Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===--- TargetInfo.h - Expose information about the target -----*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. ///
  9. /// \file
  10. /// Defines the clang::TargetInfo interface.
  11. ///
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_CLANG_BASIC_TARGETINFO_H
  15. #define LLVM_CLANG_BASIC_TARGETINFO_H
  16.  
  17. #include "clang/Basic/AddressSpaces.h"
  18. #include "clang/Basic/BitmaskEnum.h"
  19. #include "clang/Basic/CodeGenOptions.h"
  20. #include "clang/Basic/LLVM.h"
  21. #include "clang/Basic/LangOptions.h"
  22. #include "clang/Basic/Specifiers.h"
  23. #include "clang/Basic/TargetCXXABI.h"
  24. #include "clang/Basic/TargetOptions.h"
  25. #include "llvm/ADT/APFloat.h"
  26. #include "llvm/ADT/APInt.h"
  27. #include "llvm/ADT/ArrayRef.h"
  28. #include "llvm/ADT/IntrusiveRefCntPtr.h"
  29. #include "llvm/ADT/SmallSet.h"
  30. #include "llvm/ADT/StringMap.h"
  31. #include "llvm/ADT/StringRef.h"
  32. #include "llvm/ADT/Triple.h"
  33. #include "llvm/Frontend/OpenMP/OMPGridValues.h"
  34. #include "llvm/IR/DerivedTypes.h"
  35. #include "llvm/Support/DataTypes.h"
  36. #include "llvm/Support/Error.h"
  37. #include "llvm/Support/VersionTuple.h"
  38. #include <cassert>
  39. #include <optional>
  40. #include <string>
  41. #include <vector>
  42.  
  43. namespace llvm {
  44. struct fltSemantics;
  45. }
  46.  
  47. namespace clang {
  48. class DiagnosticsEngine;
  49. class LangOptions;
  50. class CodeGenOptions;
  51. class MacroBuilder;
  52.  
  53. /// Contains information gathered from parsing the contents of TargetAttr.
  54. struct ParsedTargetAttr {
  55.   std::vector<std::string> Features;
  56.   StringRef CPU;
  57.   StringRef Tune;
  58.   StringRef BranchProtection;
  59.   StringRef Duplicate;
  60.   bool operator ==(const ParsedTargetAttr &Other) const {
  61.     return Duplicate == Other.Duplicate && CPU == Other.CPU &&
  62.            Tune == Other.Tune && BranchProtection == Other.BranchProtection &&
  63.            Features == Other.Features;
  64.   }
  65. };
  66.  
  67. namespace Builtin { struct Info; }
  68.  
  69. enum class FloatModeKind {
  70.   NoFloat = 0,
  71.   Half = 1 << 0,
  72.   Float = 1 << 1,
  73.   Double = 1 << 2,
  74.   LongDouble = 1 << 3,
  75.   Float128 = 1 << 4,
  76.   Ibm128 = 1 << 5,
  77.   LLVM_MARK_AS_BITMASK_ENUM(Ibm128)
  78. };
  79.  
  80. /// Fields controlling how types are laid out in memory; these may need to
  81. /// be copied for targets like AMDGPU that base their ABIs on an auxiliary
  82. /// CPU target.
  83. struct TransferrableTargetInfo {
  84.   unsigned char PointerWidth, PointerAlign;
  85.   unsigned char BoolWidth, BoolAlign;
  86.   unsigned char IntWidth, IntAlign;
  87.   unsigned char HalfWidth, HalfAlign;
  88.   unsigned char BFloat16Width, BFloat16Align;
  89.   unsigned char FloatWidth, FloatAlign;
  90.   unsigned char DoubleWidth, DoubleAlign;
  91.   unsigned char LongDoubleWidth, LongDoubleAlign, Float128Align, Ibm128Align;
  92.   unsigned char LargeArrayMinWidth, LargeArrayAlign;
  93.   unsigned char LongWidth, LongAlign;
  94.   unsigned char LongLongWidth, LongLongAlign;
  95.   unsigned char Int128Align;
  96.  
  97.   // Fixed point bit widths
  98.   unsigned char ShortAccumWidth, ShortAccumAlign;
  99.   unsigned char AccumWidth, AccumAlign;
  100.   unsigned char LongAccumWidth, LongAccumAlign;
  101.   unsigned char ShortFractWidth, ShortFractAlign;
  102.   unsigned char FractWidth, FractAlign;
  103.   unsigned char LongFractWidth, LongFractAlign;
  104.  
  105.   // If true, unsigned fixed point types have the same number of fractional bits
  106.   // as their signed counterparts, forcing the unsigned types to have one extra
  107.   // bit of padding. Otherwise, unsigned fixed point types have
  108.   // one more fractional bit than its corresponding signed type. This is false
  109.   // by default.
  110.   bool PaddingOnUnsignedFixedPoint;
  111.  
  112.   // Fixed point integral and fractional bit sizes
  113.   // Saturated types share the same integral/fractional bits as their
  114.   // corresponding unsaturated types.
  115.   // For simplicity, the fractional bits in a _Fract type will be one less the
  116.   // width of that _Fract type. This leaves all signed _Fract types having no
  117.   // padding and unsigned _Fract types will only have 1 bit of padding after the
  118.   // sign if PaddingOnUnsignedFixedPoint is set.
  119.   unsigned char ShortAccumScale;
  120.   unsigned char AccumScale;
  121.   unsigned char LongAccumScale;
  122.  
  123.   unsigned char DefaultAlignForAttributeAligned;
  124.   unsigned char MinGlobalAlign;
  125.  
  126.   unsigned short SuitableAlign;
  127.   unsigned short NewAlign;
  128.   unsigned MaxVectorAlign;
  129.   unsigned MaxTLSAlign;
  130.  
  131.   const llvm::fltSemantics *HalfFormat, *BFloat16Format, *FloatFormat,
  132.       *DoubleFormat, *LongDoubleFormat, *Float128Format, *Ibm128Format;
  133.  
  134.   ///===---- Target Data Type Query Methods -------------------------------===//
  135.   enum IntType {
  136.     NoInt = 0,
  137.     SignedChar,
  138.     UnsignedChar,
  139.     SignedShort,
  140.     UnsignedShort,
  141.     SignedInt,
  142.     UnsignedInt,
  143.     SignedLong,
  144.     UnsignedLong,
  145.     SignedLongLong,
  146.     UnsignedLongLong
  147.   };
  148.  
  149. protected:
  150.   IntType SizeType, IntMaxType, PtrDiffType, IntPtrType, WCharType, WIntType,
  151.       Char16Type, Char32Type, Int64Type, Int16Type, SigAtomicType,
  152.       ProcessIDType;
  153.  
  154.   /// Whether Objective-C's built-in boolean type should be signed char.
  155.   ///
  156.   /// Otherwise, when this flag is not set, the normal built-in boolean type is
  157.   /// used.
  158.   unsigned UseSignedCharForObjCBool : 1;
  159.  
  160.   /// Control whether the alignment of bit-field types is respected when laying
  161.   /// out structures. If true, then the alignment of the bit-field type will be
  162.   /// used to (a) impact the alignment of the containing structure, and (b)
  163.   /// ensure that the individual bit-field will not straddle an alignment
  164.   /// boundary.
  165.   unsigned UseBitFieldTypeAlignment : 1;
  166.  
  167.   /// Whether zero length bitfields (e.g., int : 0;) force alignment of
  168.   /// the next bitfield.
  169.   ///
  170.   /// If the alignment of the zero length bitfield is greater than the member
  171.   /// that follows it, `bar', `bar' will be aligned as the type of the
  172.   /// zero-length bitfield.
  173.   unsigned UseZeroLengthBitfieldAlignment : 1;
  174.  
  175.   /// Whether zero length bitfield alignment is respected if they are the
  176.   /// leading members.
  177.   unsigned UseLeadingZeroLengthBitfield : 1;
  178.  
  179.   ///  Whether explicit bit field alignment attributes are honored.
  180.   unsigned UseExplicitBitFieldAlignment : 1;
  181.  
  182.   /// If non-zero, specifies a fixed alignment value for bitfields that follow
  183.   /// zero length bitfield, regardless of the zero length bitfield type.
  184.   unsigned ZeroLengthBitfieldBoundary;
  185.  
  186.   /// If non-zero, specifies a maximum alignment to truncate alignment
  187.   /// specified in the aligned attribute of a static variable to this value.
  188.   unsigned MaxAlignedAttribute;
  189. };
  190.  
  191. /// OpenCL type kinds.
  192. enum OpenCLTypeKind : uint8_t {
  193.   OCLTK_Default,
  194.   OCLTK_ClkEvent,
  195.   OCLTK_Event,
  196.   OCLTK_Image,
  197.   OCLTK_Pipe,
  198.   OCLTK_Queue,
  199.   OCLTK_ReserveID,
  200.   OCLTK_Sampler,
  201. };
  202.  
  203. /// Exposes information about the current target.
  204. ///
  205. class TargetInfo : public virtual TransferrableTargetInfo,
  206.                    public RefCountedBase<TargetInfo> {
  207.   std::shared_ptr<TargetOptions> TargetOpts;
  208.   llvm::Triple Triple;
  209. protected:
  210.   // Target values set by the ctor of the actual target implementation.  Default
  211.   // values are specified by the TargetInfo constructor.
  212.   bool BigEndian;
  213.   bool TLSSupported;
  214.   bool VLASupported;
  215.   bool NoAsmVariants;  // True if {|} are normal characters.
  216.   bool HasLegalHalfType; // True if the backend supports operations on the half
  217.                          // LLVM IR type.
  218.   bool HalfArgsAndReturns;
  219.   bool HasFloat128;
  220.   bool HasFloat16;
  221.   bool HasBFloat16;
  222.   bool HasIbm128;
  223.   bool HasLongDouble;
  224.   bool HasFPReturn;
  225.   bool HasStrictFP;
  226.  
  227.   unsigned char MaxAtomicPromoteWidth, MaxAtomicInlineWidth;
  228.   unsigned short SimdDefaultAlign;
  229.   std::string DataLayoutString;
  230.   const char *UserLabelPrefix;
  231.   const char *MCountName;
  232.   unsigned char RegParmMax, SSERegParmMax;
  233.   TargetCXXABI TheCXXABI;
  234.   const LangASMap *AddrSpaceMap;
  235.  
  236.   mutable StringRef PlatformName;
  237.   mutable VersionTuple PlatformMinVersion;
  238.  
  239.   unsigned HasAlignMac68kSupport : 1;
  240.   unsigned RealTypeUsesObjCFPRetMask : llvm::BitWidth<FloatModeKind>;
  241.   unsigned ComplexLongDoubleUsesFP2Ret : 1;
  242.  
  243.   unsigned HasBuiltinMSVaList : 1;
  244.  
  245.   unsigned IsRenderScriptTarget : 1;
  246.  
  247.   unsigned HasAArch64SVETypes : 1;
  248.  
  249.   unsigned HasRISCVVTypes : 1;
  250.  
  251.   unsigned AllowAMDGPUUnsafeFPAtomics : 1;
  252.  
  253.   unsigned ARMCDECoprocMask : 8;
  254.  
  255.   unsigned MaxOpenCLWorkGroupSize;
  256.  
  257.   std::optional<unsigned> MaxBitIntWidth;
  258.  
  259.   std::optional<llvm::Triple> DarwinTargetVariantTriple;
  260.  
  261.   // TargetInfo Constructor.  Default initializes all fields.
  262.   TargetInfo(const llvm::Triple &T);
  263.  
  264.   // UserLabelPrefix must match DL's getGlobalPrefix() when interpreted
  265.   // as a DataLayout object.
  266.   void resetDataLayout(StringRef DL, const char *UserLabelPrefix = "");
  267.  
  268. public:
  269.   /// Construct a target for the given options.
  270.   ///
  271.   /// \param Opts - The options to use to initialize the target. The target may
  272.   /// modify the options to canonicalize the target feature information to match
  273.   /// what the backend expects.
  274.   static TargetInfo *
  275.   CreateTargetInfo(DiagnosticsEngine &Diags,
  276.                    const std::shared_ptr<TargetOptions> &Opts);
  277.  
  278.   virtual ~TargetInfo();
  279.  
  280.   /// Retrieve the target options.
  281.   TargetOptions &getTargetOpts() const {
  282.     assert(TargetOpts && "Missing target options");
  283.     return *TargetOpts;
  284.   }
  285.  
  286.   /// The different kinds of __builtin_va_list types defined by
  287.   /// the target implementation.
  288.   enum BuiltinVaListKind {
  289.     /// typedef char* __builtin_va_list;
  290.     CharPtrBuiltinVaList = 0,
  291.  
  292.     /// typedef void* __builtin_va_list;
  293.     VoidPtrBuiltinVaList,
  294.  
  295.     /// __builtin_va_list as defined by the AArch64 ABI
  296.     /// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055a/IHI0055A_aapcs64.pdf
  297.     AArch64ABIBuiltinVaList,
  298.  
  299.     /// __builtin_va_list as defined by the PNaCl ABI:
  300.     /// http://www.chromium.org/nativeclient/pnacl/bitcode-abi#TOC-Machine-Types
  301.     PNaClABIBuiltinVaList,
  302.  
  303.     /// __builtin_va_list as defined by the Power ABI:
  304.     /// https://www.power.org
  305.     ///        /resources/downloads/Power-Arch-32-bit-ABI-supp-1.0-Embedded.pdf
  306.     PowerABIBuiltinVaList,
  307.  
  308.     /// __builtin_va_list as defined by the x86-64 ABI:
  309.     /// http://refspecs.linuxbase.org/elf/x86_64-abi-0.21.pdf
  310.     X86_64ABIBuiltinVaList,
  311.  
  312.     /// __builtin_va_list as defined by ARM AAPCS ABI
  313.     /// http://infocenter.arm.com
  314.     //        /help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
  315.     AAPCSABIBuiltinVaList,
  316.  
  317.     // typedef struct __va_list_tag
  318.     //   {
  319.     //     long __gpr;
  320.     //     long __fpr;
  321.     //     void *__overflow_arg_area;
  322.     //     void *__reg_save_area;
  323.     //   } va_list[1];
  324.     SystemZBuiltinVaList,
  325.  
  326.     // typedef struct __va_list_tag {
  327.     //    void *__current_saved_reg_area_pointer;
  328.     //    void *__saved_reg_area_end_pointer;
  329.     //    void *__overflow_area_pointer;
  330.     //} va_list;
  331.     HexagonBuiltinVaList
  332.   };
  333.  
  334. protected:
  335.   /// Specify if mangling based on address space map should be used or
  336.   /// not for language specific address spaces
  337.   bool UseAddrSpaceMapMangling;
  338.  
  339. public:
  340.   IntType getSizeType() const { return SizeType; }
  341.   IntType getSignedSizeType() const {
  342.     switch (SizeType) {
  343.     case UnsignedShort:
  344.       return SignedShort;
  345.     case UnsignedInt:
  346.       return SignedInt;
  347.     case UnsignedLong:
  348.       return SignedLong;
  349.     case UnsignedLongLong:
  350.       return SignedLongLong;
  351.     default:
  352.       llvm_unreachable("Invalid SizeType");
  353.     }
  354.   }
  355.   IntType getIntMaxType() const { return IntMaxType; }
  356.   IntType getUIntMaxType() const {
  357.     return getCorrespondingUnsignedType(IntMaxType);
  358.   }
  359.   IntType getPtrDiffType(LangAS AddrSpace) const {
  360.     return AddrSpace == LangAS::Default ? PtrDiffType
  361.                                         : getPtrDiffTypeV(AddrSpace);
  362.   }
  363.   IntType getUnsignedPtrDiffType(LangAS AddrSpace) const {
  364.     return getCorrespondingUnsignedType(getPtrDiffType(AddrSpace));
  365.   }
  366.   IntType getIntPtrType() const { return IntPtrType; }
  367.   IntType getUIntPtrType() const {
  368.     return getCorrespondingUnsignedType(IntPtrType);
  369.   }
  370.   IntType getWCharType() const { return WCharType; }
  371.   IntType getWIntType() const { return WIntType; }
  372.   IntType getChar16Type() const { return Char16Type; }
  373.   IntType getChar32Type() const { return Char32Type; }
  374.   IntType getInt64Type() const { return Int64Type; }
  375.   IntType getUInt64Type() const {
  376.     return getCorrespondingUnsignedType(Int64Type);
  377.   }
  378.   IntType getInt16Type() const { return Int16Type; }
  379.   IntType getUInt16Type() const {
  380.     return getCorrespondingUnsignedType(Int16Type);
  381.   }
  382.   IntType getSigAtomicType() const { return SigAtomicType; }
  383.   IntType getProcessIDType() const { return ProcessIDType; }
  384.  
  385.   static IntType getCorrespondingUnsignedType(IntType T) {
  386.     switch (T) {
  387.     case SignedChar:
  388.       return UnsignedChar;
  389.     case SignedShort:
  390.       return UnsignedShort;
  391.     case SignedInt:
  392.       return UnsignedInt;
  393.     case SignedLong:
  394.       return UnsignedLong;
  395.     case SignedLongLong:
  396.       return UnsignedLongLong;
  397.     default:
  398.       llvm_unreachable("Unexpected signed integer type");
  399.     }
  400.   }
  401.  
  402.   /// In the event this target uses the same number of fractional bits for its
  403.   /// unsigned types as it does with its signed counterparts, there will be
  404.   /// exactly one bit of padding.
  405.   /// Return true if unsigned fixed point types have padding for this target.
  406.   bool doUnsignedFixedPointTypesHavePadding() const {
  407.     return PaddingOnUnsignedFixedPoint;
  408.   }
  409.  
  410.   /// Return the width (in bits) of the specified integer type enum.
  411.   ///
  412.   /// For example, SignedInt -> getIntWidth().
  413.   unsigned getTypeWidth(IntType T) const;
  414.  
  415.   /// Return integer type with specified width.
  416.   virtual IntType getIntTypeByWidth(unsigned BitWidth, bool IsSigned) const;
  417.  
  418.   /// Return the smallest integer type with at least the specified width.
  419.   virtual IntType getLeastIntTypeByWidth(unsigned BitWidth,
  420.                                          bool IsSigned) const;
  421.  
  422.   /// Return floating point type with specified width. On PPC, there are
  423.   /// three possible types for 128-bit floating point: "PPC double-double",
  424.   /// IEEE 754R quad precision, and "long double" (which under the covers
  425.   /// is represented as one of those two). At this time, there is no support
  426.   /// for an explicit "PPC double-double" type (i.e. __ibm128) so we only
  427.   /// need to differentiate between "long double" and IEEE quad precision.
  428.   FloatModeKind getRealTypeByWidth(unsigned BitWidth,
  429.                                    FloatModeKind ExplicitType) const;
  430.  
  431.   /// Return the alignment (in bits) of the specified integer type enum.
  432.   ///
  433.   /// For example, SignedInt -> getIntAlign().
  434.   unsigned getTypeAlign(IntType T) const;
  435.  
  436.   /// Returns true if the type is signed; false otherwise.
  437.   static bool isTypeSigned(IntType T);
  438.  
  439.   /// Return the width of pointers on this target, for the
  440.   /// specified address space.
  441.   uint64_t getPointerWidth(LangAS AddrSpace) const {
  442.     return AddrSpace == LangAS::Default ? PointerWidth
  443.                                         : getPointerWidthV(AddrSpace);
  444.   }
  445.   uint64_t getPointerAlign(LangAS AddrSpace) const {
  446.     return AddrSpace == LangAS::Default ? PointerAlign
  447.                                         : getPointerAlignV(AddrSpace);
  448.   }
  449.  
  450.   /// Return the maximum width of pointers on this target.
  451.   virtual uint64_t getMaxPointerWidth() const {
  452.     return PointerWidth;
  453.   }
  454.  
  455.   /// Get integer value for null pointer.
  456.   /// \param AddrSpace address space of pointee in source language.
  457.   virtual uint64_t getNullPointerValue(LangAS AddrSpace) const { return 0; }
  458.  
  459.   /// Return the size of '_Bool' and C++ 'bool' for this target, in bits.
  460.   unsigned getBoolWidth() const { return BoolWidth; }
  461.  
  462.   /// Return the alignment of '_Bool' and C++ 'bool' for this target.
  463.   unsigned getBoolAlign() const { return BoolAlign; }
  464.  
  465.   unsigned getCharWidth() const { return 8; } // FIXME
  466.   unsigned getCharAlign() const { return 8; } // FIXME
  467.  
  468.   /// Return the size of 'signed short' and 'unsigned short' for this
  469.   /// target, in bits.
  470.   unsigned getShortWidth() const { return 16; } // FIXME
  471.  
  472.   /// Return the alignment of 'signed short' and 'unsigned short' for
  473.   /// this target.
  474.   unsigned getShortAlign() const { return 16; } // FIXME
  475.  
  476.   /// getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for
  477.   /// this target, in bits.
  478.   unsigned getIntWidth() const { return IntWidth; }
  479.   unsigned getIntAlign() const { return IntAlign; }
  480.  
  481.   /// getLongWidth/Align - Return the size of 'signed long' and 'unsigned long'
  482.   /// for this target, in bits.
  483.   unsigned getLongWidth() const { return LongWidth; }
  484.   unsigned getLongAlign() const { return LongAlign; }
  485.  
  486.   /// getLongLongWidth/Align - Return the size of 'signed long long' and
  487.   /// 'unsigned long long' for this target, in bits.
  488.   unsigned getLongLongWidth() const { return LongLongWidth; }
  489.   unsigned getLongLongAlign() const { return LongLongAlign; }
  490.  
  491.   /// getInt128Align() - Returns the alignment of Int128.
  492.   unsigned getInt128Align() const { return Int128Align; }
  493.  
  494.   /// getShortAccumWidth/Align - Return the size of 'signed short _Accum' and
  495.   /// 'unsigned short _Accum' for this target, in bits.
  496.   unsigned getShortAccumWidth() const { return ShortAccumWidth; }
  497.   unsigned getShortAccumAlign() const { return ShortAccumAlign; }
  498.  
  499.   /// getAccumWidth/Align - Return the size of 'signed _Accum' and
  500.   /// 'unsigned _Accum' for this target, in bits.
  501.   unsigned getAccumWidth() const { return AccumWidth; }
  502.   unsigned getAccumAlign() const { return AccumAlign; }
  503.  
  504.   /// getLongAccumWidth/Align - Return the size of 'signed long _Accum' and
  505.   /// 'unsigned long _Accum' for this target, in bits.
  506.   unsigned getLongAccumWidth() const { return LongAccumWidth; }
  507.   unsigned getLongAccumAlign() const { return LongAccumAlign; }
  508.  
  509.   /// getShortFractWidth/Align - Return the size of 'signed short _Fract' and
  510.   /// 'unsigned short _Fract' for this target, in bits.
  511.   unsigned getShortFractWidth() const { return ShortFractWidth; }
  512.   unsigned getShortFractAlign() const { return ShortFractAlign; }
  513.  
  514.   /// getFractWidth/Align - Return the size of 'signed _Fract' and
  515.   /// 'unsigned _Fract' for this target, in bits.
  516.   unsigned getFractWidth() const { return FractWidth; }
  517.   unsigned getFractAlign() const { return FractAlign; }
  518.  
  519.   /// getLongFractWidth/Align - Return the size of 'signed long _Fract' and
  520.   /// 'unsigned long _Fract' for this target, in bits.
  521.   unsigned getLongFractWidth() const { return LongFractWidth; }
  522.   unsigned getLongFractAlign() const { return LongFractAlign; }
  523.  
  524.   /// getShortAccumScale/IBits - Return the number of fractional/integral bits
  525.   /// in a 'signed short _Accum' type.
  526.   unsigned getShortAccumScale() const { return ShortAccumScale; }
  527.   unsigned getShortAccumIBits() const {
  528.     return ShortAccumWidth - ShortAccumScale - 1;
  529.   }
  530.  
  531.   /// getAccumScale/IBits - Return the number of fractional/integral bits
  532.   /// in a 'signed _Accum' type.
  533.   unsigned getAccumScale() const { return AccumScale; }
  534.   unsigned getAccumIBits() const { return AccumWidth - AccumScale - 1; }
  535.  
  536.   /// getLongAccumScale/IBits - Return the number of fractional/integral bits
  537.   /// in a 'signed long _Accum' type.
  538.   unsigned getLongAccumScale() const { return LongAccumScale; }
  539.   unsigned getLongAccumIBits() const {
  540.     return LongAccumWidth - LongAccumScale - 1;
  541.   }
  542.  
  543.   /// getUnsignedShortAccumScale/IBits - Return the number of
  544.   /// fractional/integral bits in a 'unsigned short _Accum' type.
  545.   unsigned getUnsignedShortAccumScale() const {
  546.     return PaddingOnUnsignedFixedPoint ? ShortAccumScale : ShortAccumScale + 1;
  547.   }
  548.   unsigned getUnsignedShortAccumIBits() const {
  549.     return PaddingOnUnsignedFixedPoint
  550.                ? getShortAccumIBits()
  551.                : ShortAccumWidth - getUnsignedShortAccumScale();
  552.   }
  553.  
  554.   /// getUnsignedAccumScale/IBits - Return the number of fractional/integral
  555.   /// bits in a 'unsigned _Accum' type.
  556.   unsigned getUnsignedAccumScale() const {
  557.     return PaddingOnUnsignedFixedPoint ? AccumScale : AccumScale + 1;
  558.   }
  559.   unsigned getUnsignedAccumIBits() const {
  560.     return PaddingOnUnsignedFixedPoint ? getAccumIBits()
  561.                                        : AccumWidth - getUnsignedAccumScale();
  562.   }
  563.  
  564.   /// getUnsignedLongAccumScale/IBits - Return the number of fractional/integral
  565.   /// bits in a 'unsigned long _Accum' type.
  566.   unsigned getUnsignedLongAccumScale() const {
  567.     return PaddingOnUnsignedFixedPoint ? LongAccumScale : LongAccumScale + 1;
  568.   }
  569.   unsigned getUnsignedLongAccumIBits() const {
  570.     return PaddingOnUnsignedFixedPoint
  571.                ? getLongAccumIBits()
  572.                : LongAccumWidth - getUnsignedLongAccumScale();
  573.   }
  574.  
  575.   /// getShortFractScale - Return the number of fractional bits
  576.   /// in a 'signed short _Fract' type.
  577.   unsigned getShortFractScale() const { return ShortFractWidth - 1; }
  578.  
  579.   /// getFractScale - Return the number of fractional bits
  580.   /// in a 'signed _Fract' type.
  581.   unsigned getFractScale() const { return FractWidth - 1; }
  582.  
  583.   /// getLongFractScale - Return the number of fractional bits
  584.   /// in a 'signed long _Fract' type.
  585.   unsigned getLongFractScale() const { return LongFractWidth - 1; }
  586.  
  587.   /// getUnsignedShortFractScale - Return the number of fractional bits
  588.   /// in a 'unsigned short _Fract' type.
  589.   unsigned getUnsignedShortFractScale() const {
  590.     return PaddingOnUnsignedFixedPoint ? getShortFractScale()
  591.                                        : getShortFractScale() + 1;
  592.   }
  593.  
  594.   /// getUnsignedFractScale - Return the number of fractional bits
  595.   /// in a 'unsigned _Fract' type.
  596.   unsigned getUnsignedFractScale() const {
  597.     return PaddingOnUnsignedFixedPoint ? getFractScale() : getFractScale() + 1;
  598.   }
  599.  
  600.   /// getUnsignedLongFractScale - Return the number of fractional bits
  601.   /// in a 'unsigned long _Fract' type.
  602.   unsigned getUnsignedLongFractScale() const {
  603.     return PaddingOnUnsignedFixedPoint ? getLongFractScale()
  604.                                        : getLongFractScale() + 1;
  605.   }
  606.  
  607.   /// Determine whether the __int128 type is supported on this target.
  608.   virtual bool hasInt128Type() const {
  609.     return (getPointerWidth(LangAS::Default) >= 64) ||
  610.            getTargetOpts().ForceEnableInt128;
  611.   } // FIXME
  612.  
  613.   /// Determine whether the _BitInt type is supported on this target. This
  614.   /// limitation is put into place for ABI reasons.
  615.   /// FIXME: _BitInt is a required type in C23, so there's not much utility in
  616.   /// asking whether the target supported it or not; I think this should be
  617.   /// removed once backends have been alerted to the type and have had the
  618.   /// chance to do implementation work if needed.
  619.   virtual bool hasBitIntType() const {
  620.     return false;
  621.   }
  622.  
  623.   // Different targets may support a different maximum width for the _BitInt
  624.   // type, depending on what operations are supported.
  625.   virtual size_t getMaxBitIntWidth() const {
  626.     // Consider -fexperimental-max-bitint-width= first.
  627.     if (MaxBitIntWidth)
  628.       return std::min<size_t>(*MaxBitIntWidth, llvm::IntegerType::MAX_INT_BITS);
  629.  
  630.     // FIXME: this value should be llvm::IntegerType::MAX_INT_BITS, which is
  631.     // maximum bit width that LLVM claims its IR can support. However, most
  632.     // backends currently have a bug where they only support float to int
  633.     // conversion (and vice versa) on types that are <= 128 bits and crash
  634.     // otherwise. We're setting the max supported value to 128 to be
  635.     // conservative.
  636.     return 128;
  637.   }
  638.  
  639.   /// Determine whether _Float16 is supported on this target.
  640.   virtual bool hasLegalHalfType() const { return HasLegalHalfType; }
  641.  
  642.   /// Whether half args and returns are supported.
  643.   virtual bool allowHalfArgsAndReturns() const { return HalfArgsAndReturns; }
  644.  
  645.   /// Determine whether the __float128 type is supported on this target.
  646.   virtual bool hasFloat128Type() const { return HasFloat128; }
  647.  
  648.   /// Determine whether the _Float16 type is supported on this target.
  649.   virtual bool hasFloat16Type() const { return HasFloat16; }
  650.  
  651.   /// Determine whether the _BFloat16 type is supported on this target.
  652.   virtual bool hasBFloat16Type() const { return HasBFloat16; }
  653.  
  654.   /// Determine whether the __ibm128 type is supported on this target.
  655.   virtual bool hasIbm128Type() const { return HasIbm128; }
  656.  
  657.   /// Determine whether the long double type is supported on this target.
  658.   virtual bool hasLongDoubleType() const { return HasLongDouble; }
  659.  
  660.   /// Determine whether return of a floating point value is supported
  661.   /// on this target.
  662.   virtual bool hasFPReturn() const { return HasFPReturn; }
  663.  
  664.   /// Determine whether constrained floating point is supported on this target.
  665.   virtual bool hasStrictFP() const { return HasStrictFP; }
  666.  
  667.   /// Return the alignment that is the largest alignment ever used for any
  668.   /// scalar/SIMD data type on the target machine you are compiling for
  669.   /// (including types with an extended alignment requirement).
  670.   unsigned getSuitableAlign() const { return SuitableAlign; }
  671.  
  672.   /// Return the default alignment for __attribute__((aligned)) on
  673.   /// this target, to be used if no alignment value is specified.
  674.   unsigned getDefaultAlignForAttributeAligned() const {
  675.     return DefaultAlignForAttributeAligned;
  676.   }
  677.  
  678.   /// getMinGlobalAlign - Return the minimum alignment of a global variable,
  679.   /// unless its alignment is explicitly reduced via attributes.
  680.   virtual unsigned getMinGlobalAlign (uint64_t) const {
  681.     return MinGlobalAlign;
  682.   }
  683.  
  684.   /// Return the largest alignment for which a suitably-sized allocation with
  685.   /// '::operator new(size_t)' is guaranteed to produce a correctly-aligned
  686.   /// pointer.
  687.   unsigned getNewAlign() const {
  688.     return NewAlign ? NewAlign : std::max(LongDoubleAlign, LongLongAlign);
  689.   }
  690.  
  691.   /// getWCharWidth/Align - Return the size of 'wchar_t' for this target, in
  692.   /// bits.
  693.   unsigned getWCharWidth() const { return getTypeWidth(WCharType); }
  694.   unsigned getWCharAlign() const { return getTypeAlign(WCharType); }
  695.  
  696.   /// getChar16Width/Align - Return the size of 'char16_t' for this target, in
  697.   /// bits.
  698.   unsigned getChar16Width() const { return getTypeWidth(Char16Type); }
  699.   unsigned getChar16Align() const { return getTypeAlign(Char16Type); }
  700.  
  701.   /// getChar32Width/Align - Return the size of 'char32_t' for this target, in
  702.   /// bits.
  703.   unsigned getChar32Width() const { return getTypeWidth(Char32Type); }
  704.   unsigned getChar32Align() const { return getTypeAlign(Char32Type); }
  705.  
  706.   /// getHalfWidth/Align/Format - Return the size/align/format of 'half'.
  707.   unsigned getHalfWidth() const { return HalfWidth; }
  708.   unsigned getHalfAlign() const { return HalfAlign; }
  709.   const llvm::fltSemantics &getHalfFormat() const { return *HalfFormat; }
  710.  
  711.   /// getFloatWidth/Align/Format - Return the size/align/format of 'float'.
  712.   unsigned getFloatWidth() const { return FloatWidth; }
  713.   unsigned getFloatAlign() const { return FloatAlign; }
  714.   const llvm::fltSemantics &getFloatFormat() const { return *FloatFormat; }
  715.  
  716.   /// getBFloat16Width/Align/Format - Return the size/align/format of '__bf16'.
  717.   unsigned getBFloat16Width() const { return BFloat16Width; }
  718.   unsigned getBFloat16Align() const { return BFloat16Align; }
  719.   const llvm::fltSemantics &getBFloat16Format() const { return *BFloat16Format; }
  720.  
  721.   /// getDoubleWidth/Align/Format - Return the size/align/format of 'double'.
  722.   unsigned getDoubleWidth() const { return DoubleWidth; }
  723.   unsigned getDoubleAlign() const { return DoubleAlign; }
  724.   const llvm::fltSemantics &getDoubleFormat() const { return *DoubleFormat; }
  725.  
  726.   /// getLongDoubleWidth/Align/Format - Return the size/align/format of 'long
  727.   /// double'.
  728.   unsigned getLongDoubleWidth() const { return LongDoubleWidth; }
  729.   unsigned getLongDoubleAlign() const { return LongDoubleAlign; }
  730.   const llvm::fltSemantics &getLongDoubleFormat() const {
  731.     return *LongDoubleFormat;
  732.   }
  733.  
  734.   /// getFloat128Width/Align/Format - Return the size/align/format of
  735.   /// '__float128'.
  736.   unsigned getFloat128Width() const { return 128; }
  737.   unsigned getFloat128Align() const { return Float128Align; }
  738.   const llvm::fltSemantics &getFloat128Format() const {
  739.     return *Float128Format;
  740.   }
  741.  
  742.   /// getIbm128Width/Align/Format - Return the size/align/format of
  743.   /// '__ibm128'.
  744.   unsigned getIbm128Width() const { return 128; }
  745.   unsigned getIbm128Align() const { return Ibm128Align; }
  746.   const llvm::fltSemantics &getIbm128Format() const { return *Ibm128Format; }
  747.  
  748.   /// Return the mangled code of long double.
  749.   virtual const char *getLongDoubleMangling() const { return "e"; }
  750.  
  751.   /// Return the mangled code of __float128.
  752.   virtual const char *getFloat128Mangling() const { return "g"; }
  753.  
  754.   /// Return the mangled code of __ibm128.
  755.   virtual const char *getIbm128Mangling() const {
  756.     llvm_unreachable("ibm128 not implemented on this target");
  757.   }
  758.  
  759.   /// Return the mangled code of bfloat.
  760.   virtual const char *getBFloat16Mangling() const {
  761.     llvm_unreachable("bfloat not implemented on this target");
  762.   }
  763.  
  764.   /// Return the value for the C99 FLT_EVAL_METHOD macro.
  765.   virtual LangOptions::FPEvalMethodKind getFPEvalMethod() const {
  766.     return LangOptions::FPEvalMethodKind::FEM_Source;
  767.   }
  768.  
  769.   virtual bool supportSourceEvalMethod() const { return true; }
  770.  
  771.   // getLargeArrayMinWidth/Align - Return the minimum array size that is
  772.   // 'large' and its alignment.
  773.   unsigned getLargeArrayMinWidth() const { return LargeArrayMinWidth; }
  774.   unsigned getLargeArrayAlign() const { return LargeArrayAlign; }
  775.  
  776.   /// Return the maximum width lock-free atomic operation which will
  777.   /// ever be supported for the given target
  778.   unsigned getMaxAtomicPromoteWidth() const { return MaxAtomicPromoteWidth; }
  779.   /// Return the maximum width lock-free atomic operation which can be
  780.   /// inlined given the supported features of the given target.
  781.   unsigned getMaxAtomicInlineWidth() const { return MaxAtomicInlineWidth; }
  782.   /// Set the maximum inline or promote width lock-free atomic operation
  783.   /// for the given target.
  784.   virtual void setMaxAtomicWidth() {}
  785.   /// Returns true if the given target supports lock-free atomic
  786.   /// operations at the specified width and alignment.
  787.   virtual bool hasBuiltinAtomic(uint64_t AtomicSizeInBits,
  788.                                 uint64_t AlignmentInBits) const {
  789.     return AtomicSizeInBits <= AlignmentInBits &&
  790.            AtomicSizeInBits <= getMaxAtomicInlineWidth() &&
  791.            (AtomicSizeInBits <= getCharWidth() ||
  792.             llvm::isPowerOf2_64(AtomicSizeInBits / getCharWidth()));
  793.   }
  794.  
  795.   /// Return the maximum vector alignment supported for the given target.
  796.   unsigned getMaxVectorAlign() const { return MaxVectorAlign; }
  797.   /// Return default simd alignment for the given target. Generally, this
  798.   /// value is type-specific, but this alignment can be used for most of the
  799.   /// types for the given target.
  800.   unsigned getSimdDefaultAlign() const { return SimdDefaultAlign; }
  801.  
  802.   unsigned getMaxOpenCLWorkGroupSize() const { return MaxOpenCLWorkGroupSize; }
  803.  
  804.   /// Return the alignment (in bits) of the thrown exception object. This is
  805.   /// only meaningful for targets that allocate C++ exceptions in a system
  806.   /// runtime, such as those using the Itanium C++ ABI.
  807.   virtual unsigned getExnObjectAlignment() const {
  808.     // Itanium says that an _Unwind_Exception has to be "double-word"
  809.     // aligned (and thus the end of it is also so-aligned), meaning 16
  810.     // bytes.  Of course, that was written for the actual Itanium,
  811.     // which is a 64-bit platform.  Classically, the ABI doesn't really
  812.     // specify the alignment on other platforms, but in practice
  813.     // libUnwind declares the struct with __attribute__((aligned)), so
  814.     // we assume that alignment here.  (It's generally 16 bytes, but
  815.     // some targets overwrite it.)
  816.     return getDefaultAlignForAttributeAligned();
  817.   }
  818.  
  819.   /// Return the size of intmax_t and uintmax_t for this target, in bits.
  820.   unsigned getIntMaxTWidth() const {
  821.     return getTypeWidth(IntMaxType);
  822.   }
  823.  
  824.   // Return the size of unwind_word for this target.
  825.   virtual unsigned getUnwindWordWidth() const {
  826.     return getPointerWidth(LangAS::Default);
  827.   }
  828.  
  829.   /// Return the "preferred" register width on this target.
  830.   virtual unsigned getRegisterWidth() const {
  831.     // Currently we assume the register width on the target matches the pointer
  832.     // width, we can introduce a new variable for this if/when some target wants
  833.     // it.
  834.     return PointerWidth;
  835.   }
  836.  
  837.   /// \brief Returns the default value of the __USER_LABEL_PREFIX__ macro,
  838.   /// which is the prefix given to user symbols by default.
  839.   ///
  840.   /// On most platforms this is "", but it is "_" on some.
  841.   const char *getUserLabelPrefix() const { return UserLabelPrefix; }
  842.  
  843.   /// Returns the name of the mcount instrumentation function.
  844.   const char *getMCountName() const {
  845.     return MCountName;
  846.   }
  847.  
  848.   /// Check if the Objective-C built-in boolean type should be signed
  849.   /// char.
  850.   ///
  851.   /// Otherwise, if this returns false, the normal built-in boolean type
  852.   /// should also be used for Objective-C.
  853.   bool useSignedCharForObjCBool() const {
  854.     return UseSignedCharForObjCBool;
  855.   }
  856.   void noSignedCharForObjCBool() {
  857.     UseSignedCharForObjCBool = false;
  858.   }
  859.  
  860.   /// Check whether the alignment of bit-field types is respected
  861.   /// when laying out structures.
  862.   bool useBitFieldTypeAlignment() const {
  863.     return UseBitFieldTypeAlignment;
  864.   }
  865.  
  866.   /// Check whether zero length bitfields should force alignment of
  867.   /// the next member.
  868.   bool useZeroLengthBitfieldAlignment() const {
  869.     return UseZeroLengthBitfieldAlignment;
  870.   }
  871.  
  872.   /// Check whether zero length bitfield alignment is respected if they are
  873.   /// leading members.
  874.   bool useLeadingZeroLengthBitfield() const {
  875.     return UseLeadingZeroLengthBitfield;
  876.   }
  877.  
  878.   /// Get the fixed alignment value in bits for a member that follows
  879.   /// a zero length bitfield.
  880.   unsigned getZeroLengthBitfieldBoundary() const {
  881.     return ZeroLengthBitfieldBoundary;
  882.   }
  883.  
  884.   /// Get the maximum alignment in bits for a static variable with
  885.   /// aligned attribute.
  886.   unsigned getMaxAlignedAttribute() const { return MaxAlignedAttribute; }
  887.  
  888.   /// Check whether explicit bitfield alignment attributes should be
  889.   //  honored, as in "__attribute__((aligned(2))) int b : 1;".
  890.   bool useExplicitBitFieldAlignment() const {
  891.     return UseExplicitBitFieldAlignment;
  892.   }
  893.  
  894.   /// Check whether this target support '\#pragma options align=mac68k'.
  895.   bool hasAlignMac68kSupport() const {
  896.     return HasAlignMac68kSupport;
  897.   }
  898.  
  899.   /// Return the user string for the specified integer type enum.
  900.   ///
  901.   /// For example, SignedShort -> "short".
  902.   static const char *getTypeName(IntType T);
  903.  
  904.   /// Return the constant suffix for the specified integer type enum.
  905.   ///
  906.   /// For example, SignedLong -> "L".
  907.   const char *getTypeConstantSuffix(IntType T) const;
  908.  
  909.   /// Return the printf format modifier for the specified
  910.   /// integer type enum.
  911.   ///
  912.   /// For example, SignedLong -> "l".
  913.   static const char *getTypeFormatModifier(IntType T);
  914.  
  915.   /// Check whether the given real type should use the "fpret" flavor of
  916.   /// Objective-C message passing on this target.
  917.   bool useObjCFPRetForRealType(FloatModeKind T) const {
  918.     return (int)((FloatModeKind)RealTypeUsesObjCFPRetMask & T);
  919.   }
  920.  
  921.   /// Check whether _Complex long double should use the "fp2ret" flavor
  922.   /// of Objective-C message passing on this target.
  923.   bool useObjCFP2RetForComplexLongDouble() const {
  924.     return ComplexLongDoubleUsesFP2Ret;
  925.   }
  926.  
  927.   /// Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used
  928.   /// to convert to and from __fp16.
  929.   /// FIXME: This function should be removed once all targets stop using the
  930.   /// conversion intrinsics.
  931.   virtual bool useFP16ConversionIntrinsics() const {
  932.     return true;
  933.   }
  934.  
  935.   /// Specify if mangling based on address space map should be used or
  936.   /// not for language specific address spaces
  937.   bool useAddressSpaceMapMangling() const {
  938.     return UseAddrSpaceMapMangling;
  939.   }
  940.  
  941.   ///===---- Other target property query methods --------------------------===//
  942.  
  943.   /// Appends the target-specific \#define values for this
  944.   /// target set to the specified buffer.
  945.   virtual void getTargetDefines(const LangOptions &Opts,
  946.                                 MacroBuilder &Builder) const = 0;
  947.  
  948.  
  949.   /// Return information about target-specific builtins for
  950.   /// the current primary target, and info about which builtins are non-portable
  951.   /// across the current set of primary and secondary targets.
  952.   virtual ArrayRef<Builtin::Info> getTargetBuiltins() const = 0;
  953.  
  954.   /// Returns target-specific min and max values VScale_Range.
  955.   virtual std::optional<std::pair<unsigned, unsigned>>
  956.   getVScaleRange(const LangOptions &LangOpts) const {
  957.     return std::nullopt;
  958.   }
  959.   /// The __builtin_clz* and __builtin_ctz* built-in
  960.   /// functions are specified to have undefined results for zero inputs, but
  961.   /// on targets that support these operations in a way that provides
  962.   /// well-defined results for zero without loss of performance, it is a good
  963.   /// idea to avoid optimizing based on that undef behavior.
  964.   virtual bool isCLZForZeroUndef() const { return true; }
  965.  
  966.   /// Returns the kind of __builtin_va_list type that should be used
  967.   /// with this target.
  968.   virtual BuiltinVaListKind getBuiltinVaListKind() const = 0;
  969.  
  970.   /// Returns whether or not type \c __builtin_ms_va_list type is
  971.   /// available on this target.
  972.   bool hasBuiltinMSVaList() const { return HasBuiltinMSVaList; }
  973.  
  974.   /// Returns true for RenderScript.
  975.   bool isRenderScriptTarget() const { return IsRenderScriptTarget; }
  976.  
  977.   /// Returns whether or not the AArch64 SVE built-in types are
  978.   /// available on this target.
  979.   bool hasAArch64SVETypes() const { return HasAArch64SVETypes; }
  980.  
  981.   /// Returns whether or not the RISC-V V built-in types are
  982.   /// available on this target.
  983.   bool hasRISCVVTypes() const { return HasRISCVVTypes; }
  984.  
  985.   /// Returns whether or not the AMDGPU unsafe floating point atomics are
  986.   /// allowed.
  987.   bool allowAMDGPUUnsafeFPAtomics() const { return AllowAMDGPUUnsafeFPAtomics; }
  988.  
  989.   /// For ARM targets returns a mask defining which coprocessors are configured
  990.   /// as Custom Datapath.
  991.   uint32_t getARMCDECoprocMask() const { return ARMCDECoprocMask; }
  992.  
  993.   /// Returns whether the passed in string is a valid clobber in an
  994.   /// inline asm statement.
  995.   ///
  996.   /// This is used by Sema.
  997.   bool isValidClobber(StringRef Name) const;
  998.  
  999.   /// Returns whether the passed in string is a valid register name
  1000.   /// according to GCC.
  1001.   ///
  1002.   /// This is used by Sema for inline asm statements.
  1003.   virtual bool isValidGCCRegisterName(StringRef Name) const;
  1004.  
  1005.   /// Returns the "normalized" GCC register name.
  1006.   ///
  1007.   /// ReturnCannonical true will return the register name without any additions
  1008.   /// such as "{}" or "%" in it's canonical form, for example:
  1009.   /// ReturnCanonical = true and Name = "rax", will return "ax".
  1010.   StringRef getNormalizedGCCRegisterName(StringRef Name,
  1011.                                          bool ReturnCanonical = false) const;
  1012.  
  1013.   virtual bool isSPRegName(StringRef) const { return false; }
  1014.  
  1015.   /// Extracts a register from the passed constraint (if it is a
  1016.   /// single-register constraint) and the asm label expression related to a
  1017.   /// variable in the input or output list of an inline asm statement.
  1018.   ///
  1019.   /// This function is used by Sema in order to diagnose conflicts between
  1020.   /// the clobber list and the input/output lists.
  1021.   virtual StringRef getConstraintRegister(StringRef Constraint,
  1022.                                           StringRef Expression) const {
  1023.     return "";
  1024.   }
  1025.  
  1026.   struct ConstraintInfo {
  1027.     enum {
  1028.       CI_None = 0x00,
  1029.       CI_AllowsMemory = 0x01,
  1030.       CI_AllowsRegister = 0x02,
  1031.       CI_ReadWrite = 0x04,         // "+r" output constraint (read and write).
  1032.       CI_HasMatchingInput = 0x08,  // This output operand has a matching input.
  1033.       CI_ImmediateConstant = 0x10, // This operand must be an immediate constant
  1034.       CI_EarlyClobber = 0x20,      // "&" output constraint (early clobber).
  1035.     };
  1036.     unsigned Flags;
  1037.     int TiedOperand;
  1038.     struct {
  1039.       int Min;
  1040.       int Max;
  1041.       bool isConstrained;
  1042.     } ImmRange;
  1043.     llvm::SmallSet<int, 4> ImmSet;
  1044.  
  1045.     std::string ConstraintStr;  // constraint: "=rm"
  1046.     std::string Name;           // Operand name: [foo] with no []'s.
  1047.   public:
  1048.     ConstraintInfo(StringRef ConstraintStr, StringRef Name)
  1049.         : Flags(0), TiedOperand(-1), ConstraintStr(ConstraintStr.str()),
  1050.           Name(Name.str()) {
  1051.       ImmRange.Min = ImmRange.Max = 0;
  1052.       ImmRange.isConstrained = false;
  1053.     }
  1054.  
  1055.     const std::string &getConstraintStr() const { return ConstraintStr; }
  1056.     const std::string &getName() const { return Name; }
  1057.     bool isReadWrite() const { return (Flags & CI_ReadWrite) != 0; }
  1058.     bool earlyClobber() { return (Flags & CI_EarlyClobber) != 0; }
  1059.     bool allowsRegister() const { return (Flags & CI_AllowsRegister) != 0; }
  1060.     bool allowsMemory() const { return (Flags & CI_AllowsMemory) != 0; }
  1061.  
  1062.     /// Return true if this output operand has a matching
  1063.     /// (tied) input operand.
  1064.     bool hasMatchingInput() const { return (Flags & CI_HasMatchingInput) != 0; }
  1065.  
  1066.     /// Return true if this input operand is a matching
  1067.     /// constraint that ties it to an output operand.
  1068.     ///
  1069.     /// If this returns true then getTiedOperand will indicate which output
  1070.     /// operand this is tied to.
  1071.     bool hasTiedOperand() const { return TiedOperand != -1; }
  1072.     unsigned getTiedOperand() const {
  1073.       assert(hasTiedOperand() && "Has no tied operand!");
  1074.       return (unsigned)TiedOperand;
  1075.     }
  1076.  
  1077.     bool requiresImmediateConstant() const {
  1078.       return (Flags & CI_ImmediateConstant) != 0;
  1079.     }
  1080.     bool isValidAsmImmediate(const llvm::APInt &Value) const {
  1081.       if (!ImmSet.empty())
  1082.         return Value.isSignedIntN(32) && ImmSet.contains(Value.getZExtValue());
  1083.       return !ImmRange.isConstrained ||
  1084.              (Value.sge(ImmRange.Min) && Value.sle(ImmRange.Max));
  1085.     }
  1086.  
  1087.     void setIsReadWrite() { Flags |= CI_ReadWrite; }
  1088.     void setEarlyClobber() { Flags |= CI_EarlyClobber; }
  1089.     void setAllowsMemory() { Flags |= CI_AllowsMemory; }
  1090.     void setAllowsRegister() { Flags |= CI_AllowsRegister; }
  1091.     void setHasMatchingInput() { Flags |= CI_HasMatchingInput; }
  1092.     void setRequiresImmediate(int Min, int Max) {
  1093.       Flags |= CI_ImmediateConstant;
  1094.       ImmRange.Min = Min;
  1095.       ImmRange.Max = Max;
  1096.       ImmRange.isConstrained = true;
  1097.     }
  1098.     void setRequiresImmediate(llvm::ArrayRef<int> Exacts) {
  1099.       Flags |= CI_ImmediateConstant;
  1100.       for (int Exact : Exacts)
  1101.         ImmSet.insert(Exact);
  1102.     }
  1103.     void setRequiresImmediate(int Exact) {
  1104.       Flags |= CI_ImmediateConstant;
  1105.       ImmSet.insert(Exact);
  1106.     }
  1107.     void setRequiresImmediate() {
  1108.       Flags |= CI_ImmediateConstant;
  1109.     }
  1110.  
  1111.     /// Indicate that this is an input operand that is tied to
  1112.     /// the specified output operand.
  1113.     ///
  1114.     /// Copy over the various constraint information from the output.
  1115.     void setTiedOperand(unsigned N, ConstraintInfo &Output) {
  1116.       Output.setHasMatchingInput();
  1117.       Flags = Output.Flags;
  1118.       TiedOperand = N;
  1119.       // Don't copy Name or constraint string.
  1120.     }
  1121.   };
  1122.  
  1123.   /// Validate register name used for global register variables.
  1124.   ///
  1125.   /// This function returns true if the register passed in RegName can be used
  1126.   /// for global register variables on this target. In addition, it returns
  1127.   /// true in HasSizeMismatch if the size of the register doesn't match the
  1128.   /// variable size passed in RegSize.
  1129.   virtual bool validateGlobalRegisterVariable(StringRef RegName,
  1130.                                               unsigned RegSize,
  1131.                                               bool &HasSizeMismatch) const {
  1132.     HasSizeMismatch = false;
  1133.     return true;
  1134.   }
  1135.  
  1136.   // validateOutputConstraint, validateInputConstraint - Checks that
  1137.   // a constraint is valid and provides information about it.
  1138.   // FIXME: These should return a real error instead of just true/false.
  1139.   bool validateOutputConstraint(ConstraintInfo &Info) const;
  1140.   bool validateInputConstraint(MutableArrayRef<ConstraintInfo> OutputConstraints,
  1141.                                ConstraintInfo &info) const;
  1142.  
  1143.   virtual bool validateOutputSize(const llvm::StringMap<bool> &FeatureMap,
  1144.                                   StringRef /*Constraint*/,
  1145.                                   unsigned /*Size*/) const {
  1146.     return true;
  1147.   }
  1148.  
  1149.   virtual bool validateInputSize(const llvm::StringMap<bool> &FeatureMap,
  1150.                                  StringRef /*Constraint*/,
  1151.                                  unsigned /*Size*/) const {
  1152.     return true;
  1153.   }
  1154.   virtual bool
  1155.   validateConstraintModifier(StringRef /*Constraint*/,
  1156.                              char /*Modifier*/,
  1157.                              unsigned /*Size*/,
  1158.                              std::string &/*SuggestedModifier*/) const {
  1159.     return true;
  1160.   }
  1161.   virtual bool
  1162.   validateAsmConstraint(const char *&Name,
  1163.                         TargetInfo::ConstraintInfo &info) const = 0;
  1164.  
  1165.   bool resolveSymbolicName(const char *&Name,
  1166.                            ArrayRef<ConstraintInfo> OutputConstraints,
  1167.                            unsigned &Index) const;
  1168.  
  1169.   // Constraint parm will be left pointing at the last character of
  1170.   // the constraint.  In practice, it won't be changed unless the
  1171.   // constraint is longer than one character.
  1172.   virtual std::string convertConstraint(const char *&Constraint) const {
  1173.     // 'p' defaults to 'r', but can be overridden by targets.
  1174.     if (*Constraint == 'p')
  1175.       return std::string("r");
  1176.     return std::string(1, *Constraint);
  1177.   }
  1178.  
  1179.   /// Replace some escaped characters with another string based on
  1180.   /// target-specific rules
  1181.   virtual std::optional<std::string> handleAsmEscapedChar(char C) const {
  1182.     return std::nullopt;
  1183.   }
  1184.  
  1185.   /// Returns a string of target-specific clobbers, in LLVM format.
  1186.   virtual const char *getClobbers() const = 0;
  1187.  
  1188.   /// Returns true if NaN encoding is IEEE 754-2008.
  1189.   /// Only MIPS allows a different encoding.
  1190.   virtual bool isNan2008() const {
  1191.     return true;
  1192.   }
  1193.  
  1194.   /// Returns the target triple of the primary target.
  1195.   const llvm::Triple &getTriple() const {
  1196.     return Triple;
  1197.   }
  1198.  
  1199.   /// Returns the target ID if supported.
  1200.   virtual std::optional<std::string> getTargetID() const {
  1201.     return std::nullopt;
  1202.   }
  1203.  
  1204.   const char *getDataLayoutString() const {
  1205.     assert(!DataLayoutString.empty() && "Uninitialized DataLayout!");
  1206.     return DataLayoutString.c_str();
  1207.   }
  1208.  
  1209.   struct GCCRegAlias {
  1210.     const char * const Aliases[5];
  1211.     const char * const Register;
  1212.   };
  1213.  
  1214.   struct AddlRegName {
  1215.     const char * const Names[5];
  1216.     const unsigned RegNum;
  1217.   };
  1218.  
  1219.   /// Does this target support "protected" visibility?
  1220.   ///
  1221.   /// Any target which dynamic libraries will naturally support
  1222.   /// something like "default" (meaning that the symbol is visible
  1223.   /// outside this shared object) and "hidden" (meaning that it isn't)
  1224.   /// visibilities, but "protected" is really an ELF-specific concept
  1225.   /// with weird semantics designed around the convenience of dynamic
  1226.   /// linker implementations.  Which is not to suggest that there's
  1227.   /// consistent target-independent semantics for "default" visibility
  1228.   /// either; the entire thing is pretty badly mangled.
  1229.   virtual bool hasProtectedVisibility() const { return true; }
  1230.  
  1231.   /// Does this target aim for semantic compatibility with
  1232.   /// Microsoft C++ code using dllimport/export attributes?
  1233.   virtual bool shouldDLLImportComdatSymbols() const {
  1234.     return getTriple().isWindowsMSVCEnvironment() ||
  1235.            getTriple().isWindowsItaniumEnvironment() || getTriple().isPS();
  1236.   }
  1237.  
  1238.   // Does this target have PS4 specific dllimport/export handling?
  1239.   virtual bool hasPS4DLLImportExport() const {
  1240.     return getTriple().isPS() ||
  1241.            // Windows Itanium support allows for testing the SCEI flavour of
  1242.            // dllimport/export handling on a Windows system.
  1243.            (getTriple().isWindowsItaniumEnvironment() &&
  1244.             getTriple().getVendor() == llvm::Triple::SCEI);
  1245.   }
  1246.  
  1247.   /// Set forced language options.
  1248.   ///
  1249.   /// Apply changes to the target information with respect to certain
  1250.   /// language options which change the target configuration and adjust
  1251.   /// the language based on the target options where applicable.
  1252.   virtual void adjust(DiagnosticsEngine &Diags, LangOptions &Opts);
  1253.  
  1254.   /// Adjust target options based on codegen options.
  1255.   virtual void adjustTargetOptions(const CodeGenOptions &CGOpts,
  1256.                                    TargetOptions &TargetOpts) const {}
  1257.  
  1258.   /// Initialize the map with the default set of target features for the
  1259.   /// CPU this should include all legal feature strings on the target.
  1260.   ///
  1261.   /// \return False on error (invalid features).
  1262.   virtual bool initFeatureMap(llvm::StringMap<bool> &Features,
  1263.                               DiagnosticsEngine &Diags, StringRef CPU,
  1264.                               const std::vector<std::string> &FeatureVec) const;
  1265.  
  1266.   /// Get the ABI currently in use.
  1267.   virtual StringRef getABI() const { return StringRef(); }
  1268.  
  1269.   /// Get the C++ ABI currently in use.
  1270.   TargetCXXABI getCXXABI() const {
  1271.     return TheCXXABI;
  1272.   }
  1273.  
  1274.   /// Target the specified CPU.
  1275.   ///
  1276.   /// \return  False on error (invalid CPU name).
  1277.   virtual bool setCPU(const std::string &Name) {
  1278.     return false;
  1279.   }
  1280.  
  1281.   /// Fill a SmallVectorImpl with the valid values to setCPU.
  1282.   virtual void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {}
  1283.  
  1284.   /// Fill a SmallVectorImpl with the valid values for tuning CPU.
  1285.   virtual void fillValidTuneCPUList(SmallVectorImpl<StringRef> &Values) const {
  1286.     fillValidCPUList(Values);
  1287.   }
  1288.  
  1289.   /// brief Determine whether this TargetInfo supports the given CPU name.
  1290.   virtual bool isValidCPUName(StringRef Name) const {
  1291.     return true;
  1292.   }
  1293.  
  1294.   /// brief Determine whether this TargetInfo supports the given CPU name for
  1295.   // tuning.
  1296.   virtual bool isValidTuneCPUName(StringRef Name) const {
  1297.     return isValidCPUName(Name);
  1298.   }
  1299.  
  1300.   virtual ParsedTargetAttr parseTargetAttr(StringRef Str) const;
  1301.  
  1302.   /// brief Determine whether this TargetInfo supports tune in target attribute.
  1303.   virtual bool supportsTargetAttributeTune() const {
  1304.     return false;
  1305.   }
  1306.  
  1307.   /// Use the specified ABI.
  1308.   ///
  1309.   /// \return False on error (invalid ABI name).
  1310.   virtual bool setABI(const std::string &Name) {
  1311.     return false;
  1312.   }
  1313.  
  1314.   /// Use the specified unit for FP math.
  1315.   ///
  1316.   /// \return False on error (invalid unit name).
  1317.   virtual bool setFPMath(StringRef Name) {
  1318.     return false;
  1319.   }
  1320.  
  1321.   /// Check if target has a given feature enabled
  1322.   virtual bool hasFeatureEnabled(const llvm::StringMap<bool> &Features,
  1323.                                  StringRef Name) const {
  1324.     return Features.lookup(Name);
  1325.   }
  1326.  
  1327.   /// Enable or disable a specific target feature;
  1328.   /// the feature name must be valid.
  1329.   virtual void setFeatureEnabled(llvm::StringMap<bool> &Features,
  1330.                                  StringRef Name,
  1331.                                  bool Enabled) const {
  1332.     Features[Name] = Enabled;
  1333.   }
  1334.  
  1335.   /// Determine whether this TargetInfo supports the given feature.
  1336.   virtual bool isValidFeatureName(StringRef Feature) const {
  1337.     return true;
  1338.   }
  1339.  
  1340.   /// Returns true if feature has an impact on target code
  1341.   /// generation and get its dependent options in second argument.
  1342.   virtual bool getFeatureDepOptions(StringRef Feature,
  1343.                                     std::string &Options) const {
  1344.     return true;
  1345.   }
  1346.  
  1347.   struct BranchProtectionInfo {
  1348.     LangOptions::SignReturnAddressScopeKind SignReturnAddr =
  1349.         LangOptions::SignReturnAddressScopeKind::None;
  1350.     LangOptions::SignReturnAddressKeyKind SignKey =
  1351.         LangOptions::SignReturnAddressKeyKind::AKey;
  1352.     bool BranchTargetEnforcement = false;
  1353.   };
  1354.  
  1355.   /// Determine if the Architecture in this TargetInfo supports branch
  1356.   /// protection
  1357.   virtual bool isBranchProtectionSupportedArch(StringRef Arch) const {
  1358.     return false;
  1359.   }
  1360.  
  1361.   /// Determine if this TargetInfo supports the given branch protection
  1362.   /// specification
  1363.   virtual bool validateBranchProtection(StringRef Spec, StringRef Arch,
  1364.                                         BranchProtectionInfo &BPI,
  1365.                                         StringRef &Err) const {
  1366.     Err = "";
  1367.     return false;
  1368.   }
  1369.  
  1370.   /// Perform initialization based on the user configured
  1371.   /// set of features (e.g., +sse4).
  1372.   ///
  1373.   /// The list is guaranteed to have at most one entry per feature.
  1374.   ///
  1375.   /// The target may modify the features list, to change which options are
  1376.   /// passed onwards to the backend.
  1377.   /// FIXME: This part should be fixed so that we can change handleTargetFeatures
  1378.   /// to merely a TargetInfo initialization routine.
  1379.   ///
  1380.   /// \return  False on error.
  1381.   virtual bool handleTargetFeatures(std::vector<std::string> &Features,
  1382.                                     DiagnosticsEngine &Diags) {
  1383.     return true;
  1384.   }
  1385.  
  1386.   /// Determine whether the given target has the given feature.
  1387.   virtual bool hasFeature(StringRef Feature) const {
  1388.     return false;
  1389.   }
  1390.  
  1391.   /// Identify whether this target supports multiversioning of functions,
  1392.   /// which requires support for cpu_supports and cpu_is functionality.
  1393.   bool supportsMultiVersioning() const {
  1394.     return getTriple().isX86() || getTriple().isAArch64();
  1395.   }
  1396.  
  1397.   /// Identify whether this target supports IFuncs.
  1398.   bool supportsIFunc() const {
  1399.     return getTriple().isOSBinFormatELF() && !getTriple().isOSFuchsia();
  1400.   }
  1401.  
  1402.   // Validate the contents of the __builtin_cpu_supports(const char*)
  1403.   // argument.
  1404.   virtual bool validateCpuSupports(StringRef Name) const { return false; }
  1405.  
  1406.   // Return the target-specific priority for features/cpus/vendors so
  1407.   // that they can be properly sorted for checking.
  1408.   virtual unsigned multiVersionSortPriority(StringRef Name) const {
  1409.     return 0;
  1410.   }
  1411.  
  1412.   // Return the target-specific cost for feature
  1413.   // that taken into account in priority sorting.
  1414.   virtual unsigned multiVersionFeatureCost() const { return 0; }
  1415.  
  1416.   // Validate the contents of the __builtin_cpu_is(const char*)
  1417.   // argument.
  1418.   virtual bool validateCpuIs(StringRef Name) const { return false; }
  1419.  
  1420.   // Validate a cpu_dispatch/cpu_specific CPU option, which is a different list
  1421.   // from cpu_is, since it checks via features rather than CPUs directly.
  1422.   virtual bool validateCPUSpecificCPUDispatch(StringRef Name) const {
  1423.     return false;
  1424.   }
  1425.  
  1426.   // Get the character to be added for mangling purposes for cpu_specific.
  1427.   virtual char CPUSpecificManglingCharacter(StringRef Name) const {
  1428.     llvm_unreachable(
  1429.         "cpu_specific Multiversioning not implemented on this target");
  1430.   }
  1431.  
  1432.   // Get the value for the 'tune-cpu' flag for a cpu_specific variant with the
  1433.   // programmer-specified 'Name'.
  1434.   virtual StringRef getCPUSpecificTuneName(StringRef Name) const {
  1435.     llvm_unreachable(
  1436.         "cpu_specific Multiversioning not implemented on this target");
  1437.   }
  1438.  
  1439.   // Get a list of the features that make up the CPU option for
  1440.   // cpu_specific/cpu_dispatch so that it can be passed to llvm as optimization
  1441.   // options.
  1442.   virtual void getCPUSpecificCPUDispatchFeatures(
  1443.       StringRef Name, llvm::SmallVectorImpl<StringRef> &Features) const {
  1444.     llvm_unreachable(
  1445.         "cpu_specific Multiversioning not implemented on this target");
  1446.   }
  1447.  
  1448.   // Get the cache line size of a given cpu. This method switches over
  1449.   // the given cpu and returns "std::nullopt" if the CPU is not found.
  1450.   virtual std::optional<unsigned> getCPUCacheLineSize() const {
  1451.     return std::nullopt;
  1452.   }
  1453.  
  1454.   // Returns maximal number of args passed in registers.
  1455.   unsigned getRegParmMax() const {
  1456.     assert(RegParmMax < 7 && "RegParmMax value is larger than AST can handle");
  1457.     return RegParmMax;
  1458.   }
  1459.  
  1460.   /// Whether the target supports thread-local storage.
  1461.   bool isTLSSupported() const {
  1462.     return TLSSupported;
  1463.   }
  1464.  
  1465.   /// Return the maximum alignment (in bits) of a TLS variable
  1466.   ///
  1467.   /// Gets the maximum alignment (in bits) of a TLS variable on this target.
  1468.   /// Returns zero if there is no such constraint.
  1469.   unsigned getMaxTLSAlign() const { return MaxTLSAlign; }
  1470.  
  1471.   /// Whether target supports variable-length arrays.
  1472.   bool isVLASupported() const { return VLASupported; }
  1473.  
  1474.   /// Whether the target supports SEH __try.
  1475.   bool isSEHTrySupported() const {
  1476.     return getTriple().isOSWindows() &&
  1477.            (getTriple().isX86() ||
  1478.             getTriple().getArch() == llvm::Triple::aarch64);
  1479.   }
  1480.  
  1481.   /// Return true if {|} are normal characters in the asm string.
  1482.   ///
  1483.   /// If this returns false (the default), then {abc|xyz} is syntax
  1484.   /// that says that when compiling for asm variant #0, "abc" should be
  1485.   /// generated, but when compiling for asm variant #1, "xyz" should be
  1486.   /// generated.
  1487.   bool hasNoAsmVariants() const {
  1488.     return NoAsmVariants;
  1489.   }
  1490.  
  1491.   /// Return the register number that __builtin_eh_return_regno would
  1492.   /// return with the specified argument.
  1493.   /// This corresponds with TargetLowering's getExceptionPointerRegister
  1494.   /// and getExceptionSelectorRegister in the backend.
  1495.   virtual int getEHDataRegisterNumber(unsigned RegNo) const {
  1496.     return -1;
  1497.   }
  1498.  
  1499.   /// Return the section to use for C++ static initialization functions.
  1500.   virtual const char *getStaticInitSectionSpecifier() const {
  1501.     return nullptr;
  1502.   }
  1503.  
  1504.   const LangASMap &getAddressSpaceMap() const { return *AddrSpaceMap; }
  1505.   unsigned getTargetAddressSpace(LangAS AS) const {
  1506.     if (isTargetAddressSpace(AS))
  1507.       return toTargetAddressSpace(AS);
  1508.     return getAddressSpaceMap()[(unsigned)AS];
  1509.   }
  1510.  
  1511.   /// Map from the address space field in builtin description strings to the
  1512.   /// language address space.
  1513.   virtual LangAS getOpenCLBuiltinAddressSpace(unsigned AS) const {
  1514.     return getLangASFromTargetAS(AS);
  1515.   }
  1516.  
  1517.   /// Map from the address space field in builtin description strings to the
  1518.   /// language address space.
  1519.   virtual LangAS getCUDABuiltinAddressSpace(unsigned AS) const {
  1520.     return getLangASFromTargetAS(AS);
  1521.   }
  1522.  
  1523.   /// Return an AST address space which can be used opportunistically
  1524.   /// for constant global memory. It must be possible to convert pointers into
  1525.   /// this address space to LangAS::Default. If no such address space exists,
  1526.   /// this may return std::nullopt, and such optimizations will be disabled.
  1527.   virtual std::optional<LangAS> getConstantAddressSpace() const {
  1528.     return LangAS::Default;
  1529.   }
  1530.  
  1531.   // access target-specific GPU grid values that must be consistent between
  1532.   // host RTL (plugin), deviceRTL and clang.
  1533.   virtual const llvm::omp::GV &getGridValue() const {
  1534.     llvm_unreachable("getGridValue not implemented on this target");
  1535.   }
  1536.  
  1537.   /// Retrieve the name of the platform as it is used in the
  1538.   /// availability attribute.
  1539.   StringRef getPlatformName() const { return PlatformName; }
  1540.  
  1541.   /// Retrieve the minimum desired version of the platform, to
  1542.   /// which the program should be compiled.
  1543.   VersionTuple getPlatformMinVersion() const { return PlatformMinVersion; }
  1544.  
  1545.   bool isBigEndian() const { return BigEndian; }
  1546.   bool isLittleEndian() const { return !BigEndian; }
  1547.  
  1548.   /// Whether the option -fextend-arguments={32,64} is supported on the target.
  1549.   virtual bool supportsExtendIntArgs() const { return false; }
  1550.  
  1551.   /// Controls if __arithmetic_fence is supported in the targeted backend.
  1552.   virtual bool checkArithmeticFenceSupported() const { return false; }
  1553.  
  1554.   /// Gets the default calling convention for the given target and
  1555.   /// declaration context.
  1556.   virtual CallingConv getDefaultCallingConv() const {
  1557.     // Not all targets will specify an explicit calling convention that we can
  1558.     // express.  This will always do the right thing, even though it's not
  1559.     // an explicit calling convention.
  1560.     return CC_C;
  1561.   }
  1562.  
  1563.   enum CallingConvCheckResult {
  1564.     CCCR_OK,
  1565.     CCCR_Warning,
  1566.     CCCR_Ignore,
  1567.     CCCR_Error,
  1568.   };
  1569.  
  1570.   /// Determines whether a given calling convention is valid for the
  1571.   /// target. A calling convention can either be accepted, produce a warning
  1572.   /// and be substituted with the default calling convention, or (someday)
  1573.   /// produce an error (such as using thiscall on a non-instance function).
  1574.   virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const {
  1575.     switch (CC) {
  1576.       default:
  1577.         return CCCR_Warning;
  1578.       case CC_C:
  1579.         return CCCR_OK;
  1580.     }
  1581.   }
  1582.  
  1583.   enum CallingConvKind {
  1584.     CCK_Default,
  1585.     CCK_ClangABI4OrPS4,
  1586.     CCK_MicrosoftWin64
  1587.   };
  1588.  
  1589.   virtual CallingConvKind getCallingConvKind(bool ClangABICompat4) const;
  1590.  
  1591.   /// Controls whether explicitly defaulted (`= default`) special member
  1592.   /// functions disqualify something from being POD-for-the-purposes-of-layout.
  1593.   /// Historically, Clang didn't consider these acceptable for POD, but GCC
  1594.   /// does. So in newer Clang ABIs they are acceptable for POD to be compatible
  1595.   /// with GCC/Itanium ABI, and remains disqualifying for targets that need
  1596.   /// Clang backwards compatibility rather than GCC/Itanium ABI compatibility.
  1597.   virtual bool areDefaultedSMFStillPOD(const LangOptions&) const;
  1598.  
  1599.   /// Controls if __builtin_longjmp / __builtin_setjmp can be lowered to
  1600.   /// llvm.eh.sjlj.longjmp / llvm.eh.sjlj.setjmp.
  1601.   virtual bool hasSjLjLowering() const {
  1602.     return false;
  1603.   }
  1604.  
  1605.   /// Check if the target supports CFProtection branch.
  1606.   virtual bool
  1607.   checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const;
  1608.  
  1609.   /// Check if the target supports CFProtection return.
  1610.   virtual bool
  1611.   checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const;
  1612.  
  1613.   /// Whether target allows to overalign ABI-specified preferred alignment
  1614.   virtual bool allowsLargerPreferedTypeAlignment() const { return true; }
  1615.  
  1616.   /// Whether target defaults to the `power` alignment rules of AIX.
  1617.   virtual bool defaultsToAIXPowerAlignment() const { return false; }
  1618.  
  1619.   /// Set supported OpenCL extensions and optional core features.
  1620.   virtual void setSupportedOpenCLOpts() {}
  1621.  
  1622.   virtual void supportAllOpenCLOpts(bool V = true) {
  1623. #define OPENCLEXTNAME(Ext)                                                     \
  1624.   setFeatureEnabled(getTargetOpts().OpenCLFeaturesMap, #Ext, V);
  1625. #include "clang/Basic/OpenCLExtensions.def"
  1626.   }
  1627.  
  1628.   /// Set supported OpenCL extensions as written on command line
  1629.   virtual void setCommandLineOpenCLOpts() {
  1630.     for (const auto &Ext : getTargetOpts().OpenCLExtensionsAsWritten) {
  1631.       bool IsPrefixed = (Ext[0] == '+' || Ext[0] == '-');
  1632.       std::string Name = IsPrefixed ? Ext.substr(1) : Ext;
  1633.       bool V = IsPrefixed ? Ext[0] == '+' : true;
  1634.  
  1635.       if (Name == "all") {
  1636.         supportAllOpenCLOpts(V);
  1637.         continue;
  1638.       }
  1639.  
  1640.       getTargetOpts().OpenCLFeaturesMap[Name] = V;
  1641.     }
  1642.   }
  1643.  
  1644.   /// Get supported OpenCL extensions and optional core features.
  1645.   llvm::StringMap<bool> &getSupportedOpenCLOpts() {
  1646.     return getTargetOpts().OpenCLFeaturesMap;
  1647.   }
  1648.  
  1649.   /// Get const supported OpenCL extensions and optional core features.
  1650.   const llvm::StringMap<bool> &getSupportedOpenCLOpts() const {
  1651.     return getTargetOpts().OpenCLFeaturesMap;
  1652.   }
  1653.  
  1654.   /// Get address space for OpenCL type.
  1655.   virtual LangAS getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const;
  1656.  
  1657.   /// \returns Target specific vtbl ptr address space.
  1658.   virtual unsigned getVtblPtrAddressSpace() const {
  1659.     return 0;
  1660.   }
  1661.  
  1662.   /// \returns If a target requires an address within a target specific address
  1663.   /// space \p AddressSpace to be converted in order to be used, then return the
  1664.   /// corresponding target specific DWARF address space.
  1665.   ///
  1666.   /// \returns Otherwise return std::nullopt and no conversion will be emitted
  1667.   /// in the DWARF.
  1668.   virtual std::optional<unsigned> getDWARFAddressSpace(unsigned AddressSpace)
  1669.       const {
  1670.     return std::nullopt;
  1671.   }
  1672.  
  1673.   /// \returns The version of the SDK which was used during the compilation if
  1674.   /// one was specified, or an empty version otherwise.
  1675.   const llvm::VersionTuple &getSDKVersion() const {
  1676.     return getTargetOpts().SDKVersion;
  1677.   }
  1678.  
  1679.   /// Check the target is valid after it is fully initialized.
  1680.   virtual bool validateTarget(DiagnosticsEngine &Diags) const {
  1681.     return true;
  1682.   }
  1683.  
  1684.   /// Check that OpenCL target has valid options setting based on OpenCL
  1685.   /// version.
  1686.   virtual bool validateOpenCLTarget(const LangOptions &Opts,
  1687.                                     DiagnosticsEngine &Diags) const;
  1688.  
  1689.   virtual void setAuxTarget(const TargetInfo *Aux) {}
  1690.  
  1691.   /// Whether target allows debuginfo types for decl only variables/functions.
  1692.   virtual bool allowDebugInfoForExternalRef() const { return false; }
  1693.  
  1694.   /// Returns the darwin target variant triple, the variant of the deployment
  1695.   /// target for which the code is being compiled.
  1696.   const llvm::Triple *getDarwinTargetVariantTriple() const {
  1697.     return DarwinTargetVariantTriple ? &*DarwinTargetVariantTriple : nullptr;
  1698.   }
  1699.  
  1700.   /// Returns the version of the darwin target variant SDK which was used during
  1701.   /// the compilation if one was specified, or an empty version otherwise.
  1702.   const std::optional<VersionTuple> getDarwinTargetVariantSDKVersion() const {
  1703.     return !getTargetOpts().DarwinTargetVariantSDKVersion.empty()
  1704.                ? getTargetOpts().DarwinTargetVariantSDKVersion
  1705.                : std::optional<VersionTuple>();
  1706.   }
  1707.  
  1708. protected:
  1709.   /// Copy type and layout related info.
  1710.   void copyAuxTarget(const TargetInfo *Aux);
  1711.   virtual uint64_t getPointerWidthV(LangAS AddrSpace) const {
  1712.     return PointerWidth;
  1713.   }
  1714.   virtual uint64_t getPointerAlignV(LangAS AddrSpace) const {
  1715.     return PointerAlign;
  1716.   }
  1717.   virtual enum IntType getPtrDiffTypeV(LangAS AddrSpace) const {
  1718.     return PtrDiffType;
  1719.   }
  1720.   virtual ArrayRef<const char *> getGCCRegNames() const = 0;
  1721.   virtual ArrayRef<GCCRegAlias> getGCCRegAliases() const = 0;
  1722.   virtual ArrayRef<AddlRegName> getGCCAddlRegNames() const {
  1723.     return std::nullopt;
  1724.   }
  1725.  
  1726.  private:
  1727.   // Assert the values for the fractional and integral bits for each fixed point
  1728.   // type follow the restrictions given in clause 6.2.6.3 of N1169.
  1729.   void CheckFixedPointBits() const;
  1730. };
  1731.  
  1732. }  // end namespace clang
  1733.  
  1734. #endif
  1735.