//===- BumpVector.h - Vector-like ADT that uses bump allocation -*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file provides BumpVector, a vector-like ADT whose contents are
 
//  allocated from a BumpPtrAllocator.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
// FIXME: Most of this is copy-and-paste from SmallVector.h.  We can
 
// refactor this core logic into something common that is shared between
 
// the two.  The main thing that is different is the allocation strategy.
 
 
 
#ifndef LLVM_CLANG_ANALYSIS_SUPPORT_BUMPVECTOR_H
 
#define LLVM_CLANG_ANALYSIS_SUPPORT_BUMPVECTOR_H
 
 
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/Support/Allocator.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstring>
 
#include <iterator>
 
#include <memory>
 
#include <type_traits>
 
 
 
namespace clang {
 
 
 
class BumpVectorContext {
 
  llvm::PointerIntPair<llvm::BumpPtrAllocator*, 1> Alloc;
 
 
 
public:
 
  /// Construct a new BumpVectorContext that creates a new BumpPtrAllocator
 
  /// and destroys it when the BumpVectorContext object is destroyed.
 
  BumpVectorContext() : Alloc(new llvm::BumpPtrAllocator(), 1) {}
 
 
 
  BumpVectorContext(BumpVectorContext &&Other) : Alloc(Other.Alloc) {
 
    Other.Alloc.setInt(false);
 
    Other.Alloc.setPointer(nullptr);
 
  }
 
 
 
  /// Construct a new BumpVectorContext that reuses an existing
 
  /// BumpPtrAllocator.  This BumpPtrAllocator is not destroyed when the
 
  /// BumpVectorContext object is destroyed.
 
  BumpVectorContext(llvm::BumpPtrAllocator &A) : Alloc(&A, 0) {}
 
 
 
  ~BumpVectorContext() {
 
    if (Alloc.getInt())
 
      delete Alloc.getPointer();
 
  }
 
 
 
  llvm::BumpPtrAllocator &getAllocator() { return *Alloc.getPointer(); }
 
};
 
 
 
template<typename T>
 
class BumpVector {
 
  T *Begin = nullptr;
 
  T *End = nullptr;
 
  T *Capacity = nullptr;
 
 
 
public:
 
  // Default ctor - Initialize to empty.
 
  explicit BumpVector(BumpVectorContext &C, unsigned N) {
 
    reserve(C, N);
 
  }
 
 
 
  ~BumpVector() {
 
    if (std::is_class<T>::value) {
 
      // Destroy the constructed elements in the vector.
 
      destroy_range(Begin, End);
 
    }
 
  }
 
 
 
  using size_type = size_t;
 
  using difference_type = ptrdiff_t;
 
  using value_type = T;
 
  using iterator = T *;
 
  using const_iterator = const T *;
 
 
 
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 
  using reverse_iterator = std::reverse_iterator<iterator>;
 
 
 
  using reference = T &;
 
  using const_reference = const T &;
 
  using pointer = T *;
 
  using const_pointer = const T *;
 
 
 
  // forward iterator creation methods.
 
  iterator begin() { return Begin; }
 
  const_iterator begin() const { return Begin; }
 
  iterator end() { return End; }
 
  const_iterator end() const { return End; }
 
 
 
  // reverse iterator creation methods.
 
  reverse_iterator rbegin() { return reverse_iterator(end()); }
 
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
 
  reverse_iterator rend() { return reverse_iterator(begin()); }
 
  const_reverse_iterator rend() const {
 
    return const_reverse_iterator(begin());
 
  }
 
 
 
  bool empty() const { return Begin == End; }
 
  size_type size() const { return End-Begin; }
 
 
 
  reference operator[](unsigned idx) {
 
    assert(Begin + idx < End);
 
    return Begin[idx];
 
  }
 
  const_reference operator[](unsigned idx) const {
 
    assert(Begin + idx < End);
 
    return Begin[idx];
 
  }
 
 
 
  reference front() {
 
    return begin()[0];
 
  }
 
  const_reference front() const {
 
    return begin()[0];
 
  }
 
 
 
  reference back() {
 
    return end()[-1];
 
  }
 
  const_reference back() const {
 
    return end()[-1];
 
  }
 
 
 
  void pop_back() {
 
    --End;
 
    End->~T();
 
  }
 
 
 
  T pop_back_val() {
 
    T Result = back();
 
    pop_back();
 
    return Result;
 
  }
 
 
 
  void clear() {
 
    if (std::is_class<T>::value) {
 
      destroy_range(Begin, End);
 
    }
 
    End = Begin;
 
  }
 
 
 
  /// data - Return a pointer to the vector's buffer, even if empty().
 
  pointer data() {
 
    return pointer(Begin);
 
  }
 
 
 
  /// data - Return a pointer to the vector's buffer, even if empty().
 
  const_pointer data() const {
 
    return const_pointer(Begin);
 
  }
 
 
 
  void push_back(const_reference Elt, BumpVectorContext &C) {
 
    if (End < Capacity) {
 
    Retry:
 
      new (End) T(Elt);
 
      ++End;
 
      return;
 
    }
 
    grow(C);
 
    goto Retry;
 
  }
 
 
 
  /// insert - Insert some number of copies of element into a position. Return
 
  /// iterator to position after last inserted copy.
 
  iterator insert(iterator I, size_t Cnt, const_reference E,
 
      BumpVectorContext &C) {
 
    assert(I >= Begin && I <= End && "Iterator out of bounds.");
 
    if (End + Cnt <= Capacity) {
 
    Retry:
 
      move_range_right(I, End, Cnt);
 
      construct_range(I, I + Cnt, E);
 
      End += Cnt;
 
      return I + Cnt;
 
    }
 
    ptrdiff_t D = I - Begin;
 
    grow(C, size() + Cnt);
 
    I = Begin + D;
 
    goto Retry;
 
  }
 
 
 
  void reserve(BumpVectorContext &C, unsigned N) {
 
    if (unsigned(Capacity-Begin) < N)
 
      grow(C, N);
 
  }
 
 
 
  /// capacity - Return the total number of elements in the currently allocated
 
  /// buffer.
 
  size_t capacity() const { return Capacity - Begin; }
 
 
 
private:
 
  /// grow - double the size of the allocated memory, guaranteeing space for at
 
  /// least one more element or MinSize if specified.
 
  void grow(BumpVectorContext &C, size_type MinSize = 1);
 
 
 
  void construct_range(T *S, T *E, const T &Elt) {
 
    for (; S != E; ++S)
 
      new (S) T(Elt);
 
  }
 
 
 
  void destroy_range(T *S, T *E) {
 
    while (S != E) {
 
      --E;
 
      E->~T();
 
    }
 
  }
 
 
 
  void move_range_right(T *S, T *E, size_t D) {
 
    for (T *I = E + D - 1, *IL = S + D - 1; I != IL; --I) {
 
      --E;
 
      new (I) T(*E);
 
      E->~T();
 
    }
 
  }
 
};
 
 
 
// Define this out-of-line to dissuade the C++ compiler from inlining it.
 
template <typename T>
 
void BumpVector<T>::grow(BumpVectorContext &C, size_t MinSize) {
 
  size_t CurCapacity = Capacity-Begin;
 
  size_t CurSize = size();
 
  size_t NewCapacity = 2*CurCapacity;
 
  if (NewCapacity < MinSize)
 
    NewCapacity = MinSize;
 
 
 
  // Allocate the memory from the BumpPtrAllocator.
 
  T *NewElts = C.getAllocator().template Allocate<T>(NewCapacity);
 
 
 
  // Copy the elements over.
 
  if (Begin != End) {
 
    if (std::is_class<T>::value) {
 
      std::uninitialized_copy(Begin, End, NewElts);
 
      // Destroy the original elements.
 
      destroy_range(Begin, End);
 
    } else {
 
      // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
 
      memcpy(NewElts, Begin, CurSize * sizeof(T));
 
    }
 
  }
 
 
 
  // For now, leak 'Begin'.  We can add it back to a freelist in
 
  // BumpVectorContext.
 
  Begin = NewElts;
 
  End = NewElts+CurSize;
 
  Capacity = Begin+NewCapacity;
 
}
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_ANALYSIS_SUPPORT_BUMPVECTOR_H