//===-- Value.h -------------------------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines classes for values computed by abstract interpretation
 
// during dataflow analysis.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_VALUE_H
 
#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_VALUE_H
 
 
 
#include "clang/AST/Decl.h"
 
#include "clang/Analysis/FlowSensitive/StorageLocation.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/StringMap.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <cassert>
 
#include <utility>
 
 
 
namespace clang {
 
namespace dataflow {
 
 
 
/// Base class for all values computed by abstract interpretation.
 
///
 
/// Don't use `Value` instances by value. All `Value` instances are allocated
 
/// and owned by `DataflowAnalysisContext`.
 
class Value {
 
public:
 
  enum class Kind {
 
    Integer,
 
    Reference,
 
    Pointer,
 
    Struct,
 
 
 
    // Synthetic boolean values are either atomic values or logical connectives.
 
    TopBool,
 
    AtomicBool,
 
    Conjunction,
 
    Disjunction,
 
    Negation,
 
    Implication,
 
    Biconditional,
 
  };
 
 
 
  explicit Value(Kind ValKind) : ValKind(ValKind) {}
 
 
 
  // Non-copyable because addresses of values are used as their identities
 
  // throughout framework and user code. The framework is responsible for
 
  // construction and destruction of values.
 
  Value(const Value &) = delete;
 
  Value &operator=(const Value &) = delete;
 
 
 
  virtual ~Value() = default;
 
 
 
  Kind getKind() const { return ValKind; }
 
 
 
  /// Returns the value of the synthetic property with the given `Name` or null
 
  /// if the property isn't assigned a value.
 
  Value *getProperty(llvm::StringRef Name) const {
 
    auto It = Properties.find(Name);
 
    return It == Properties.end() ? nullptr : It->second;
 
  }
 
 
 
  /// Assigns `Val` as the value of the synthetic property with the given
 
  /// `Name`.
 
  void setProperty(llvm::StringRef Name, Value &Val) {
 
    Properties.insert_or_assign(Name, &Val);
 
  }
 
 
 
private:
 
  Kind ValKind;
 
  llvm::StringMap<Value *> Properties;
 
};
 
 
 
/// An equivalence relation for values. It obeys reflexivity, symmetry and
 
/// transitivity. It does *not* include comparison of `Properties`.
 
///
 
/// Computes equivalence for these subclasses:
 
/// * ReferenceValue, PointerValue -- pointee locations are equal. Does not
 
///   compute deep equality of `Value` at said location.
 
/// * TopBoolValue -- both are `TopBoolValue`s.
 
///
 
/// Otherwise, falls back to pointer equality.
 
bool areEquivalentValues(const Value &Val1, const Value &Val2);
 
 
 
/// Models a boolean.
 
class BoolValue : public Value {
 
public:
 
  explicit BoolValue(Kind ValueKind) : Value(ValueKind) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::TopBool ||
 
           Val->getKind() == Kind::AtomicBool ||
 
           Val->getKind() == Kind::Conjunction ||
 
           Val->getKind() == Kind::Disjunction ||
 
           Val->getKind() == Kind::Negation ||
 
           Val->getKind() == Kind::Implication ||
 
           Val->getKind() == Kind::Biconditional;
 
  }
 
};
 
 
 
/// Models the trivially true formula, which is Top in the lattice of boolean
 
/// formulas.
 
class TopBoolValue final : public BoolValue {
 
public:
 
  TopBoolValue() : BoolValue(Kind::TopBool) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::TopBool;
 
  }
 
};
 
 
 
/// Models an atomic boolean.
 
class AtomicBoolValue : public BoolValue {
 
public:
 
  explicit AtomicBoolValue() : BoolValue(Kind::AtomicBool) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::AtomicBool;
 
  }
 
};
 
 
 
/// Models a boolean conjunction.
 
// FIXME: Consider representing binary and unary boolean operations similar
 
// to how they are represented in the AST. This might become more pressing
 
// when such operations need to be added for other data types.
 
class ConjunctionValue : public BoolValue {
 
public:
 
  explicit ConjunctionValue(BoolValue &LeftSubVal, BoolValue &RightSubVal)
 
      : BoolValue(Kind::Conjunction), LeftSubVal(LeftSubVal),
 
        RightSubVal(RightSubVal) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Conjunction;
 
  }
 
 
 
  /// Returns the left sub-value of the conjunction.
 
  BoolValue &getLeftSubValue() const { return LeftSubVal; }
 
 
 
  /// Returns the right sub-value of the conjunction.
 
  BoolValue &getRightSubValue() const { return RightSubVal; }
 
 
 
private:
 
  BoolValue &LeftSubVal;
 
  BoolValue &RightSubVal;
 
};
 
 
 
/// Models a boolean disjunction.
 
class DisjunctionValue : public BoolValue {
 
public:
 
  explicit DisjunctionValue(BoolValue &LeftSubVal, BoolValue &RightSubVal)
 
      : BoolValue(Kind::Disjunction), LeftSubVal(LeftSubVal),
 
        RightSubVal(RightSubVal) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Disjunction;
 
  }
 
 
 
  /// Returns the left sub-value of the disjunction.
 
  BoolValue &getLeftSubValue() const { return LeftSubVal; }
 
 
 
  /// Returns the right sub-value of the disjunction.
 
  BoolValue &getRightSubValue() const { return RightSubVal; }
 
 
 
private:
 
  BoolValue &LeftSubVal;
 
  BoolValue &RightSubVal;
 
};
 
 
 
/// Models a boolean negation.
 
class NegationValue : public BoolValue {
 
public:
 
  explicit NegationValue(BoolValue &SubVal)
 
      : BoolValue(Kind::Negation), SubVal(SubVal) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Negation;
 
  }
 
 
 
  /// Returns the sub-value of the negation.
 
  BoolValue &getSubVal() const { return SubVal; }
 
 
 
private:
 
  BoolValue &SubVal;
 
};
 
 
 
/// Models a boolean implication.
 
///
 
/// Equivalent to `!LHS v RHS`.
 
class ImplicationValue : public BoolValue {
 
public:
 
  explicit ImplicationValue(BoolValue &LeftSubVal, BoolValue &RightSubVal)
 
      : BoolValue(Kind::Implication), LeftSubVal(LeftSubVal),
 
        RightSubVal(RightSubVal) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Implication;
 
  }
 
 
 
  /// Returns the left sub-value of the implication.
 
  BoolValue &getLeftSubValue() const { return LeftSubVal; }
 
 
 
  /// Returns the right sub-value of the implication.
 
  BoolValue &getRightSubValue() const { return RightSubVal; }
 
 
 
private:
 
  BoolValue &LeftSubVal;
 
  BoolValue &RightSubVal;
 
};
 
 
 
/// Models a boolean biconditional.
 
///
 
/// Equivalent to `(LHS ^ RHS) v (!LHS ^ !RHS)`.
 
class BiconditionalValue : public BoolValue {
 
public:
 
  explicit BiconditionalValue(BoolValue &LeftSubVal, BoolValue &RightSubVal)
 
      : BoolValue(Kind::Biconditional), LeftSubVal(LeftSubVal),
 
        RightSubVal(RightSubVal) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Biconditional;
 
  }
 
 
 
  /// Returns the left sub-value of the biconditional.
 
  BoolValue &getLeftSubValue() const { return LeftSubVal; }
 
 
 
  /// Returns the right sub-value of the biconditional.
 
  BoolValue &getRightSubValue() const { return RightSubVal; }
 
 
 
private:
 
  BoolValue &LeftSubVal;
 
  BoolValue &RightSubVal;
 
};
 
 
 
/// Models an integer.
 
class IntegerValue : public Value {
 
public:
 
  explicit IntegerValue() : Value(Kind::Integer) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Integer;
 
  }
 
};
 
 
 
/// Models a dereferenced pointer. For example, a reference in C++ or an lvalue
 
/// in C.
 
class ReferenceValue final : public Value {
 
public:
 
  explicit ReferenceValue(StorageLocation &ReferentLoc)
 
      : Value(Kind::Reference), ReferentLoc(ReferentLoc) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Reference;
 
  }
 
 
 
  StorageLocation &getReferentLoc() const { return ReferentLoc; }
 
 
 
private:
 
  StorageLocation &ReferentLoc;
 
};
 
 
 
/// Models a symbolic pointer. Specifically, any value of type `T*`.
 
class PointerValue final : public Value {
 
public:
 
  explicit PointerValue(StorageLocation &PointeeLoc)
 
      : Value(Kind::Pointer), PointeeLoc(PointeeLoc) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Pointer;
 
  }
 
 
 
  StorageLocation &getPointeeLoc() const { return PointeeLoc; }
 
 
 
private:
 
  StorageLocation &PointeeLoc;
 
};
 
 
 
/// Models a value of `struct` or `class` type, with a flat map of fields to
 
/// child storage locations, containing all accessible members of base struct
 
/// and class types.
 
class StructValue final : public Value {
 
public:
 
  StructValue() : StructValue(llvm::DenseMap<const ValueDecl *, Value *>()) {}
 
 
 
  explicit StructValue(llvm::DenseMap<const ValueDecl *, Value *> Children)
 
      : Value(Kind::Struct), Children(std::move(Children)) {}
 
 
 
  static bool classof(const Value *Val) {
 
    return Val->getKind() == Kind::Struct;
 
  }
 
 
 
  /// Returns the child value that is assigned for `D` or null if the child is
 
  /// not initialized.
 
  Value *getChild(const ValueDecl &D) const {
 
    auto It = Children.find(&D);
 
    if (It == Children.end())
 
      return nullptr;
 
    return It->second;
 
  }
 
 
 
  /// Assigns `Val` as the child value for `D`.
 
  void setChild(const ValueDecl &D, Value &Val) { Children[&D] = &Val; }
 
 
 
private:
 
  llvm::DenseMap<const ValueDecl *, Value *> Children;
 
};
 
 
 
raw_ostream &operator<<(raw_ostream &OS, const Value &Val);
 
 
 
} // namespace dataflow
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_VALUE_H