location of the exception specification, if any.
 
    SourceLocation ExceptionSpecLocEnd;
 
 
 
    /// Params - This is a pointer to a new[]'d array of ParamInfo objects that
 
    /// describe the parameters specified by this function declarator.  null if
 
    /// there are no parameters specified.
 
    ParamInfo *Params;
 
 
 
    /// DeclSpec for the function with the qualifier related info.
 
    DeclSpec *MethodQualifiers;
 
 
 
    /// AttributeFactory for the MethodQualifiers.
 
    AttributeFactory *QualAttrFactory;
 
 
 
    union {
 
      /// Pointer to a new[]'d array of TypeAndRange objects that
 
      /// contain the types in the function's dynamic exception specification
 
      /// and their locations, if there is one.
 
      TypeAndRange *Exceptions;
 
 
 
      /// Pointer to the expression in the noexcept-specifier of this
 
      /// function, if it has one.
 
      Expr *NoexceptExpr;
 
 
 
      /// Pointer to the cached tokens for an exception-specification
 
      /// that has not yet been parsed.
 
      CachedTokens *ExceptionSpecTokens;
 
 
 
      /// Pointer to a new[]'d array of declarations that need to be available
 
      /// for lookup inside the function body, if one exists. Does not exist in
 
      /// C++.
 
      NamedDecl **DeclsInPrototype;
 
    };
 
 
 
    /// If HasTrailingReturnType is true, this is the trailing return
 
    /// type specified.
 
    UnionParsedType TrailingReturnType;
 
 
 
    /// If HasTrailingReturnType is true, this is the location of the trailing
 
    /// return type.
 
    SourceLocation TrailingReturnTypeLoc;
 
 
 
    /// Reset the parameter list to having zero parameters.
 
    ///
 
    /// This is used in various places for error recovery.
 
    void freeParams() {
 
      for (unsigned I = 0; I < NumParams; ++I)
 
        Params[I].DefaultArgTokens.reset();
 
      if (DeleteParams) {
 
        delete[] Params;
 
        DeleteParams = false;
 
      }
 
      NumParams = 0;
 
    }
 
 
 
    void destroy() {
 
      freeParams();
 
      delete QualAttrFactory;
 
      delete MethodQualifiers;
 
      switch (getExceptionSpecType()) {
 
      default:
 
        break;
 
      case EST_Dynamic:
 
        delete[] Exceptions;
 
        break;
 
      case EST_Unparsed:
 
        delete ExceptionSpecTokens;
 
        break;
 
      case EST_None:
 
        if (NumExceptionsOrDecls != 0)
 
          delete[] DeclsInPrototype;
 
        break;
 
      }
 
    }
 
 
 
    DeclSpec &getOrCreateMethodQualifiers() {
 
      if (!MethodQualifiers) {
 
        QualAttrFactory = new AttributeFactory();
 
        MethodQualifiers = new DeclSpec(*QualAttrFactory);
 
      }
 
      return *MethodQualifiers;
 
    }
 
 
 
    /// isKNRPrototype - Return true if this is a K&R style identifier list,
 
    /// like "void foo(a,b,c)".  In a function definition, this will be followed
 
    /// by the parameter type definitions.
 
    bool isKNRPrototype() const { return !hasPrototype && NumParams != 0; }
 
 
 
    SourceLocation getLParenLoc() const { return LParenLoc; }
 
 
 
    SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
 
 
 
    SourceLocation getRParenLoc() const { return RParenLoc; }
 
 
 
    SourceLocation getExceptionSpecLocBeg() const {
 
      return ExceptionSpecLocBeg;
 
    }
 
 
 
    SourceLocation getExceptionSpecLocEnd() const {
 
      return ExceptionSpecLocEnd;
 
    }
 
 
 
    SourceRange getExceptionSpecRange() const {
 
      return SourceRange(getExceptionSpecLocBeg(), getExceptionSpecLocEnd());
 
    }
 
 
 
    /// Retrieve the location of the ref-qualifier, if any.
 
    SourceLocation getRefQualifierLoc() const { return RefQualifierLoc; }
 
 
 
    /// Retrieve the location of the 'const' qualifier.
 
    SourceLocation getConstQualifierLoc() const {
 
      assert(MethodQualifiers);
 
      return MethodQualifiers->getConstSpecLoc();
 
    }
 
 
 
    /// Retrieve the location of the 'volatile' qualifier.
 
    SourceLocation getVolatileQualifierLoc() const {
 
      assert(MethodQualifiers);
 
      return MethodQualifiers->getVolatileSpecLoc();
 
    }
 
 
 
    /// Retrieve the location of the 'restrict' qualifier.
 
    SourceLocation getRestrictQualifierLoc() const {
 
      assert(MethodQualifiers);
 
      return MethodQualifiers->getRestrictSpecLoc();
 
    }
 
 
 
    /// Retrieve the location of the 'mutable' qualifier, if any.
 
    SourceLocation getMutableLoc() const { return MutableLoc; }
 
 
 
    /// Determine whether this function declaration contains a
 
    /// ref-qualifier.
 
    bool hasRefQualifier() const { return getRefQualifierLoc().isValid(); }
 
 
 
    /// Determine whether this lambda-declarator contains a 'mutable'
 
    /// qualifier.
 
    bool hasMutableQualifier() const { return getMutableLoc().isValid(); }
 
 
 
    /// Determine whether this method has qualifiers.
 
    bool hasMethodTypeQualifiers() const {
 
      return MethodQualifiers && (MethodQualifiers->getTypeQualifiers() ||
 
                                  MethodQualifiers->getAttributes().size());
 
    }
 
 
 
    /// Get the type of exception specification this function has.
 
    ExceptionSpecificationType getExceptionSpecType() const {
 
      return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
 
    }
 
 
 
    /// Get the number of dynamic exception specifications.
 
    unsigned getNumExceptions() const {
 
      assert(ExceptionSpecType != EST_None);
 
      return NumExceptionsOrDecls;
 
    }
 
 
 
    /// Get the non-parameter decls defined within this function
 
    /// prototype. Typically these are tag declarations.
 
    ArrayRef<NamedDecl *> getDeclsInPrototype() const {
 
      assert(ExceptionSpecType == EST_None);
 
      return llvm::ArrayRef(DeclsInPrototype, NumExceptionsOrDecls);
 
    }
 
 
 
    /// Determine whether this function declarator had a
 
    /// trailing-return-type.
 
    bool hasTrailingReturnType() const { return HasTrailingReturnType; }
 
 
 
    /// Get the trailing-return-type for this function declarator.
 
    ParsedType getTrailingReturnType() const {
 
      assert(HasTrailingReturnType);
 
      return TrailingReturnType;
 
    }
 
 
 
    /// Get the trailing-return-type location for this function declarator.
 
    SourceLocation getTrailingReturnTypeLoc() const {
 
      assert(HasTrailingReturnType);
 
      return TrailingReturnTypeLoc;
 
    }
 
  };
 
 
 
  struct BlockPointerTypeInfo {
 
    /// For now, sema will catch these as invalid.
 
    /// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
 
    unsigned TypeQuals : 5;
 
 
 
    void destroy() {
 
    }
 
  };
 
 
 
  struct MemberPointerTypeInfo {
 
    /// The type qualifiers: const/volatile/restrict/__unaligned/_Atomic.
 
    unsigned TypeQuals : 5;
 
    /// Location of the '*' token.
 
    SourceLocation StarLoc;
 
    // CXXScopeSpec has a constructor, so it can't be a direct member.
 
    // So we need some pointer-aligned storage and a bit of trickery.
 
    alignas(CXXScopeSpec) char ScopeMem[sizeof(CXXScopeSpec)];
 
    CXXScopeSpec &Scope() {
 
      return *reinterpret_cast<CXXScopeSpec *>(ScopeMem);
 
    }
 
    const CXXScopeSpec &Scope() const {
 
      return *reinterpret_cast<const CXXScopeSpec *>(ScopeMem);
 
    }
 
    void destroy() {
 
      Scope().~CXXScopeSpec();
 
    }
 
  };
 
 
 
  struct PipeTypeInfo {
 
    /// The access writes.
 
    unsigned AccessWrites : 3;
 
 
 
    void destroy() {}
 
  };
 
 
 
  union {
 
    PointerTypeInfo       Ptr;
 
    ReferenceTypeInfo     Ref;
 
    ArrayTypeInfo         Arr;
 
    FunctionTypeInfo      Fun;
 
    BlockPointerTypeInfo  Cls;
 
    MemberPointerTypeInfo Mem;
 
    PipeTypeInfo          PipeInfo;
 
  };
 
 
 
  void destroy() {
 
    switch (Kind) {
 
    case DeclaratorChunk::Function:      return Fun.destroy();
 
    case DeclaratorChunk::Pointer:       return Ptr.destroy();
 
    case DeclaratorChunk::BlockPointer:  return Cls.destroy();
 
    case DeclaratorChunk::Reference:     return Ref.destroy();
 
    case DeclaratorChunk::Array:         return Arr.destroy();
 
    case DeclaratorChunk::MemberPointer: return Mem.destroy();
 
    case DeclaratorChunk::Paren:         return;
 
    case DeclaratorChunk::Pipe:          return PipeInfo.destroy();
 
    }
 
  }
 
 
 
  /// If there are attributes applied to this declaratorchunk, return
 
  /// them.
 
  const ParsedAttributesView &getAttrs() const { return AttrList; }
 
  ParsedAttributesView &getAttrs() { return AttrList; }
 
 
 
  /// Return a DeclaratorChunk for a pointer.
 
  static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc,
 
                                    SourceLocation ConstQualLoc,
 
                                    SourceLocation VolatileQualLoc,
 
                                    SourceLocation RestrictQualLoc,
 
                                    SourceLocation AtomicQualLoc,
 
                                    SourceLocation UnalignedQualLoc) {
 
    DeclaratorChunk I;
 
    I.Kind                = Pointer;
 
    I.Loc                 = Loc;
 
    new (&I.Ptr) PointerTypeInfo;
 
    I.Ptr.TypeQuals       = TypeQuals;
 
    I.Ptr.ConstQualLoc    = ConstQualLoc;
 
    I.Ptr.VolatileQualLoc = VolatileQualLoc;
 
    I.Ptr.RestrictQualLoc = RestrictQualLoc;
 
    I.Ptr.AtomicQualLoc   = AtomicQualLoc;
 
    I.Ptr.UnalignedQualLoc = UnalignedQualLoc;
 
    return I;
 
  }
 
 
 
  /// Return a DeclaratorChunk for a reference.
 
  static DeclaratorChunk getReference(unsigned TypeQuals, SourceLocation Loc,
 
                                      bool lvalue) {
 
    DeclaratorChunk I;
 
    I.Kind            = Reference;
 
    I.Loc             = Loc;
 
    I.Ref.HasRestrict = (TypeQuals & DeclSpec::TQ_restrict) != 0;
 
    I.Ref.LValueRef   = lvalue;
 
    return I;
 
  }
 
 
 
  /// Return a DeclaratorChunk for an array.
 
  static DeclaratorChunk getArray(unsigned TypeQuals,
 
                                  bool isStatic, bool isStar, Expr *NumElts,
 
                                  SourceLocation LBLoc, SourceLocation RBLoc) {
 
    DeclaratorChunk I;
 
    I.Kind          = Array;
 
    I.Loc           = LBLoc;
 
    I.EndLoc        = RBLoc;
 
    I.Arr.TypeQuals = TypeQuals;
 
    I.Arr.hasStatic = isStatic;
 
    I.Arr.isStar    = isStar;
 
    I.Arr.NumElts   = NumElts;
 
    return I;
 
  }
 
 
 
  /// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
 
  /// "TheDeclarator" is the declarator that this will be added to.
 
  static DeclaratorChunk getFunction(bool HasProto,
 
                                     bool IsAmbiguous,
 
                                     SourceLocation LParenLoc,
 
                                     ParamInfo *Params, unsigned NumParams,
 
                                     SourceLocation EllipsisLoc,
 
                                     SourceLocation RParenLoc,
 
                                     bool RefQualifierIsLvalueRef,
 
                                     SourceLocation RefQualifierLoc,
 
                                     SourceLocation MutableLoc,
 
                                     ExceptionSpecificationType ESpecType,
 
                                     SourceRange ESpecRange,
 
                                     ParsedType *Exceptions,
 
                                     SourceRange *ExceptionRanges,
 
                                     unsigned NumExceptions,
 
                                     Expr *NoexceptExpr,
 
                                     CachedTokens *ExceptionSpecTokens,
 
                                     ArrayRef<NamedDecl *> DeclsInPrototype,
 
                                     SourceLocation LocalRangeBegin,
 
                                     SourceLocation LocalRangeEnd,
 
                                     Declarator &TheDeclarator,
 
                                     TypeResult TrailingReturnType =
 
                                                    TypeResult(),
 
                                     SourceLocation TrailingReturnTypeLoc =
 
                                                    SourceLocation(),
 
                                     DeclSpec *MethodQualifiers = nullptr);
 
 
 
  /// Return a DeclaratorChunk for a block.
 
  static DeclaratorChunk getBlockPointer(unsigned TypeQuals,
 
                                         SourceLocation Loc) {
 
    DeclaratorChunk I;
 
    I.Kind          = BlockPointer;
 
    I.Loc           = Loc;
 
    I.Cls.TypeQuals = TypeQuals;
 
    return I;
 
  }
 
 
 
  /// Return a DeclaratorChunk for a block.
 
  static DeclaratorChunk getPipe(unsigned TypeQuals,
 
                                 SourceLocation Loc) {
 
    DeclaratorChunk I;
 
    I.Kind          = Pipe;
 
    I.Loc           = Loc;
 
    I.Cls.TypeQuals = TypeQuals;
 
    return I;
 
  }
 
 
 
  static DeclaratorChunk getMemberPointer(const CXXScopeSpec &SS,
 
                                          unsigned TypeQuals,
 
                                          SourceLocation StarLoc,
 
                                          SourceLocation EndLoc) {
 
    DeclaratorChunk I;
 
    I.Kind          = MemberPointer;
 
    I.Loc           = SS.getBeginLoc();
 
    I.EndLoc = EndLoc;
 
    new (&I.Mem) MemberPointerTypeInfo;
 
    I.Mem.StarLoc = StarLoc;
 
    I.Mem.TypeQuals = TypeQuals;
 
    new (I.Mem.ScopeMem) CXXScopeSpec(SS);
 
    return I;
 
  }
 
 
 
  /// Return a DeclaratorChunk for a paren.
 
  static DeclaratorChunk getParen(SourceLocation LParenLoc,
 
                                  SourceLocation RParenLoc) {
 
    DeclaratorChunk I;
 
    I.Kind          = Paren;
 
    I.Loc           = LParenLoc;
 
    I.EndLoc        = RParenLoc;
 
    return I;
 
  }
 
 
 
  bool isParen() const {
 
    return Kind == Paren;
 
  }
 
};
 
 
 
/// A parsed C++17 decomposition declarator of the form
 
///   '[' identifier-list ']'
 
class DecompositionDeclarator {
 
public:
 
  struct Binding {
 
    IdentifierInfo *Name;
 
    SourceLocation NameLoc;
 
  };
 
 
 
private:
 
  /// The locations of the '[' and ']' tokens.
 
  SourceLocation LSquareLoc, RSquareLoc;
 
 
 
  /// The bindings.
 
  Binding *Bindings;
 
  unsigned NumBindings : 31;
 
  unsigned DeleteBindings : 1;
 
 
 
  friend class Declarator;
 
 
 
public:
 
  DecompositionDeclarator()
 
      : Bindings(nullptr), NumBindings(0), DeleteBindings(false) {}
 
  DecompositionDeclarator(const DecompositionDeclarator &G) = delete;
 
  DecompositionDeclarator &operator=(const DecompositionDeclarator &G) = delete;
 
  ~DecompositionDeclarator() {
 
    if (DeleteBindings)
 
      delete[] Bindings;
 
  }
 
 
 
  void clear() {
 
    LSquareLoc = RSquareLoc = SourceLocation();
 
    if (DeleteBindings)
 
      delete[] Bindings;
 
    Bindings = nullptr;
 
    NumBindings = 0;
 
    DeleteBindings = false;
 
  }
 
 
 
  ArrayRef<Binding> bindings() const {
 
    return llvm::ArrayRef(Bindings, NumBindings);
 
  }
 
 
 
  bool isSet() const { return LSquareLoc.isValid(); }
 
 
 
  SourceLocation getLSquareLoc() const { return LSquareLoc; }
 
  SourceLocation getRSquareLoc() const { return RSquareLoc; }
 
  SourceRange getSourceRange() const {
 
    return SourceRange(LSquareLoc, RSquareLoc);
 
  }
 
};
 
 
 
/// Described the kind of function definition (if any) provided for
 
/// a function.
 
enum class FunctionDefinitionKind {
 
  Declaration,
 
  Definition,
 
  Defaulted,
 
  Deleted
 
};
 
 
 
enum class DeclaratorContext {
 
  File,                // File scope declaration.
 
  Prototype,           // Within a function prototype.
 
  ObjCResult,          // An ObjC method result type.
 
  ObjCParameter,       // An ObjC method parameter type.
 
  KNRTypeList,         // K&R type definition list for formals.
 
  TypeName,            // Abstract declarator for types.
 
  FunctionalCast,      // Type in a C++ functional cast expression.
 
  Member,              // Struct/Union field.
 
  Block,               // Declaration within a block in a function.
 
  ForInit,             // Declaration within first part of a for loop.
 
  SelectionInit,       // Declaration within optional init stmt of if/switch.
 
  Condition,           // Condition declaration in a C++ if/switch/while/for.
 
  TemplateParam,       // Within a template parameter list.
 
  CXXNew,              // C++ new-expression.
 
  CXXCatch,            // C++ catch exception-declaration
 
  ObjCCatch,           // Objective-C catch exception-declaration
 
  BlockLiteral,        // Block literal declarator.
 
  LambdaExpr,          // Lambda-expression declarator.
 
  LambdaExprParameter, // Lambda-expression parameter declarator.
 
  ConversionId,        // C++ conversion-type-id.
 
  TrailingReturn,      // C++11 trailing-type-specifier.
 
  TrailingReturnVar,   // C++11 trailing-type-specifier for variable.
 
  TemplateArg,         // Any template argument (in template argument list).
 
  TemplateTypeArg,     // Template type argument (in default argument).
 
  AliasDecl,           // C++11 alias-declaration.
 
  AliasTemplate,       // C++11 alias-declaration template.
 
  RequiresExpr,        // C++2a requires-expression.
 
  Association          // C11 _Generic selection expression association.
 
};
 
 
 
// Describes whether the current context is a context where an implicit
 
// typename is allowed (C++2a [temp.res]p5]).
 
enum class ImplicitTypenameContext {
 
  No,
 
  Yes,
 
};
 
 
 
/// Information about one declarator, including the parsed type
 
/// information and the identifier.
 
///
 
/// When the declarator is fully formed, this is turned into the appropriate
 
/// Decl object.
 
///
 
/// Declarators come in two types: normal declarators and abstract declarators.
 
/// Abstract declarators are used when parsing types, and don't have an
 
/// identifier.  Normal declarators do have ID's.
 
///
 
/// Instances of this class should be a transient object that lives on the
 
/// stack, not objects that are allocated in large quantities on the heap.
 
class Declarator {
 
 
 
private:
 
  const DeclSpec &DS;
 
  CXXScopeSpec SS;
 
  UnqualifiedId Name;
 
  SourceRange Range;
 
 
 
  /// Where we are parsing this declarator.
 
  DeclaratorContext Context;
 
 
 
  /// The C++17 structured binding, if any. This is an alternative to a Name.
 
  DecompositionDeclarator BindingGroup;
 
 
 
  /// DeclTypeInfo - This holds each type that the declarator includes as it is
 
  /// parsed.  This is pushed from the identifier out, which means that element
 
  /// #0 will be the most closely bound to the identifier, and
 
  /// DeclTypeInfo.back() will be the least closely bound.
 
  SmallVector<DeclaratorChunk, 8> DeclTypeInfo;
 
 
 
  /// InvalidType - Set by Sema::GetTypeForDeclarator().
 
  unsigned InvalidType : 1;
 
 
 
  /// GroupingParens - Set by Parser::ParseParenDeclarator().
 
  unsigned GroupingParens : 1;
 
 
 
  /// FunctionDefinition - Is this Declarator for a function or member
 
  /// definition and, if so, what kind?
 
  ///
 
  /// Actually a FunctionDefinitionKind.
 
  unsigned FunctionDefinition : 2;
 
 
 
  /// Is this Declarator a redeclaration?
 
  unsigned Redeclaration : 1;
 
 
 
  /// true if the declaration is preceded by \c __extension__.
 
  unsigned Extension : 1;
 
 
 
  /// Indicates whether this is an Objective-C instance variable.
 
  unsigned ObjCIvar : 1;
 
 
 
  /// Indicates whether this is an Objective-C 'weak' property.
 
  unsigned ObjCWeakProperty : 1;
 
 
 
  /// Indicates whether the InlineParams / InlineBindings storage has been used.
 
  unsigned InlineStorageUsed : 1;
 
 
 
  /// Indicates whether this declarator has an initializer.
 
  unsigned HasInitializer : 1;
 
 
 
  /// Attributes attached to the declarator.
 
  ParsedAttributes Attrs;
 
 
 
  /// Attributes attached to the declaration. See also documentation for the
 
  /// corresponding constructor parameter.
 
  const ParsedAttributesView &DeclarationAttrs;
 
 
 
  /// The asm label, if specified.
 
  Expr *AsmLabel;
 
 
 
  /// \brief The constraint-expression specified by the trailing
 
  /// requires-clause, or null if no such clause was specified.
 
  Expr *TrailingRequiresClause;
 
 
 
  /// If this declarator declares a template, its template parameter lists.
 
  ArrayRef<TemplateParameterList *> TemplateParameterLists;
 
 
 
  /// If the declarator declares an abbreviated function template, the innermost
 
  /// template parameter list containing the invented and explicit template
 
  /// parameters (if any).
 
  TemplateParameterList *InventedTemplateParameterList;
 
 
 
#ifndef _MSC_VER
 
  union {
 
#endif
 
    /// InlineParams - This is a local array used for the first function decl
 
    /// chunk to avoid going to the heap for the common case when we have one
 
    /// function chunk in the declarator.
 
    DeclaratorChunk::ParamInfo InlineParams[16];
 
    DecompositionDeclarator::Binding InlineBindings[16];
 
#ifndef _MSC_VER
 
  };
 
#endif
 
 
 
  /// If this is the second or subsequent declarator in this declaration,
 
  /// the location of the comma before this declarator.
 
  SourceLocation CommaLoc;
 
 
 
  /// If provided, the source location of the ellipsis used to describe
 
  /// this declarator as a parameter pack.
 
  SourceLocation EllipsisLoc;
 
 
 
  friend struct DeclaratorChunk;
 
 
 
public:
 
  /// `DS` and `DeclarationAttrs` must outlive the `Declarator`. In particular,
 
  /// take care not to pass temporary objects for these parameters.
 
  ///
 
  /// `DeclarationAttrs` contains [[]] attributes from the
 
  /// attribute-specifier-seq at the beginning of a declaration, which appertain
 
  /// to the declared entity itself. Attributes with other syntax (e.g. GNU)
 
  /// should not be placed in this attribute list; if they occur at the
 
  /// beginning of a declaration, they apply to the `DeclSpec` and should be
 
  /// attached to that instead.
 
  ///
 
  /// Here is an example of an attribute associated with a declaration:
 
  ///
 
  ///  [[deprecated]] int x, y;
 
  ///
 
  /// This attribute appertains to all of the entities declared in the
 
  /// declaration, i.e. `x` and `y` in this case.
 
  Declarator(const DeclSpec &DS, const ParsedAttributesView &DeclarationAttrs,
 
             DeclaratorContext C)
 
      : DS(DS), Range(DS.getSourceRange()), Context(C),
 
        InvalidType(DS.getTypeSpecType() == DeclSpec::TST_error),
 
        GroupingParens(false), FunctionDefinition(static_cast<unsigned>(
 
                                   FunctionDefinitionKind::Declaration)),
 
        Redeclaration(false), Extension(false), ObjCIvar(false),
 
        ObjCWeakProperty(false), InlineStorageUsed(false),
 
        HasInitializer(false), Attrs(DS.getAttributePool().getFactory()),
 
        DeclarationAttrs(DeclarationAttrs), AsmLabel(nullptr),
 
        TrailingRequiresClause(nullptr),
 
        InventedTemplateParameterList(nullptr) {
 
    assert(llvm::all_of(DeclarationAttrs,
 
                        [](const ParsedAttr &AL) {
 
                          return AL.isStandardAttributeSyntax();
 
                        }) &&
 
           "DeclarationAttrs may only contain [[]] attributes");
 
  }
 
 
 
  ~Declarator() {
 
    clear();
 
  }
 
  /// getDeclSpec - Return the declaration-specifier that this declarator was
 
  /// declared with.
 
  const DeclSpec &getDeclSpec() const { return DS; }
 
 
 
  /// getMutableDeclSpec - Return a non-const version of the DeclSpec.  This
 
  /// should be used with extreme care: declspecs can often be shared between
 
  /// multiple declarators, so mutating the DeclSpec affects all of the
 
  /// Declarators.  This should only be done when the declspec is known to not
 
  /// be shared or when in error recovery etc.
 
  DeclSpec &getMutableDeclSpec() { return const_cast<DeclSpec &>(DS); }
 
 
 
  AttributePool &getAttributePool() const {
 
    return Attrs.getPool();
 
  }
 
 
 
  /// getCXXScopeSpec - Return the C++ scope specifier (global scope or
 
  /// nested-name-specifier) that is part of the declarator-id.
 
  const CXXScopeSpec &getCXXScopeSpec() const { return SS; }
 
  CXXScopeSpec &getCXXScopeSpec() { return SS; }
 
 
 
  /// Retrieve the name specified by this declarator.
 
  UnqualifiedId &getName() { return Name; }
 
 
 
  const DecompositionDeclarator &getDecompositionDeclarator() const {
 
    return BindingGroup;
 
  }
 
 
 
  DeclaratorContext getContext() const { return Context; }
 
 
 
  bool isPrototypeContext() const {
 
    return (Context == DeclaratorContext::Prototype ||
 
            Context == DeclaratorContext::ObjCParameter ||
 
            Context == DeclaratorContext::ObjCResult ||
 
            Context == DeclaratorContext::LambdaExprParameter);
 
  }
 
 
 
  /// Get the source range that spans this declarator.
 
  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
 
  SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
 
 
 
  void SetSourceRange(SourceRange R) { Range = R; }
 
  /// SetRangeBegin - Set the start of the source range to Loc, unless it's
 
  /// invalid.
 
  void SetRangeBegin(SourceLocation Loc) {
 
    if (!Loc.isInvalid())
 
      Range.setBegin(Loc);
 
  }
 
  /// SetRangeEnd - Set the end of the source range to Loc, unless it's invalid.
 
  void SetRangeEnd(SourceLocation Loc) {
 
    if (!Loc.isInvalid())
 
      Range.setEnd(Loc);
 
  }
 
  /// ExtendWithDeclSpec - Extend the declarator source range to include the
 
  /// given declspec, unless its location is invalid. Adopts the range start if
 
  /// the current range start is invalid.
 
  void ExtendWithDeclSpec(const DeclSpec &DS) {
 
    SourceRange SR = DS.getSourceRange();
 
    if (Range.getBegin().isInvalid())
 
      Range.setBegin(SR.getBegin());
 
    if (!SR.getEnd().isInvalid())
 
      Range.setEnd(SR.getEnd());
 
  }
 
 
 
  /// Reset the contents of this Declarator.
 
  void clear() {
 
    SS.clear();
 
    Name.clear();
 
    Range = DS.getSourceRange();
 
    BindingGroup.clear();
 
 
 
    for (unsigned i = 0, e = DeclTypeInfo.size(); i != e; ++i)
 
      DeclTypeInfo[i].destroy();
 
    DeclTypeInfo.clear();
 
    Attrs.clear();
 
    AsmLabel = nullptr;
 
    InlineStorageUsed = false;
 
    HasInitializer = false;
 
    ObjCIvar = false;
 
    ObjCWeakProperty = false;
 
    CommaLoc = SourceLocation();
 
    EllipsisLoc = SourceLocation();
 
  }
 
 
 
  /// mayOmitIdentifier - Return true if the identifier is either optional or
 
  /// not allowed.  This is true for typenames, prototypes, and template
 
  /// parameter lists.
 
  bool mayOmitIdentifier() const {
 
    switch (Context) {
 
    case DeclaratorContext::File:
 
    case DeclaratorContext::KNRTypeList:
 
    case DeclaratorContext::Member:
 
    case DeclaratorContext::Block:
 
    case DeclaratorContext::ForInit:
 
    case DeclaratorContext::SelectionInit:
 
    case DeclaratorContext::Condition:
 
      return false;
 
 
 
    case DeclaratorContext::TypeName:
 
    case DeclaratorContext::FunctionalCast:
 
    case DeclaratorContext::AliasDecl:
 
    case DeclaratorContext::AliasTemplate:
 
    case DeclaratorContext::Prototype:
 
    case DeclaratorContext::LambdaExprParameter:
 
    case DeclaratorContext::ObjCParameter:
 
    case DeclaratorContext::ObjCResult:
 
    case DeclaratorContext::TemplateParam:
 
    case DeclaratorContext::CXXNew:
 
    case DeclaratorContext::CXXCatch:
 
    case DeclaratorContext::ObjCCatch:
 
    case DeclaratorContext::BlockLiteral:
 
    case DeclaratorContext::LambdaExpr:
 
    case DeclaratorContext::ConversionId:
 
    case DeclaratorContext::TemplateArg:
 
    case DeclaratorContext::TemplateTypeArg:
 
    case DeclaratorContext::TrailingReturn:
 
    case DeclaratorContext::TrailingReturnVar:
 
    case DeclaratorContext::RequiresExpr:
 
    case DeclaratorContext::Association:
 
      return true;
 
    }
 
    llvm_unreachable("unknown context kind!");
 
  }
 
 
 
  /// mayHaveIdentifier - Return true if the identifier is either optional or
 
  /// required.  This is true for normal declarators and prototypes, but not
 
  /// typenames.
 
  bool mayHaveIdentifier() const {
 
    switch (Context) {
 
    case DeclaratorContext::File:
 
    case DeclaratorContext::KNRTypeList:
 
    case DeclaratorContext::Member:
 
    case DeclaratorContext::Block:
 
    case DeclaratorContext::ForInit:
 
    case DeclaratorContext::SelectionInit:
 
    case DeclaratorContext::Condition:
 
    case DeclaratorContext::Prototype:
 
    case DeclaratorContext::LambdaExprParameter:
 
    case DeclaratorContext::TemplateParam:
 
    case DeclaratorContext::CXXCatch:
 
    case DeclaratorContext::ObjCCatch:
 
    case DeclaratorContext::RequiresExpr:
 
      return true;
 
 
 
    case DeclaratorContext::TypeName:
 
    case DeclaratorContext::FunctionalCast:
 
    case DeclaratorContext::CXXNew:
 
    case DeclaratorContext::AliasDecl:
 
    case DeclaratorContext::AliasTemplate:
 
    case DeclaratorContext::ObjCParameter:
 
    case DeclaratorContext::ObjCResult:
 
    case DeclaratorContext::BlockLiteral:
 
    case DeclaratorContext::LambdaExpr:
 
    case DeclaratorContext::ConversionId:
 
    case DeclaratorContext::TemplateArg:
 
    case DeclaratorContext::TemplateTypeArg:
 
    case DeclaratorContext::TrailingReturn:
 
    case DeclaratorContext::TrailingReturnVar:
 
    case DeclaratorContext::Association:
 
      return false;
 
    }
 
    llvm_unreachable("unknown context kind!");
 
  }
 
 
 
  /// Return true if the context permits a C++17 decomposition declarator.
 
  bool mayHaveDecompositionDeclarator() const {
 
    switch (Context) {
 
    case DeclaratorContext::File:
 
      // FIXME: It's not clear that the proposal meant to allow file-scope
 
      // structured bindings, but it does.
 
    case DeclaratorContext::Block:
 
    case DeclaratorContext::ForInit:
 
    case DeclaratorContext::SelectionInit:
 
    case DeclaratorContext::Condition:
 
      return true;
 
 
 
    case DeclaratorContext::Member:
 
    case DeclaratorContext::Prototype:
 
    case DeclaratorContext::TemplateParam:
 
    case DeclaratorContext::RequiresExpr:
 
      // Maybe one day...
 
      return false;
 
 
 
    // These contexts don't allow any kind of non-abstract declarator.
 
    case DeclaratorContext::KNRTypeList:
 
    case DeclaratorContext::TypeName:
 
    case DeclaratorContext::FunctionalCast:
 
    case DeclaratorContext::AliasDecl:
 
    case DeclaratorContext::AliasTemplate:
 
    case DeclaratorContext::LambdaExprParameter:
 
    case DeclaratorContext::ObjCParameter:
 
    case DeclaratorContext::ObjCResult:
 
    case DeclaratorContext::CXXNew:
 
    case DeclaratorContext::CXXCatch:
 
    case DeclaratorContext::ObjCCatch:
 
    case DeclaratorContext::BlockLiteral:
 
    case DeclaratorContext::LambdaExpr:
 
    case DeclaratorContext::ConversionId:
 
    case DeclaratorContext::TemplateArg:
 
    case DeclaratorContext::TemplateTypeArg:
 
    case DeclaratorContext::TrailingReturn:
 
    case DeclaratorContext::TrailingReturnVar:
 
    case DeclaratorContext::Association:
 
      return false;
 
    }
 
    llvm_unreachable("unknown context kind!");
 
  }
 
 
 
  /// mayBeFollowedByCXXDirectInit - Return true if the declarator can be
 
  /// followed by a C++ direct initializer, e.g. "int x(1);".
 
  bool mayBeFollowedByCXXDirectInit() const {
 
    if (hasGroupingParens()) return false;
 
 
 
    if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 
      return false;
 
 
 
    if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern &&
 
        Context != DeclaratorContext::File)
 
      return false;
 
 
 
    // Special names can't have direct initializers.
 
    if (Name.getKind() != UnqualifiedIdKind::IK_Identifier)
 
      return false;
 
 
 
    switch (Context) {
 
    case DeclaratorContext::File:
 
    case DeclaratorContext::Block:
 
    case DeclaratorContext::ForInit:
 
    case DeclaratorContext::SelectionInit:
 
    case DeclaratorContext::TrailingReturnVar:
 
      return true;
 
 
 
    case DeclaratorContext::Condition:
 
      // This may not be followed by a direct initializer, but it can't be a
 
      // function declaration either, and we'd prefer to perform a tentative
 
      // parse in order to produce the right diagnostic.
 
      return true;
 
 
 
    case DeclaratorContext::KNRTypeList:
 
    case DeclaratorContext::Member:
 
    case DeclaratorContext::Prototype:
 
    case DeclaratorContext::LambdaExprParameter:
 
    case DeclaratorContext::ObjCParameter:
 
    case DeclaratorContext::ObjCResult:
 
    case DeclaratorContext::TemplateParam:
 
    case DeclaratorContext::CXXCatch:
 
    case DeclaratorContext::ObjCCatch:
 
    case DeclaratorContext::TypeName:
 
    case DeclaratorContext::FunctionalCast: // FIXME
 
    case DeclaratorContext::CXXNew:
 
    case DeclaratorContext::AliasDecl:
 
    case DeclaratorContext::AliasTemplate:
 
    case DeclaratorContext::BlockLiteral:
 
    case DeclaratorContext::LambdaExpr:
 
    case DeclaratorContext::ConversionId:
 
    case DeclaratorContext::TemplateArg:
 
    case DeclaratorContext::TemplateTypeArg:
 
    case DeclaratorContext::TrailingReturn:
 
    case DeclaratorContext::RequiresExpr:
 
    case DeclaratorContext::Association:
 
      return false;
 
    }
 
    llvm_unreachable("unknown context kind!");
 
  }
 
 
 
  /// isPastIdentifier - Return true if we have parsed beyond the point where
 
  /// the name would appear. (This may happen even if we haven't actually parsed
 
  /// a name, perhaps because this context doesn't require one.)
 
  bool isPastIdentifier() const { return Name.isValid(); }
 
 
 
  /// hasName - Whether this declarator has a name, which might be an
 
  /// identifier (accessible via getIdentifier()) or some kind of
 
  /// special C++ name (constructor, destructor, etc.), or a structured
 
  /// binding (which is not exactly a name, but occupies the same position).
 
  bool hasName() const {
 
    return Name.getKind() != UnqualifiedIdKind::IK_Identifier ||
 
           Name.Identifier || isDecompositionDeclarator();
 
  }
 
 
 
  /// Return whether this declarator is a decomposition declarator.
 
  bool isDecompositionDeclarator() const {
 
    return BindingGroup.isSet();
 
  }
 
 
 
  IdentifierInfo *getIdentifier() const {
 
    if (Name.getKind() == UnqualifiedIdKind::IK_Identifier)
 
      return Name.Identifier;
 
 
 
    return nullptr;
 
  }
 
  SourceLocation getIdentifierLoc() const { return Name.StartLocation; }
 
 
 
  /// Set the name of this declarator to be the given identifier.
 
  void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc) {
 
    Name.setIdentifier(Id, IdLoc);
 
  }
 
 
 
  /// Set the decomposition bindings for this declarator.
 
  void
 
  setDecompositionBindings(SourceLocation LSquareLoc,
 
                           ArrayRef<DecompositionDeclarator::Binding> Bindings,
 
                           SourceLocation RSquareLoc);
 
 
 
  /// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
 
  /// EndLoc, which should be the last token of the chunk.
 
  /// This function takes attrs by R-Value reference because it takes ownership
 
  /// of those attributes from the parameter.
 
  void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs,
 
                   SourceLocation EndLoc) {
 
    DeclTypeInfo.push_back(TI);
 
    DeclTypeInfo.back().getAttrs().addAll(attrs.begin(), attrs.end());
 
    getAttributePool().takeAllFrom(attrs.getPool());
 
 
 
    if (!EndLoc.isInvalid())
 
      SetRangeEnd(EndLoc);
 
  }
 
 
 
  /// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
 
  /// EndLoc, which should be the last token of the chunk.
 
  void AddTypeInfo(const DeclaratorChunk &TI, SourceLocation EndLoc) {
 
    DeclTypeInfo.push_back(TI);
 
 
 
    if (!EndLoc.isInvalid())
 
      SetRangeEnd(EndLoc);
 
  }
 
 
 
  /// Add a new innermost chunk to this declarator.
 
  void AddInnermostTypeInfo(const DeclaratorChunk &TI) {
 
    DeclTypeInfo.insert(DeclTypeInfo.begin(), TI);
 
  }
 
 
 
  /// Return the number of types applied to this declarator.
 
  unsigned getNumTypeObjects() const { return DeclTypeInfo.size(); }
 
 
 
  /// Return the specified TypeInfo from this declarator.  TypeInfo #0 is
 
  /// closest to the identifier.
 
  const DeclaratorChunk &getTypeObject(unsigned i) const {
 
    assert(i < DeclTypeInfo.size() && "Invalid type chunk");
 
    return DeclTypeInfo[i];
 
  }
 
  DeclaratorChunk &getTypeObject(unsigned i) {
 
    assert(i < DeclTypeInfo.size() && "Invalid type chunk");
 
    return DeclTypeInfo[i];
 
  }
 
 
 
  typedef SmallVectorImpl<DeclaratorChunk>::const_iterator type_object_iterator;
 
  typedef llvm::iterator_range<type_object_iterator> type_object_range;
 
 
 
  /// Returns the range of type objects, from the identifier outwards.
 
  type_object_range type_objects() const {
 
    return type_object_range(DeclTypeInfo.begin(), DeclTypeInfo.end());
 
  }
 
 
 
  void DropFirstTypeObject() {
 
    assert(!DeclTypeInfo.empty() && "No type chunks to drop.");
 
    DeclTypeInfo.front().destroy();
 
    DeclTypeInfo.erase(DeclTypeInfo.begin());
 
  }
 
 
 
  /// Return the innermost (closest to the declarator) chunk of this
 
  /// declarator that is not a parens chunk, or null if there are no
 
  /// non-parens chunks.
 
  const DeclaratorChunk *getInnermostNonParenChunk() const {
 
    for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
 
      if (!DeclTypeInfo[i].isParen())
 
        return &DeclTypeInfo[i];
 
    }
 
    return nullptr;
 
  }
 
 
 
  /// Return the outermost (furthest from the declarator) chunk of
 
  /// this declarator that is not a parens chunk, or null if there are
 
  /// no non-parens chunks.
 
  const DeclaratorChunk *getOutermostNonParenChunk() const {
 
    for (unsigned i = DeclTypeInfo.size(), i_end = 0; i != i_end; --i) {
 
      if (!DeclTypeInfo[i-1].isParen())
 
        return &DeclTypeInfo[i-1];
 
    }
 
    return nullptr;
 
  }
 
 
 
  /// isArrayOfUnknownBound - This method returns true if the declarator
 
  /// is a declarator for an array of unknown bound (looking through
 
  /// parentheses).
 
  bool isArrayOfUnknownBound() const {
 
    const DeclaratorChunk *chunk = getInnermostNonParenChunk();
 
    return (chunk && chunk->Kind == DeclaratorChunk::Array &&
 
            !chunk->Arr.NumElts);
 
  }
 
 
 
  /// isFunctionDeclarator - This method returns true if the declarator
 
  /// is a function declarator (looking through parentheses).
 
  /// If true is returned, then the reference type parameter idx is
 
  /// assigned with the index of the declaration chunk.
 
  bool isFunctionDeclarator(unsigned& idx) const {
 
    for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
 
      switch (DeclTypeInfo[i].Kind) {
 
      case DeclaratorChunk::Function:
 
        idx = i;
 
        return true;
 
      case DeclaratorChunk::Paren:
 
        continue;
 
      case DeclaratorChunk::Pointer:
 
      case DeclaratorChunk::Reference:
 
      case DeclaratorChunk::Array:
 
      case DeclaratorChunk::BlockPointer:
 
      case DeclaratorChunk::MemberPointer:
 
      case DeclaratorChunk::Pipe:
 
        return false;
 
      }
 
      llvm_unreachable("Invalid type chunk");
 
    }
 
    return false;
 
  }
 
 
 
  /// isFunctionDeclarator - Once this declarator is fully parsed and formed,
 
  /// this method returns true if the identifier is a function declarator
 
  /// (looking through parentheses).
 
  bool isFunctionDeclarator() const {
 
    unsigned index;
 
    return isFunctionDeclarator(index);
 
  }
 
 
 
  /// getFunctionTypeInfo - Retrieves the function type info object
 
  /// (looking through parentheses).
 
  DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() {
 
    assert(isFunctionDeclarator() && "Not a function declarator!");
 
    unsigned index = 0;
 
    isFunctionDeclarator(index);
 
    return DeclTypeInfo[index].Fun;
 
  }
 
 
 
  /// getFunctionTypeInfo - Retrieves the function type info object
 
  /// (looking through parentheses).
 
  const DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() const {
 
    return const_cast<Declarator*>(this)->getFunctionTypeInfo();
 
  }
 
 
 
  /// Determine whether the declaration that will be produced from
 
  /// this declaration will be a function.
 
  ///
 
  /// A declaration can declare a function even if the declarator itself
 
  /// isn't a function declarator, if the type specifier refers to a function
 
  /// type. This routine checks for both cases.
 
  bool isDeclarationOfFunction() const;
 
 
 
  /// Return true if this declaration appears in a context where a
 
  /// function declarator would be a function declaration.
 
  bool isFunctionDeclarationContext() const {
 
    if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 
      return false;
 
 
 
    switch (Context) {
 
    case DeclaratorContext::File:
 
    case DeclaratorContext::Member:
 
    case DeclaratorContext::Block:
 
    case DeclaratorContext::ForInit:
 
    case DeclaratorContext::SelectionInit:
 
      return true;
 
 
 
    case DeclaratorContext::Condition:
 
    case DeclaratorContext::KNRTypeList:
 
    case DeclaratorContext::TypeName:
 
    case DeclaratorContext::FunctionalCast:
 
    case DeclaratorContext::AliasDecl:
 
    case DeclaratorContext::AliasTemplate:
 
    case DeclaratorContext::Prototype:
 
    case DeclaratorContext::LambdaExprParameter:
 
    case DeclaratorContext::ObjCParameter:
 
    case DeclaratorContext::ObjCResult:
 
    case DeclaratorContext::TemplateParam:
 
    case DeclaratorContext::CXXNew:
 
    case DeclaratorContext::CXXCatch:
 
    case DeclaratorContext::ObjCCatch:
 
    case DeclaratorContext::BlockLiteral:
 
    case DeclaratorContext::LambdaExpr:
 
    case DeclaratorContext::ConversionId:
 
    case DeclaratorContext::TemplateArg:
 
    case DeclaratorContext::TemplateTypeArg:
 
    case DeclaratorContext::TrailingReturn:
 
    case DeclaratorContext::TrailingReturnVar:
 
    case DeclaratorContext::RequiresExpr:
 
    case DeclaratorContext::Association:
 
      return false;
 
    }
 
    llvm_unreachable("unknown context kind!");
 
  }
 
 
 
  /// Determine whether this declaration appears in a context where an
 
  /// expression could appear.
 
  bool isExpressionContext() const {
 
    switch (Context) {
 
    case DeclaratorContext::File:
 
    case DeclaratorContext::KNRTypeList:
 
    case DeclaratorContext::Member:
 
 
 
    // FIXME: sizeof(...) permits an expression.
 
    case DeclaratorContext::TypeName:
 
 
 
    case DeclaratorContext::FunctionalCast:
 
    case DeclaratorContext::AliasDecl:
 
    case DeclaratorContext::AliasTemplate:
 
    case DeclaratorContext::Prototype:
 
    case DeclaratorContext::LambdaExprParameter:
 
    case DeclaratorContext::ObjCParameter:
 
    case DeclaratorContext::ObjCResult:
 
    case DeclaratorContext::TemplateParam:
 
    case DeclaratorContext::CXXNew:
 
    case DeclaratorContext::CXXCatch:
 
    case DeclaratorContext::ObjCCatch:
 
    case DeclaratorContext::BlockLiteral:
 
    case DeclaratorContext::LambdaExpr:
 
    case DeclaratorContext::ConversionId:
 
    case DeclaratorContext::TrailingReturn:
 
    case DeclaratorContext::TrailingReturnVar:
 
    case DeclaratorContext::TemplateTypeArg:
 
    case DeclaratorContext::RequiresExpr:
 
    case DeclaratorContext::Association:
 
      return false;
 
 
 
    case DeclaratorContext::Block:
 
    case DeclaratorContext::ForInit:
 
    case DeclaratorContext::SelectionInit:
 
    case DeclaratorContext::Condition:
 
    case DeclaratorContext::TemplateArg:
 
      return true;
 
    }
 
 
 
    llvm_unreachable("unknown context kind!");
 
  }
 
 
 
  /// Return true if a function declarator at this position would be a
 
  /// function declaration.
 
  bool isFunctionDeclaratorAFunctionDeclaration() const {
 
    if (!isFunctionDeclarationContext())
 
      return false;
 
 
 
    for (unsigned I = 0, N = getNumTypeObjects(); I != N; ++I)
 
      if (getTypeObject(I).Kind != DeclaratorChunk::Paren)
 
        return false;
 
 
 
    return true;
 
  }
 
 
 
  /// Determine whether a trailing return type was written (at any
 
  /// level) within this declarator.
 
  bool hasTrailingReturnType() const {
 
    for (const auto &Chunk : type_objects())
 
      if (Chunk.Kind == DeclaratorChunk::Function &&
 
          Chunk.Fun.hasTrailingReturnType())
 
        return true;
 
    return false;
 
  }
 
  /// Get the trailing return type appearing (at any level) within this
 
  /// declarator.
 
  ParsedType getTrailingReturnType() const {
 
    for (const auto &Chunk : type_objects())
 
      if (Chunk.Kind == DeclaratorChunk::Function &&
 
          Chunk.Fun.hasTrailingReturnType())
 
        return Chunk.Fun.getTrailingReturnType();
 
    return ParsedType();
 
  }
 
 
 
  /// \brief Sets a trailing requires clause for this declarator.
 
  void setTrailingRequiresClause(Expr *TRC) {
 
    TrailingRequiresClause = TRC;
 
 
 
    SetRangeEnd(TRC->getEndLoc());
 
  }
 
 
 
  /// \brief Sets a trailing requires clause for this declarator.
 
  Expr *getTrailingRequiresClause() {
 
    return TrailingRequiresClause;
 
  }
 
 
 
  /// \brief Determine whether a trailing requires clause was written in this
 
  /// declarator.
 
  bool hasTrailingRequiresClause() const {
 
    return TrailingRequiresClause != nullptr;
 
  }
 
 
 
  /// Sets the template parameter lists that preceded the declarator.
 
  void setTemplateParameterLists(ArrayRef<TemplateParameterList *> TPLs) {
 
    TemplateParameterLists = TPLs;
 
  }
 
 
 
  /// The template parameter lists that preceded the declarator.
 
  ArrayRef<TemplateParameterList *> getTemplateParameterLists() const {
 
    return TemplateParameterLists;
 
  }
 
 
 
  /// Sets the template parameter list generated from the explicit template
 
  /// parameters along with any invented template parameters from
 
  /// placeholder-typed parameters.
 
  void setInventedTemplateParameterList(TemplateParameterList *Invented) {
 
    InventedTemplateParameterList = Invented;
 
  }
 
 
 
  /// The template parameter list generated from the explicit template
 
  /// parameters along with any invented template parameters from
 
  /// placeholder-typed parameters, if there were any such parameters.
 
  TemplateParameterList * getInventedTemplateParameterList() const {
 
    return InventedTemplateParameterList;
 
  }
 
 
 
  /// takeAttributes - Takes attributes from the given parsed-attributes
 
  /// set and add them to this declarator.
 
  ///
 
  /// These examples both add 3 attributes to "var":
 
  ///  short int var __attribute__((aligned(16),common,deprecated));
 
  ///  short int x, __attribute__((aligned(16)) var
 
  ///                                 __attribute__((common,deprecated));
 
  ///
 
  /// Also extends the range of the declarator.
 
  void takeAttributes(ParsedAttributes &attrs) {
 
    Attrs.takeAllFrom(attrs);
 
 
 
    if (attrs.Range.getEnd().isValid())
 
      SetRangeEnd(attrs.Range.getEnd());
 
  }
 
 
 
  const ParsedAttributes &getAttributes() const { return Attrs; }
 
  ParsedAttributes &getAttributes() { return Attrs; }
 
 
 
  const ParsedAttributesView &getDeclarationAttributes() const {
 
    return DeclarationAttrs;
 
  }
 
 
 
  /// hasAttributes - do we contain any attributes?
 
  bool hasAttributes() const {
 
    if (!getAttributes().empty() || !getDeclarationAttributes().empty() ||
 
        getDeclSpec().hasAttributes())
 
      return true;
 
    for (unsigned i = 0, e = getNumTypeObjects(); i != e; ++i)
 
      if (!getTypeObject(i).getAttrs().empty())
 
        return true;
 
    return false;
 
  }
 
 
 
  /// Return a source range list of C++11 attributes associated
 
  /// with the declarator.
 
  void getCXX11AttributeRanges(SmallVectorImpl<SourceRange> &Ranges) {
 
    for (const ParsedAttr &AL : Attrs)
 
      if (AL.isCXX11Attribute())
 
        Ranges.push_back(AL.getRange());
 
  }
 
 
 
  void setAsmLabel(Expr *E) { AsmLabel = E; }
 
  Expr *getAsmLabel() const { return AsmLabel; }
 
 
 
  void setExtension(bool Val = true) { Extension = Val; }
 
  bool getExtension() const { return Extension; }
 
 
 
  void setObjCIvar(bool Val = true) { ObjCIvar = Val; }
 
  bool isObjCIvar() const { return ObjCIvar; }
 
 
 
  void setObjCWeakProperty(bool Val = true) { ObjCWeakProperty = Val; }
 
  bool isObjCWeakProperty() const { return ObjCWeakProperty; }
 
 
 
  void setInvalidType(bool Val = true) { InvalidType = Val; }
 
  bool isInvalidType() const {
 
    return InvalidType || DS.getTypeSpecType() == DeclSpec::TST_error;
 
  }
 
 
 
  void setGroupingParens(bool flag) { GroupingParens = flag; }
 
  bool hasGroupingParens() const { return GroupingParens; }
 
 
 
  bool isFirstDeclarator() const { return !CommaLoc.isValid(); }
 
  SourceLocation getCommaLoc() const { return CommaLoc; }
 
  void setCommaLoc(SourceLocation CL) { CommaLoc = CL; }
 
 
 
  bool hasEllipsis() const { return EllipsisLoc.isValid(); }
 
  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
 
  void setEllipsisLoc(SourceLocation EL) { EllipsisLoc = EL; }
 
 
 
  void setFunctionDefinitionKind(FunctionDefinitionKind Val) {
 
    FunctionDefinition = static_cast<unsigned>(Val);
 
  }
 
 
 
  bool isFunctionDefinition() const {
 
    return getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration;
 
  }
 
 
 
  FunctionDefinitionKind getFunctionDefinitionKind() const {
 
    return (FunctionDefinitionKind)FunctionDefinition;
 
  }
 
 
 
  void setHasInitializer(bool Val = true) { HasInitializer = Val; }
 
  bool hasInitializer() const { return HasInitializer; }
 
 
 
  /// Returns true if this declares a real member and not a friend.
 
  bool isFirstDeclarationOfMember() {
 
    return getContext() == DeclaratorContext::Member &&
 
           !getDeclSpec().isFriendSpecified();
 
  }
 
 
 
  /// Returns true if this declares a static member.  This cannot be called on a
 
  /// declarator outside of a MemberContext because we won't know until
 
  /// redeclaration time if the decl is static.
 
  bool isStaticMember();
 
 
 
  /// Returns true if this declares a constructor or a destructor.
 
  bool isCtorOrDtor();
 
 
 
  void setRedeclaration(bool Val) { Redeclaration = Val; }
 
  bool isRedeclaration() const { return Redeclaration; }
 
};
 
 
 
/// This little struct is used to capture information about
 
/// structure field declarators, which is basically just a bitfield size.
 
struct FieldDeclarator {
 
  Declarator D;
 
  Expr *BitfieldSize;
 
  explicit FieldDeclarator(const DeclSpec &DS,
 
                           const ParsedAttributes &DeclarationAttrs)
 
      : D(DS, DeclarationAttrs, DeclaratorContext::Member),
 
        BitfieldSize(nullptr) {}
 
};
 
 
 
/// Represents a C++11 virt-specifier-seq.
 
class VirtSpecifiers {
 
public:
 
  enum Specifier {
 
    VS_None = 0,
 
    VS_Override = 1,
 
    VS_Final = 2,
 
    VS_Sealed = 4,
 
    // Represents the __final keyword, which is legal for gcc in pre-C++11 mode.
 
    VS_GNU_Final = 8,
 
    VS_Abstract = 16
 
  };
 
 
 
  VirtSpecifiers() : Specifiers(0), LastSpecifier(VS_None) { }
 
 
 
  bool SetSpecifier(Specifier VS, SourceLocation Loc,
 
                    const char *&PrevSpec);
 
 
 
  bool isUnset() const { return Specifiers == 0; }
 
 
 
  bool isOverrideSpecified() const { return Specifiers & VS_Override; }
 
  SourceLocation getOverrideLoc() const { return VS_overrideLoc; }
 
 
 
  bool isFinalSpecified() const { return Specifiers & (VS_Final | VS_Sealed | VS_GNU_Final); }
 
  bool isFinalSpelledSealed() const { return Specifiers & VS_Sealed; }
 
  SourceLocation getFinalLoc() const { return VS_finalLoc; }
 
  SourceLocation getAbstractLoc() const { return VS_abstractLoc; }
 
 
 
  void clear() { Specifiers = 0; }
 
 
 
  static const char *getSpecifierName(Specifier VS);
 
 
 
  SourceLocation getFirstLocation() const { return FirstLocation; }
 
  SourceLocation getLastLocation() const { return LastLocation; }
 
  Specifier getLastSpecifier() const { return LastSpecifier; }
 
 
 
private:
 
  unsigned Specifiers;
 
  Specifier LastSpecifier;
 
 
 
  SourceLocation VS_overrideLoc, VS_finalLoc, VS_abstractLoc;
 
  SourceLocation FirstLocation;
 
  SourceLocation LastLocation;
 
};
 
 
 
enum class LambdaCaptureInitKind {
 
  NoInit,     //!< [a]
 
  CopyInit,   //!< [a = b], [a = {b}]
 
  DirectInit, //!< [a(b)]
 
  ListInit    //!< [a{b}]
 
};
 
 
 
/// Represents a complete lambda introducer.
 
struct LambdaIntroducer {
 
  /// An individual capture in a lambda introducer.
 
  struct LambdaCapture {
 
    LambdaCaptureKind Kind;
 
    SourceLocation Loc;
 
    IdentifierInfo *Id;
 
    SourceLocation EllipsisLoc;
 
    LambdaCaptureInitKind InitKind;
 
    ExprResult Init;
 
    ParsedType InitCaptureType;
 
    SourceRange ExplicitRange;
 
 
 
    LambdaCapture(LambdaCaptureKind Kind, SourceLocation Loc,
 
                  IdentifierInfo *Id, SourceLocation EllipsisLoc,
 
                  LambdaCaptureInitKind InitKind, ExprResult Init,
 
                  ParsedType InitCaptureType,
 
                  SourceRange ExplicitRange)
 
        : Kind(Kind), Loc(Loc), Id(Id), EllipsisLoc(EllipsisLoc),
 
          InitKind(InitKind), Init(Init), InitCaptureType(InitCaptureType),
 
          ExplicitRange(ExplicitRange) {}
 
  };
 
 
 
  SourceRange Range;
 
  SourceLocation DefaultLoc;
 
  LambdaCaptureDefault Default;
 
  SmallVector<LambdaCapture, 4> Captures;
 
 
 
  LambdaIntroducer()
 
    : Default(LCD_None) {}
 
 
 
  bool hasLambdaCapture() const {
 
    return Captures.size() > 0 || Default != LCD_None;
 
  }
 
 
 
  /// Append a capture in a lambda introducer.
 
  void addCapture(LambdaCaptureKind Kind,
 
                  SourceLocation Loc,
 
                  IdentifierInfo* Id,
 
                  SourceLocation EllipsisLoc,
 
                  LambdaCaptureInitKind InitKind,
 
                  ExprResult Init,
 
                  ParsedType InitCaptureType,
 
                  SourceRange ExplicitRange) {
 
    Captures.push_back(LambdaCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
 
                                     InitCaptureType, ExplicitRange));
 
  }
 
};
 
 
 
struct InventedTemplateParameterInfo {
 
  /// The number of parameters in the template parameter list that were
 
  /// explicitly specified by the user, as opposed to being invented by use
 
  /// of an auto parameter.
 
  unsigned NumExplicitTemplateParams = 0;
 
 
 
  /// If this is a generic lambda or abbreviated function template, use this
 
  /// as the depth of each 'auto' parameter, during initial AST construction.
 
  unsigned AutoTemplateParameterDepth = 0;
 
 
 
  /// Store the list of the template parameters for a generic lambda or an
 
  /// abbreviated function template.
 
  /// If this is a generic lambda or abbreviated function template, this holds
 
  /// the explicit template parameters followed by the auto parameters
 
  /// converted into TemplateTypeParmDecls.
 
  /// It can be used to construct the generic lambda or abbreviated template's
 
  /// template parameter list during initial AST construction.
 
  SmallVector<NamedDecl*, 4> TemplateParams;
 
};
 
 
 
} // end namespace clang
 
 
 
#endif // LLVM_CLANG_SEMA_DECLSPEC_H