//===-- DataflowEnvironment.h -----------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file defines an Environment class that is used by dataflow analyses
 
//  that run over Control-Flow Graphs (CFGs) to keep track of the state of the
 
//  program at given program points.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWENVIRONMENT_H
 
#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWENVIRONMENT_H
 
 
 
#include "clang/AST/Decl.h"
 
#include "clang/AST/DeclBase.h"
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
 
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
 
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
 
#include "clang/Analysis/FlowSensitive/StorageLocation.h"
 
#include "clang/Analysis/FlowSensitive/Value.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <memory>
 
#include <type_traits>
 
#include <utility>
 
 
 
namespace clang {
 
namespace dataflow {
 
 
 
/// Indicates what kind of indirections should be skipped past when retrieving
 
/// storage locations or values.
 
///
 
/// FIXME: Consider renaming this or replacing it with a more appropriate model.
 
/// See the discussion in https://reviews.llvm.org/D116596 for context.
 
enum class SkipPast {
 
  /// No indirections should be skipped past.
 
  None,
 
  /// An optional reference should be skipped past.
 
  Reference,
 
  /// An optional reference should be skipped past, then an optional pointer
 
  /// should be skipped past.
 
  ReferenceThenPointer,
 
};
 
 
 
/// Indicates the result of a tentative comparison.
 
enum class ComparisonResult {
 
  Same,
 
  Different,
 
  Unknown,
 
};
 
 
 
/// Holds the state of the program (store and heap) at a given program point.
 
///
 
/// WARNING: Symbolic values that are created by the environment for static
 
/// local and global variables are not currently invalidated on function calls.
 
/// This is unsound and should be taken into account when designing dataflow
 
/// analyses.
 
class Environment {
 
public:
 
  /// Supplements `Environment` with non-standard comparison and join
 
  /// operations.
 
  class ValueModel {
 
  public:
 
    virtual ~ValueModel() = default;
 
 
 
    /// Returns:
 
    ///   `Same`: `Val1` is equivalent to `Val2`, according to the model.
 
    ///   `Different`: `Val1` is distinct from `Val2`, according to the model.
 
    ///   `Unknown`: The model can't determine a relationship between `Val1` and
 
    ///    `Val2`.
 
    ///
 
    /// Requirements:
 
    ///
 
    ///  `Val1` and `Val2` must be distinct.
 
    ///
 
    ///  `Val1` and `Val2` must model values of type `Type`.
 
    ///
 
    ///  `Val1` and `Val2` must be assigned to the same storage location in
 
    ///  `Env1` and `Env2` respectively.
 
    virtual ComparisonResult compare(QualType Type, const Value &Val1,
 
                                     const Environment &Env1, const Value &Val2,
 
                                     const Environment &Env2) {
 
      // FIXME: Consider adding QualType to StructValue and removing the Type
 
      // argument here.
 
      return ComparisonResult::Unknown;
 
    }
 
 
 
    /// Modifies `MergedVal` to approximate both `Val1` and `Val2`. This could
 
    /// be a strict lattice join or a more general widening operation.
 
    ///
 
    /// If this function returns true, `MergedVal` will be assigned to a storage
 
    /// location of type `Type` in `MergedEnv`.
 
    ///
 
    /// `Env1` and `Env2` can be used to query child values and path condition
 
    /// implications of `Val1` and `Val2` respectively.
 
    ///
 
    /// Requirements:
 
    ///
 
    ///  `Val1` and `Val2` must be distinct.
 
    ///
 
    ///  `Val1`, `Val2`, and `MergedVal` must model values of type `Type`.
 
    ///
 
    ///  `Val1` and `Val2` must be assigned to the same storage location in
 
    ///  `Env1` and `Env2` respectively.
 
    virtual bool merge(QualType Type, const Value &Val1,
 
                       const Environment &Env1, const Value &Val2,
 
                       const Environment &Env2, Value &MergedVal,
 
                       Environment &MergedEnv) {
 
      return true;
 
    }
 
 
 
    /// This function may widen the current value -- replace it with an
 
    /// approximation that can reach a fixed point more quickly than iterated
 
    /// application of the transfer function alone. The previous value is
 
    /// provided to inform the choice of widened value. The function must also
 
    /// serve as a comparison operation, by indicating whether the widened value
 
    /// is equivalent to the previous value.
 
    ///
 
    /// Returns either:
 
    ///
 
    ///   `nullptr`, if this value is not of interest to the model, or
 
    ///
 
    ///   `&Prev`, if the widened value is equivalent to `Prev`, or
 
    ///
 
    ///   A non-null value that approximates `Current`. `Prev` is available to
 
    ///   inform the chosen approximation.
 
    ///
 
    /// `PrevEnv` and `CurrentEnv` can be used to query child values and path
 
    /// condition implications of `Prev` and `Current`, respectively.
 
    ///
 
    /// Requirements:
 
    ///
 
    ///  `Prev` and `Current` must model values of type `Type`.
 
    ///
 
    ///  `Prev` and `Current` must be assigned to the same storage location in
 
    ///  `PrevEnv` and `CurrentEnv`, respectively.
 
    virtual Value *widen(QualType Type, Value &Prev, const Environment &PrevEnv,
 
                         Value &Current, Environment &CurrentEnv) {
 
      // The default implementation reduces to just comparison, since comparison
 
      // is required by the API, even if no widening is performed.
 
      switch (compare(Type, Prev, PrevEnv, Current, CurrentEnv)) {
 
        case ComparisonResult::Same:
 
          return &Prev;
 
        case ComparisonResult::Different:
 
          return &Current;
 
        case ComparisonResult::Unknown:
 
          return nullptr;
 
      }
 
      llvm_unreachable("all cases in switch covered");
 
    }
 
  };
 
 
 
  /// Creates an environment that uses `DACtx` to store objects that encompass
 
  /// the state of a program.
 
  explicit Environment(DataflowAnalysisContext &DACtx);
 
 
 
  Environment(const Environment &Other);
 
  Environment &operator=(const Environment &Other);
 
 
 
  Environment(Environment &&Other) = default;
 
  Environment &operator=(Environment &&Other) = default;
 
 
 
  /// Creates an environment that uses `DACtx` to store objects that encompass
 
  /// the state of a program.
 
  ///
 
  /// If `DeclCtx` is a function, initializes the environment with symbolic
 
  /// representations of the function parameters.
 
  ///
 
  /// If `DeclCtx` is a non-static member function, initializes the environment
 
  /// with a symbolic representation of the `this` pointee.
 
  Environment(DataflowAnalysisContext &DACtx, const DeclContext &DeclCtx);
 
 
 
  const DataflowAnalysisContext::Options &getAnalysisOptions() {
 
    return DACtx->getOptions();
 
  }
 
 
 
  /// Creates and returns an environment to use for an inline analysis  of the
 
  /// callee. Uses the storage location from each argument in the `Call` as the
 
  /// storage location for the corresponding parameter in the callee.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  The callee of `Call` must be a `FunctionDecl`.
 
  ///
 
  ///  The body of the callee must not reference globals.
 
  ///
 
  ///  The arguments of `Call` must map 1:1 to the callee's parameters.
 
  Environment pushCall(const CallExpr *Call) const;
 
  Environment pushCall(const CXXConstructExpr *Call) const;
 
 
 
  /// Moves gathered information back into `this` from a `CalleeEnv` created via
 
  /// `pushCall`.
 
  void popCall(const Environment &CalleeEnv);
 
 
 
  /// Returns true if and only if the environment is equivalent to `Other`, i.e
 
  /// the two environments:
 
  ///  - have the same mappings from declarations to storage locations,
 
  ///  - have the same mappings from expressions to storage locations,
 
  ///  - have the same or equivalent (according to `Model`) values assigned to
 
  ///    the same storage locations.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `Other` and `this` must use the same `DataflowAnalysisContext`.
 
  bool equivalentTo(const Environment &Other,
 
                    Environment::ValueModel &Model) const;
 
 
 
  /// Joins the environment with `Other` by taking the intersection of storage
 
  /// locations and values that are stored in them. Distinct values that are
 
  /// assigned to the same storage locations in the environment and `Other` are
 
  /// merged using `Model`.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `Other` and `this` must use the same `DataflowAnalysisContext`.
 
  LatticeJoinEffect join(const Environment &Other,
 
                         Environment::ValueModel &Model);
 
 
 
 
 
  /// Widens the environment point-wise, using `PrevEnv` as needed to inform the
 
  /// approximation.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `PrevEnv` must be the immediate previous version of the environment.
 
  ///  `PrevEnv` and `this` must use the same `DataflowAnalysisContext`.
 
  LatticeJoinEffect widen(const Environment &PrevEnv,
 
                          Environment::ValueModel &Model);
 
 
 
  // FIXME: Rename `createOrGetStorageLocation` to `getOrCreateStorageLocation`,
 
  // `getStableStorageLocation`, or something more appropriate.
 
 
 
  /// Creates a storage location appropriate for `Type`. Does not assign a value
 
  /// to the returned storage location in the environment.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `Type` must not be null.
 
  StorageLocation &createStorageLocation(QualType Type);
 
 
 
  /// Creates a storage location for `D`. Does not assign the returned storage
 
  /// location to `D` in the environment. Does not assign a value to the
 
  /// returned storage location in the environment.
 
  StorageLocation &createStorageLocation(const VarDecl &D);
 
 
 
  /// Creates a storage location for `E`. Does not assign the returned storage
 
  /// location to `E` in the environment. Does not assign a value to the
 
  /// returned storage location in the environment.
 
  StorageLocation &createStorageLocation(const Expr &E);
 
 
 
  /// Assigns `Loc` as the storage location of `D` in the environment.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `D` must not be assigned a storage location in the environment.
 
  void setStorageLocation(const ValueDecl &D, StorageLocation &Loc);
 
 
 
  /// Returns the storage location assigned to `D` in the environment, applying
 
  /// the `SP` policy for skipping past indirections, or null if `D` isn't
 
  /// assigned a storage location in the environment.
 
  StorageLocation *getStorageLocation(const ValueDecl &D, SkipPast SP) const;
 
 
 
  /// Assigns `Loc` as the storage location of `E` in the environment.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `E` must not be assigned a storage location in the environment.
 
  void setStorageLocation(const Expr &E, StorageLocation &Loc);
 
 
 
  /// Returns the storage location assigned to `E` in the environment, applying
 
  /// the `SP` policy for skipping past indirections, or null if `E` isn't
 
  /// assigned a storage location in the environment.
 
  StorageLocation *getStorageLocation(const Expr &E, SkipPast SP) const;
 
 
 
  /// Returns the storage location assigned to the `this` pointee in the
 
  /// environment or null if the `this` pointee has no assigned storage location
 
  /// in the environment.
 
  StorageLocation *getThisPointeeStorageLocation() const;
 
 
 
  /// Returns the storage location of the return value or null, if unset.
 
  StorageLocation *getReturnStorageLocation() const;
 
 
 
  /// Returns a pointer value that represents a null pointer. Calls with
 
  /// `PointeeType` that are canonically equivalent will return the same result.
 
  PointerValue &getOrCreateNullPointerValue(QualType PointeeType);
 
 
 
  /// Creates a value appropriate for `Type`, if `Type` is supported, otherwise
 
  /// return null. If `Type` is a pointer or reference type, creates all the
 
  /// necessary storage locations and values for indirections until it finds a
 
  /// non-pointer/non-reference type.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `Type` must not be null.
 
  Value *createValue(QualType Type);
 
 
 
  /// Assigns `Val` as the value of `Loc` in the environment.
 
  void setValue(const StorageLocation &Loc, Value &Val);
 
 
 
  /// Returns the value assigned to `Loc` in the environment or null if `Loc`
 
  /// isn't assigned a value in the environment.
 
  Value *getValue(const StorageLocation &Loc) const;
 
 
 
  /// Equivalent to `getValue(getStorageLocation(D, SP), SkipPast::None)` if `D`
 
  /// is assigned a storage location in the environment, otherwise returns null.
 
  Value *getValue(const ValueDecl &D, SkipPast SP) const;
 
 
 
  /// Equivalent to `getValue(getStorageLocation(E, SP), SkipPast::None)` if `E`
 
  /// is assigned a storage location in the environment, otherwise returns null.
 
  Value *getValue(const Expr &E, SkipPast SP) const;
 
 
 
  /// Transfers ownership of `Loc` to the analysis context and returns a
 
  /// reference to it.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `Loc` must not be null.
 
  template <typename T>
 
  std::enable_if_t<std::is_base_of<StorageLocation, T>::value, T &>
 
  takeOwnership(std::unique_ptr<T> Loc) {
 
    return DACtx->takeOwnership(std::move(Loc));
 
  }
 
 
 
  /// Transfers ownership of `Val` to the analysis context and returns a
 
  /// reference to it.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `Val` must not be null.
 
  template <typename T>
 
  std::enable_if_t<std::is_base_of<Value, T>::value, T &>
 
  takeOwnership(std::unique_ptr<T> Val) {
 
    return DACtx->takeOwnership(std::move(Val));
 
  }
 
 
 
  /// Returns a symbolic boolean value that models a boolean literal equal to
 
  /// `Value`
 
  AtomicBoolValue &getBoolLiteralValue(bool Value) const {
 
    return DACtx->getBoolLiteralValue(Value);
 
  }
 
 
 
  /// Returns an atomic boolean value.
 
  BoolValue &makeAtomicBoolValue() const {
 
    return DACtx->createAtomicBoolValue();
 
  }
 
 
 
  /// Returns a unique instance of boolean Top.
 
  BoolValue &makeTopBoolValue() const {
 
    return DACtx->createTopBoolValue();
 
  }
 
 
 
  /// Returns a boolean value that represents the conjunction of `LHS` and
 
  /// `RHS`. Subsequent calls with the same arguments, regardless of their
 
  /// order, will return the same result. If the given boolean values represent
 
  /// the same value, the result will be the value itself.
 
  BoolValue &makeAnd(BoolValue &LHS, BoolValue &RHS) const {
 
    return DACtx->getOrCreateConjunction(LHS, RHS);
 
  }
 
 
 
  /// Returns a boolean value that represents the disjunction of `LHS` and
 
  /// `RHS`. Subsequent calls with the same arguments, regardless of their
 
  /// order, will return the same result. If the given boolean values represent
 
  /// the same value, the result will be the value itself.
 
  BoolValue &makeOr(BoolValue &LHS, BoolValue &RHS) const {
 
    return DACtx->getOrCreateDisjunction(LHS, RHS);
 
  }
 
 
 
  /// Returns a boolean value that represents the negation of `Val`. Subsequent
 
  /// calls with the same argument will return the same result.
 
  BoolValue &makeNot(BoolValue &Val) const {
 
    return DACtx->getOrCreateNegation(Val);
 
  }
 
 
 
  /// Returns a boolean value represents `LHS` => `RHS`. Subsequent calls with
 
  /// the same arguments, will return the same result. If the given boolean
 
  /// values represent the same value, the result will be a value that
 
  /// represents the true boolean literal.
 
  BoolValue &makeImplication(BoolValue &LHS, BoolValue &RHS) const {
 
    return DACtx->getOrCreateImplication(LHS, RHS);
 
  }
 
 
 
  /// Returns a boolean value represents `LHS` <=> `RHS`. Subsequent calls with
 
  /// the same arguments, regardless of their order, will return the same
 
  /// result. If the given boolean values represent the same value, the result
 
  /// will be a value that represents the true boolean literal.
 
  BoolValue &makeIff(BoolValue &LHS, BoolValue &RHS) const {
 
    return DACtx->getOrCreateIff(LHS, RHS);
 
  }
 
 
 
  /// Returns the token that identifies the flow condition of the environment.
 
  AtomicBoolValue &getFlowConditionToken() const { return *FlowConditionToken; }
 
 
 
  /// Builds and returns the logical formula defining the flow condition
 
  /// identified by `Token`. If a value in the formula is present as a key in
 
  /// `Substitutions`, it will be substituted with the value it maps to.
 
  BoolValue &buildAndSubstituteFlowCondition(
 
      AtomicBoolValue &Token,
 
      llvm::DenseMap<AtomicBoolValue *, BoolValue *> Substitutions) {
 
    return DACtx->buildAndSubstituteFlowCondition(Token,
 
                                                  std::move(Substitutions));
 
  }
 
 
 
  /// Adds `Val` to the set of clauses that constitute the flow condition.
 
  void addToFlowCondition(BoolValue &Val);
 
 
 
  /// Returns true if and only if the clauses that constitute the flow condition
 
  /// imply that `Val` is true.
 
  bool flowConditionImplies(BoolValue &Val) const;
 
 
 
  /// Returns the `DeclContext` of the block being analysed, if any. Otherwise,
 
  /// returns null.
 
  const DeclContext *getDeclCtx() const { return CallStack.back(); }
 
 
 
  /// Returns whether this `Environment` can be extended to analyze the given
 
  /// `Callee` (i.e. if `pushCall` can be used), with recursion disallowed and a
 
  /// given `MaxDepth`.
 
  bool canDescend(unsigned MaxDepth, const DeclContext *Callee) const;
 
 
 
  /// Returns the `ControlFlowContext` registered for `F`, if any. Otherwise,
 
  /// returns null.
 
  const ControlFlowContext *getControlFlowContext(const FunctionDecl *F) {
 
    return DACtx->getControlFlowContext(F);
 
  }
 
 
 
  LLVM_DUMP_METHOD void dump() const;
 
  LLVM_DUMP_METHOD void dump(raw_ostream &OS) const;
 
 
 
private:
 
  /// Creates a value appropriate for `Type`, if `Type` is supported, otherwise
 
  /// return null.
 
  ///
 
  /// Recursively initializes storage locations and values until it sees a
 
  /// self-referential pointer or reference type. `Visited` is used to track
 
  /// which types appeared in the reference/pointer chain in order to avoid
 
  /// creating a cyclic dependency with self-referential pointers/references.
 
  ///
 
  /// Requirements:
 
  ///
 
  ///  `Type` must not be null.
 
  Value *createValueUnlessSelfReferential(QualType Type,
 
                                          llvm::DenseSet<QualType> &Visited,
 
                                          int Depth, int &CreatedValuesCount);
 
 
 
  StorageLocation &skip(StorageLocation &Loc, SkipPast SP) const;
 
  const StorageLocation &skip(const StorageLocation &Loc, SkipPast SP) const;
 
 
 
  /// Shared implementation of `pushCall` overloads. Note that unlike
 
  /// `pushCall`, this member is invoked on the environment of the callee, not
 
  /// of the caller.
 
  void pushCallInternal(const FunctionDecl *FuncDecl,
 
                        ArrayRef<const Expr *> Args);
 
 
 
  /// Assigns storage locations and values to all variables in `Vars`.
 
  void initVars(llvm::DenseSet<const VarDecl *> Vars);
 
 
 
  // `DACtx` is not null and not owned by this object.
 
  DataflowAnalysisContext *DACtx;
 
 
 
 
 
  // FIXME: move the fields `CallStack`, `ReturnLoc` and `ThisPointeeLoc` into a
 
  // separate call-context object, shared between environments in the same call.
 
  // https://github.com/llvm/llvm-project/issues/59005
 
 
 
  // `DeclContext` of the block being analysed if provided.
 
  std::vector<const DeclContext *> CallStack;
 
 
 
  // In a properly initialized `Environment`, `ReturnLoc` should only be null if
 
  // its `DeclContext` could not be cast to a `FunctionDecl`.
 
  StorageLocation *ReturnLoc = nullptr;
 
  // The storage location of the `this` pointee. Should only be null if the
 
  // function being analyzed is only a function and not a method.
 
  StorageLocation *ThisPointeeLoc = nullptr;
 
 
 
  // Maps from program declarations and statements to storage locations that are
 
  // assigned to them. Unlike the maps in `DataflowAnalysisContext`, these
 
  // include only storage locations that are in scope for a particular basic
 
  // block.
 
  llvm::DenseMap<const ValueDecl *, StorageLocation *> DeclToLoc;
 
  llvm::DenseMap<const Expr *, StorageLocation *> ExprToLoc;
 
 
 
  llvm::DenseMap<const StorageLocation *, Value *> LocToVal;
 
 
 
  // Maps locations of struct members to symbolic values of the structs that own
 
  // them and the decls of the struct members.
 
  llvm::DenseMap<const StorageLocation *,
 
                 std::pair<StructValue *, const ValueDecl *>>
 
      MemberLocToStruct;
 
 
 
  AtomicBoolValue *FlowConditionToken;
 
};
 
 
 
} // namespace dataflow
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWENVIRONMENT_H