//===- ASTMatchers.h - Structural query framework ---------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file implements matchers to be used together with the MatchFinder to
 
//  match AST nodes.
 
//
 
//  Matchers are created by generator functions, which can be combined in
 
//  a functional in-language DSL to express queries over the C++ AST.
 
//
 
//  For example, to match a class with a certain name, one would call:
 
//    cxxRecordDecl(hasName("MyClass"))
 
//  which returns a matcher that can be used to find all AST nodes that declare
 
//  a class named 'MyClass'.
 
//
 
//  For more complicated match expressions we're often interested in accessing
 
//  multiple parts of the matched AST nodes once a match is found. In that case,
 
//  call `.bind("name")` on match expressions that match the nodes you want to
 
//  access.
 
//
 
//  For example, when we're interested in child classes of a certain class, we
 
//  would write:
 
//    cxxRecordDecl(hasName("MyClass"), has(recordDecl().bind("child")))
 
//  When the match is found via the MatchFinder, a user provided callback will
 
//  be called with a BoundNodes instance that contains a mapping from the
 
//  strings that we provided for the `.bind()` calls to the nodes that were
 
//  matched.
 
//  In the given example, each time our matcher finds a match we get a callback
 
//  where "child" is bound to the RecordDecl node of the matching child
 
//  class declaration.
 
//
 
//  See ASTMatchersInternal.h for a more in-depth explanation of the
 
//  implementation details of the matcher framework.
 
//
 
//  See ASTMatchFinder.h for how to use the generated matchers to run over
 
//  an AST.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
 
#define LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
 
 
 
#include "clang/AST/ASTContext.h"
 
#include "clang/AST/ASTTypeTraits.h"
 
#include "clang/AST/Attr.h"
 
#include "clang/AST/CXXInheritance.h"
 
#include "clang/AST/Decl.h"
 
#include "clang/AST/DeclCXX.h"
 
#include "clang/AST/DeclFriend.h"
 
#include "clang/AST/DeclObjC.h"
 
#include "clang/AST/DeclTemplate.h"
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/ExprCXX.h"
 
#include "clang/AST/ExprObjC.h"
 
#include "clang/AST/LambdaCapture.h"
 
#include "clang/AST/NestedNameSpecifier.h"
 
#include "clang/AST/OpenMPClause.h"
 
#include "clang/AST/OperationKinds.h"
 
#include "clang/AST/ParentMapContext.h"
 
#include "clang/AST/Stmt.h"
 
#include "clang/AST/StmtCXX.h"
 
#include "clang/AST/StmtObjC.h"
 
#include "clang/AST/StmtOpenMP.h"
 
#include "clang/AST/TemplateBase.h"
 
#include "clang/AST/TemplateName.h"
 
#include "clang/AST/Type.h"
 
#include "clang/AST/TypeLoc.h"
 
#include "clang/ASTMatchers/ASTMatchersInternal.h"
 
#include "clang/ASTMatchers/ASTMatchersMacros.h"
 
#include "clang/Basic/AttrKinds.h"
 
#include "clang/Basic/ExceptionSpecificationType.h"
 
#include "clang/Basic/FileManager.h"
 
#include "clang/Basic/IdentifierTable.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Basic/SourceManager.h"
 
#include "clang/Basic/Specifiers.h"
 
#include "clang/Basic/TypeTraits.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include "llvm/Support/Regex.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
#include <limits>
 
#include <optional>
 
#include <string>
 
#include <utility>
 
#include <vector>
 
 
 
namespace clang {
 
namespace ast_matchers {
 
 
 
/// Maps string IDs to AST nodes matched by parts of a matcher.
 
///
 
/// The bound nodes are generated by calling \c bind("id") on the node matchers
 
/// of the nodes we want to access later.
 
///
 
/// The instances of BoundNodes are created by \c MatchFinder when the user's
 
/// callbacks are executed every time a match is found.
 
class BoundNodes {
 
public:
 
  /// Returns the AST node bound to \c ID.
 
  ///
 
  /// Returns NULL if there was no node bound to \c ID or if there is a node but
 
  /// it cannot be converted to the specified type.
 
  template <typename T>
 
  const T *getNodeAs(StringRef ID) const {
 
    return MyBoundNodes.getNodeAs<T>(ID);
 
  }
 
 
 
  /// Type of mapping from binding identifiers to bound nodes. This type
 
  /// is an associative container with a key type of \c std::string and a value
 
  /// type of \c clang::DynTypedNode
 
  using IDToNodeMap = internal::BoundNodesMap::IDToNodeMap;
 
 
 
  /// Retrieve mapping from binding identifiers to bound nodes.
 
  const IDToNodeMap &getMap() const {
 
    return MyBoundNodes.getMap();
 
  }
 
 
 
private:
 
  friend class internal::BoundNodesTreeBuilder;
 
 
 
  /// Create BoundNodes from a pre-filled map of bindings.
 
  BoundNodes(internal::BoundNodesMap &MyBoundNodes)
 
      : MyBoundNodes(MyBoundNodes) {}
 
 
 
  internal::BoundNodesMap MyBoundNodes;
 
};
 
 
 
/// Types of matchers for the top-level classes in the AST class
 
/// hierarchy.
 
/// @{
 
using DeclarationMatcher = internal::Matcher<Decl>;
 
using StatementMatcher = internal::Matcher<Stmt>;
 
using TypeMatcher = internal::Matcher<QualType>;
 
using TypeLocMatcher = internal::Matcher<TypeLoc>;
 
using NestedNameSpecifierMatcher = internal::Matcher<NestedNameSpecifier>;
 
using NestedNameSpecifierLocMatcher = internal::Matcher<NestedNameSpecifierLoc>;
 
using CXXBaseSpecifierMatcher = internal::Matcher<CXXBaseSpecifier>;
 
using CXXCtorInitializerMatcher = internal::Matcher<CXXCtorInitializer>;
 
using TemplateArgumentMatcher = internal::Matcher<TemplateArgument>;
 
using TemplateArgumentLocMatcher = internal::Matcher<TemplateArgumentLoc>;
 
using LambdaCaptureMatcher = internal::Matcher<LambdaCapture>;
 
using AttrMatcher = internal::Matcher<Attr>;
 
/// @}
 
 
 
/// Matches any node.
 
///
 
/// Useful when another matcher requires a child matcher, but there's no
 
/// additional constraint. This will often be used with an explicit conversion
 
/// to an \c internal::Matcher<> type such as \c TypeMatcher.
 
///
 
/// Example: \c DeclarationMatcher(anything()) matches all declarations, e.g.,
 
/// \code
 
/// "int* p" and "void f()" in
 
///   int* p;
 
///   void f();
 
/// \endcode
 
///
 
/// Usable as: Any Matcher
 
inline internal::TrueMatcher anything() { return internal::TrueMatcher(); }
 
 
 
/// Matches the top declaration context.
 
///
 
/// Given
 
/// \code
 
///   int X;
 
///   namespace NS {
 
///   int Y;
 
///   }  // namespace NS
 
/// \endcode
 
/// decl(hasDeclContext(translationUnitDecl()))
 
///   matches "int X", but not "int Y".
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, TranslationUnitDecl>
 
    translationUnitDecl;
 
 
 
/// Matches typedef declarations.
 
///
 
/// Given
 
/// \code
 
///   typedef int X;
 
///   using Y = int;
 
/// \endcode
 
/// typedefDecl()
 
///   matches "typedef int X", but not "using Y = int"
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypedefDecl>
 
    typedefDecl;
 
 
 
/// Matches typedef name declarations.
 
///
 
/// Given
 
/// \code
 
///   typedef int X;
 
///   using Y = int;
 
/// \endcode
 
/// typedefNameDecl()
 
///   matches "typedef int X" and "using Y = int"
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypedefNameDecl>
 
    typedefNameDecl;
 
 
 
/// Matches type alias declarations.
 
///
 
/// Given
 
/// \code
 
///   typedef int X;
 
///   using Y = int;
 
/// \endcode
 
/// typeAliasDecl()
 
///   matches "using Y = int", but not "typedef int X"
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypeAliasDecl>
 
    typeAliasDecl;
 
 
 
/// Matches type alias template declarations.
 
///
 
/// typeAliasTemplateDecl() matches
 
/// \code
 
///   template <typename T>
 
///   using Y = X<T>;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypeAliasTemplateDecl>
 
    typeAliasTemplateDecl;
 
 
 
/// Matches AST nodes that were expanded within the main-file.
 
///
 
/// Example matches X but not Y
 
///   (matcher = cxxRecordDecl(isExpansionInMainFile())
 
/// \code
 
///   #include <Y.h>
 
///   class X {};
 
/// \endcode
 
/// Y.h:
 
/// \code
 
///   class Y {};
 
/// \endcode
 
///
 
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
 
AST_POLYMORPHIC_MATCHER(isExpansionInMainFile,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
 
  auto &SourceManager = Finder->getASTContext().getSourceManager();
 
  return SourceManager.isInMainFile(
 
      SourceManager.getExpansionLoc(Node.getBeginLoc()));
 
}
 
 
 
/// Matches AST nodes that were expanded within system-header-files.
 
///
 
/// Example matches Y but not X
 
///     (matcher = cxxRecordDecl(isExpansionInSystemHeader())
 
/// \code
 
///   #include <SystemHeader.h>
 
///   class X {};
 
/// \endcode
 
/// SystemHeader.h:
 
/// \code
 
///   class Y {};
 
/// \endcode
 
///
 
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
 
AST_POLYMORPHIC_MATCHER(isExpansionInSystemHeader,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
 
  auto &SourceManager = Finder->getASTContext().getSourceManager();
 
  auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getBeginLoc());
 
  if (ExpansionLoc.isInvalid()) {
 
    return false;
 
  }
 
  return SourceManager.isInSystemHeader(ExpansionLoc);
 
}
 
 
 
/// Matches AST nodes that were expanded within files whose name is
 
/// partially matching a given regex.
 
///
 
/// Example matches Y but not X
 
///     (matcher = cxxRecordDecl(isExpansionInFileMatching("AST.*"))
 
/// \code
 
///   #include "ASTMatcher.h"
 
///   class X {};
 
/// \endcode
 
/// ASTMatcher.h:
 
/// \code
 
///   class Y {};
 
/// \endcode
 
///
 
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
 
AST_POLYMORPHIC_MATCHER_REGEX(isExpansionInFileMatching,
 
                              AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt,
 
                                                              TypeLoc),
 
                              RegExp) {
 
  auto &SourceManager = Finder->getASTContext().getSourceManager();
 
  auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getBeginLoc());
 
  if (ExpansionLoc.isInvalid()) {
 
    return false;
 
  }
 
  auto FileEntry =
 
      SourceManager.getFileEntryForID(SourceManager.getFileID(ExpansionLoc));
 
  if (!FileEntry) {
 
    return false;
 
  }
 
 
 
  auto Filename = FileEntry->getName();
 
  return RegExp->match(Filename);
 
}
 
 
 
/// Matches statements that are (transitively) expanded from the named macro.
 
/// Does not match if only part of the statement is expanded from that macro or
 
/// if different parts of the statement are expanded from different
 
/// appearances of the macro.
 
AST_POLYMORPHIC_MATCHER_P(isExpandedFromMacro,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc),
 
                          std::string, MacroName) {
 
  // Verifies that the statement' beginning and ending are both expanded from
 
  // the same instance of the given macro.
 
  auto& Context = Finder->getASTContext();
 
  std::optional<SourceLocation> B =
 
      internal::getExpansionLocOfMacro(MacroName, Node.getBeginLoc(), Context);
 
  if (!B) return false;
 
  std::optional<SourceLocation> E =
 
      internal::getExpansionLocOfMacro(MacroName, Node.getEndLoc(), Context);
 
  if (!E) return false;
 
  return *B == *E;
 
}
 
 
 
/// Matches declarations.
 
///
 
/// Examples matches \c X, \c C, and the friend declaration inside \c C;
 
/// \code
 
///   void X();
 
///   class C {
 
///     friend X;
 
///   };
 
/// \endcode
 
extern const internal::VariadicAllOfMatcher<Decl> decl;
 
 
 
/// Matches decomposition-declarations.
 
///
 
/// Examples matches the declaration node with \c foo and \c bar, but not
 
/// \c number.
 
/// (matcher = declStmt(has(decompositionDecl())))
 
///
 
/// \code
 
///   int number = 42;
 
///   auto [foo, bar] = std::make_pair{42, 42};
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, DecompositionDecl>
 
    decompositionDecl;
 
 
 
/// Matches binding declarations
 
/// Example matches \c foo and \c bar
 
/// (matcher = bindingDecl()
 
///
 
/// \code
 
///   auto [foo, bar] = std::make_pair{42, 42};
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, BindingDecl>
 
    bindingDecl;
 
 
 
/// Matches a declaration of a linkage specification.
 
///
 
/// Given
 
/// \code
 
///   extern "C" {}
 
/// \endcode
 
/// linkageSpecDecl()
 
///   matches "extern "C" {}"
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, LinkageSpecDecl>
 
    linkageSpecDecl;
 
 
 
/// Matches a declaration of anything that could have a name.
 
///
 
/// Example matches \c X, \c S, the anonymous union type, \c i, and \c U;
 
/// \code
 
///   typedef int X;
 
///   struct S {
 
///     union {
 
///       int i;
 
///     } U;
 
///   };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamedDecl> namedDecl;
 
 
 
/// Matches a declaration of label.
 
///
 
/// Given
 
/// \code
 
///   goto FOO;
 
///   FOO: bar();
 
/// \endcode
 
/// labelDecl()
 
///   matches 'FOO:'
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, LabelDecl> labelDecl;
 
 
 
/// Matches a declaration of a namespace.
 
///
 
/// Given
 
/// \code
 
///   namespace {}
 
///   namespace test {}
 
/// \endcode
 
/// namespaceDecl()
 
///   matches "namespace {}" and "namespace test {}"
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceDecl>
 
    namespaceDecl;
 
 
 
/// Matches a declaration of a namespace alias.
 
///
 
/// Given
 
/// \code
 
///   namespace test {}
 
///   namespace alias = ::test;
 
/// \endcode
 
/// namespaceAliasDecl()
 
///   matches "namespace alias" but not "namespace test"
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceAliasDecl>
 
    namespaceAliasDecl;
 
 
 
/// Matches class, struct, and union declarations.
 
///
 
/// Example matches \c X, \c Z, \c U, and \c S
 
/// \code
 
///   class X;
 
///   template<class T> class Z {};
 
///   struct S {};
 
///   union U {};
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, RecordDecl> recordDecl;
 
 
 
/// Matches C++ class declarations.
 
///
 
/// Example matches \c X, \c Z
 
/// \code
 
///   class X;
 
///   template<class T> class Z {};
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXRecordDecl>
 
    cxxRecordDecl;
 
 
 
/// Matches C++ class template declarations.
 
///
 
/// Example matches \c Z
 
/// \code
 
///   template<class T> class Z {};
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ClassTemplateDecl>
 
    classTemplateDecl;
 
 
 
/// Matches C++ class template specializations.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> class A {};
 
///   template<> class A<double> {};
 
///   A<int> a;
 
/// \endcode
 
/// classTemplateSpecializationDecl()
 
///   matches the specializations \c A<int> and \c A<double>
 
extern const internal::VariadicDynCastAllOfMatcher<
 
    Decl, ClassTemplateSpecializationDecl>
 
    classTemplateSpecializationDecl;
 
 
 
/// Matches C++ class template partial specializations.
 
///
 
/// Given
 
/// \code
 
///   template<class T1, class T2, int I>
 
///   class A {};
 
///
 
///   template<class T, int I>
 
///   class A<T, T*, I> {};
 
///
 
///   template<>
 
///   class A<int, int, 1> {};
 
/// \endcode
 
/// classTemplatePartialSpecializationDecl()
 
///   matches the specialization \c A<T,T*,I> but not \c A<int,int,1>
 
extern const internal::VariadicDynCastAllOfMatcher<
 
    Decl, ClassTemplatePartialSpecializationDecl>
 
    classTemplatePartialSpecializationDecl;
 
 
 
/// Matches declarator declarations (field, variable, function
 
/// and non-type template parameter declarations).
 
///
 
/// Given
 
/// \code
 
///   class X { int y; };
 
/// \endcode
 
/// declaratorDecl()
 
///   matches \c int y.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, DeclaratorDecl>
 
    declaratorDecl;
 
 
 
/// Matches parameter variable declarations.
 
///
 
/// Given
 
/// \code
 
///   void f(int x);
 
/// \endcode
 
/// parmVarDecl()
 
///   matches \c int x.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ParmVarDecl>
 
    parmVarDecl;
 
 
 
/// Matches C++ access specifier declarations.
 
///
 
/// Given
 
/// \code
 
///   class C {
 
///   public:
 
///     int a;
 
///   };
 
/// \endcode
 
/// accessSpecDecl()
 
///   matches 'public:'
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, AccessSpecDecl>
 
    accessSpecDecl;
 
 
 
/// Matches class bases.
 
///
 
/// Examples matches \c public virtual B.
 
/// \code
 
///   class B {};
 
///   class C : public virtual B {};
 
/// \endcode
 
extern const internal::VariadicAllOfMatcher<CXXBaseSpecifier> cxxBaseSpecifier;
 
 
 
/// Matches constructor initializers.
 
///
 
/// Examples matches \c i(42).
 
/// \code
 
///   class C {
 
///     C() : i(42) {}
 
///     int i;
 
///   };
 
/// \endcode
 
extern const internal::VariadicAllOfMatcher<CXXCtorInitializer>
 
    cxxCtorInitializer;
 
 
 
/// Matches template arguments.
 
///
 
/// Given
 
/// \code
 
///   template <typename T> struct C {};
 
///   C<int> c;
 
/// \endcode
 
/// templateArgument()
 
///   matches 'int' in C<int>.
 
extern const internal::VariadicAllOfMatcher<TemplateArgument> templateArgument;
 
 
 
/// Matches template arguments (with location info).
 
///
 
/// Given
 
/// \code
 
///   template <typename T> struct C {};
 
///   C<int> c;
 
/// \endcode
 
/// templateArgumentLoc()
 
///   matches 'int' in C<int>.
 
extern const internal::VariadicAllOfMatcher<TemplateArgumentLoc>
 
    templateArgumentLoc;
 
 
 
/// Matches template name.
 
///
 
/// Given
 
/// \code
 
///   template <typename T> class X { };
 
///   X<int> xi;
 
/// \endcode
 
/// templateName()
 
///   matches 'X' in X<int>.
 
extern const internal::VariadicAllOfMatcher<TemplateName> templateName;
 
 
 
/// Matches non-type template parameter declarations.
 
///
 
/// Given
 
/// \code
 
///   template <typename T, int N> struct C {};
 
/// \endcode
 
/// nonTypeTemplateParmDecl()
 
///   matches 'N', but not 'T'.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl,
 
                                                   NonTypeTemplateParmDecl>
 
    nonTypeTemplateParmDecl;
 
 
 
/// Matches template type parameter declarations.
 
///
 
/// Given
 
/// \code
 
///   template <typename T, int N> struct C {};
 
/// \endcode
 
/// templateTypeParmDecl()
 
///   matches 'T', but not 'N'.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, TemplateTypeParmDecl>
 
    templateTypeParmDecl;
 
 
 
/// Matches template template parameter declarations.
 
///
 
/// Given
 
/// \code
 
///   template <template <typename> class Z, int N> struct C {};
 
/// \endcode
 
/// templateTypeParmDecl()
 
///   matches 'Z', but not 'N'.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl,
 
                                                   TemplateTemplateParmDecl>
 
    templateTemplateParmDecl;
 
 
 
/// Matches public C++ declarations and C++ base specifers that specify public
 
/// inheritance.
 
///
 
/// Examples:
 
/// \code
 
///   class C {
 
///   public:    int a; // fieldDecl(isPublic()) matches 'a'
 
///   protected: int b;
 
///   private:   int c;
 
///   };
 
/// \endcode
 
///
 
/// \code
 
///   class Base {};
 
///   class Derived1 : public Base {}; // matches 'Base'
 
///   struct Derived2 : Base {}; // matches 'Base'
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER(isPublic,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
 
                                                        CXXBaseSpecifier)) {
 
  return getAccessSpecifier(Node) == AS_public;
 
}
 
 
 
/// Matches protected C++ declarations and C++ base specifers that specify
 
/// protected inheritance.
 
///
 
/// Examples:
 
/// \code
 
///   class C {
 
///   public:    int a;
 
///   protected: int b; // fieldDecl(isProtected()) matches 'b'
 
///   private:   int c;
 
///   };
 
/// \endcode
 
///
 
/// \code
 
///   class Base {};
 
///   class Derived : protected Base {}; // matches 'Base'
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER(isProtected,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
 
                                                        CXXBaseSpecifier)) {
 
  return getAccessSpecifier(Node) == AS_protected;
 
}
 
 
 
/// Matches private C++ declarations and C++ base specifers that specify private
 
/// inheritance.
 
///
 
/// Examples:
 
/// \code
 
///   class C {
 
///   public:    int a;
 
///   protected: int b;
 
///   private:   int c; // fieldDecl(isPrivate()) matches 'c'
 
///   };
 
/// \endcode
 
///
 
/// \code
 
///   struct Base {};
 
///   struct Derived1 : private Base {}; // matches 'Base'
 
///   class Derived2 : Base {}; // matches 'Base'
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER(isPrivate,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
 
                                                        CXXBaseSpecifier)) {
 
  return getAccessSpecifier(Node) == AS_private;
 
}
 
 
 
/// Matches non-static data members that are bit-fields.
 
///
 
/// Given
 
/// \code
 
///   class C {
 
///     int a : 2;
 
///     int b;
 
///   };
 
/// \endcode
 
/// fieldDecl(isBitField())
 
///   matches 'int a;' but not 'int b;'.
 
AST_MATCHER(FieldDecl, isBitField) {
 
  return Node.isBitField();
 
}
 
 
 
/// Matches non-static data members that are bit-fields of the specified
 
/// bit width.
 
///
 
/// Given
 
/// \code
 
///   class C {
 
///     int a : 2;
 
///     int b : 4;
 
///     int c : 2;
 
///   };
 
/// \endcode
 
/// fieldDecl(hasBitWidth(2))
 
///   matches 'int a;' and 'int c;' but not 'int b;'.
 
AST_MATCHER_P(FieldDecl, hasBitWidth, unsigned, Width) {
 
  return Node.isBitField() &&
 
         Node.getBitWidthValue(Finder->getASTContext()) == Width;
 
}
 
 
 
/// Matches non-static data members that have an in-class initializer.
 
///
 
/// Given
 
/// \code
 
///   class C {
 
///     int a = 2;
 
///     int b = 3;
 
///     int c;
 
///   };
 
/// \endcode
 
/// fieldDecl(hasInClassInitializer(integerLiteral(equals(2))))
 
///   matches 'int a;' but not 'int b;'.
 
/// fieldDecl(hasInClassInitializer(anything()))
 
///   matches 'int a;' and 'int b;' but not 'int c;'.
 
AST_MATCHER_P(FieldDecl, hasInClassInitializer, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  const Expr *Initializer = Node.getInClassInitializer();
 
  return (Initializer != nullptr &&
 
          InnerMatcher.matches(*Initializer, Finder, Builder));
 
}
 
 
 
/// Determines whether the function is "main", which is the entry point
 
/// into an executable program.
 
AST_MATCHER(FunctionDecl, isMain) {
 
  return Node.isMain();
 
}
 
 
 
/// Matches the specialized template of a specialization declaration.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> class A {}; #1
 
///   template<> class A<int> {}; #2
 
/// \endcode
 
/// classTemplateSpecializationDecl(hasSpecializedTemplate(classTemplateDecl()))
 
///   matches '#2' with classTemplateDecl() matching the class template
 
///   declaration of 'A' at #1.
 
AST_MATCHER_P(ClassTemplateSpecializationDecl, hasSpecializedTemplate,
 
              internal::Matcher<ClassTemplateDecl>, InnerMatcher) {
 
  const ClassTemplateDecl* Decl = Node.getSpecializedTemplate();
 
  return (Decl != nullptr &&
 
          InnerMatcher.matches(*Decl, Finder, Builder));
 
}
 
 
 
/// Matches an entity that has been implicitly added by the compiler (e.g.
 
/// implicit default/copy constructors).
 
AST_POLYMORPHIC_MATCHER(isImplicit,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Attr,
 
                                                        LambdaCapture)) {
 
  return Node.isImplicit();
 
}
 
 
 
/// Matches classTemplateSpecializations, templateSpecializationType and
 
/// functionDecl that have at least one TemplateArgument matching the given
 
/// InnerMatcher.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> class A {};
 
///   template<> class A<double> {};
 
///   A<int> a;
 
///
 
///   template<typename T> f() {};
 
///   void func() { f<int>(); };
 
/// \endcode
 
///
 
/// \endcode
 
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
 
///     refersToType(asString("int"))))
 
///   matches the specialization \c A<int>
 
///
 
/// functionDecl(hasAnyTemplateArgument(refersToType(asString("int"))))
 
///   matches the specialization \c f<int>
 
AST_POLYMORPHIC_MATCHER_P(
 
    hasAnyTemplateArgument,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
 
                                    TemplateSpecializationType,
 
                                    FunctionDecl),
 
    internal::Matcher<TemplateArgument>, InnerMatcher) {
 
  ArrayRef<TemplateArgument> List =
 
      internal::getTemplateSpecializationArgs(Node);
 
  return matchesFirstInRange(InnerMatcher, List.begin(), List.end(), Finder,
 
                             Builder) != List.end();
 
}
 
 
 
/// Causes all nested matchers to be matched with the specified traversal kind.
 
///
 
/// Given
 
/// \code
 
///   void foo()
 
///   {
 
///       int i = 3.0;
 
///   }
 
/// \endcode
 
/// The matcher
 
/// \code
 
///   traverse(TK_IgnoreUnlessSpelledInSource,
 
///     varDecl(hasInitializer(floatLiteral().bind("init")))
 
///   )
 
/// \endcode
 
/// matches the variable declaration with "init" bound to the "3.0".
 
template <typename T>
 
internal::Matcher<T> traverse(TraversalKind TK,
 
                              const internal::Matcher<T> &InnerMatcher) {
 
  return internal::DynTypedMatcher::constructRestrictedWrapper(
 
             new internal::TraversalMatcher<T>(TK, InnerMatcher),
 
             InnerMatcher.getID().first)
 
      .template unconditionalConvertTo<T>();
 
}
 
 
 
template <typename T>
 
internal::BindableMatcher<T>
 
traverse(TraversalKind TK, const internal::BindableMatcher<T> &InnerMatcher) {
 
  return internal::BindableMatcher<T>(
 
      internal::DynTypedMatcher::constructRestrictedWrapper(
 
          new internal::TraversalMatcher<T>(TK, InnerMatcher),
 
          InnerMatcher.getID().first)
 
          .template unconditionalConvertTo<T>());
 
}
 
 
 
template <typename... T>
 
internal::TraversalWrapper<internal::VariadicOperatorMatcher<T...>>
 
traverse(TraversalKind TK,
 
         const internal::VariadicOperatorMatcher<T...> &InnerMatcher) {
 
  return internal::TraversalWrapper<internal::VariadicOperatorMatcher<T...>>(
 
      TK, InnerMatcher);
 
}
 
 
 
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
 
          typename T, typename ToTypes>
 
internal::TraversalWrapper<
 
    internal::ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>>
 
traverse(TraversalKind TK, const internal::ArgumentAdaptingMatcherFuncAdaptor<
 
                               ArgumentAdapterT, T, ToTypes> &InnerMatcher) {
 
  return internal::TraversalWrapper<
 
      internal::ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T,
 
                                                   ToTypes>>(TK, InnerMatcher);
 
}
 
 
 
template <template <typename T, typename... P> class MatcherT, typename... P,
 
          typename ReturnTypesF>
 
internal::TraversalWrapper<
 
    internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>>
 
traverse(TraversalKind TK,
 
         const internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>
 
             &InnerMatcher) {
 
  return internal::TraversalWrapper<
 
      internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>>(TK,
 
                                                                  InnerMatcher);
 
}
 
 
 
template <typename... T>
 
internal::Matcher<typename internal::GetClade<T...>::Type>
 
traverse(TraversalKind TK, const internal::MapAnyOfHelper<T...> &InnerMatcher) {
 
  return traverse(TK, InnerMatcher.with());
 
}
 
 
 
/// Matches expressions that match InnerMatcher after any implicit AST
 
/// nodes are stripped off.
 
///
 
/// Parentheses and explicit casts are not discarded.
 
/// Given
 
/// \code
 
///   class C {};
 
///   C a = C();
 
///   C b;
 
///   C c = b;
 
/// \endcode
 
/// The matchers
 
/// \code
 
///    varDecl(hasInitializer(ignoringImplicit(cxxConstructExpr())))
 
/// \endcode
 
/// would match the declarations for a, b, and c.
 
/// While
 
/// \code
 
///    varDecl(hasInitializer(cxxConstructExpr()))
 
/// \endcode
 
/// only match the declarations for b and c.
 
AST_MATCHER_P(Expr, ignoringImplicit, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  return InnerMatcher.matches(*Node.IgnoreImplicit(), Finder, Builder);
 
}
 
 
 
/// Matches expressions that match InnerMatcher after any implicit casts
 
/// are stripped off.
 
///
 
/// Parentheses and explicit casts are not discarded.
 
/// Given
 
/// \code
 
///   int arr[5];
 
///   int a = 0;
 
///   char b = 0;
 
///   const int c = a;
 
///   int *d = arr;
 
///   long e = (long) 0l;
 
/// \endcode
 
/// The matchers
 
/// \code
 
///    varDecl(hasInitializer(ignoringImpCasts(integerLiteral())))
 
///    varDecl(hasInitializer(ignoringImpCasts(declRefExpr())))
 
/// \endcode
 
/// would match the declarations for a, b, c, and d, but not e.
 
/// While
 
/// \code
 
///    varDecl(hasInitializer(integerLiteral()))
 
///    varDecl(hasInitializer(declRefExpr()))
 
/// \endcode
 
/// only match the declarations for a.
 
AST_MATCHER_P(Expr, ignoringImpCasts,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  return InnerMatcher.matches(*Node.IgnoreImpCasts(), Finder, Builder);
 
}
 
 
 
/// Matches expressions that match InnerMatcher after parentheses and
 
/// casts are stripped off.
 
///
 
/// Implicit and non-C Style casts are also discarded.
 
/// Given
 
/// \code
 
///   int a = 0;
 
///   char b = (0);
 
///   void* c = reinterpret_cast<char*>(0);
 
///   char d = char(0);
 
/// \endcode
 
/// The matcher
 
///    varDecl(hasInitializer(ignoringParenCasts(integerLiteral())))
 
/// would match the declarations for a, b, c, and d.
 
/// while
 
///    varDecl(hasInitializer(integerLiteral()))
 
/// only match the declaration for a.
 
AST_MATCHER_P(Expr, ignoringParenCasts, internal::Matcher<Expr>, InnerMatcher) {
 
  return InnerMatcher.matches(*Node.IgnoreParenCasts(), Finder, Builder);
 
}
 
 
 
/// Matches expressions that match InnerMatcher after implicit casts and
 
/// parentheses are stripped off.
 
///
 
/// Explicit casts are not discarded.
 
/// Given
 
/// \code
 
///   int arr[5];
 
///   int a = 0;
 
///   char b = (0);
 
///   const int c = a;
 
///   int *d = (arr);
 
///   long e = ((long) 0l);
 
/// \endcode
 
/// The matchers
 
///    varDecl(hasInitializer(ignoringParenImpCasts(integerLiteral())))
 
///    varDecl(hasInitializer(ignoringParenImpCasts(declRefExpr())))
 
/// would match the declarations for a, b, c, and d, but not e.
 
/// while
 
///    varDecl(hasInitializer(integerLiteral()))
 
///    varDecl(hasInitializer(declRefExpr()))
 
/// would only match the declaration for a.
 
AST_MATCHER_P(Expr, ignoringParenImpCasts,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  return InnerMatcher.matches(*Node.IgnoreParenImpCasts(), Finder, Builder);
 
}
 
 
 
/// Matches types that match InnerMatcher after any parens are stripped.
 
///
 
/// Given
 
/// \code
 
///   void (*fp)(void);
 
/// \endcode
 
/// The matcher
 
/// \code
 
///   varDecl(hasType(pointerType(pointee(ignoringParens(functionType())))))
 
/// \endcode
 
/// would match the declaration for fp.
 
AST_MATCHER_P_OVERLOAD(QualType, ignoringParens, internal::Matcher<QualType>,
 
                       InnerMatcher, 0) {
 
  return InnerMatcher.matches(Node.IgnoreParens(), Finder, Builder);
 
}
 
 
 
/// Overload \c ignoringParens for \c Expr.
 
///
 
/// Given
 
/// \code
 
///   const char* str = ("my-string");
 
/// \endcode
 
/// The matcher
 
/// \code
 
///   implicitCastExpr(hasSourceExpression(ignoringParens(stringLiteral())))
 
/// \endcode
 
/// would match the implicit cast resulting from the assignment.
 
AST_MATCHER_P_OVERLOAD(Expr, ignoringParens, internal::Matcher<Expr>,
 
                       InnerMatcher, 1) {
 
  const Expr *E = Node.IgnoreParens();
 
  return InnerMatcher.matches(*E, Finder, Builder);
 
}
 
 
 
/// Matches expressions that are instantiation-dependent even if it is
 
/// neither type- nor value-dependent.
 
///
 
/// In the following example, the expression sizeof(sizeof(T() + T()))
 
/// is instantiation-dependent (since it involves a template parameter T),
 
/// but is neither type- nor value-dependent, since the type of the inner
 
/// sizeof is known (std::size_t) and therefore the size of the outer
 
/// sizeof is known.
 
/// \code
 
///   template<typename T>
 
///   void f(T x, T y) { sizeof(sizeof(T() + T()); }
 
/// \endcode
 
/// expr(isInstantiationDependent()) matches sizeof(sizeof(T() + T())
 
AST_MATCHER(Expr, isInstantiationDependent) {
 
  return Node.isInstantiationDependent();
 
}
 
 
 
/// Matches expressions that are type-dependent because the template type
 
/// is not yet instantiated.
 
///
 
/// For example, the expressions "x" and "x + y" are type-dependent in
 
/// the following code, but "y" is not type-dependent:
 
/// \code
 
///   template<typename T>
 
///   void add(T x, int y) {
 
///     x + y;
 
///   }
 
/// \endcode
 
/// expr(isTypeDependent()) matches x + y
 
AST_MATCHER(Expr, isTypeDependent) { return Node.isTypeDependent(); }
 
 
 
/// Matches expression that are value-dependent because they contain a
 
/// non-type template parameter.
 
///
 
/// For example, the array bound of "Chars" in the following example is
 
/// value-dependent.
 
/// \code
 
///   template<int Size> int f() { return Size; }
 
/// \endcode
 
/// expr(isValueDependent()) matches return Size
 
AST_MATCHER(Expr, isValueDependent) { return Node.isValueDependent(); }
 
 
 
/// Matches classTemplateSpecializations, templateSpecializationType and
 
/// functionDecl where the n'th TemplateArgument matches the given InnerMatcher.
 
///
 
/// Given
 
/// \code
 
///   template<typename T, typename U> class A {};
 
///   A<bool, int> b;
 
///   A<int, bool> c;
 
///
 
///   template<typename T> void f() {}
 
///   void func() { f<int>(); };
 
/// \endcode
 
/// classTemplateSpecializationDecl(hasTemplateArgument(
 
///     1, refersToType(asString("int"))))
 
///   matches the specialization \c A<bool, int>
 
///
 
/// functionDecl(hasTemplateArgument(0, refersToType(asString("int"))))
 
///   matches the specialization \c f<int>
 
AST_POLYMORPHIC_MATCHER_P2(
 
    hasTemplateArgument,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
 
                                    TemplateSpecializationType,
 
                                    FunctionDecl),
 
    unsigned, N, internal::Matcher<TemplateArgument>, InnerMatcher) {
 
  ArrayRef<TemplateArgument> List =
 
      internal::getTemplateSpecializationArgs(Node);
 
  if (List.size() <= N)
 
    return false;
 
  return InnerMatcher.matches(List[N], Finder, Builder);
 
}
 
 
 
/// Matches if the number of template arguments equals \p N.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> struct C {};
 
///   C<int> c;
 
/// \endcode
 
/// classTemplateSpecializationDecl(templateArgumentCountIs(1))
 
///   matches C<int>.
 
AST_POLYMORPHIC_MATCHER_P(
 
    templateArgumentCountIs,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
 
                                    TemplateSpecializationType),
 
    unsigned, N) {
 
  return internal::getTemplateSpecializationArgs(Node).size() == N;
 
}
 
 
 
/// Matches a TemplateArgument that refers to a certain type.
 
///
 
/// Given
 
/// \code
 
///   struct X {};
 
///   template<typename T> struct A {};
 
///   A<X> a;
 
/// \endcode
 
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(refersToType(
 
///   recordType(hasDeclaration(recordDecl(hasName("X")))))))
 
/// matches the specialization of \c struct A generated by \c A<X>.
 
AST_MATCHER_P(TemplateArgument, refersToType,
 
              internal::Matcher<QualType>, InnerMatcher) {
 
  if (Node.getKind() != TemplateArgument::Type)
 
    return false;
 
  return InnerMatcher.matches(Node.getAsType(), Finder, Builder);
 
}
 
 
 
/// Matches a TemplateArgument that refers to a certain template.
 
///
 
/// Given
 
/// \code
 
///   template<template <typename> class S> class X {};
 
///   template<typename T> class Y {};
 
///   X<Y> xi;
 
/// \endcode
 
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
 
///     refersToTemplate(templateName())))
 
///   matches the specialization \c X<Y>
 
AST_MATCHER_P(TemplateArgument, refersToTemplate,
 
              internal::Matcher<TemplateName>, InnerMatcher) {
 
  if (Node.getKind() != TemplateArgument::Template)
 
    return false;
 
  return InnerMatcher.matches(Node.getAsTemplate(), Finder, Builder);
 
}
 
 
 
/// Matches a canonical TemplateArgument that refers to a certain
 
/// declaration.
 
///
 
/// Given
 
/// \code
 
///   struct B { int next; };
 
///   template<int(B::*next_ptr)> struct A {};
 
///   A<&B::next> a;
 
/// \endcode
 
/// classTemplateSpecializationDecl(hasAnyTemplateArgument(
 
///     refersToDeclaration(fieldDecl(hasName("next")))))
 
///   matches the specialization \c A<&B::next> with \c fieldDecl(...) matching
 
///     \c B::next
 
AST_MATCHER_P(TemplateArgument, refersToDeclaration,
 
              internal::Matcher<Decl>, InnerMatcher) {
 
  if (Node.getKind() == TemplateArgument::Declaration)
 
    return InnerMatcher.matches(*Node.getAsDecl(), Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches a sugar TemplateArgument that refers to a certain expression.
 
///
 
/// Given
 
/// \code
 
///   struct B { int next; };
 
///   template<int(B::*next_ptr)> struct A {};
 
///   A<&B::next> a;
 
/// \endcode
 
/// templateSpecializationType(hasAnyTemplateArgument(
 
///   isExpr(hasDescendant(declRefExpr(to(fieldDecl(hasName("next"))))))))
 
///   matches the specialization \c A<&B::next> with \c fieldDecl(...) matching
 
///     \c B::next
 
AST_MATCHER_P(TemplateArgument, isExpr, internal::Matcher<Expr>, InnerMatcher) {
 
  if (Node.getKind() == TemplateArgument::Expression)
 
    return InnerMatcher.matches(*Node.getAsExpr(), Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches a TemplateArgument that is an integral value.
 
///
 
/// Given
 
/// \code
 
///   template<int T> struct C {};
 
///   C<42> c;
 
/// \endcode
 
/// classTemplateSpecializationDecl(
 
///   hasAnyTemplateArgument(isIntegral()))
 
///   matches the implicit instantiation of C in C<42>
 
///   with isIntegral() matching 42.
 
AST_MATCHER(TemplateArgument, isIntegral) {
 
  return Node.getKind() == TemplateArgument::Integral;
 
}
 
 
 
/// Matches a TemplateArgument that refers to an integral type.
 
///
 
/// Given
 
/// \code
 
///   template<int T> struct C {};
 
///   C<42> c;
 
/// \endcode
 
/// classTemplateSpecializationDecl(
 
///   hasAnyTemplateArgument(refersToIntegralType(asString("int"))))
 
///   matches the implicit instantiation of C in C<42>.
 
AST_MATCHER_P(TemplateArgument, refersToIntegralType,
 
              internal::Matcher<QualType>, InnerMatcher) {
 
  if (Node.getKind() != TemplateArgument::Integral)
 
    return false;
 
  return InnerMatcher.matches(Node.getIntegralType(), Finder, Builder);
 
}
 
 
 
/// Matches a TemplateArgument of integral type with a given value.
 
///
 
/// Note that 'Value' is a string as the template argument's value is
 
/// an arbitrary precision integer. 'Value' must be euqal to the canonical
 
/// representation of that integral value in base 10.
 
///
 
/// Given
 
/// \code
 
///   template<int T> struct C {};
 
///   C<42> c;
 
/// \endcode
 
/// classTemplateSpecializationDecl(
 
///   hasAnyTemplateArgument(equalsIntegralValue("42")))
 
///   matches the implicit instantiation of C in C<42>.
 
AST_MATCHER_P(TemplateArgument, equalsIntegralValue,
 
              std::string, Value) {
 
  if (Node.getKind() != TemplateArgument::Integral)
 
    return false;
 
  return toString(Node.getAsIntegral(), 10) == Value;
 
}
 
 
 
/// Matches an Objective-C autorelease pool statement.
 
///
 
/// Given
 
/// \code
 
///   @autoreleasepool {
 
///     int x = 0;
 
///   }
 
/// \endcode
 
/// autoreleasePoolStmt(stmt()) matches the declaration of "x"
 
/// inside the autorelease pool.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
       ObjCAutoreleasePoolStmt> autoreleasePoolStmt;
 
 
 
/// Matches any value declaration.
 
///
 
/// Example matches A, B, C and F
 
/// \code
 
///   enum X { A, B, C };
 
///   void F();
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ValueDecl> valueDecl;
 
 
 
/// Matches C++ constructor declarations.
 
///
 
/// Example matches Foo::Foo() and Foo::Foo(int)
 
/// \code
 
///   class Foo {
 
///    public:
 
///     Foo();
 
///     Foo(int);
 
///     int DoSomething();
 
///   };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXConstructorDecl>
 
    cxxConstructorDecl;
 
 
 
/// Matches explicit C++ destructor declarations.
 
///
 
/// Example matches Foo::~Foo()
 
/// \code
 
///   class Foo {
 
///    public:
 
///     virtual ~Foo();
 
///   };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXDestructorDecl>
 
    cxxDestructorDecl;
 
 
 
/// Matches enum declarations.
 
///
 
/// Example matches X
 
/// \code
 
///   enum X {
 
///     A, B, C
 
///   };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, EnumDecl> enumDecl;
 
 
 
/// Matches enum constants.
 
///
 
/// Example matches A, B, C
 
/// \code
 
///   enum X {
 
///     A, B, C
 
///   };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, EnumConstantDecl>
 
    enumConstantDecl;
 
 
 
/// Matches tag declarations.
 
///
 
/// Example matches X, Z, U, S, E
 
/// \code
 
///   class X;
 
///   template<class T> class Z {};
 
///   struct S {};
 
///   union U {};
 
///   enum E {
 
///     A, B, C
 
///   };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, TagDecl> tagDecl;
 
 
 
/// Matches method declarations.
 
///
 
/// Example matches y
 
/// \code
 
///   class X { void y(); };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXMethodDecl>
 
    cxxMethodDecl;
 
 
 
/// Matches conversion operator declarations.
 
///
 
/// Example matches the operator.
 
/// \code
 
///   class X { operator int() const; };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXConversionDecl>
 
    cxxConversionDecl;
 
 
 
/// Matches user-defined and implicitly generated deduction guide.
 
///
 
/// Example matches the deduction guide.
 
/// \code
 
///   template<typename T>
 
///   class X { X(int) };
 
///   X(int) -> X<int>;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXDeductionGuideDecl>
 
    cxxDeductionGuideDecl;
 
 
 
/// Matches variable declarations.
 
///
 
/// Note: this does not match declarations of member variables, which are
 
/// "field" declarations in Clang parlance.
 
///
 
/// Example matches a
 
/// \code
 
///   int a;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, VarDecl> varDecl;
 
 
 
/// Matches field declarations.
 
///
 
/// Given
 
/// \code
 
///   class X { int m; };
 
/// \endcode
 
/// fieldDecl()
 
///   matches 'm'.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, FieldDecl> fieldDecl;
 
 
 
/// Matches indirect field declarations.
 
///
 
/// Given
 
/// \code
 
///   struct X { struct { int a; }; };
 
/// \endcode
 
/// indirectFieldDecl()
 
///   matches 'a'.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, IndirectFieldDecl>
 
    indirectFieldDecl;
 
 
 
/// Matches function declarations.
 
///
 
/// Example matches f
 
/// \code
 
///   void f();
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, FunctionDecl>
 
    functionDecl;
 
 
 
/// Matches C++ function template declarations.
 
///
 
/// Example matches f
 
/// \code
 
///   template<class T> void f(T t) {}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, FunctionTemplateDecl>
 
    functionTemplateDecl;
 
 
 
/// Matches friend declarations.
 
///
 
/// Given
 
/// \code
 
///   class X { friend void foo(); };
 
/// \endcode
 
/// friendDecl()
 
///   matches 'friend void foo()'.
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, FriendDecl> friendDecl;
 
 
 
/// Matches statements.
 
///
 
/// Given
 
/// \code
 
///   { ++a; }
 
/// \endcode
 
/// stmt()
 
///   matches both the compound statement '{ ++a; }' and '++a'.
 
extern const internal::VariadicAllOfMatcher<Stmt> stmt;
 
 
 
/// Matches declaration statements.
 
///
 
/// Given
 
/// \code
 
///   int a;
 
/// \endcode
 
/// declStmt()
 
///   matches 'int a'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DeclStmt> declStmt;
 
 
 
/// Matches member expressions.
 
///
 
/// Given
 
/// \code
 
///   class Y {
 
///     void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
 
///     int a; static int b;
 
///   };
 
/// \endcode
 
/// memberExpr()
 
///   matches this->x, x, y.x, a, this->b
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, MemberExpr> memberExpr;
 
 
 
/// Matches unresolved member expressions.
 
///
 
/// Given
 
/// \code
 
///   struct X {
 
///     template <class T> void f();
 
///     void g();
 
///   };
 
///   template <class T> void h() { X x; x.f<T>(); x.g(); }
 
/// \endcode
 
/// unresolvedMemberExpr()
 
///   matches x.f<T>
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnresolvedMemberExpr>
 
    unresolvedMemberExpr;
 
 
 
/// Matches member expressions where the actual member referenced could not be
 
/// resolved because the base expression or the member name was dependent.
 
///
 
/// Given
 
/// \code
 
///   template <class T> void f() { T t; t.g(); }
 
/// \endcode
 
/// cxxDependentScopeMemberExpr()
 
///   matches t.g
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   CXXDependentScopeMemberExpr>
 
    cxxDependentScopeMemberExpr;
 
 
 
/// Matches call expressions.
 
///
 
/// Example matches x.y() and y()
 
/// \code
 
///   X x;
 
///   x.y();
 
///   y();
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CallExpr> callExpr;
 
 
 
/// Matches call expressions which were resolved using ADL.
 
///
 
/// Example matches y(x) but not y(42) or NS::y(x).
 
/// \code
 
///   namespace NS {
 
///     struct X {};
 
///     void y(X);
 
///   }
 
///
 
///   void y(...);
 
///
 
///   void test() {
 
///     NS::X x;
 
///     y(x); // Matches
 
///     NS::y(x); // Doesn't match
 
///     y(42); // Doesn't match
 
///     using NS::y;
 
///     y(x); // Found by both unqualified lookup and ADL, doesn't match
 
//    }
 
/// \endcode
 
AST_MATCHER(CallExpr, usesADL) { return Node.usesADL(); }
 
 
 
/// Matches lambda expressions.
 
///
 
/// Example matches [&](){return 5;}
 
/// \code
 
///   [&](){return 5;}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, LambdaExpr> lambdaExpr;
 
 
 
/// Matches member call expressions.
 
///
 
/// Example matches x.y()
 
/// \code
 
///   X x;
 
///   x.y();
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXMemberCallExpr>
 
    cxxMemberCallExpr;
 
 
 
/// Matches ObjectiveC Message invocation expressions.
 
///
 
/// The innermost message send invokes the "alloc" class method on the
 
/// NSString class, while the outermost message send invokes the
 
/// "initWithString" instance method on the object returned from
 
/// NSString's "alloc". This matcher should match both message sends.
 
/// \code
 
///   [[NSString alloc] initWithString:@"Hello"]
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCMessageExpr>
 
    objcMessageExpr;
 
 
 
/// Matches ObjectiveC String literal expressions.
 
///
 
/// Example matches @"abcd"
 
/// \code
 
///   NSString *s = @"abcd";
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCStringLiteral>
 
    objcStringLiteral;
 
 
 
/// Matches Objective-C interface declarations.
 
///
 
/// Example matches Foo
 
/// \code
 
///   @interface Foo
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCInterfaceDecl>
 
    objcInterfaceDecl;
 
 
 
/// Matches Objective-C implementation declarations.
 
///
 
/// Example matches Foo
 
/// \code
 
///   @implementation Foo
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCImplementationDecl>
 
    objcImplementationDecl;
 
 
 
/// Matches Objective-C protocol declarations.
 
///
 
/// Example matches FooDelegate
 
/// \code
 
///   @protocol FooDelegate
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCProtocolDecl>
 
    objcProtocolDecl;
 
 
 
/// Matches Objective-C category declarations.
 
///
 
/// Example matches Foo (Additions)
 
/// \code
 
///   @interface Foo (Additions)
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCCategoryDecl>
 
    objcCategoryDecl;
 
 
 
/// Matches Objective-C category definitions.
 
///
 
/// Example matches Foo (Additions)
 
/// \code
 
///   @implementation Foo (Additions)
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCCategoryImplDecl>
 
    objcCategoryImplDecl;
 
 
 
/// Matches Objective-C method declarations.
 
///
 
/// Example matches both declaration and definition of -[Foo method]
 
/// \code
 
///   @interface Foo
 
///   - (void)method;
 
///   @end
 
///
 
///   @implementation Foo
 
///   - (void)method {}
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCMethodDecl>
 
    objcMethodDecl;
 
 
 
/// Matches block declarations.
 
///
 
/// Example matches the declaration of the nameless block printing an input
 
/// integer.
 
///
 
/// \code
 
///   myFunc(^(int p) {
 
///     printf("%d", p);
 
///   })
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, BlockDecl>
 
    blockDecl;
 
 
 
/// Matches Objective-C instance variable declarations.
 
///
 
/// Example matches _enabled
 
/// \code
 
///   @implementation Foo {
 
///     BOOL _enabled;
 
///   }
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCIvarDecl>
 
    objcIvarDecl;
 
 
 
/// Matches Objective-C property declarations.
 
///
 
/// Example matches enabled
 
/// \code
 
///   @interface Foo
 
///   @property BOOL enabled;
 
///   @end
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCPropertyDecl>
 
    objcPropertyDecl;
 
 
 
/// Matches Objective-C \@throw statements.
 
///
 
/// Example matches \@throw
 
/// \code
 
///   @throw obj;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtThrowStmt>
 
    objcThrowStmt;
 
 
 
/// Matches Objective-C @try statements.
 
///
 
/// Example matches @try
 
/// \code
 
///   @try {}
 
///   @catch (...) {}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtTryStmt>
 
    objcTryStmt;
 
 
 
/// Matches Objective-C @catch statements.
 
///
 
/// Example matches @catch
 
/// \code
 
///   @try {}
 
///   @catch (...) {}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtCatchStmt>
 
    objcCatchStmt;
 
 
 
/// Matches Objective-C @finally statements.
 
///
 
/// Example matches @finally
 
/// \code
 
///   @try {}
 
///   @finally {}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtFinallyStmt>
 
    objcFinallyStmt;
 
 
 
/// Matches expressions that introduce cleanups to be run at the end
 
/// of the sub-expression's evaluation.
 
///
 
/// Example matches std::string()
 
/// \code
 
///   const std::string str = std::string();
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ExprWithCleanups>
 
    exprWithCleanups;
 
 
 
/// Matches init list expressions.
 
///
 
/// Given
 
/// \code
 
///   int a[] = { 1, 2 };
 
///   struct B { int x, y; };
 
///   B b = { 5, 6 };
 
/// \endcode
 
/// initListExpr()
 
///   matches "{ 1, 2 }" and "{ 5, 6 }"
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, InitListExpr>
 
    initListExpr;
 
 
 
/// Matches the syntactic form of init list expressions
 
/// (if expression have it).
 
AST_MATCHER_P(InitListExpr, hasSyntacticForm,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *SyntForm = Node.getSyntacticForm();
 
  return (SyntForm != nullptr &&
 
          InnerMatcher.matches(*SyntForm, Finder, Builder));
 
}
 
 
 
/// Matches C++ initializer list expressions.
 
///
 
/// Given
 
/// \code
 
///   std::vector<int> a({ 1, 2, 3 });
 
///   std::vector<int> b = { 4, 5 };
 
///   int c[] = { 6, 7 };
 
///   std::pair<int, int> d = { 8, 9 };
 
/// \endcode
 
/// cxxStdInitializerListExpr()
 
///   matches "{ 1, 2, 3 }" and "{ 4, 5 }"
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   CXXStdInitializerListExpr>
 
    cxxStdInitializerListExpr;
 
 
 
/// Matches implicit initializers of init list expressions.
 
///
 
/// Given
 
/// \code
 
///   point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
 
/// \endcode
 
/// implicitValueInitExpr()
 
///   matches "[0].y" (implicitly)
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImplicitValueInitExpr>
 
    implicitValueInitExpr;
 
 
 
/// Matches paren list expressions.
 
/// ParenListExprs don't have a predefined type and are used for late parsing.
 
/// In the final AST, they can be met in template declarations.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> class X {
 
///     void f() {
 
///       X x(*this);
 
///       int a = 0, b = 1; int i = (a, b);
 
///     }
 
///   };
 
/// \endcode
 
/// parenListExpr() matches "*this" but NOT matches (a, b) because (a, b)
 
/// has a predefined type and is a ParenExpr, not a ParenListExpr.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ParenListExpr>
 
    parenListExpr;
 
 
 
/// Matches substitutions of non-type template parameters.
 
///
 
/// Given
 
/// \code
 
///   template <int N>
 
///   struct A { static const int n = N; };
 
///   struct B : public A<42> {};
 
/// \endcode
 
/// substNonTypeTemplateParmExpr()
 
///   matches "N" in the right-hand side of "static const int n = N;"
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   SubstNonTypeTemplateParmExpr>
 
    substNonTypeTemplateParmExpr;
 
 
 
/// Matches using declarations.
 
///
 
/// Given
 
/// \code
 
///   namespace X { int x; }
 
///   using X::x;
 
/// \endcode
 
/// usingDecl()
 
///   matches \code using X::x \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingDecl> usingDecl;
 
 
 
/// Matches using-enum declarations.
 
///
 
/// Given
 
/// \code
 
///   namespace X { enum x {...}; }
 
///   using enum X::x;
 
/// \endcode
 
/// usingEnumDecl()
 
///   matches \code using enum X::x \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingEnumDecl>
 
    usingEnumDecl;
 
 
 
/// Matches using namespace declarations.
 
///
 
/// Given
 
/// \code
 
///   namespace X { int x; }
 
///   using namespace X;
 
/// \endcode
 
/// usingDirectiveDecl()
 
///   matches \code using namespace X \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingDirectiveDecl>
 
    usingDirectiveDecl;
 
 
 
/// Matches reference to a name that can be looked up during parsing
 
/// but could not be resolved to a specific declaration.
 
///
 
/// Given
 
/// \code
 
///   template<typename T>
 
///   T foo() { T a; return a; }
 
///   template<typename T>
 
///   void bar() {
 
///     foo<T>();
 
///   }
 
/// \endcode
 
/// unresolvedLookupExpr()
 
///   matches \code foo<T>() \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnresolvedLookupExpr>
 
    unresolvedLookupExpr;
 
 
 
/// Matches unresolved using value declarations.
 
///
 
/// Given
 
/// \code
 
///   template<typename X>
 
///   class C : private X {
 
///     using X::x;
 
///   };
 
/// \endcode
 
/// unresolvedUsingValueDecl()
 
///   matches \code using X::x \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl,
 
                                                   UnresolvedUsingValueDecl>
 
    unresolvedUsingValueDecl;
 
 
 
/// Matches unresolved using value declarations that involve the
 
/// typename.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   struct Base { typedef T Foo; };
 
///
 
///   template<typename T>
 
///   struct S : private Base<T> {
 
///     using typename Base<T>::Foo;
 
///   };
 
/// \endcode
 
/// unresolvedUsingTypenameDecl()
 
///   matches \code using Base<T>::Foo \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl,
 
                                                   UnresolvedUsingTypenameDecl>
 
    unresolvedUsingTypenameDecl;
 
 
 
/// Matches a constant expression wrapper.
 
///
 
/// Example matches the constant in the case statement:
 
///     (matcher = constantExpr())
 
/// \code
 
///   switch (a) {
 
///   case 37: break;
 
///   }
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ConstantExpr>
 
    constantExpr;
 
 
 
/// Matches parentheses used in expressions.
 
///
 
/// Example matches (foo() + 1)
 
/// \code
 
///   int foo() { return 1; }
 
///   int a = (foo() + 1);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ParenExpr> parenExpr;
 
 
 
/// Matches constructor call expressions (including implicit ones).
 
///
 
/// Example matches string(ptr, n) and ptr within arguments of f
 
///     (matcher = cxxConstructExpr())
 
/// \code
 
///   void f(const string &a, const string &b);
 
///   char *ptr;
 
///   int n;
 
///   f(string(ptr, n), ptr);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXConstructExpr>
 
    cxxConstructExpr;
 
 
 
/// Matches unresolved constructor call expressions.
 
///
 
/// Example matches T(t) in return statement of f
 
///     (matcher = cxxUnresolvedConstructExpr())
 
/// \code
 
///   template <typename T>
 
///   void f(const T& t) { return T(t); }
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   CXXUnresolvedConstructExpr>
 
    cxxUnresolvedConstructExpr;
 
 
 
/// Matches implicit and explicit this expressions.
 
///
 
/// Example matches the implicit this expression in "return i".
 
///     (matcher = cxxThisExpr())
 
/// \code
 
/// struct foo {
 
///   int i;
 
///   int f() { return i; }
 
/// };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThisExpr>
 
    cxxThisExpr;
 
 
 
/// Matches nodes where temporaries are created.
 
///
 
/// Example matches FunctionTakesString(GetStringByValue())
 
///     (matcher = cxxBindTemporaryExpr())
 
/// \code
 
///   FunctionTakesString(GetStringByValue());
 
///   FunctionTakesStringByPointer(GetStringPointer());
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXBindTemporaryExpr>
 
    cxxBindTemporaryExpr;
 
 
 
/// Matches nodes where temporaries are materialized.
 
///
 
/// Example: Given
 
/// \code
 
///   struct T {void func();};
 
///   T f();
 
///   void g(T);
 
/// \endcode
 
/// materializeTemporaryExpr() matches 'f()' in these statements
 
/// \code
 
///   T u(f());
 
///   g(f());
 
///   f().func();
 
/// \endcode
 
/// but does not match
 
/// \code
 
///   f();
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   MaterializeTemporaryExpr>
 
    materializeTemporaryExpr;
 
 
 
/// Matches new expressions.
 
///
 
/// Given
 
/// \code
 
///   new X;
 
/// \endcode
 
/// cxxNewExpr()
 
///   matches 'new X'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNewExpr> cxxNewExpr;
 
 
 
/// Matches delete expressions.
 
///
 
/// Given
 
/// \code
 
///   delete X;
 
/// \endcode
 
/// cxxDeleteExpr()
 
///   matches 'delete X'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDeleteExpr>
 
    cxxDeleteExpr;
 
 
 
/// Matches noexcept expressions.
 
///
 
/// Given
 
/// \code
 
///   bool a() noexcept;
 
///   bool b() noexcept(true);
 
///   bool c() noexcept(false);
 
///   bool d() noexcept(noexcept(a()));
 
///   bool e = noexcept(b()) || noexcept(c());
 
/// \endcode
 
/// cxxNoexceptExpr()
 
///   matches `noexcept(a())`, `noexcept(b())` and `noexcept(c())`.
 
///   doesn't match the noexcept specifier in the declarations a, b, c or d.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNoexceptExpr>
 
    cxxNoexceptExpr;
 
 
 
/// Matches array subscript expressions.
 
///
 
/// Given
 
/// \code
 
///   int i = a[1];
 
/// \endcode
 
/// arraySubscriptExpr()
 
///   matches "a[1]"
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ArraySubscriptExpr>
 
    arraySubscriptExpr;
 
 
 
/// Matches the value of a default argument at the call site.
 
///
 
/// Example matches the CXXDefaultArgExpr placeholder inserted for the
 
///     default value of the second parameter in the call expression f(42)
 
///     (matcher = cxxDefaultArgExpr())
 
/// \code
 
///   void f(int x, int y = 0);
 
///   f(42);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDefaultArgExpr>
 
    cxxDefaultArgExpr;
 
 
 
/// Matches overloaded operator calls.
 
///
 
/// Note that if an operator isn't overloaded, it won't match. Instead, use
 
/// binaryOperator matcher.
 
/// Currently it does not match operators such as new delete.
 
/// FIXME: figure out why these do not match?
 
///
 
/// Example matches both operator<<((o << b), c) and operator<<(o, b)
 
///     (matcher = cxxOperatorCallExpr())
 
/// \code
 
///   ostream &operator<< (ostream &out, int i) { };
 
///   ostream &o; int b = 1, c = 1;
 
///   o << b << c;
 
/// \endcode
 
/// See also the binaryOperation() matcher for more-general matching of binary
 
/// uses of this AST node.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXOperatorCallExpr>
 
    cxxOperatorCallExpr;
 
 
 
/// Matches rewritten binary operators
 
///
 
/// Example matches use of "<":
 
/// \code
 
///   #include <compare>
 
///   struct HasSpaceshipMem {
 
///     int a;
 
///     constexpr auto operator<=>(const HasSpaceshipMem&) const = default;
 
///   };
 
///   void compare() {
 
///     HasSpaceshipMem hs1, hs2;
 
///     if (hs1 < hs2)
 
///         return;
 
///   }
 
/// \endcode
 
/// See also the binaryOperation() matcher for more-general matching
 
/// of this AST node.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   CXXRewrittenBinaryOperator>
 
    cxxRewrittenBinaryOperator;
 
 
 
/// Matches expressions.
 
///
 
/// Example matches x()
 
/// \code
 
///   void f() { x(); }
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, Expr> expr;
 
 
 
/// Matches expressions that refer to declarations.
 
///
 
/// Example matches x in if (x)
 
/// \code
 
///   bool x;
 
///   if (x) {}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DeclRefExpr>
 
    declRefExpr;
 
 
 
/// Matches a reference to an ObjCIvar.
 
///
 
/// Example: matches "a" in "init" method:
 
/// \code
 
/// @implementation A {
 
///   NSString *a;
 
/// }
 
/// - (void) init {
 
///   a = @"hello";
 
/// }
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCIvarRefExpr>
 
    objcIvarRefExpr;
 
 
 
/// Matches a reference to a block.
 
///
 
/// Example: matches "^{}":
 
/// \code
 
///   void f() { ^{}(); }
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BlockExpr> blockExpr;
 
 
 
/// Matches if statements.
 
///
 
/// Example matches 'if (x) {}'
 
/// \code
 
///   if (x) {}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, IfStmt> ifStmt;
 
 
 
/// Matches for statements.
 
///
 
/// Example matches 'for (;;) {}'
 
/// \code
 
///   for (;;) {}
 
///   int i[] =  {1, 2, 3}; for (auto a : i);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ForStmt> forStmt;
 
 
 
/// Matches the increment statement of a for loop.
 
///
 
/// Example:
 
///     forStmt(hasIncrement(unaryOperator(hasOperatorName("++"))))
 
/// matches '++x' in
 
/// \code
 
///     for (x; x < N; ++x) { }
 
/// \endcode
 
AST_MATCHER_P(ForStmt, hasIncrement, internal::Matcher<Stmt>,
 
              InnerMatcher) {
 
  const Stmt *const Increment = Node.getInc();
 
  return (Increment != nullptr &&
 
          InnerMatcher.matches(*Increment, Finder, Builder));
 
}
 
 
 
/// Matches the initialization statement of a for loop.
 
///
 
/// Example:
 
///     forStmt(hasLoopInit(declStmt()))
 
/// matches 'int x = 0' in
 
/// \code
 
///     for (int x = 0; x < N; ++x) { }
 
/// \endcode
 
AST_MATCHER_P(ForStmt, hasLoopInit, internal::Matcher<Stmt>,
 
              InnerMatcher) {
 
  const Stmt *const Init = Node.getInit();
 
  return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
 
}
 
 
 
/// Matches range-based for statements.
 
///
 
/// cxxForRangeStmt() matches 'for (auto a : i)'
 
/// \code
 
///   int i[] =  {1, 2, 3}; for (auto a : i);
 
///   for(int j = 0; j < 5; ++j);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXForRangeStmt>
 
    cxxForRangeStmt;
 
 
 
/// Matches the initialization statement of a for loop.
 
///
 
/// Example:
 
///     forStmt(hasLoopVariable(anything()))
 
/// matches 'int x' in
 
/// \code
 
///     for (int x : a) { }
 
/// \endcode
 
AST_MATCHER_P(CXXForRangeStmt, hasLoopVariable, internal::Matcher<VarDecl>,
 
              InnerMatcher) {
 
  const VarDecl *const Var = Node.getLoopVariable();
 
  return (Var != nullptr && InnerMatcher.matches(*Var, Finder, Builder));
 
}
 
 
 
/// Matches the range initialization statement of a for loop.
 
///
 
/// Example:
 
///     forStmt(hasRangeInit(anything()))
 
/// matches 'a' in
 
/// \code
 
///     for (int x : a) { }
 
/// \endcode
 
AST_MATCHER_P(CXXForRangeStmt, hasRangeInit, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  const Expr *const Init = Node.getRangeInit();
 
  return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
 
}
 
 
 
/// Matches while statements.
 
///
 
/// Given
 
/// \code
 
///   while (true) {}
 
/// \endcode
 
/// whileStmt()
 
///   matches 'while (true) {}'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, WhileStmt> whileStmt;
 
 
 
/// Matches do statements.
 
///
 
/// Given
 
/// \code
 
///   do {} while (true);
 
/// \endcode
 
/// doStmt()
 
///   matches 'do {} while(true)'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DoStmt> doStmt;
 
 
 
/// Matches break statements.
 
///
 
/// Given
 
/// \code
 
///   while (true) { break; }
 
/// \endcode
 
/// breakStmt()
 
///   matches 'break'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BreakStmt> breakStmt;
 
 
 
/// Matches continue statements.
 
///
 
/// Given
 
/// \code
 
///   while (true) { continue; }
 
/// \endcode
 
/// continueStmt()
 
///   matches 'continue'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ContinueStmt>
 
    continueStmt;
 
 
 
/// Matches co_return statements.
 
///
 
/// Given
 
/// \code
 
///   while (true) { co_return; }
 
/// \endcode
 
/// coreturnStmt()
 
///   matches 'co_return'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoreturnStmt>
 
    coreturnStmt;
 
 
 
/// Matches return statements.
 
///
 
/// Given
 
/// \code
 
///   return 1;
 
/// \endcode
 
/// returnStmt()
 
///   matches 'return 1'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ReturnStmt> returnStmt;
 
 
 
/// Matches goto statements.
 
///
 
/// Given
 
/// \code
 
///   goto FOO;
 
///   FOO: bar();
 
/// \endcode
 
/// gotoStmt()
 
///   matches 'goto FOO'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GotoStmt> gotoStmt;
 
 
 
/// Matches label statements.
 
///
 
/// Given
 
/// \code
 
///   goto FOO;
 
///   FOO: bar();
 
/// \endcode
 
/// labelStmt()
 
///   matches 'FOO:'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, LabelStmt> labelStmt;
 
 
 
/// Matches address of label statements (GNU extension).
 
///
 
/// Given
 
/// \code
 
///   FOO: bar();
 
///   void *ptr = &&FOO;
 
///   goto *bar;
 
/// \endcode
 
/// addrLabelExpr()
 
///   matches '&&FOO'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AddrLabelExpr>
 
    addrLabelExpr;
 
 
 
/// Matches switch statements.
 
///
 
/// Given
 
/// \code
 
///   switch(a) { case 42: break; default: break; }
 
/// \endcode
 
/// switchStmt()
 
///   matches 'switch(a)'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchStmt> switchStmt;
 
 
 
/// Matches case and default statements inside switch statements.
 
///
 
/// Given
 
/// \code
 
///   switch(a) { case 42: break; default: break; }
 
/// \endcode
 
/// switchCase()
 
///   matches 'case 42:' and 'default:'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchCase> switchCase;
 
 
 
/// Matches case statements inside switch statements.
 
///
 
/// Given
 
/// \code
 
///   switch(a) { case 42: break; default: break; }
 
/// \endcode
 
/// caseStmt()
 
///   matches 'case 42:'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CaseStmt> caseStmt;
 
 
 
/// Matches default statements inside switch statements.
 
///
 
/// Given
 
/// \code
 
///   switch(a) { case 42: break; default: break; }
 
/// \endcode
 
/// defaultStmt()
 
///   matches 'default:'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DefaultStmt>
 
    defaultStmt;
 
 
 
/// Matches compound statements.
 
///
 
/// Example matches '{}' and '{{}}' in 'for (;;) {{}}'
 
/// \code
 
///   for (;;) {{}}
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CompoundStmt>
 
    compoundStmt;
 
 
 
/// Matches catch statements.
 
///
 
/// \code
 
///   try {} catch(int i) {}
 
/// \endcode
 
/// cxxCatchStmt()
 
///   matches 'catch(int i)'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXCatchStmt>
 
    cxxCatchStmt;
 
 
 
/// Matches try statements.
 
///
 
/// \code
 
///   try {} catch(int i) {}
 
/// \endcode
 
/// cxxTryStmt()
 
///   matches 'try {}'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXTryStmt> cxxTryStmt;
 
 
 
/// Matches throw expressions.
 
///
 
/// \code
 
///   try { throw 5; } catch(int i) {}
 
/// \endcode
 
/// cxxThrowExpr()
 
///   matches 'throw 5'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThrowExpr>
 
    cxxThrowExpr;
 
 
 
/// Matches null statements.
 
///
 
/// \code
 
///   foo();;
 
/// \endcode
 
/// nullStmt()
 
///   matches the second ';'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, NullStmt> nullStmt;
 
 
 
/// Matches asm statements.
 
///
 
/// \code
 
///  int i = 100;
 
///   __asm("mov al, 2");
 
/// \endcode
 
/// asmStmt()
 
///   matches '__asm("mov al, 2")'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AsmStmt> asmStmt;
 
 
 
/// Matches bool literals.
 
///
 
/// Example matches true
 
/// \code
 
///   true
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXBoolLiteralExpr>
 
    cxxBoolLiteral;
 
 
 
/// Matches string literals (also matches wide string literals).
 
///
 
/// Example matches "abcd", L"abcd"
 
/// \code
 
///   char *s = "abcd";
 
///   wchar_t *ws = L"abcd";
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, StringLiteral>
 
    stringLiteral;
 
 
 
/// Matches character literals (also matches wchar_t).
 
///
 
/// Not matching Hex-encoded chars (e.g. 0x1234, which is a IntegerLiteral),
 
/// though.
 
///
 
/// Example matches 'a', L'a'
 
/// \code
 
///   char ch = 'a';
 
///   wchar_t chw = L'a';
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CharacterLiteral>
 
    characterLiteral;
 
 
 
/// Matches integer literals of all sizes / encodings, e.g.
 
/// 1, 1L, 0x1 and 1U.
 
///
 
/// Does not match character-encoded integers such as L'a'.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, IntegerLiteral>
 
    integerLiteral;
 
 
 
/// Matches float literals of all sizes / encodings, e.g.
 
/// 1.0, 1.0f, 1.0L and 1e10.
 
///
 
/// Does not match implicit conversions such as
 
/// \code
 
///   float a = 10;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, FloatingLiteral>
 
    floatLiteral;
 
 
 
/// Matches imaginary literals, which are based on integer and floating
 
/// point literals e.g.: 1i, 1.0i
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImaginaryLiteral>
 
    imaginaryLiteral;
 
 
 
/// Matches fixed point literals
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, FixedPointLiteral>
 
    fixedPointLiteral;
 
 
 
/// Matches user defined literal operator call.
 
///
 
/// Example match: "foo"_suffix
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UserDefinedLiteral>
 
    userDefinedLiteral;
 
 
 
/// Matches compound (i.e. non-scalar) literals
 
///
 
/// Example match: {1}, (1, 2)
 
/// \code
 
///   int array[4] = {1};
 
///   vector int myvec = (vector int)(1, 2);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CompoundLiteralExpr>
 
    compoundLiteralExpr;
 
 
 
/// Matches co_await expressions.
 
///
 
/// Given
 
/// \code
 
///   co_await 1;
 
/// \endcode
 
/// coawaitExpr()
 
///   matches 'co_await 1'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoawaitExpr>
 
    coawaitExpr;
 
/// Matches co_await expressions where the type of the promise is dependent
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DependentCoawaitExpr>
 
    dependentCoawaitExpr;
 
/// Matches co_yield expressions.
 
///
 
/// Given
 
/// \code
 
///   co_yield 1;
 
/// \endcode
 
/// coyieldExpr()
 
///   matches 'co_yield 1'
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoyieldExpr>
 
    coyieldExpr;
 
 
 
/// Matches nullptr literal.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNullPtrLiteralExpr>
 
    cxxNullPtrLiteralExpr;
 
 
 
/// Matches GNU __builtin_choose_expr.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ChooseExpr>
 
    chooseExpr;
 
 
 
/// Matches GNU __null expression.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GNUNullExpr>
 
    gnuNullExpr;
 
 
 
/// Matches C11 _Generic expression.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GenericSelectionExpr>
 
    genericSelectionExpr;
 
 
 
/// Matches atomic builtins.
 
/// Example matches __atomic_load_n(ptr, 1)
 
/// \code
 
///   void foo() { int *ptr; __atomic_load_n(ptr, 1); }
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AtomicExpr> atomicExpr;
 
 
 
/// Matches statement expression (GNU extension).
 
///
 
/// Example match: ({ int X = 4; X; })
 
/// \code
 
///   int C = ({ int X = 4; X; });
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, StmtExpr> stmtExpr;
 
 
 
/// Matches binary operator expressions.
 
///
 
/// Example matches a || b
 
/// \code
 
///   !(a || b)
 
/// \endcode
 
/// See also the binaryOperation() matcher for more-general matching.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BinaryOperator>
 
    binaryOperator;
 
 
 
/// Matches unary operator expressions.
 
///
 
/// Example matches !a
 
/// \code
 
///   !a || b
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnaryOperator>
 
    unaryOperator;
 
 
 
/// Matches conditional operator expressions.
 
///
 
/// Example matches a ? b : c
 
/// \code
 
///   (a ? b : c) + 42
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ConditionalOperator>
 
    conditionalOperator;
 
 
 
/// Matches binary conditional operator expressions (GNU extension).
 
///
 
/// Example matches a ?: b
 
/// \code
 
///   (a ?: b) + 42;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   BinaryConditionalOperator>
 
    binaryConditionalOperator;
 
 
 
/// Matches opaque value expressions. They are used as helpers
 
/// to reference another expressions and can be met
 
/// in BinaryConditionalOperators, for example.
 
///
 
/// Example matches 'a'
 
/// \code
 
///   (a ?: c) + 42;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, OpaqueValueExpr>
 
    opaqueValueExpr;
 
 
 
/// Matches a C++ static_assert declaration.
 
///
 
/// Example:
 
///   staticAssertDecl()
 
/// matches
 
///   static_assert(sizeof(S) == sizeof(int))
 
/// in
 
/// \code
 
///   struct S {
 
///     int x;
 
///   };
 
///   static_assert(sizeof(S) == sizeof(int));
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Decl, StaticAssertDecl>
 
    staticAssertDecl;
 
 
 
/// Matches a reinterpret_cast expression.
 
///
 
/// Either the source expression or the destination type can be matched
 
/// using has(), but hasDestinationType() is more specific and can be
 
/// more readable.
 
///
 
/// Example matches reinterpret_cast<char*>(&p) in
 
/// \code
 
///   void* p = reinterpret_cast<char*>(&p);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXReinterpretCastExpr>
 
    cxxReinterpretCastExpr;
 
 
 
/// Matches a C++ static_cast expression.
 
///
 
/// \see hasDestinationType
 
/// \see reinterpretCast
 
///
 
/// Example:
 
///   cxxStaticCastExpr()
 
/// matches
 
///   static_cast<long>(8)
 
/// in
 
/// \code
 
///   long eight(static_cast<long>(8));
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXStaticCastExpr>
 
    cxxStaticCastExpr;
 
 
 
/// Matches a dynamic_cast expression.
 
///
 
/// Example:
 
///   cxxDynamicCastExpr()
 
/// matches
 
///   dynamic_cast<D*>(&b);
 
/// in
 
/// \code
 
///   struct B { virtual ~B() {} }; struct D : B {};
 
///   B b;
 
///   D* p = dynamic_cast<D*>(&b);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDynamicCastExpr>
 
    cxxDynamicCastExpr;
 
 
 
/// Matches a const_cast expression.
 
///
 
/// Example: Matches const_cast<int*>(&r) in
 
/// \code
 
///   int n = 42;
 
///   const int &r(n);
 
///   int* p = const_cast<int*>(&r);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXConstCastExpr>
 
    cxxConstCastExpr;
 
 
 
/// Matches a C-style cast expression.
 
///
 
/// Example: Matches (int) 2.2f in
 
/// \code
 
///   int i = (int) 2.2f;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CStyleCastExpr>
 
    cStyleCastExpr;
 
 
 
/// Matches explicit cast expressions.
 
///
 
/// Matches any cast expression written in user code, whether it be a
 
/// C-style cast, a functional-style cast, or a keyword cast.
 
///
 
/// Does not match implicit conversions.
 
///
 
/// Note: the name "explicitCast" is chosen to match Clang's terminology, as
 
/// Clang uses the term "cast" to apply to implicit conversions as well as to
 
/// actual cast expressions.
 
///
 
/// \see hasDestinationType.
 
///
 
/// Example: matches all five of the casts in
 
/// \code
 
///   int((int)(reinterpret_cast<int>(static_cast<int>(const_cast<int>(42)))))
 
/// \endcode
 
/// but does not match the implicit conversion in
 
/// \code
 
///   long ell = 42;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ExplicitCastExpr>
 
    explicitCastExpr;
 
 
 
/// Matches the implicit cast nodes of Clang's AST.
 
///
 
/// This matches many different places, including function call return value
 
/// eliding, as well as any type conversions.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImplicitCastExpr>
 
    implicitCastExpr;
 
 
 
/// Matches any cast nodes of Clang's AST.
 
///
 
/// Example: castExpr() matches each of the following:
 
/// \code
 
///   (int) 3;
 
///   const_cast<Expr *>(SubExpr);
 
///   char c = 0;
 
/// \endcode
 
/// but does not match
 
/// \code
 
///   int i = (0);
 
///   int k = 0;
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CastExpr> castExpr;
 
 
 
/// Matches functional cast expressions
 
///
 
/// Example: Matches Foo(bar);
 
/// \code
 
///   Foo f = bar;
 
///   Foo g = (Foo) bar;
 
///   Foo h = Foo(bar);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXFunctionalCastExpr>
 
    cxxFunctionalCastExpr;
 
 
 
/// Matches functional cast expressions having N != 1 arguments
 
///
 
/// Example: Matches Foo(bar, bar)
 
/// \code
 
///   Foo h = Foo(bar, bar);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXTemporaryObjectExpr>
 
    cxxTemporaryObjectExpr;
 
 
 
/// Matches predefined identifier expressions [C99 6.4.2.2].
 
///
 
/// Example: Matches __func__
 
/// \code
 
///   printf("%s", __func__);
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, PredefinedExpr>
 
    predefinedExpr;
 
 
 
/// Matches C99 designated initializer expressions [C99 6.7.8].
 
///
 
/// Example: Matches { [2].y = 1.0, [0].x = 1.0 }
 
/// \code
 
///   point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 };
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DesignatedInitExpr>
 
    designatedInitExpr;
 
 
 
/// Matches designated initializer expressions that contain
 
/// a specific number of designators.
 
///
 
/// Example: Given
 
/// \code
 
///   point ptarray[10] = { [2].y = 1.0, [0].x = 1.0 };
 
///   point ptarray2[10] = { [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 };
 
/// \endcode
 
/// designatorCountIs(2)
 
///   matches '{ [2].y = 1.0, [0].x = 1.0 }',
 
///   but not '{ [2].y = 1.0, [2].x = 0.0, [0].x = 1.0 }'.
 
AST_MATCHER_P(DesignatedInitExpr, designatorCountIs, unsigned, N) {
 
  return Node.size() == N;
 
}
 
 
 
/// Matches \c QualTypes in the clang AST.
 
extern const internal::VariadicAllOfMatcher<QualType> qualType;
 
 
 
/// Matches \c Types in the clang AST.
 
extern const internal::VariadicAllOfMatcher<Type> type;
 
 
 
/// Matches \c TypeLocs in the clang AST.
 
extern const internal::VariadicAllOfMatcher<TypeLoc> typeLoc;
 
 
 
/// Matches if any of the given matchers matches.
 
///
 
/// Unlike \c anyOf, \c eachOf will generate a match result for each
 
/// matching submatcher.
 
///
 
/// For example, in:
 
/// \code
 
///   class A { int a; int b; };
 
/// \endcode
 
/// The matcher:
 
/// \code
 
///   cxxRecordDecl(eachOf(has(fieldDecl(hasName("a")).bind("v")),
 
///                        has(fieldDecl(hasName("b")).bind("v"))))
 
/// \endcode
 
/// will generate two results binding "v", the first of which binds
 
/// the field declaration of \c a, the second the field declaration of
 
/// \c b.
 
///
 
/// Usable as: Any Matcher
 
extern const internal::VariadicOperatorMatcherFunc<
 
    2, std::numeric_limits<unsigned>::max()>
 
    eachOf;
 
 
 
/// Matches if any of the given matchers matches.
 
///
 
/// Usable as: Any Matcher
 
extern const internal::VariadicOperatorMatcherFunc<
 
    2, std::numeric_limits<unsigned>::max()>
 
    anyOf;
 
 
 
/// Matches if all given matchers match.
 
///
 
/// Usable as: Any Matcher
 
extern const internal::VariadicOperatorMatcherFunc<
 
    2, std::numeric_limits<unsigned>::max()>
 
    allOf;
 
 
 
/// Matches any node regardless of the submatcher.
 
///
 
/// However, \c optionally will retain any bindings generated by the submatcher.
 
/// Useful when additional information which may or may not present about a main
 
/// matching node is desired.
 
///
 
/// For example, in:
 
/// \code
 
///   class Foo {
 
///     int bar;
 
///   }
 
/// \endcode
 
/// The matcher:
 
/// \code
 
///   cxxRecordDecl(
 
///     optionally(has(
 
///       fieldDecl(hasName("bar")).bind("var")
 
///   ))).bind("record")
 
/// \endcode
 
/// will produce a result binding for both "record" and "var".
 
/// The matcher will produce a "record" binding for even if there is no data
 
/// member named "bar" in that class.
 
///
 
/// Usable as: Any Matcher
 
extern const internal::VariadicOperatorMatcherFunc<1, 1> optionally;
 
 
 
/// Matches sizeof (C99), alignof (C++11) and vec_step (OpenCL)
 
///
 
/// Given
 
/// \code
 
///   Foo x = bar;
 
///   int y = sizeof(x) + alignof(x);
 
/// \endcode
 
/// unaryExprOrTypeTraitExpr()
 
///   matches \c sizeof(x) and \c alignof(x)
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
 
                                                   UnaryExprOrTypeTraitExpr>
 
    unaryExprOrTypeTraitExpr;
 
 
 
/// Matches any of the \p NodeMatchers with InnerMatchers nested within
 
///
 
/// Given
 
/// \code
 
///   if (true);
 
///   for (; true; );
 
/// \endcode
 
/// with the matcher
 
/// \code
 
///   mapAnyOf(ifStmt, forStmt).with(
 
///     hasCondition(cxxBoolLiteralExpr(equals(true)))
 
///     ).bind("trueCond")
 
/// \endcode
 
/// matches the \c if and the \c for. It is equivalent to:
 
/// \code
 
///   auto trueCond = hasCondition(cxxBoolLiteralExpr(equals(true)));
 
///   anyOf(
 
///     ifStmt(trueCond).bind("trueCond"),
 
///     forStmt(trueCond).bind("trueCond")
 
///     );
 
/// \endcode
 
///
 
/// The with() chain-call accepts zero or more matchers which are combined
 
/// as-if with allOf() in each of the node matchers.
 
/// Usable as: Any Matcher
 
template <typename T, typename... U>
 
auto mapAnyOf(internal::VariadicDynCastAllOfMatcher<T, U> const &...) {
 
  return internal::MapAnyOfHelper<U...>();
 
}
 
 
 
/// Matches nodes which can be used with binary operators.
 
///
 
/// The code
 
/// \code
 
///   var1 != var2;
 
/// \endcode
 
/// might be represented in the clang AST as a binaryOperator, a
 
/// cxxOperatorCallExpr or a cxxRewrittenBinaryOperator, depending on
 
///
 
/// * whether the types of var1 and var2 are fundamental (binaryOperator) or at
 
///   least one is a class type (cxxOperatorCallExpr)
 
/// * whether the code appears in a template declaration, if at least one of the
 
///   vars is a dependent-type (binaryOperator)
 
/// * whether the code relies on a rewritten binary operator, such as a
 
/// spaceship operator or an inverted equality operator
 
/// (cxxRewrittenBinaryOperator)
 
///
 
/// This matcher elides details in places where the matchers for the nodes are
 
/// compatible.
 
///
 
/// Given
 
/// \code
 
///   binaryOperation(
 
///     hasOperatorName("!="),
 
///     hasLHS(expr().bind("lhs")),
 
///     hasRHS(expr().bind("rhs"))
 
///   )
 
/// \endcode
 
/// matches each use of "!=" in:
 
/// \code
 
///   struct S{
 
///       bool operator!=(const S&) const;
 
///   };
 
///
 
///   void foo()
 
///   {
 
///      1 != 2;
 
///      S() != S();
 
///   }
 
///
 
///   template<typename T>
 
///   void templ()
 
///   {
 
///      1 != 2;
 
///      T() != S();
 
///   }
 
///   struct HasOpEq
 
///   {
 
///       bool operator==(const HasOpEq &) const;
 
///   };
 
///
 
///   void inverse()
 
///   {
 
///       HasOpEq s1;
 
///       HasOpEq s2;
 
///       if (s1 != s2)
 
///           return;
 
///   }
 
///
 
///   struct HasSpaceship
 
///   {
 
///       bool operator<=>(const HasOpEq &) const;
 
///   };
 
///
 
///   void use_spaceship()
 
///   {
 
///       HasSpaceship s1;
 
///       HasSpaceship s2;
 
///       if (s1 != s2)
 
///           return;
 
///   }
 
/// \endcode
 
extern const internal::MapAnyOfMatcher<BinaryOperator, CXXOperatorCallExpr,
 
                                       CXXRewrittenBinaryOperator>
 
    binaryOperation;
 
 
 
/// Matches function calls and constructor calls
 
///
 
/// Because CallExpr and CXXConstructExpr do not share a common
 
/// base class with API accessing arguments etc, AST Matchers for code
 
/// which should match both are typically duplicated. This matcher
 
/// removes the need for duplication.
 
///
 
/// Given code
 
/// \code
 
/// struct ConstructorTakesInt
 
/// {
 
///   ConstructorTakesInt(int i) {}
 
/// };
 
///
 
/// void callTakesInt(int i)
 
/// {
 
/// }
 
///
 
/// void doCall()
 
/// {
 
///   callTakesInt(42);
 
/// }
 
///
 
/// void doConstruct()
 
/// {
 
///   ConstructorTakesInt cti(42);
 
/// }
 
/// \endcode
 
///
 
/// The matcher
 
/// \code
 
/// invocation(hasArgument(0, integerLiteral(equals(42))))
 
/// \endcode
 
/// matches the expression in both doCall and doConstruct
 
extern const internal::MapAnyOfMatcher<CallExpr, CXXConstructExpr> invocation;
 
 
 
/// Matches unary expressions that have a specific type of argument.
 
///
 
/// Given
 
/// \code
 
///   int a, c; float b; int s = sizeof(a) + sizeof(b) + alignof(c);
 
/// \endcode
 
/// unaryExprOrTypeTraitExpr(hasArgumentOfType(asString("int"))
 
///   matches \c sizeof(a) and \c alignof(c)
 
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, hasArgumentOfType,
 
              internal::Matcher<QualType>, InnerMatcher) {
 
  const QualType ArgumentType = Node.getTypeOfArgument();
 
  return InnerMatcher.matches(ArgumentType, Finder, Builder);
 
}
 
 
 
/// Matches unary expressions of a certain kind.
 
///
 
/// Given
 
/// \code
 
///   int x;
 
///   int s = sizeof(x) + alignof(x)
 
/// \endcode
 
/// unaryExprOrTypeTraitExpr(ofKind(UETT_SizeOf))
 
///   matches \c sizeof(x)
 
///
 
/// If the matcher is use from clang-query, UnaryExprOrTypeTrait parameter
 
/// should be passed as a quoted string. e.g., ofKind("UETT_SizeOf").
 
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, ofKind, UnaryExprOrTypeTrait, Kind) {
 
  return Node.getKind() == Kind;
 
}
 
 
 
/// Same as unaryExprOrTypeTraitExpr, but only matching
 
/// alignof.
 
inline internal::BindableMatcher<Stmt> alignOfExpr(
 
    const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
 
  return stmt(unaryExprOrTypeTraitExpr(
 
      allOf(anyOf(ofKind(UETT_AlignOf), ofKind(UETT_PreferredAlignOf)),
 
            InnerMatcher)));
 
}
 
 
 
/// Same as unaryExprOrTypeTraitExpr, but only matching
 
/// sizeof.
 
inline internal::BindableMatcher<Stmt> sizeOfExpr(
 
    const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
 
  return stmt(unaryExprOrTypeTraitExpr(
 
      allOf(ofKind(UETT_SizeOf), InnerMatcher)));
 
}
 
 
 
/// Matches NamedDecl nodes that have the specified name.
 
///
 
/// Supports specifying enclosing namespaces or classes by prefixing the name
 
/// with '<enclosing>::'.
 
/// Does not match typedefs of an underlying type with the given name.
 
///
 
/// Example matches X (Name == "X")
 
/// \code
 
///   class X;
 
/// \endcode
 
///
 
/// Example matches X (Name is one of "::a::b::X", "a::b::X", "b::X", "X")
 
/// \code
 
///   namespace a { namespace b { class X; } }
 
/// \endcode
 
inline internal::Matcher<NamedDecl> hasName(StringRef Name) {
 
  return internal::Matcher<NamedDecl>(
 
      new internal::HasNameMatcher({std::string(Name)}));
 
}
 
 
 
/// Matches NamedDecl nodes that have any of the specified names.
 
///
 
/// This matcher is only provided as a performance optimization of hasName.
 
/// \code
 
///     hasAnyName(a, b, c)
 
/// \endcode
 
///  is equivalent to, but faster than
 
/// \code
 
///     anyOf(hasName(a), hasName(b), hasName(c))
 
/// \endcode
 
extern const internal::VariadicFunction<internal::Matcher<NamedDecl>, StringRef,
 
                                        internal::hasAnyNameFunc>
 
    hasAnyName;
 
 
 
/// Matches NamedDecl nodes whose fully qualified names contain
 
/// a substring matched by the given RegExp.
 
///
 
/// Supports specifying enclosing namespaces or classes by
 
/// prefixing the name with '<enclosing>::'.  Does not match typedefs
 
/// of an underlying type with the given name.
 
///
 
/// Example matches X (regexp == "::X")
 
/// \code
 
///   class X;
 
/// \endcode
 
///
 
/// Example matches X (regexp is one of "::X", "^foo::.*X", among others)
 
/// \code
 
///   namespace foo { namespace bar { class X; } }
 
/// \endcode
 
AST_MATCHER_REGEX(NamedDecl, matchesName, RegExp) {
 
  std::string FullNameString = "::" + Node.getQualifiedNameAsString();
 
  return RegExp->match(FullNameString);
 
}
 
 
 
/// Matches overloaded operator names.
 
///
 
/// Matches overloaded operator names specified in strings without the
 
/// "operator" prefix: e.g. "<<".
 
///
 
/// Given:
 
/// \code
 
///   class A { int operator*(); };
 
///   const A &operator<<(const A &a, const A &b);
 
///   A a;
 
///   a << a;   // <-- This matches
 
/// \endcode
 
///
 
/// \c cxxOperatorCallExpr(hasOverloadedOperatorName("<<"))) matches the
 
/// specified line and
 
/// \c cxxRecordDecl(hasMethod(hasOverloadedOperatorName("*")))
 
/// matches the declaration of \c A.
 
///
 
/// Usable as: Matcher<CXXOperatorCallExpr>, Matcher<FunctionDecl>
 
inline internal::PolymorphicMatcher<
 
    internal::HasOverloadedOperatorNameMatcher,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl),
 
    std::vector<std::string>>
 
hasOverloadedOperatorName(StringRef Name) {
 
  return internal::PolymorphicMatcher<
 
      internal::HasOverloadedOperatorNameMatcher,
 
      AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl),
 
      std::vector<std::string>>({std::string(Name)});
 
}
 
 
 
/// Matches overloaded operator names.
 
///
 
/// Matches overloaded operator names specified in strings without the
 
/// "operator" prefix: e.g. "<<".
 
///
 
///   hasAnyOverloadedOperatorName("+", "-")
 
/// Is equivalent to
 
///   anyOf(hasOverloadedOperatorName("+"), hasOverloadedOperatorName("-"))
 
extern const internal::VariadicFunction<
 
    internal::PolymorphicMatcher<internal::HasOverloadedOperatorNameMatcher,
 
                                 AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                                     CXXOperatorCallExpr, FunctionDecl),
 
                                 std::vector<std::string>>,
 
    StringRef, internal::hasAnyOverloadedOperatorNameFunc>
 
    hasAnyOverloadedOperatorName;
 
 
 
/// Matches template-dependent, but known, member names.
 
///
 
/// In template declarations, dependent members are not resolved and so can
 
/// not be matched to particular named declarations.
 
///
 
/// This matcher allows to match on the known name of members.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   struct S {
 
///       void mem();
 
///   };
 
///   template <typename T>
 
///   void x() {
 
///       S<T> s;
 
///       s.mem();
 
///   }
 
/// \endcode
 
/// \c cxxDependentScopeMemberExpr(hasMemberName("mem")) matches `s.mem()`
 
AST_MATCHER_P(CXXDependentScopeMemberExpr, hasMemberName, std::string, N) {
 
  return Node.getMember().getAsString() == N;
 
}
 
 
 
/// Matches template-dependent, but known, member names against an already-bound
 
/// node
 
///
 
/// In template declarations, dependent members are not resolved and so can
 
/// not be matched to particular named declarations.
 
///
 
/// This matcher allows to match on the name of already-bound VarDecl, FieldDecl
 
/// and CXXMethodDecl nodes.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   struct S {
 
///       void mem();
 
///   };
 
///   template <typename T>
 
///   void x() {
 
///       S<T> s;
 
///       s.mem();
 
///   }
 
/// \endcode
 
/// The matcher
 
/// @code
 
/// \c cxxDependentScopeMemberExpr(
 
///   hasObjectExpression(declRefExpr(hasType(templateSpecializationType(
 
///       hasDeclaration(classTemplateDecl(has(cxxRecordDecl(has(
 
///           cxxMethodDecl(hasName("mem")).bind("templMem")
 
///           )))))
 
///       )))),
 
///   memberHasSameNameAsBoundNode("templMem")
 
///   )
 
/// @endcode
 
/// first matches and binds the @c mem member of the @c S template, then
 
/// compares its name to the usage in @c s.mem() in the @c x function template
 
AST_MATCHER_P(CXXDependentScopeMemberExpr, memberHasSameNameAsBoundNode,
 
              std::string, BindingID) {
 
  auto MemberName = Node.getMember().getAsString();
 
 
 
  return Builder->removeBindings(
 
      [this, MemberName](const BoundNodesMap &Nodes) {
 
        const auto &BN = Nodes.getNode(this->BindingID);
 
        if (const auto *ND = BN.get<NamedDecl>()) {
 
          if (!isa<FieldDecl, CXXMethodDecl, VarDecl>(ND))
 
            return true;
 
          return ND->getName() != MemberName;
 
        }
 
        return true;
 
      });
 
}
 
 
 
/// Matches C++ classes that are directly or indirectly derived from a class
 
/// matching \c Base, or Objective-C classes that directly or indirectly
 
/// subclass a class matching \c Base.
 
///
 
/// Note that a class is not considered to be derived from itself.
 
///
 
/// Example matches Y, Z, C (Base == hasName("X"))
 
/// \code
 
///   class X;
 
///   class Y : public X {};  // directly derived
 
///   class Z : public Y {};  // indirectly derived
 
///   typedef X A;
 
///   typedef A B;
 
///   class C : public B {};  // derived from a typedef of X
 
/// \endcode
 
///
 
/// In the following example, Bar matches isDerivedFrom(hasName("X")):
 
/// \code
 
///   class Foo;
 
///   typedef Foo X;
 
///   class Bar : public Foo {};  // derived from a type that X is a typedef of
 
/// \endcode
 
///
 
/// In the following example, Bar matches isDerivedFrom(hasName("NSObject"))
 
/// \code
 
///   @interface NSObject @end
 
///   @interface Bar : NSObject @end
 
/// \endcode
 
///
 
/// Usable as: Matcher<CXXRecordDecl>, Matcher<ObjCInterfaceDecl>
 
AST_POLYMORPHIC_MATCHER_P(
 
    isDerivedFrom,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
 
    internal::Matcher<NamedDecl>, Base) {
 
  // Check if the node is a C++ struct/union/class.
 
  if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
 
    return Finder->classIsDerivedFrom(RD, Base, Builder, /*Directly=*/false);
 
 
 
  // The node must be an Objective-C class.
 
  const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
 
  return Finder->objcClassIsDerivedFrom(InterfaceDecl, Base, Builder,
 
                                        /*Directly=*/false);
 
}
 
 
 
/// Overloaded method as shortcut for \c isDerivedFrom(hasName(...)).
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    isDerivedFrom,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
 
    std::string, BaseName, 1) {
 
  if (BaseName.empty())
 
    return false;
 
 
 
  const auto M = isDerivedFrom(hasName(BaseName));
 
 
 
  if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
 
    return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
 
 
 
  const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
 
  return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
 
}
 
 
 
/// Matches C++ classes that have a direct or indirect base matching \p
 
/// BaseSpecMatcher.
 
///
 
/// Example:
 
/// matcher hasAnyBase(hasType(cxxRecordDecl(hasName("SpecialBase"))))
 
/// \code
 
///   class Foo;
 
///   class Bar : Foo {};
 
///   class Baz : Bar {};
 
///   class SpecialBase;
 
///   class Proxy : SpecialBase {};  // matches Proxy
 
///   class IndirectlyDerived : Proxy {};  //matches IndirectlyDerived
 
/// \endcode
 
///
 
// FIXME: Refactor this and isDerivedFrom to reuse implementation.
 
AST_MATCHER_P(CXXRecordDecl, hasAnyBase, internal::Matcher<CXXBaseSpecifier>,
 
              BaseSpecMatcher) {
 
  return internal::matchesAnyBase(Node, BaseSpecMatcher, Finder, Builder);
 
}
 
 
 
/// Matches C++ classes that have a direct base matching \p BaseSpecMatcher.
 
///
 
/// Example:
 
/// matcher hasDirectBase(hasType(cxxRecordDecl(hasName("SpecialBase"))))
 
/// \code
 
///   class Foo;
 
///   class Bar : Foo {};
 
///   class Baz : Bar {};
 
///   class SpecialBase;
 
///   class Proxy : SpecialBase {};  // matches Proxy
 
///   class IndirectlyDerived : Proxy {};  // doesn't match
 
/// \endcode
 
AST_MATCHER_P(CXXRecordDecl, hasDirectBase, internal::Matcher<CXXBaseSpecifier>,
 
              BaseSpecMatcher) {
 
  return Node.hasDefinition() &&
 
         llvm::any_of(Node.bases(), [&](const CXXBaseSpecifier &Base) {
 
           return BaseSpecMatcher.matches(Base, Finder, Builder);
 
         });
 
}
 
 
 
/// Similar to \c isDerivedFrom(), but also matches classes that directly
 
/// match \c Base.
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    isSameOrDerivedFrom,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
 
    internal::Matcher<NamedDecl>, Base, 0) {
 
  const auto M = anyOf(Base, isDerivedFrom(Base));
 
 
 
  if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
 
    return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
 
 
 
  const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
 
  return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
 
}
 
 
 
/// Overloaded method as shortcut for
 
/// \c isSameOrDerivedFrom(hasName(...)).
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    isSameOrDerivedFrom,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
 
    std::string, BaseName, 1) {
 
  if (BaseName.empty())
 
    return false;
 
 
 
  const auto M = isSameOrDerivedFrom(hasName(BaseName));
 
 
 
  if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
 
    return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
 
 
 
  const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
 
  return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
 
}
 
 
 
/// Matches C++ or Objective-C classes that are directly derived from a class
 
/// matching \c Base.
 
///
 
/// Note that a class is not considered to be derived from itself.
 
///
 
/// Example matches Y, C (Base == hasName("X"))
 
/// \code
 
///   class X;
 
///   class Y : public X {};  // directly derived
 
///   class Z : public Y {};  // indirectly derived
 
///   typedef X A;
 
///   typedef A B;
 
///   class C : public B {};  // derived from a typedef of X
 
/// \endcode
 
///
 
/// In the following example, Bar matches isDerivedFrom(hasName("X")):
 
/// \code
 
///   class Foo;
 
///   typedef Foo X;
 
///   class Bar : public Foo {};  // derived from a type that X is a typedef of
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    isDirectlyDerivedFrom,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
 
    internal::Matcher<NamedDecl>, Base, 0) {
 
  // Check if the node is a C++ struct/union/class.
 
  if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
 
    return Finder->classIsDerivedFrom(RD, Base, Builder, /*Directly=*/true);
 
 
 
  // The node must be an Objective-C class.
 
  const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
 
  return Finder->objcClassIsDerivedFrom(InterfaceDecl, Base, Builder,
 
                                        /*Directly=*/true);
 
}
 
 
 
/// Overloaded method as shortcut for \c isDirectlyDerivedFrom(hasName(...)).
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    isDirectlyDerivedFrom,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
 
    std::string, BaseName, 1) {
 
  if (BaseName.empty())
 
    return false;
 
  const auto M = isDirectlyDerivedFrom(hasName(BaseName));
 
 
 
  if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
 
    return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
 
 
 
  const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
 
  return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
 
}
 
/// Matches the first method of a class or struct that satisfies \c
 
/// InnerMatcher.
 
///
 
/// Given:
 
/// \code
 
///   class A { void func(); };
 
///   class B { void member(); };
 
/// \endcode
 
///
 
/// \c cxxRecordDecl(hasMethod(hasName("func"))) matches the declaration of
 
/// \c A but not \c B.
 
AST_MATCHER_P(CXXRecordDecl, hasMethod, internal::Matcher<CXXMethodDecl>,
 
              InnerMatcher) {
 
  BoundNodesTreeBuilder Result(*Builder);
 
  auto MatchIt = matchesFirstInPointerRange(InnerMatcher, Node.method_begin(),
 
                                            Node.method_end(), Finder, &Result);
 
  if (MatchIt == Node.method_end())
 
    return false;
 
 
 
  if (Finder->isTraversalIgnoringImplicitNodes() && (*MatchIt)->isImplicit())
 
    return false;
 
  *Builder = std::move(Result);
 
  return true;
 
}
 
 
 
/// Matches the generated class of lambda expressions.
 
///
 
/// Given:
 
/// \code
 
///   auto x = []{};
 
/// \endcode
 
///
 
/// \c cxxRecordDecl(isLambda()) matches the implicit class declaration of
 
/// \c decltype(x)
 
AST_MATCHER(CXXRecordDecl, isLambda) {
 
  return Node.isLambda();
 
}
 
 
 
/// Matches AST nodes that have child AST nodes that match the
 
/// provided matcher.
 
///
 
/// Example matches X, Y
 
///   (matcher = cxxRecordDecl(has(cxxRecordDecl(hasName("X")))
 
/// \code
 
///   class X {};  // Matches X, because X::X is a class of name X inside X.
 
///   class Y { class X {}; };
 
///   class Z { class Y { class X {}; }; };  // Does not match Z.
 
/// \endcode
 
///
 
/// ChildT must be an AST base type.
 
///
 
/// Usable as: Any Matcher
 
/// Note that has is direct matcher, so it also matches things like implicit
 
/// casts and paren casts. If you are matching with expr then you should
 
/// probably consider using ignoringParenImpCasts like:
 
/// has(ignoringParenImpCasts(expr())).
 
extern const internal::ArgumentAdaptingMatcherFunc<internal::HasMatcher> has;
 
 
 
/// Matches AST nodes that have descendant AST nodes that match the
 
/// provided matcher.
 
///
 
/// Example matches X, Y, Z
 
///     (matcher = cxxRecordDecl(hasDescendant(cxxRecordDecl(hasName("X")))))
 
/// \code
 
///   class X {};  // Matches X, because X::X is a class of name X inside X.
 
///   class Y { class X {}; };
 
///   class Z { class Y { class X {}; }; };
 
/// \endcode
 
///
 
/// DescendantT must be an AST base type.
 
///
 
/// Usable as: Any Matcher
 
extern const internal::ArgumentAdaptingMatcherFunc<
 
    internal::HasDescendantMatcher>
 
    hasDescendant;
 
 
 
/// Matches AST nodes that have child AST nodes that match the
 
/// provided matcher.
 
///
 
/// Example matches X, Y, Y::X, Z::Y, Z::Y::X
 
///   (matcher = cxxRecordDecl(forEach(cxxRecordDecl(hasName("X")))
 
/// \code
 
///   class X {};
 
///   class Y { class X {}; };  // Matches Y, because Y::X is a class of name X
 
///                             // inside Y.
 
///   class Z { class Y { class X {}; }; };  // Does not match Z.
 
/// \endcode
 
///
 
/// ChildT must be an AST base type.
 
///
 
/// As opposed to 'has', 'forEach' will cause a match for each result that
 
/// matches instead of only on the first one.
 
///
 
/// Usable as: Any Matcher
 
extern const internal::ArgumentAdaptingMatcherFunc<internal::ForEachMatcher>
 
    forEach;
 
 
 
/// Matches AST nodes that have descendant AST nodes that match the
 
/// provided matcher.
 
///
 
/// Example matches X, A, A::X, B, B::C, B::C::X
 
///   (matcher = cxxRecordDecl(forEachDescendant(cxxRecordDecl(hasName("X")))))
 
/// \code
 
///   class X {};
 
///   class A { class X {}; };  // Matches A, because A::X is a class of name
 
///                             // X inside A.
 
///   class B { class C { class X {}; }; };
 
/// \endcode
 
///
 
/// DescendantT must be an AST base type.
 
///
 
/// As opposed to 'hasDescendant', 'forEachDescendant' will cause a match for
 
/// each result that matches instead of only on the first one.
 
///
 
/// Note: Recursively combined ForEachDescendant can cause many matches:
 
///   cxxRecordDecl(forEachDescendant(cxxRecordDecl(
 
///     forEachDescendant(cxxRecordDecl())
 
///   )))
 
/// will match 10 times (plus injected class name matches) on:
 
/// \code
 
///   class A { class B { class C { class D { class E {}; }; }; }; };
 
/// \endcode
 
///
 
/// Usable as: Any Matcher
 
extern const internal::ArgumentAdaptingMatcherFunc<
 
    internal::ForEachDescendantMatcher>
 
    forEachDescendant;
 
 
 
/// Matches if the node or any descendant matches.
 
///
 
/// Generates results for each match.
 
///
 
/// For example, in:
 
/// \code
 
///   class A { class B {}; class C {}; };
 
/// \endcode
 
/// The matcher:
 
/// \code
 
///   cxxRecordDecl(hasName("::A"),
 
///                 findAll(cxxRecordDecl(isDefinition()).bind("m")))
 
/// \endcode
 
/// will generate results for \c A, \c B and \c C.
 
///
 
/// Usable as: Any Matcher
 
template <typename T>
 
internal::Matcher<T> findAll(const internal::Matcher<T> &Matcher) {
 
  return eachOf(Matcher, forEachDescendant(Matcher));
 
}
 
 
 
/// Matches AST nodes that have a parent that matches the provided
 
/// matcher.
 
///
 
/// Given
 
/// \code
 
/// void f() { for (;;) { int x = 42; if (true) { int x = 43; } } }
 
/// \endcode
 
/// \c compoundStmt(hasParent(ifStmt())) matches "{ int x = 43; }".
 
///
 
/// Usable as: Any Matcher
 
extern const internal::ArgumentAdaptingMatcherFunc<
 
    internal::HasParentMatcher,
 
    internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>,
 
    internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>>
 
    hasParent;
 
 
 
/// Matches AST nodes that have an ancestor that matches the provided
 
/// matcher.
 
///
 
/// Given
 
/// \code
 
/// void f() { if (true) { int x = 42; } }
 
/// void g() { for (;;) { int x = 43; } }
 
/// \endcode
 
/// \c expr(integerLiteral(hasAncestor(ifStmt()))) matches \c 42, but not 43.
 
///
 
/// Usable as: Any Matcher
 
extern const internal::ArgumentAdaptingMatcherFunc<
 
    internal::HasAncestorMatcher,
 
    internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>,
 
    internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>>
 
    hasAncestor;
 
 
 
/// Matches if the provided matcher does not match.
 
///
 
/// Example matches Y (matcher = cxxRecordDecl(unless(hasName("X"))))
 
/// \code
 
///   class X {};
 
///   class Y {};
 
/// \endcode
 
///
 
/// Usable as: Any Matcher
 
extern const internal::VariadicOperatorMatcherFunc<1, 1> unless;
 
 
 
/// Matches a node if the declaration associated with that node
 
/// matches the given matcher.
 
///
 
/// The associated declaration is:
 
/// - for type nodes, the declaration of the underlying type
 
/// - for CallExpr, the declaration of the callee
 
/// - for MemberExpr, the declaration of the referenced member
 
/// - for CXXConstructExpr, the declaration of the constructor
 
/// - for CXXNewExpr, the declaration of the operator new
 
/// - for ObjCIvarExpr, the declaration of the ivar
 
///
 
/// For type nodes, hasDeclaration will generally match the declaration of the
 
/// sugared type. Given
 
/// \code
 
///   class X {};
 
///   typedef X Y;
 
///   Y y;
 
/// \endcode
 
/// in varDecl(hasType(hasDeclaration(decl()))) the decl will match the
 
/// typedefDecl. A common use case is to match the underlying, desugared type.
 
/// This can be achieved by using the hasUnqualifiedDesugaredType matcher:
 
/// \code
 
///   varDecl(hasType(hasUnqualifiedDesugaredType(
 
///       recordType(hasDeclaration(decl())))))
 
/// \endcode
 
/// In this matcher, the decl will match the CXXRecordDecl of class X.
 
///
 
/// Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>,
 
///   Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>,
 
///   Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>,
 
///   Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>,
 
///   Matcher<TagType>, Matcher<TemplateSpecializationType>,
 
///   Matcher<TemplateTypeParmType>, Matcher<TypedefType>,
 
///   Matcher<UnresolvedUsingType>
 
inline internal::PolymorphicMatcher<
 
    internal::HasDeclarationMatcher,
 
    void(internal::HasDeclarationSupportedTypes), internal::Matcher<Decl>>
 
hasDeclaration(const internal::Matcher<Decl> &InnerMatcher) {
 
  return internal::PolymorphicMatcher<
 
      internal::HasDeclarationMatcher,
 
      void(internal::HasDeclarationSupportedTypes), internal::Matcher<Decl>>(
 
      InnerMatcher);
 
}
 
 
 
/// Matches a \c NamedDecl whose underlying declaration matches the given
 
/// matcher.
 
///
 
/// Given
 
/// \code
 
///   namespace N { template<class T> void f(T t); }
 
///   template <class T> void g() { using N::f; f(T()); }
 
/// \endcode
 
/// \c unresolvedLookupExpr(hasAnyDeclaration(
 
///     namedDecl(hasUnderlyingDecl(hasName("::N::f")))))
 
///   matches the use of \c f in \c g() .
 
AST_MATCHER_P(NamedDecl, hasUnderlyingDecl, internal::Matcher<NamedDecl>,
 
              InnerMatcher) {
 
  const NamedDecl *UnderlyingDecl = Node.getUnderlyingDecl();
 
 
 
  return UnderlyingDecl != nullptr &&
 
         InnerMatcher.matches(*UnderlyingDecl, Finder, Builder);
 
}
 
 
 
/// Matches on the implicit object argument of a member call expression, after
 
/// stripping off any parentheses or implicit casts.
 
///
 
/// Given
 
/// \code
 
///   class Y { public: void m(); };
 
///   Y g();
 
///   class X : public Y {};
 
///   void z(Y y, X x) { y.m(); (g()).m(); x.m(); }
 
/// \endcode
 
/// cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("Y")))))
 
///   matches `y.m()` and `(g()).m()`.
 
/// cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("X")))))
 
///   matches `x.m()`.
 
/// cxxMemberCallExpr(on(callExpr()))
 
///   matches `(g()).m()`.
 
///
 
/// FIXME: Overload to allow directly matching types?
 
AST_MATCHER_P(CXXMemberCallExpr, on, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  const Expr *ExprNode = Node.getImplicitObjectArgument()
 
                            ->IgnoreParenImpCasts();
 
  return (ExprNode != nullptr &&
 
          InnerMatcher.matches(*ExprNode, Finder, Builder));
 
}
 
 
 
 
 
/// Matches on the receiver of an ObjectiveC Message expression.
 
///
 
/// Example
 
/// matcher = objCMessageExpr(hasReceiverType(asString("UIWebView *")));
 
/// matches the [webView ...] message invocation.
 
/// \code
 
///   NSString *webViewJavaScript = ...
 
///   UIWebView *webView = ...
 
///   [webView stringByEvaluatingJavaScriptFromString:webViewJavascript];
 
/// \endcode
 
AST_MATCHER_P(ObjCMessageExpr, hasReceiverType, internal::Matcher<QualType>,
 
              InnerMatcher) {
 
  const QualType TypeDecl = Node.getReceiverType();
 
  return InnerMatcher.matches(TypeDecl, Finder, Builder);
 
}
 
 
 
/// Returns true when the Objective-C method declaration is a class method.
 
///
 
/// Example
 
/// matcher = objcMethodDecl(isClassMethod())
 
/// matches
 
/// \code
 
/// @interface I + (void)foo; @end
 
/// \endcode
 
/// but not
 
/// \code
 
/// @interface I - (void)bar; @end
 
/// \endcode
 
AST_MATCHER(ObjCMethodDecl, isClassMethod) {
 
  return Node.isClassMethod();
 
}
 
 
 
/// Returns true when the Objective-C method declaration is an instance method.
 
///
 
/// Example
 
/// matcher = objcMethodDecl(isInstanceMethod())
 
/// matches
 
/// \code
 
/// @interface I - (void)bar; @end
 
/// \endcode
 
/// but not
 
/// \code
 
/// @interface I + (void)foo; @end
 
/// \endcode
 
AST_MATCHER(ObjCMethodDecl, isInstanceMethod) {
 
  return Node.isInstanceMethod();
 
}
 
 
 
/// Returns true when the Objective-C message is sent to a class.
 
///
 
/// Example
 
/// matcher = objcMessageExpr(isClassMessage())
 
/// matches
 
/// \code
 
///   [NSString stringWithFormat:@"format"];
 
/// \endcode
 
/// but not
 
/// \code
 
///   NSString *x = @"hello";
 
///   [x containsString:@"h"];
 
/// \endcode
 
AST_MATCHER(ObjCMessageExpr, isClassMessage) {
 
  return Node.isClassMessage();
 
}
 
 
 
/// Returns true when the Objective-C message is sent to an instance.
 
///
 
/// Example
 
/// matcher = objcMessageExpr(isInstanceMessage())
 
/// matches
 
/// \code
 
///   NSString *x = @"hello";
 
///   [x containsString:@"h"];
 
/// \endcode
 
/// but not
 
/// \code
 
///   [NSString stringWithFormat:@"format"];
 
/// \endcode
 
AST_MATCHER(ObjCMessageExpr, isInstanceMessage) {
 
  return Node.isInstanceMessage();
 
}
 
 
 
/// Matches if the Objective-C message is sent to an instance,
 
/// and the inner matcher matches on that instance.
 
///
 
/// For example the method call in
 
/// \code
 
///   NSString *x = @"hello";
 
///   [x containsString:@"h"];
 
/// \endcode
 
/// is matched by
 
/// objcMessageExpr(hasReceiver(declRefExpr(to(varDecl(hasName("x"))))))
 
AST_MATCHER_P(ObjCMessageExpr, hasReceiver, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  const Expr *ReceiverNode = Node.getInstanceReceiver();
 
  return (ReceiverNode != nullptr &&
 
          InnerMatcher.matches(*ReceiverNode->IgnoreParenImpCasts(), Finder,
 
                               Builder));
 
}
 
 
 
/// Matches when BaseName == Selector.getAsString()
 
///
 
///  matcher = objCMessageExpr(hasSelector("loadHTMLString:baseURL:"));
 
///  matches the outer message expr in the code below, but NOT the message
 
///  invocation for self.bodyView.
 
/// \code
 
///     [self.bodyView loadHTMLString:html baseURL:NULL];
 
/// \endcode
 
AST_MATCHER_P(ObjCMessageExpr, hasSelector, std::string, BaseName) {
 
  Selector Sel = Node.getSelector();
 
  return BaseName == Sel.getAsString();
 
}
 
 
 
/// Matches when at least one of the supplied string equals to the
 
/// Selector.getAsString()
 
///
 
///  matcher = objCMessageExpr(hasSelector("methodA:", "methodB:"));
 
///  matches both of the expressions below:
 
/// \code
 
///     [myObj methodA:argA];
 
///     [myObj methodB:argB];
 
/// \endcode
 
extern const internal::VariadicFunction<internal::Matcher<ObjCMessageExpr>,
 
                                        StringRef,
 
                                        internal::hasAnySelectorFunc>
 
                                        hasAnySelector;
 
 
 
/// Matches ObjC selectors whose name contains
 
/// a substring matched by the given RegExp.
 
///  matcher = objCMessageExpr(matchesSelector("loadHTMLString\:baseURL?"));
 
///  matches the outer message expr in the code below, but NOT the message
 
///  invocation for self.bodyView.
 
/// \code
 
///     [self.bodyView loadHTMLString:html baseURL:NULL];
 
/// \endcode
 
AST_MATCHER_REGEX(ObjCMessageExpr, matchesSelector, RegExp) {
 
  std::string SelectorString = Node.getSelector().getAsString();
 
  return RegExp->match(SelectorString);
 
}
 
 
 
/// Matches when the selector is the empty selector
 
///
 
/// Matches only when the selector of the objCMessageExpr is NULL. This may
 
/// represent an error condition in the tree!
 
AST_MATCHER(ObjCMessageExpr, hasNullSelector) {
 
  return Node.getSelector().isNull();
 
}
 
 
 
/// Matches when the selector is a Unary Selector
 
///
 
///  matcher = objCMessageExpr(matchesSelector(hasUnarySelector());
 
///  matches self.bodyView in the code below, but NOT the outer message
 
///  invocation of "loadHTMLString:baseURL:".
 
/// \code
 
///     [self.bodyView loadHTMLString:html baseURL:NULL];
 
/// \endcode
 
AST_MATCHER(ObjCMessageExpr, hasUnarySelector) {
 
  return Node.getSelector().isUnarySelector();
 
}
 
 
 
/// Matches when the selector is a keyword selector
 
///
 
/// objCMessageExpr(hasKeywordSelector()) matches the generated setFrame
 
/// message expression in
 
///
 
/// \code
 
///   UIWebView *webView = ...;
 
///   CGRect bodyFrame = webView.frame;
 
///   bodyFrame.size.height = self.bodyContentHeight;
 
///   webView.frame = bodyFrame;
 
///   //     ^---- matches here
 
/// \endcode
 
AST_MATCHER(ObjCMessageExpr, hasKeywordSelector) {
 
  return Node.getSelector().isKeywordSelector();
 
}
 
 
 
/// Matches when the selector has the specified number of arguments
 
///
 
///  matcher = objCMessageExpr(numSelectorArgs(0));
 
///  matches self.bodyView in the code below
 
///
 
///  matcher = objCMessageExpr(numSelectorArgs(2));
 
///  matches the invocation of "loadHTMLString:baseURL:" but not that
 
///  of self.bodyView
 
/// \code
 
///     [self.bodyView loadHTMLString:html baseURL:NULL];
 
/// \endcode
 
AST_MATCHER_P(ObjCMessageExpr, numSelectorArgs, unsigned, N) {
 
  return Node.getSelector().getNumArgs() == N;
 
}
 
 
 
/// Matches if the call expression's callee expression matches.
 
///
 
/// Given
 
/// \code
 
///   class Y { void x() { this->x(); x(); Y y; y.x(); } };
 
///   void f() { f(); }
 
/// \endcode
 
/// callExpr(callee(expr()))
 
///   matches this->x(), x(), y.x(), f()
 
/// with callee(...)
 
///   matching this->x, x, y.x, f respectively
 
///
 
/// Note: Callee cannot take the more general internal::Matcher<Expr>
 
/// because this introduces ambiguous overloads with calls to Callee taking a
 
/// internal::Matcher<Decl>, as the matcher hierarchy is purely
 
/// implemented in terms of implicit casts.
 
AST_MATCHER_P(CallExpr, callee, internal::Matcher<Stmt>,
 
              InnerMatcher) {
 
  const Expr *ExprNode = Node.getCallee();
 
  return (ExprNode != nullptr &&
 
          InnerMatcher.matches(*ExprNode, Finder, Builder));
 
}
 
 
 
/// Matches 1) if the call expression's callee's declaration matches the
 
/// given matcher; or 2) if the Obj-C message expression's callee's method
 
/// declaration matches the given matcher.
 
///
 
/// Example matches y.x() (matcher = callExpr(callee(
 
///                                    cxxMethodDecl(hasName("x")))))
 
/// \code
 
///   class Y { public: void x(); };
 
///   void z() { Y y; y.x(); }
 
/// \endcode
 
///
 
/// Example 2. Matches [I foo] with
 
/// objcMessageExpr(callee(objcMethodDecl(hasName("foo"))))
 
///
 
/// \code
 
///   @interface I: NSObject
 
///   +(void)foo;
 
///   @end
 
///   ...
 
///   [I foo]
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    callee, AST_POLYMORPHIC_SUPPORTED_TYPES(ObjCMessageExpr, CallExpr),
 
    internal::Matcher<Decl>, InnerMatcher, 1) {
 
  if (const auto *CallNode = dyn_cast<CallExpr>(&Node))
 
    return callExpr(hasDeclaration(InnerMatcher))
 
        .matches(Node, Finder, Builder);
 
  else {
 
    // The dynamic cast below is guaranteed to succeed as there are only 2
 
    // supported return types.
 
    const auto *MsgNode = cast<ObjCMessageExpr>(&Node);
 
    const Decl *DeclNode = MsgNode->getMethodDecl();
 
    return (DeclNode != nullptr &&
 
            InnerMatcher.matches(*DeclNode, Finder, Builder));
 
  }
 
}
 
 
 
/// Matches if the expression's or declaration's type matches a type
 
/// matcher.
 
///
 
/// Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X")))))
 
///             and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X")))))
 
///             and U (matcher = typedefDecl(hasType(asString("int")))
 
///             and friend class X (matcher = friendDecl(hasType("X"))
 
///             and public virtual X (matcher = cxxBaseSpecifier(hasType(
 
///                                               asString("class X")))
 
/// \code
 
///  class X {};
 
///  void y(X &x) { x; X z; }
 
///  typedef int U;
 
///  class Y { friend class X; };
 
///  class Z : public virtual X {};
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    hasType,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(Expr, FriendDecl, TypedefNameDecl,
 
                                    ValueDecl, CXXBaseSpecifier),
 
    internal::Matcher<QualType>, InnerMatcher, 0) {
 
  QualType QT = internal::getUnderlyingType(Node);
 
  if (!QT.isNull())
 
    return InnerMatcher.matches(QT, Finder, Builder);
 
  return false;
 
}
 
 
 
/// Overloaded to match the declaration of the expression's or value
 
/// declaration's type.
 
///
 
/// In case of a value declaration (for example a variable declaration),
 
/// this resolves one layer of indirection. For example, in the value
 
/// declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of
 
/// X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the
 
/// declaration of x.
 
///
 
/// Example matches x (matcher = expr(hasType(cxxRecordDecl(hasName("X")))))
 
///             and z (matcher = varDecl(hasType(cxxRecordDecl(hasName("X")))))
 
///             and friend class X (matcher = friendDecl(hasType("X"))
 
///             and public virtual X (matcher = cxxBaseSpecifier(hasType(
 
///                                               cxxRecordDecl(hasName("X"))))
 
/// \code
 
///  class X {};
 
///  void y(X &x) { x; X z; }
 
///  class Y { friend class X; };
 
///  class Z : public virtual X {};
 
/// \endcode
 
///
 
/// Example matches class Derived
 
/// (matcher = cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("Base"))))))
 
/// \code
 
/// class Base {};
 
/// class Derived : Base {};
 
/// \endcode
 
///
 
/// Usable as: Matcher<Expr>, Matcher<FriendDecl>, Matcher<ValueDecl>,
 
/// Matcher<CXXBaseSpecifier>
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
 
    hasType,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(Expr, FriendDecl, ValueDecl,
 
                                    CXXBaseSpecifier),
 
    internal::Matcher<Decl>, InnerMatcher, 1) {
 
  QualType QT = internal::getUnderlyingType(Node);
 
  if (!QT.isNull())
 
    return qualType(hasDeclaration(InnerMatcher)).matches(QT, Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches if the type location of a node matches the inner matcher.
 
///
 
/// Examples:
 
/// \code
 
///   int x;
 
/// \endcode
 
/// declaratorDecl(hasTypeLoc(loc(asString("int"))))
 
///   matches int x
 
///
 
/// \code
 
/// auto x = int(3);
 
/// \endcode
 
/// cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("int"))))
 
///   matches int(3)
 
///
 
/// \code
 
/// struct Foo { Foo(int, int); };
 
/// auto x = Foo(1, 2);
 
/// \endcode
 
/// cxxFunctionalCastExpr(hasTypeLoc(loc(asString("struct Foo"))))
 
///   matches Foo(1, 2)
 
///
 
/// Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>,
 
///   Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>,
 
///   Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>,
 
///   Matcher<CXXUnresolvedConstructExpr>,
 
///   Matcher<ClassTemplateSpecializationDecl>, Matcher<CompoundLiteralExpr>,
 
///   Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>,
 
///   Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>,
 
///   Matcher<TypedefNameDecl>
 
AST_POLYMORPHIC_MATCHER_P(
 
    hasTypeLoc,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(
 
        BlockDecl, CXXBaseSpecifier, CXXCtorInitializer, CXXFunctionalCastExpr,
 
        CXXNewExpr, CXXTemporaryObjectExpr, CXXUnresolvedConstructExpr,
 
        ClassTemplateSpecializationDecl, CompoundLiteralExpr, DeclaratorDecl,
 
        ExplicitCastExpr, ObjCPropertyDecl, TemplateArgumentLoc,
 
        TypedefNameDecl),
 
    internal::Matcher<TypeLoc>, Inner) {
 
  TypeSourceInfo *source = internal::GetTypeSourceInfo(Node);
 
  if (source == nullptr) {
 
    // This happens for example for implicit destructors.
 
    return false;
 
  }
 
  return Inner.matches(source->getTypeLoc(), Finder, Builder);
 
}
 
 
 
/// Matches if the matched type is represented by the given string.
 
///
 
/// Given
 
/// \code
 
///   class Y { public: void x(); };
 
///   void z() { Y* y; y->x(); }
 
/// \endcode
 
/// cxxMemberCallExpr(on(hasType(asString("class Y *"))))
 
///   matches y->x()
 
AST_MATCHER_P(QualType, asString, std::string, Name) {
 
  return Name == Node.getAsString();
 
}
 
 
 
/// Matches if the matched type is a pointer type and the pointee type
 
/// matches the specified matcher.
 
///
 
/// Example matches y->x()
 
///   (matcher = cxxMemberCallExpr(on(hasType(pointsTo
 
///      cxxRecordDecl(hasName("Y")))))))
 
/// \code
 
///   class Y { public: void x(); };
 
///   void z() { Y *y; y->x(); }
 
/// \endcode
 
AST_MATCHER_P(
 
    QualType, pointsTo, internal::Matcher<QualType>,
 
    InnerMatcher) {
 
  return (!Node.isNull() && Node->isAnyPointerType() &&
 
          InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
 
}
 
 
 
/// Overloaded to match the pointee type's declaration.
 
AST_MATCHER_P_OVERLOAD(QualType, pointsTo, internal::Matcher<Decl>,
 
                       InnerMatcher, 1) {
 
  return pointsTo(qualType(hasDeclaration(InnerMatcher)))
 
      .matches(Node, Finder, Builder);
 
}
 
 
 
/// Matches if the matched type matches the unqualified desugared
 
/// type of the matched node.
 
///
 
/// For example, in:
 
/// \code
 
///   class A {};
 
///   using B = A;
 
/// \endcode
 
/// The matcher type(hasUnqualifiedDesugaredType(recordType())) matches
 
/// both B and A.
 
AST_MATCHER_P(Type, hasUnqualifiedDesugaredType, internal::Matcher<Type>,
 
              InnerMatcher) {
 
  return InnerMatcher.matches(*Node.getUnqualifiedDesugaredType(), Finder,
 
                              Builder);
 
}
 
 
 
/// Matches if the matched type is a reference type and the referenced
 
/// type matches the specified matcher.
 
///
 
/// Example matches X &x and const X &y
 
///     (matcher = varDecl(hasType(references(cxxRecordDecl(hasName("X"))))))
 
/// \code
 
///   class X {
 
///     void a(X b) {
 
///       X &x = b;
 
///       const X &y = b;
 
///     }
 
///   };
 
/// \endcode
 
AST_MATCHER_P(QualType, references, internal::Matcher<QualType>,
 
              InnerMatcher) {
 
  return (!Node.isNull() && Node->isReferenceType() &&
 
          InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
 
}
 
 
 
/// Matches QualTypes whose canonical type matches InnerMatcher.
 
///
 
/// Given:
 
/// \code
 
///   typedef int &int_ref;
 
///   int a;
 
///   int_ref b = a;
 
/// \endcode
 
///
 
/// \c varDecl(hasType(qualType(referenceType()))))) will not match the
 
/// declaration of b but \c
 
/// varDecl(hasType(qualType(hasCanonicalType(referenceType())))))) does.
 
AST_MATCHER_P(QualType, hasCanonicalType, internal::Matcher<QualType>,
 
              InnerMatcher) {
 
  if (Node.isNull())
 
    return false;
 
  return InnerMatcher.matches(Node.getCanonicalType(), Finder, Builder);
 
}
 
 
 
/// Overloaded to match the referenced type's declaration.
 
AST_MATCHER_P_OVERLOAD(QualType, references, internal::Matcher<Decl>,
 
                       InnerMatcher, 1) {
 
  return references(qualType(hasDeclaration(InnerMatcher)))
 
      .matches(Node, Finder, Builder);
 
}
 
 
 
/// Matches on the implicit object argument of a member call expression. Unlike
 
/// `on`, matches the argument directly without stripping away anything.
 
///
 
/// Given
 
/// \code
 
///   class Y { public: void m(); };
 
///   Y g();
 
///   class X : public Y { void g(); };
 
///   void z(Y y, X x) { y.m(); x.m(); x.g(); (g()).m(); }
 
/// \endcode
 
/// cxxMemberCallExpr(onImplicitObjectArgument(hasType(
 
///     cxxRecordDecl(hasName("Y")))))
 
///   matches `y.m()`, `x.m()` and (g()).m(), but not `x.g()`.
 
/// cxxMemberCallExpr(on(callExpr()))
 
///   does not match `(g()).m()`, because the parens are not ignored.
 
///
 
/// FIXME: Overload to allow directly matching types?
 
AST_MATCHER_P(CXXMemberCallExpr, onImplicitObjectArgument,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *ExprNode = Node.getImplicitObjectArgument();
 
  return (ExprNode != nullptr &&
 
          InnerMatcher.matches(*ExprNode, Finder, Builder));
 
}
 
 
 
/// Matches if the type of the expression's implicit object argument either
 
/// matches the InnerMatcher, or is a pointer to a type that matches the
 
/// InnerMatcher.
 
///
 
/// Given
 
/// \code
 
///   class Y { public: void m(); };
 
///   class X : public Y { void g(); };
 
///   void z() { Y y; y.m(); Y *p; p->m(); X x; x.m(); x.g(); }
 
/// \endcode
 
/// cxxMemberCallExpr(thisPointerType(hasDeclaration(
 
///     cxxRecordDecl(hasName("Y")))))
 
///   matches `y.m()`, `p->m()` and `x.m()`.
 
/// cxxMemberCallExpr(thisPointerType(hasDeclaration(
 
///     cxxRecordDecl(hasName("X")))))
 
///   matches `x.g()`.
 
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
 
                       internal::Matcher<QualType>, InnerMatcher, 0) {
 
  return onImplicitObjectArgument(
 
      anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
 
      .matches(Node, Finder, Builder);
 
}
 
 
 
/// Overloaded to match the type's declaration.
 
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
 
                       internal::Matcher<Decl>, InnerMatcher, 1) {
 
  return onImplicitObjectArgument(
 
      anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
 
      .matches(Node, Finder, Builder);
 
}
 
 
 
/// Matches a DeclRefExpr that refers to a declaration that matches the
 
/// specified matcher.
 
///
 
/// Example matches x in if(x)
 
///     (matcher = declRefExpr(to(varDecl(hasName("x")))))
 
/// \code
 
///   bool x;
 
///   if (x) {}
 
/// \endcode
 
AST_MATCHER_P(DeclRefExpr, to, internal::Matcher<Decl>,
 
              InnerMatcher) {
 
  const Decl *DeclNode = Node.getDecl();
 
  return (DeclNode != nullptr &&
 
          InnerMatcher.matches(*DeclNode, Finder, Builder));
 
}
 
 
 
/// Matches if a node refers to a declaration through a specific
 
/// using shadow declaration.
 
///
 
/// Examples:
 
/// \code
 
///   namespace a { int f(); }
 
///   using a::f;
 
///   int x = f();
 
/// \endcode
 
/// declRefExpr(throughUsingDecl(anything()))
 
///   matches \c f
 
///
 
/// \code
 
///   namespace a { class X{}; }
 
///   using a::X;
 
///   X x;
 
/// \endcode
 
/// typeLoc(loc(usingType(throughUsingDecl(anything()))))
 
///   matches \c X
 
///
 
/// Usable as: Matcher<DeclRefExpr>, Matcher<UsingType>
 
AST_POLYMORPHIC_MATCHER_P(throughUsingDecl,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(DeclRefExpr,
 
                                                          UsingType),
 
                          internal::Matcher<UsingShadowDecl>, Inner) {
 
  const NamedDecl *FoundDecl = Node.getFoundDecl();
 
  if (const UsingShadowDecl *UsingDecl = dyn_cast<UsingShadowDecl>(FoundDecl))
 
    return Inner.matches(*UsingDecl, Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches an \c OverloadExpr if any of the declarations in the set of
 
/// overloads matches the given matcher.
 
///
 
/// Given
 
/// \code
 
///   template <typename T> void foo(T);
 
///   template <typename T> void bar(T);
 
///   template <typename T> void baz(T t) {
 
///     foo(t);
 
///     bar(t);
 
///   }
 
/// \endcode
 
/// unresolvedLookupExpr(hasAnyDeclaration(
 
///     functionTemplateDecl(hasName("foo"))))
 
///   matches \c foo in \c foo(t); but not \c bar in \c bar(t);
 
AST_MATCHER_P(OverloadExpr, hasAnyDeclaration, internal::Matcher<Decl>,
 
              InnerMatcher) {
 
  return matchesFirstInPointerRange(InnerMatcher, Node.decls_begin(),
 
                                    Node.decls_end(), Finder,
 
                                    Builder) != Node.decls_end();
 
}
 
 
 
/// Matches the Decl of a DeclStmt which has a single declaration.
 
///
 
/// Given
 
/// \code
 
///   int a, b;
 
///   int c;
 
/// \endcode
 
/// declStmt(hasSingleDecl(anything()))
 
///   matches 'int c;' but not 'int a, b;'.
 
AST_MATCHER_P(DeclStmt, hasSingleDecl, internal::Matcher<Decl>, InnerMatcher) {
 
  if (Node.isSingleDecl()) {
 
    const Decl *FoundDecl = Node.getSingleDecl();
 
    return InnerMatcher.matches(*FoundDecl, Finder, Builder);
 
  }
 
  return false;
 
}
 
 
 
/// Matches a variable declaration that has an initializer expression
 
/// that matches the given matcher.
 
///
 
/// Example matches x (matcher = varDecl(hasInitializer(callExpr())))
 
/// \code
 
///   bool y() { return true; }
 
///   bool x = y();
 
/// \endcode
 
AST_MATCHER_P(
 
    VarDecl, hasInitializer, internal::Matcher<Expr>,
 
    InnerMatcher) {
 
  const Expr *Initializer = Node.getAnyInitializer();
 
  return (Initializer != nullptr &&
 
          InnerMatcher.matches(*Initializer, Finder, Builder));
 
}
 
 
 
/// Matches a variable serving as the implicit variable for a lambda init-
 
/// capture.
 
///
 
/// Example matches x (matcher = varDecl(isInitCapture()))
 
/// \code
 
/// auto f = [x=3]() { return x; };
 
/// \endcode
 
AST_MATCHER(VarDecl, isInitCapture) { return Node.isInitCapture(); }
 
 
 
/// Matches each lambda capture in a lambda expression.
 
///
 
/// Given
 
/// \code
 
///   int main() {
 
///     int x, y;
 
///     float z;
 
///     auto f = [=]() { return x + y + z; };
 
///   }
 
/// \endcode
 
/// lambdaExpr(forEachLambdaCapture(
 
///     lambdaCapture(capturesVar(varDecl(hasType(isInteger()))))))
 
/// will trigger two matches, binding for 'x' and 'y' respectively.
 
AST_MATCHER_P(LambdaExpr, forEachLambdaCapture,
 
              internal::Matcher<LambdaCapture>, InnerMatcher) {
 
  BoundNodesTreeBuilder Result;
 
  bool Matched = false;
 
  for (const auto &Capture : Node.captures()) {
 
    if (Finder->isTraversalIgnoringImplicitNodes() && Capture.isImplicit())
 
      continue;
 
    BoundNodesTreeBuilder CaptureBuilder(*Builder);
 
    if (InnerMatcher.matches(Capture, Finder, &CaptureBuilder)) {
 
      Matched = true;
 
      Result.addMatch(CaptureBuilder);
 
    }
 
  }
 
  *Builder = std::move(Result);
 
  return Matched;
 
}
 
 
 
/// \brief Matches a static variable with local scope.
 
///
 
/// Example matches y (matcher = varDecl(isStaticLocal()))
 
/// \code
 
/// void f() {
 
///   int x;
 
///   static int y;
 
/// }
 
/// static int z;
 
/// \endcode
 
AST_MATCHER(VarDecl, isStaticLocal) {
 
  return Node.isStaticLocal();
 
}
 
 
 
/// Matches a variable declaration that has function scope and is a
 
/// non-static local variable.
 
///
 
/// Example matches x (matcher = varDecl(hasLocalStorage())
 
/// \code
 
/// void f() {
 
///   int x;
 
///   static int y;
 
/// }
 
/// int z;
 
/// \endcode
 
AST_MATCHER(VarDecl, hasLocalStorage) {
 
  return Node.hasLocalStorage();
 
}
 
 
 
/// Matches a variable declaration that does not have local storage.
 
///
 
/// Example matches y and z (matcher = varDecl(hasGlobalStorage())
 
/// \code
 
/// void f() {
 
///   int x;
 
///   static int y;
 
/// }
 
/// int z;
 
/// \endcode
 
AST_MATCHER(VarDecl, hasGlobalStorage) {
 
  return Node.hasGlobalStorage();
 
}
 
 
 
/// Matches a variable declaration that has automatic storage duration.
 
///
 
/// Example matches x, but not y, z, or a.
 
/// (matcher = varDecl(hasAutomaticStorageDuration())
 
/// \code
 
/// void f() {
 
///   int x;
 
///   static int y;
 
///   thread_local int z;
 
/// }
 
/// int a;
 
/// \endcode
 
AST_MATCHER(VarDecl, hasAutomaticStorageDuration) {
 
  return Node.getStorageDuration() == SD_Automatic;
 
}
 
 
 
/// Matches a variable declaration that has static storage duration.
 
/// It includes the variable declared at namespace scope and those declared
 
/// with "static" and "extern" storage class specifiers.
 
///
 
/// \code
 
/// void f() {
 
///   int x;
 
///   static int y;
 
///   thread_local int z;
 
/// }
 
/// int a;
 
/// static int b;
 
/// extern int c;
 
/// varDecl(hasStaticStorageDuration())
 
///   matches the function declaration y, a, b and c.
 
/// \endcode
 
AST_MATCHER(VarDecl, hasStaticStorageDuration) {
 
  return Node.getStorageDuration() == SD_Static;
 
}
 
 
 
/// Matches a variable declaration that has thread storage duration.
 
///
 
/// Example matches z, but not x, z, or a.
 
/// (matcher = varDecl(hasThreadStorageDuration())
 
/// \code
 
/// void f() {
 
///   int x;
 
///   static int y;
 
///   thread_local int z;
 
/// }
 
/// int a;
 
/// \endcode
 
AST_MATCHER(VarDecl, hasThreadStorageDuration) {
 
  return Node.getStorageDuration() == SD_Thread;
 
}
 
 
 
/// Matches a variable declaration that is an exception variable from
 
/// a C++ catch block, or an Objective-C \@catch statement.
 
///
 
/// Example matches x (matcher = varDecl(isExceptionVariable())
 
/// \code
 
/// void f(int y) {
 
///   try {
 
///   } catch (int x) {
 
///   }
 
/// }
 
/// \endcode
 
AST_MATCHER(VarDecl, isExceptionVariable) {
 
  return Node.isExceptionVariable();
 
}
 
 
 
/// Checks that a call expression or a constructor call expression has
 
/// a specific number of arguments (including absent default arguments).
 
///
 
/// Example matches f(0, 0) (matcher = callExpr(argumentCountIs(2)))
 
/// \code
 
///   void f(int x, int y);
 
///   f(0, 0);
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P(argumentCountIs,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                              CallExpr, CXXConstructExpr,
 
                              CXXUnresolvedConstructExpr, ObjCMessageExpr),
 
                          unsigned, N) {
 
  unsigned NumArgs = Node.getNumArgs();
 
  if (!Finder->isTraversalIgnoringImplicitNodes())
 
    return NumArgs == N;
 
  while (NumArgs) {
 
    if (!isa<CXXDefaultArgExpr>(Node.getArg(NumArgs - 1)))
 
      break;
 
    --NumArgs;
 
  }
 
  return NumArgs == N;
 
}
 
 
 
/// Matches the n'th argument of a call expression or a constructor
 
/// call expression.
 
///
 
/// Example matches y in x(y)
 
///     (matcher = callExpr(hasArgument(0, declRefExpr())))
 
/// \code
 
///   void x(int) { int y; x(y); }
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P2(hasArgument,
 
                           AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                               CallExpr, CXXConstructExpr,
 
                               CXXUnresolvedConstructExpr, ObjCMessageExpr),
 
                           unsigned, N, internal::Matcher<Expr>, InnerMatcher) {
 
  if (N >= Node.getNumArgs())
 
    return false;
 
  const Expr *Arg = Node.getArg(N);
 
  if (Finder->isTraversalIgnoringImplicitNodes() && isa<CXXDefaultArgExpr>(Arg))
 
    return false;
 
  return InnerMatcher.matches(*Arg->IgnoreParenImpCasts(), Finder, Builder);
 
}
 
 
 
/// Matches the n'th item of an initializer list expression.
 
///
 
/// Example matches y.
 
///     (matcher = initListExpr(hasInit(0, expr())))
 
/// \code
 
///   int x{y}.
 
/// \endcode
 
AST_MATCHER_P2(InitListExpr, hasInit, unsigned, N,
 
               ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
 
  return N < Node.getNumInits() &&
 
          InnerMatcher.matches(*Node.getInit(N), Finder, Builder);
 
}
 
 
 
/// Matches declaration statements that contain a specific number of
 
/// declarations.
 
///
 
/// Example: Given
 
/// \code
 
///   int a, b;
 
///   int c;
 
///   int d = 2, e;
 
/// \endcode
 
/// declCountIs(2)
 
///   matches 'int a, b;' and 'int d = 2, e;', but not 'int c;'.
 
AST_MATCHER_P(DeclStmt, declCountIs, unsigned, N) {
 
  return std::distance(Node.decl_begin(), Node.decl_end()) == (ptrdiff_t)N;
 
}
 
 
 
/// Matches the n'th declaration of a declaration statement.
 
///
 
/// Note that this does not work for global declarations because the AST
 
/// breaks up multiple-declaration DeclStmt's into multiple single-declaration
 
/// DeclStmt's.
 
/// Example: Given non-global declarations
 
/// \code
 
///   int a, b = 0;
 
///   int c;
 
///   int d = 2, e;
 
/// \endcode
 
/// declStmt(containsDeclaration(
 
///       0, varDecl(hasInitializer(anything()))))
 
///   matches only 'int d = 2, e;', and
 
/// declStmt(containsDeclaration(1, varDecl()))
 
/// \code
 
///   matches 'int a, b = 0' as well as 'int d = 2, e;'
 
///   but 'int c;' is not matched.
 
/// \endcode
 
AST_MATCHER_P2(DeclStmt, containsDeclaration, unsigned, N,
 
               internal::Matcher<Decl>, InnerMatcher) {
 
  const unsigned NumDecls = std::distance(Node.decl_begin(), Node.decl_end());
 
  if (N >= NumDecls)
 
    return false;
 
  DeclStmt::const_decl_iterator Iterator = Node.decl_begin();
 
  std::advance(Iterator, N);
 
  return InnerMatcher.matches(**Iterator, Finder, Builder);
 
}
 
 
 
/// Matches a C++ catch statement that has a catch-all handler.
 
///
 
/// Given
 
/// \code
 
///   try {
 
///     // ...
 
///   } catch (int) {
 
///     // ...
 
///   } catch (...) {
 
///     // ...
 
///   }
 
/// \endcode
 
/// cxxCatchStmt(isCatchAll()) matches catch(...) but not catch(int).
 
AST_MATCHER(CXXCatchStmt, isCatchAll) {
 
  return Node.getExceptionDecl() == nullptr;
 
}
 
 
 
/// Matches a constructor initializer.
 
///
 
/// Given
 
/// \code
 
///   struct Foo {
 
///     Foo() : foo_(1) { }
 
///     int foo_;
 
///   };
 
/// \endcode
 
/// cxxRecordDecl(has(cxxConstructorDecl(
 
///   hasAnyConstructorInitializer(anything())
 
/// )))
 
///   record matches Foo, hasAnyConstructorInitializer matches foo_(1)
 
AST_MATCHER_P(CXXConstructorDecl, hasAnyConstructorInitializer,
 
              internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
 
  auto MatchIt = matchesFirstInPointerRange(InnerMatcher, Node.init_begin(),
 
                                            Node.init_end(), Finder, Builder);
 
  if (MatchIt == Node.init_end())
 
    return false;
 
  return (*MatchIt)->isWritten() || !Finder->isTraversalIgnoringImplicitNodes();
 
}
 
 
 
/// Matches the field declaration of a constructor initializer.
 
///
 
/// Given
 
/// \code
 
///   struct Foo {
 
///     Foo() : foo_(1) { }
 
///     int foo_;
 
///   };
 
/// \endcode
 
/// cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer(
 
///     forField(hasName("foo_"))))))
 
///   matches Foo
 
/// with forField matching foo_
 
AST_MATCHER_P(CXXCtorInitializer, forField,
 
              internal::Matcher<FieldDecl>, InnerMatcher) {
 
  const FieldDecl *NodeAsDecl = Node.getAnyMember();
 
  return (NodeAsDecl != nullptr &&
 
      InnerMatcher.matches(*NodeAsDecl, Finder, Builder));
 
}
 
 
 
/// Matches the initializer expression of a constructor initializer.
 
///
 
/// Given
 
/// \code
 
///   struct Foo {
 
///     Foo() : foo_(1) { }
 
///     int foo_;
 
///   };
 
/// \endcode
 
/// cxxRecordDecl(has(cxxConstructorDecl(hasAnyConstructorInitializer(
 
///     withInitializer(integerLiteral(equals(1)))))))
 
///   matches Foo
 
/// with withInitializer matching (1)
 
AST_MATCHER_P(CXXCtorInitializer, withInitializer,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr* NodeAsExpr = Node.getInit();
 
  return (NodeAsExpr != nullptr &&
 
      InnerMatcher.matches(*NodeAsExpr, Finder, Builder));
 
}
 
 
 
/// Matches a constructor initializer if it is explicitly written in
 
/// code (as opposed to implicitly added by the compiler).
 
///
 
/// Given
 
/// \code
 
///   struct Foo {
 
///     Foo() { }
 
///     Foo(int) : foo_("A") { }
 
///     string foo_;
 
///   };
 
/// \endcode
 
/// cxxConstructorDecl(hasAnyConstructorInitializer(isWritten()))
 
///   will match Foo(int), but not Foo()
 
AST_MATCHER(CXXCtorInitializer, isWritten) {
 
  return Node.isWritten();
 
}
 
 
 
/// Matches a constructor initializer if it is initializing a base, as
 
/// opposed to a member.
 
///
 
/// Given
 
/// \code
 
///   struct B {};
 
///   struct D : B {
 
///     int I;
 
///     D(int i) : I(i) {}
 
///   };
 
///   struct E : B {
 
///     E() : B() {}
 
///   };
 
/// \endcode
 
/// cxxConstructorDecl(hasAnyConstructorInitializer(isBaseInitializer()))
 
///   will match E(), but not match D(int).
 
AST_MATCHER(CXXCtorInitializer, isBaseInitializer) {
 
  return Node.isBaseInitializer();
 
}
 
 
 
/// Matches a constructor initializer if it is initializing a member, as
 
/// opposed to a base.
 
///
 
/// Given
 
/// \code
 
///   struct B {};
 
///   struct D : B {
 
///     int I;
 
///     D(int i) : I(i) {}
 
///   };
 
///   struct E : B {
 
///     E() : B() {}
 
///   };
 
/// \endcode
 
/// cxxConstructorDecl(hasAnyConstructorInitializer(isMemberInitializer()))
 
///   will match D(int), but not match E().
 
AST_MATCHER(CXXCtorInitializer, isMemberInitializer) {
 
  return Node.isMemberInitializer();
 
}
 
 
 
/// Matches any argument of a call expression or a constructor call
 
/// expression, or an ObjC-message-send expression.
 
///
 
/// Given
 
/// \code
 
///   void x(int, int, int) { int y; x(1, y, 42); }
 
/// \endcode
 
/// callExpr(hasAnyArgument(declRefExpr()))
 
///   matches x(1, y, 42)
 
/// with hasAnyArgument(...)
 
///   matching y
 
///
 
/// For ObjectiveC, given
 
/// \code
 
///   @interface I - (void) f:(int) y; @end
 
///   void foo(I *i) { [i f:12]; }
 
/// \endcode
 
/// objcMessageExpr(hasAnyArgument(integerLiteral(equals(12))))
 
///   matches [i f:12]
 
AST_POLYMORPHIC_MATCHER_P(hasAnyArgument,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                              CallExpr, CXXConstructExpr,
 
                              CXXUnresolvedConstructExpr, ObjCMessageExpr),
 
                          internal::Matcher<Expr>, InnerMatcher) {
 
  for (const Expr *Arg : Node.arguments()) {
 
    if (Finder->isTraversalIgnoringImplicitNodes() &&
 
        isa<CXXDefaultArgExpr>(Arg))
 
      break;
 
    BoundNodesTreeBuilder Result(*Builder);
 
    if (InnerMatcher.matches(*Arg, Finder, &Result)) {
 
      *Builder = std::move(Result);
 
      return true;
 
    }
 
  }
 
  return false;
 
}
 
 
 
/// Matches lambda captures.
 
///
 
/// Given
 
/// \code
 
///   int main() {
 
///     int x;
 
///     auto f = [x](){};
 
///     auto g = [x = 1](){};
 
///   }
 
/// \endcode
 
/// In the matcher `lambdaExpr(hasAnyCapture(lambdaCapture()))`,
 
/// `lambdaCapture()` matches `x` and `x=1`.
 
extern const internal::VariadicAllOfMatcher<LambdaCapture> lambdaCapture;
 
 
 
/// Matches any capture in a lambda expression.
 
///
 
/// Given
 
/// \code
 
///   void foo() {
 
///     int t = 5;
 
///     auto f = [=](){ return t; };
 
///   }
 
/// \endcode
 
/// lambdaExpr(hasAnyCapture(lambdaCapture())) and
 
/// lambdaExpr(hasAnyCapture(lambdaCapture(refersToVarDecl(hasName("t")))))
 
///   both match `[=](){ return t; }`.
 
AST_MATCHER_P(LambdaExpr, hasAnyCapture, internal::Matcher<LambdaCapture>,
 
              InnerMatcher) {
 
  for (const LambdaCapture &Capture : Node.captures()) {
 
    clang::ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
 
    if (InnerMatcher.matches(Capture, Finder, &Result)) {
 
      *Builder = std::move(Result);
 
      return true;
 
    }
 
  }
 
  return false;
 
}
 
 
 
/// Matches a `LambdaCapture` that refers to the specified `VarDecl`. The
 
/// `VarDecl` can be a separate variable that is captured by value or
 
/// reference, or a synthesized variable if the capture has an initializer.
 
///
 
/// Given
 
/// \code
 
///   void foo() {
 
///     int x;
 
///     auto f = [x](){};
 
///     auto g = [x = 1](){};
 
///   }
 
/// \endcode
 
/// In the matcher
 
/// lambdaExpr(hasAnyCapture(lambdaCapture(capturesVar(hasName("x")))),
 
/// capturesVar(hasName("x")) matches `x` and `x = 1`.
 
AST_MATCHER_P(LambdaCapture, capturesVar, internal::Matcher<ValueDecl>,
 
              InnerMatcher) {
 
  auto *capturedVar = Node.getCapturedVar();
 
  return capturedVar && InnerMatcher.matches(*capturedVar, Finder, Builder);
 
}
 
 
 
/// Matches a `LambdaCapture` that refers to 'this'.
 
///
 
/// Given
 
/// \code
 
/// class C {
 
///   int cc;
 
///   int f() {
 
///     auto l = [this]() { return cc; };
 
///     return l();
 
///   }
 
/// };
 
/// \endcode
 
/// lambdaExpr(hasAnyCapture(lambdaCapture(capturesThis())))
 
///   matches `[this]() { return cc; }`.
 
AST_MATCHER(LambdaCapture, capturesThis) { return Node.capturesThis(); }
 
 
 
/// Matches a constructor call expression which uses list initialization.
 
AST_MATCHER(CXXConstructExpr, isListInitialization) {
 
  return Node.isListInitialization();
 
}
 
 
 
/// Matches a constructor call expression which requires
 
/// zero initialization.
 
///
 
/// Given
 
/// \code
 
/// void foo() {
 
///   struct point { double x; double y; };
 
///   point pt[2] = { { 1.0, 2.0 } };
 
/// }
 
/// \endcode
 
/// initListExpr(has(cxxConstructExpr(requiresZeroInitialization()))
 
/// will match the implicit array filler for pt[1].
 
AST_MATCHER(CXXConstructExpr, requiresZeroInitialization) {
 
  return Node.requiresZeroInitialization();
 
}
 
 
 
/// Matches the n'th parameter of a function or an ObjC method
 
/// declaration or a block.
 
///
 
/// Given
 
/// \code
 
///   class X { void f(int x) {} };
 
/// \endcode
 
/// cxxMethodDecl(hasParameter(0, hasType(varDecl())))
 
///   matches f(int x) {}
 
/// with hasParameter(...)
 
///   matching int x
 
///
 
/// For ObjectiveC, given
 
/// \code
 
///   @interface I - (void) f:(int) y; @end
 
/// \endcode
 
//
 
/// the matcher objcMethodDecl(hasParameter(0, hasName("y")))
 
/// matches the declaration of method f with hasParameter
 
/// matching y.
 
AST_POLYMORPHIC_MATCHER_P2(hasParameter,
 
                           AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
 
                                                           ObjCMethodDecl,
 
                                                           BlockDecl),
 
                           unsigned, N, internal::Matcher<ParmVarDecl>,
 
                           InnerMatcher) {
 
  return (N < Node.parameters().size()
 
          && InnerMatcher.matches(*Node.parameters()[N], Finder, Builder));
 
}
 
 
 
/// Matches all arguments and their respective ParmVarDecl.
 
///
 
/// Given
 
/// \code
 
///   void f(int i);
 
///   int y;
 
///   f(y);
 
/// \endcode
 
/// callExpr(
 
///   forEachArgumentWithParam(
 
///     declRefExpr(to(varDecl(hasName("y")))),
 
///     parmVarDecl(hasType(isInteger()))
 
/// ))
 
///   matches f(y);
 
/// with declRefExpr(...)
 
///   matching int y
 
/// and parmVarDecl(...)
 
///   matching int i
 
AST_POLYMORPHIC_MATCHER_P2(forEachArgumentWithParam,
 
                           AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
 
                                                           CXXConstructExpr),
 
                           internal::Matcher<Expr>, ArgMatcher,
 
                           internal::Matcher<ParmVarDecl>, ParamMatcher) {
 
  BoundNodesTreeBuilder Result;
 
  // The first argument of an overloaded member operator is the implicit object
 
  // argument of the method which should not be matched against a parameter, so
 
  // we skip over it here.
 
  BoundNodesTreeBuilder Matches;
 
  unsigned ArgIndex = cxxOperatorCallExpr(callee(cxxMethodDecl()))
 
                              .matches(Node, Finder, &Matches)
 
                          ? 1
 
                          : 0;
 
  int ParamIndex = 0;
 
  bool Matched = false;
 
  for (; ArgIndex < Node.getNumArgs(); ++ArgIndex) {
 
    BoundNodesTreeBuilder ArgMatches(*Builder);
 
    if (ArgMatcher.matches(*(Node.getArg(ArgIndex)->IgnoreParenCasts()),
 
                           Finder, &ArgMatches)) {
 
      BoundNodesTreeBuilder ParamMatches(ArgMatches);
 
      if (expr(anyOf(cxxConstructExpr(hasDeclaration(cxxConstructorDecl(
 
                         hasParameter(ParamIndex, ParamMatcher)))),
 
                     callExpr(callee(functionDecl(
 
                         hasParameter(ParamIndex, ParamMatcher))))))
 
              .matches(Node, Finder, &ParamMatches)) {
 
        Result.addMatch(ParamMatches);
 
        Matched = true;
 
      }
 
    }
 
    ++ParamIndex;
 
  }
 
  *Builder = std::move(Result);
 
  return Matched;
 
}
 
 
 
/// Matches all arguments and their respective types for a \c CallExpr or
 
/// \c CXXConstructExpr. It is very similar to \c forEachArgumentWithParam but
 
/// it works on calls through function pointers as well.
 
///
 
/// The difference is, that function pointers do not provide access to a
 
/// \c ParmVarDecl, but only the \c QualType for each argument.
 
///
 
/// Given
 
/// \code
 
///   void f(int i);
 
///   int y;
 
///   f(y);
 
///   void (*f_ptr)(int) = f;
 
///   f_ptr(y);
 
/// \endcode
 
/// callExpr(
 
///   forEachArgumentWithParamType(
 
///     declRefExpr(to(varDecl(hasName("y")))),
 
///     qualType(isInteger()).bind("type)
 
/// ))
 
///   matches f(y) and f_ptr(y)
 
/// with declRefExpr(...)
 
///   matching int y
 
/// and qualType(...)
 
///   matching int
 
AST_POLYMORPHIC_MATCHER_P2(forEachArgumentWithParamType,
 
                           AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
 
                                                           CXXConstructExpr),
 
                           internal::Matcher<Expr>, ArgMatcher,
 
                           internal::Matcher<QualType>, ParamMatcher) {
 
  BoundNodesTreeBuilder Result;
 
  // The first argument of an overloaded member operator is the implicit object
 
  // argument of the method which should not be matched against a parameter, so
 
  // we skip over it here.
 
  BoundNodesTreeBuilder Matches;
 
  unsigned ArgIndex = cxxOperatorCallExpr(callee(cxxMethodDecl()))
 
                              .matches(Node, Finder, &Matches)
 
                          ? 1
 
                          : 0;
 
 
 
  const FunctionProtoType *FProto = nullptr;
 
 
 
  if (const auto *Call = dyn_cast<CallExpr>(&Node)) {
 
    if (const auto *Value =
 
            dyn_cast_or_null<ValueDecl>(Call->getCalleeDecl())) {
 
      QualType QT = Value->getType().getCanonicalType();
 
 
 
      // This does not necessarily lead to a `FunctionProtoType`,
 
      // e.g. K&R functions do not have a function prototype.
 
      if (QT->isFunctionPointerType())
 
        FProto = QT->getPointeeType()->getAs<FunctionProtoType>();
 
 
 
      if (QT->isMemberFunctionPointerType()) {
 
        const auto *MP = QT->getAs<MemberPointerType>();
 
        assert(MP && "Must be member-pointer if its a memberfunctionpointer");
 
        FProto = MP->getPointeeType()->getAs<FunctionProtoType>();
 
        assert(FProto &&
 
               "The call must have happened through a member function "
 
               "pointer");
 
      }
 
    }
 
  }
 
 
 
  unsigned ParamIndex = 0;
 
  bool Matched = false;
 
  unsigned NumArgs = Node.getNumArgs();
 
  if (FProto && FProto->isVariadic())
 
    NumArgs = std::min(NumArgs, FProto->getNumParams());
 
 
 
  for (; ArgIndex < NumArgs; ++ArgIndex, ++ParamIndex) {
 
    BoundNodesTreeBuilder ArgMatches(*Builder);
 
    if (ArgMatcher.matches(*(Node.getArg(ArgIndex)->IgnoreParenCasts()), Finder,
 
                           &ArgMatches)) {
 
      BoundNodesTreeBuilder ParamMatches(ArgMatches);
 
 
 
      // This test is cheaper compared to the big matcher in the next if.
 
      // Therefore, please keep this order.
 
      if (FProto && FProto->getNumParams() > ParamIndex) {
 
        QualType ParamType = FProto->getParamType(ParamIndex);
 
        if (ParamMatcher.matches(ParamType, Finder, &ParamMatches)) {
 
          Result.addMatch(ParamMatches);
 
          Matched = true;
 
          continue;
 
        }
 
      }
 
      if (expr(anyOf(cxxConstructExpr(hasDeclaration(cxxConstructorDecl(
 
                         hasParameter(ParamIndex, hasType(ParamMatcher))))),
 
                     callExpr(callee(functionDecl(
 
                         hasParameter(ParamIndex, hasType(ParamMatcher)))))))
 
              .matches(Node, Finder, &ParamMatches)) {
 
        Result.addMatch(ParamMatches);
 
        Matched = true;
 
        continue;
 
      }
 
    }
 
  }
 
  *Builder = std::move(Result);
 
  return Matched;
 
}
 
 
 
/// Matches the ParmVarDecl nodes that are at the N'th position in the parameter
 
/// list. The parameter list could be that of either a block, function, or
 
/// objc-method.
 
///
 
///
 
/// Given
 
///
 
/// \code
 
/// void f(int a, int b, int c) {
 
/// }
 
/// \endcode
 
///
 
/// ``parmVarDecl(isAtPosition(0))`` matches ``int a``.
 
///
 
/// ``parmVarDecl(isAtPosition(1))`` matches ``int b``.
 
AST_MATCHER_P(ParmVarDecl, isAtPosition, unsigned, N) {
 
  const clang::DeclContext *Context = Node.getParentFunctionOrMethod();
 
 
 
  if (const auto *Decl = dyn_cast_or_null<FunctionDecl>(Context))
 
    return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
 
  if (const auto *Decl = dyn_cast_or_null<BlockDecl>(Context))
 
    return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
 
  if (const auto *Decl = dyn_cast_or_null<ObjCMethodDecl>(Context))
 
    return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
 
 
 
  return false;
 
}
 
 
 
/// Matches any parameter of a function or an ObjC method declaration or a
 
/// block.
 
///
 
/// Does not match the 'this' parameter of a method.
 
///
 
/// Given
 
/// \code
 
///   class X { void f(int x, int y, int z) {} };
 
/// \endcode
 
/// cxxMethodDecl(hasAnyParameter(hasName("y")))
 
///   matches f(int x, int y, int z) {}
 
/// with hasAnyParameter(...)
 
///   matching int y
 
///
 
/// For ObjectiveC, given
 
/// \code
 
///   @interface I - (void) f:(int) y; @end
 
/// \endcode
 
//
 
/// the matcher objcMethodDecl(hasAnyParameter(hasName("y")))
 
/// matches the declaration of method f with hasParameter
 
/// matching y.
 
///
 
/// For blocks, given
 
/// \code
 
///   b = ^(int y) { printf("%d", y) };
 
/// \endcode
 
///
 
/// the matcher blockDecl(hasAnyParameter(hasName("y")))
 
/// matches the declaration of the block b with hasParameter
 
/// matching y.
 
AST_POLYMORPHIC_MATCHER_P(hasAnyParameter,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
 
                                                          ObjCMethodDecl,
 
                                                          BlockDecl),
 
                          internal::Matcher<ParmVarDecl>,
 
                          InnerMatcher) {
 
  return matchesFirstInPointerRange(InnerMatcher, Node.param_begin(),
 
                                    Node.param_end(), Finder,
 
                                    Builder) != Node.param_end();
 
}
 
 
 
/// Matches \c FunctionDecls and \c FunctionProtoTypes that have a
 
/// specific parameter count.
 
///
 
/// Given
 
/// \code
 
///   void f(int i) {}
 
///   void g(int i, int j) {}
 
///   void h(int i, int j);
 
///   void j(int i);
 
///   void k(int x, int y, int z, ...);
 
/// \endcode
 
/// functionDecl(parameterCountIs(2))
 
///   matches \c g and \c h
 
/// functionProtoType(parameterCountIs(2))
 
///   matches \c g and \c h
 
/// functionProtoType(parameterCountIs(3))
 
///   matches \c k
 
AST_POLYMORPHIC_MATCHER_P(parameterCountIs,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
 
                                                          FunctionProtoType),
 
                          unsigned, N) {
 
  return Node.getNumParams() == N;
 
}
 
 
 
/// Matches classTemplateSpecialization, templateSpecializationType and
 
/// functionDecl nodes where the template argument matches the inner matcher.
 
/// This matcher may produce multiple matches.
 
///
 
/// Given
 
/// \code
 
///   template <typename T, unsigned N, unsigned M>
 
///   struct Matrix {};
 
///
 
///   constexpr unsigned R = 2;
 
///   Matrix<int, R * 2, R * 4> M;
 
///
 
///   template <typename T, typename U>
 
///   void f(T&& t, U&& u) {}
 
///
 
///   bool B = false;
 
///   f(R, B);
 
/// \endcode
 
/// templateSpecializationType(forEachTemplateArgument(isExpr(expr())))
 
///   matches twice, with expr() matching 'R * 2' and 'R * 4'
 
/// functionDecl(forEachTemplateArgument(refersToType(builtinType())))
 
///   matches the specialization f<unsigned, bool> twice, for 'unsigned'
 
///   and 'bool'
 
AST_POLYMORPHIC_MATCHER_P(
 
    forEachTemplateArgument,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
 
                                    TemplateSpecializationType, FunctionDecl),
 
    clang::ast_matchers::internal::Matcher<TemplateArgument>, InnerMatcher) {
 
  ArrayRef<TemplateArgument> TemplateArgs =
 
      clang::ast_matchers::internal::getTemplateSpecializationArgs(Node);
 
  clang::ast_matchers::internal::BoundNodesTreeBuilder Result;
 
  bool Matched = false;
 
  for (const auto &Arg : TemplateArgs) {
 
    clang::ast_matchers::internal::BoundNodesTreeBuilder ArgBuilder(*Builder);
 
    if (InnerMatcher.matches(Arg, Finder, &ArgBuilder)) {
 
      Matched = true;
 
      Result.addMatch(ArgBuilder);
 
    }
 
  }
 
  *Builder = std::move(Result);
 
  return Matched;
 
}
 
 
 
/// Matches \c FunctionDecls that have a noreturn attribute.
 
///
 
/// Given
 
/// \code
 
///   void nope();
 
///   [[noreturn]] void a();
 
///   __attribute__((noreturn)) void b();
 
///   struct c { [[noreturn]] c(); };
 
/// \endcode
 
/// functionDecl(isNoReturn())
 
///   matches all of those except
 
/// \code
 
///   void nope();
 
/// \endcode
 
AST_MATCHER(FunctionDecl, isNoReturn) { return Node.isNoReturn(); }
 
 
 
/// Matches the return type of a function declaration.
 
///
 
/// Given:
 
/// \code
 
///   class X { int f() { return 1; } };
 
/// \endcode
 
/// cxxMethodDecl(returns(asString("int")))
 
///   matches int f() { return 1; }
 
AST_MATCHER_P(FunctionDecl, returns,
 
              internal::Matcher<QualType>, InnerMatcher) {
 
  return InnerMatcher.matches(Node.getReturnType(), Finder, Builder);
 
}
 
 
 
/// Matches extern "C" function or variable declarations.
 
///
 
/// Given:
 
/// \code
 
///   extern "C" void f() {}
 
///   extern "C" { void g() {} }
 
///   void h() {}
 
///   extern "C" int x = 1;
 
///   extern "C" int y = 2;
 
///   int z = 3;
 
/// \endcode
 
/// functionDecl(isExternC())
 
///   matches the declaration of f and g, but not the declaration of h.
 
/// varDecl(isExternC())
 
///   matches the declaration of x and y, but not the declaration of z.
 
AST_POLYMORPHIC_MATCHER(isExternC, AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
 
                                                                   VarDecl)) {
 
  return Node.isExternC();
 
}
 
 
 
/// Matches variable/function declarations that have "static" storage
 
/// class specifier ("static" keyword) written in the source.
 
///
 
/// Given:
 
/// \code
 
///   static void f() {}
 
///   static int i = 0;
 
///   extern int j;
 
///   int k;
 
/// \endcode
 
/// functionDecl(isStaticStorageClass())
 
///   matches the function declaration f.
 
/// varDecl(isStaticStorageClass())
 
///   matches the variable declaration i.
 
AST_POLYMORPHIC_MATCHER(isStaticStorageClass,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
 
                                                        VarDecl)) {
 
  return Node.getStorageClass() == SC_Static;
 
}
 
 
 
/// Matches deleted function declarations.
 
///
 
/// Given:
 
/// \code
 
///   void Func();
 
///   void DeletedFunc() = delete;
 
/// \endcode
 
/// functionDecl(isDeleted())
 
///   matches the declaration of DeletedFunc, but not Func.
 
AST_MATCHER(FunctionDecl, isDeleted) {
 
  return Node.isDeleted();
 
}
 
 
 
/// Matches defaulted function declarations.
 
///
 
/// Given:
 
/// \code
 
///   class A { ~A(); };
 
///   class B { ~B() = default; };
 
/// \endcode
 
/// functionDecl(isDefaulted())
 
///   matches the declaration of ~B, but not ~A.
 
AST_MATCHER(FunctionDecl, isDefaulted) {
 
  return Node.isDefaulted();
 
}
 
 
 
/// Matches weak function declarations.
 
///
 
/// Given:
 
/// \code
 
///   void foo() __attribute__((__weakref__("__foo")));
 
///   void bar();
 
/// \endcode
 
/// functionDecl(isWeak())
 
///   matches the weak declaration "foo", but not "bar".
 
AST_MATCHER(FunctionDecl, isWeak) { return Node.isWeak(); }
 
 
 
/// Matches functions that have a dynamic exception specification.
 
///
 
/// Given:
 
/// \code
 
///   void f();
 
///   void g() noexcept;
 
///   void h() noexcept(true);
 
///   void i() noexcept(false);
 
///   void j() throw();
 
///   void k() throw(int);
 
///   void l() throw(...);
 
/// \endcode
 
/// functionDecl(hasDynamicExceptionSpec()) and
 
///   functionProtoType(hasDynamicExceptionSpec())
 
///   match the declarations of j, k, and l, but not f, g, h, or i.
 
AST_POLYMORPHIC_MATCHER(hasDynamicExceptionSpec,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
 
                                                        FunctionProtoType)) {
 
  if (const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node))
 
    return FnTy->hasDynamicExceptionSpec();
 
  return false;
 
}
 
 
 
/// Matches functions that have a non-throwing exception specification.
 
///
 
/// Given:
 
/// \code
 
///   void f();
 
///   void g() noexcept;
 
///   void h() throw();
 
///   void i() throw(int);
 
///   void j() noexcept(false);
 
/// \endcode
 
/// functionDecl(isNoThrow()) and functionProtoType(isNoThrow())
 
///   match the declarations of g, and h, but not f, i or j.
 
AST_POLYMORPHIC_MATCHER(isNoThrow,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
 
                                                        FunctionProtoType)) {
 
  const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node);
 
 
 
  // If the function does not have a prototype, then it is assumed to be a
 
  // throwing function (as it would if the function did not have any exception
 
  // specification).
 
  if (!FnTy)
 
    return false;
 
 
 
  // Assume the best for any unresolved exception specification.
 
  if (isUnresolvedExceptionSpec(FnTy->getExceptionSpecType()))
 
    return true;
 
 
 
  return FnTy->isNothrow();
 
}
 
 
 
/// Matches consteval function declarations and if consteval/if ! consteval
 
/// statements.
 
///
 
/// Given:
 
/// \code
 
///   consteval int a();
 
///   void b() { if consteval {} }
 
///   void c() { if ! consteval {} }
 
///   void d() { if ! consteval {} else {} }
 
/// \endcode
 
/// functionDecl(isConsteval())
 
///   matches the declaration of "int a()".
 
/// ifStmt(isConsteval())
 
///   matches the if statement in "void b()", "void c()", "void d()".
 
AST_POLYMORPHIC_MATCHER(isConsteval,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, IfStmt)) {
 
  return Node.isConsteval();
 
}
 
 
 
/// Matches constexpr variable and function declarations,
 
///        and if constexpr.
 
///
 
/// Given:
 
/// \code
 
///   constexpr int foo = 42;
 
///   constexpr int bar();
 
///   void baz() { if constexpr(1 > 0) {} }
 
/// \endcode
 
/// varDecl(isConstexpr())
 
///   matches the declaration of foo.
 
/// functionDecl(isConstexpr())
 
///   matches the declaration of bar.
 
/// ifStmt(isConstexpr())
 
///   matches the if statement in baz.
 
AST_POLYMORPHIC_MATCHER(isConstexpr,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(VarDecl,
 
                                                        FunctionDecl,
 
                                                        IfStmt)) {
 
  return Node.isConstexpr();
 
}
 
 
 
/// Matches constinit variable declarations.
 
///
 
/// Given:
 
/// \code
 
///   constinit int foo = 42;
 
///   constinit const char* bar = "bar";
 
///   int baz = 42;
 
///   [[clang::require_constant_initialization]] int xyz = 42;
 
/// \endcode
 
/// varDecl(isConstinit())
 
///   matches the declaration of `foo` and `bar`, but not `baz` and `xyz`.
 
AST_MATCHER(VarDecl, isConstinit) {
 
  if (const auto *CIA = Node.getAttr<ConstInitAttr>())
 
    return CIA->isConstinit();
 
  return false;
 
}
 
 
 
/// Matches selection statements with initializer.
 
///
 
/// Given:
 
/// \code
 
///  void foo() {
 
///    if (int i = foobar(); i > 0) {}
 
///    switch (int i = foobar(); i) {}
 
///    for (auto& a = get_range(); auto& x : a) {}
 
///  }
 
///  void bar() {
 
///    if (foobar() > 0) {}
 
///    switch (foobar()) {}
 
///    for (auto& x : get_range()) {}
 
///  }
 
/// \endcode
 
/// ifStmt(hasInitStatement(anything()))
 
///   matches the if statement in foo but not in bar.
 
/// switchStmt(hasInitStatement(anything()))
 
///   matches the switch statement in foo but not in bar.
 
/// cxxForRangeStmt(hasInitStatement(anything()))
 
///   matches the range for statement in foo but not in bar.
 
AST_POLYMORPHIC_MATCHER_P(hasInitStatement,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(IfStmt, SwitchStmt,
 
                                                          CXXForRangeStmt),
 
                          internal::Matcher<Stmt>, InnerMatcher) {
 
  const Stmt *Init = Node.getInit();
 
  return Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder);
 
}
 
 
 
/// Matches the condition expression of an if statement, for loop,
 
/// switch statement or conditional operator.
 
///
 
/// Example matches true (matcher = hasCondition(cxxBoolLiteral(equals(true))))
 
/// \code
 
///   if (true) {}
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P(
 
    hasCondition,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(IfStmt, ForStmt, WhileStmt, DoStmt,
 
                                    SwitchStmt, AbstractConditionalOperator),
 
    internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *const Condition = Node.getCond();
 
  return (Condition != nullptr &&
 
          InnerMatcher.matches(*Condition, Finder, Builder));
 
}
 
 
 
/// Matches the then-statement of an if statement.
 
///
 
/// Examples matches the if statement
 
///   (matcher = ifStmt(hasThen(cxxBoolLiteral(equals(true)))))
 
/// \code
 
///   if (false) true; else false;
 
/// \endcode
 
AST_MATCHER_P(IfStmt, hasThen, internal::Matcher<Stmt>, InnerMatcher) {
 
  const Stmt *const Then = Node.getThen();
 
  return (Then != nullptr && InnerMatcher.matches(*Then, Finder, Builder));
 
}
 
 
 
/// Matches the else-statement of an if statement.
 
///
 
/// Examples matches the if statement
 
///   (matcher = ifStmt(hasElse(cxxBoolLiteral(equals(true)))))
 
/// \code
 
///   if (false) false; else true;
 
/// \endcode
 
AST_MATCHER_P(IfStmt, hasElse, internal::Matcher<Stmt>, InnerMatcher) {
 
  const Stmt *const Else = Node.getElse();
 
  return (Else != nullptr && InnerMatcher.matches(*Else, Finder, Builder));
 
}
 
 
 
/// Matches if a node equals a previously bound node.
 
///
 
/// Matches a node if it equals the node previously bound to \p ID.
 
///
 
/// Given
 
/// \code
 
///   class X { int a; int b; };
 
/// \endcode
 
/// cxxRecordDecl(
 
///     has(fieldDecl(hasName("a"), hasType(type().bind("t")))),
 
///     has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t"))))))
 
///   matches the class \c X, as \c a and \c b have the same type.
 
///
 
/// Note that when multiple matches are involved via \c forEach* matchers,
 
/// \c equalsBoundNodes acts as a filter.
 
/// For example:
 
/// compoundStmt(
 
///     forEachDescendant(varDecl().bind("d")),
 
///     forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d"))))))
 
/// will trigger a match for each combination of variable declaration
 
/// and reference to that variable declaration within a compound statement.
 
AST_POLYMORPHIC_MATCHER_P(equalsBoundNode,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(Stmt, Decl, Type,
 
                                                          QualType),
 
                          std::string, ID) {
 
  // FIXME: Figure out whether it makes sense to allow this
 
  // on any other node types.
 
  // For *Loc it probably does not make sense, as those seem
 
  // unique. For NestedNameSepcifier it might make sense, as
 
  // those also have pointer identity, but I'm not sure whether
 
  // they're ever reused.
 
  internal::NotEqualsBoundNodePredicate Predicate;
 
  Predicate.ID = ID;
 
  Predicate.Node = DynTypedNode::create(Node);
 
  return Builder->removeBindings(Predicate);
 
}
 
 
 
/// Matches the condition variable statement in an if statement.
 
///
 
/// Given
 
/// \code
 
///   if (A* a = GetAPointer()) {}
 
/// \endcode
 
/// hasConditionVariableStatement(...)
 
///   matches 'A* a = GetAPointer()'.
 
AST_MATCHER_P(IfStmt, hasConditionVariableStatement,
 
              internal::Matcher<DeclStmt>, InnerMatcher) {
 
  const DeclStmt* const DeclarationStatement =
 
    Node.getConditionVariableDeclStmt();
 
  return DeclarationStatement != nullptr &&
 
         InnerMatcher.matches(*DeclarationStatement, Finder, Builder);
 
}
 
 
 
/// Matches the index expression of an array subscript expression.
 
///
 
/// Given
 
/// \code
 
///   int i[5];
 
///   void f() { i[1] = 42; }
 
/// \endcode
 
/// arraySubscriptExpression(hasIndex(integerLiteral()))
 
///   matches \c i[1] with the \c integerLiteral() matching \c 1
 
AST_MATCHER_P(ArraySubscriptExpr, hasIndex,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  if (const Expr* Expression = Node.getIdx())
 
    return InnerMatcher.matches(*Expression, Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches the base expression of an array subscript expression.
 
///
 
/// Given
 
/// \code
 
///   int i[5];
 
///   void f() { i[1] = 42; }
 
/// \endcode
 
/// arraySubscriptExpression(hasBase(implicitCastExpr(
 
///     hasSourceExpression(declRefExpr()))))
 
///   matches \c i[1] with the \c declRefExpr() matching \c i
 
AST_MATCHER_P(ArraySubscriptExpr, hasBase,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  if (const Expr* Expression = Node.getBase())
 
    return InnerMatcher.matches(*Expression, Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches a 'for', 'while', 'do' statement or a function definition that has
 
/// a given body. Note that in case of functions this matcher only matches the
 
/// definition itself and not the other declarations of the same function.
 
///
 
/// Given
 
/// \code
 
///   for (;;) {}
 
/// \endcode
 
/// forStmt(hasBody(compoundStmt()))
 
///   matches 'for (;;) {}'
 
/// with compoundStmt()
 
///   matching '{}'
 
///
 
/// Given
 
/// \code
 
///   void f();
 
///   void f() {}
 
/// \endcode
 
/// functionDecl(hasBody(compoundStmt()))
 
///   matches 'void f() {}'
 
/// with compoundStmt()
 
///   matching '{}'
 
///   but does not match 'void f();'
 
AST_POLYMORPHIC_MATCHER_P(hasBody,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(DoStmt, ForStmt,
 
                                                          WhileStmt,
 
                                                          CXXForRangeStmt,
 
                                                          FunctionDecl),
 
                          internal::Matcher<Stmt>, InnerMatcher) {
 
  if (Finder->isTraversalIgnoringImplicitNodes() && isDefaultedHelper(&Node))
 
    return false;
 
  const Stmt *const Statement = internal::GetBodyMatcher<NodeType>::get(Node);
 
  return (Statement != nullptr &&
 
          InnerMatcher.matches(*Statement, Finder, Builder));
 
}
 
 
 
/// Matches a function declaration that has a given body present in the AST.
 
/// Note that this matcher matches all the declarations of a function whose
 
/// body is present in the AST.
 
///
 
/// Given
 
/// \code
 
///   void f();
 
///   void f() {}
 
///   void g();
 
/// \endcode
 
/// functionDecl(hasAnyBody(compoundStmt()))
 
///   matches both 'void f();'
 
///   and 'void f() {}'
 
/// with compoundStmt()
 
///   matching '{}'
 
///   but does not match 'void g();'
 
AST_MATCHER_P(FunctionDecl, hasAnyBody,
 
              internal::Matcher<Stmt>, InnerMatcher) {
 
  const Stmt *const Statement = Node.getBody();
 
  return (Statement != nullptr &&
 
          InnerMatcher.matches(*Statement, Finder, Builder));
 
}
 
 
 
 
 
/// Matches compound statements where at least one substatement matches
 
/// a given matcher. Also matches StmtExprs that have CompoundStmt as children.
 
///
 
/// Given
 
/// \code
 
///   { {}; 1+2; }
 
/// \endcode
 
/// hasAnySubstatement(compoundStmt())
 
///   matches '{ {}; 1+2; }'
 
/// with compoundStmt()
 
///   matching '{}'
 
AST_POLYMORPHIC_MATCHER_P(hasAnySubstatement,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(CompoundStmt,
 
                                                          StmtExpr),
 
                          internal::Matcher<Stmt>, InnerMatcher) {
 
  const CompoundStmt *CS = CompoundStmtMatcher<NodeType>::get(Node);
 
  return CS && matchesFirstInPointerRange(InnerMatcher, CS->body_begin(),
 
                                          CS->body_end(), Finder,
 
                                          Builder) != CS->body_end();
 
}
 
 
 
/// Checks that a compound statement contains a specific number of
 
/// child statements.
 
///
 
/// Example: Given
 
/// \code
 
///   { for (;;) {} }
 
/// \endcode
 
/// compoundStmt(statementCountIs(0)))
 
///   matches '{}'
 
///   but does not match the outer compound statement.
 
AST_MATCHER_P(CompoundStmt, statementCountIs, unsigned, N) {
 
  return Node.size() == N;
 
}
 
 
 
/// Matches literals that are equal to the given value of type ValueT.
 
///
 
/// Given
 
/// \code
 
///   f('\0', false, 3.14, 42);
 
/// \endcode
 
/// characterLiteral(equals(0))
 
///   matches '\0'
 
/// cxxBoolLiteral(equals(false)) and cxxBoolLiteral(equals(0))
 
///   match false
 
/// floatLiteral(equals(3.14)) and floatLiteral(equals(314e-2))
 
///   match 3.14
 
/// integerLiteral(equals(42))
 
///   matches 42
 
///
 
/// Note that you cannot directly match a negative numeric literal because the
 
/// minus sign is not part of the literal: It is a unary operator whose operand
 
/// is the positive numeric literal. Instead, you must use a unaryOperator()
 
/// matcher to match the minus sign:
 
///
 
/// unaryOperator(hasOperatorName("-"),
 
///               hasUnaryOperand(integerLiteral(equals(13))))
 
///
 
/// Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteralExpr>,
 
///            Matcher<FloatingLiteral>, Matcher<IntegerLiteral>
 
template <typename ValueT>
 
internal::PolymorphicMatcher<internal::ValueEqualsMatcher,
 
                             void(internal::AllNodeBaseTypes), ValueT>
 
equals(const ValueT &Value) {
 
  return internal::PolymorphicMatcher<internal::ValueEqualsMatcher,
 
                                      void(internal::AllNodeBaseTypes), ValueT>(
 
      Value);
 
}
 
 
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
 
                                                          CXXBoolLiteralExpr,
 
                                                          IntegerLiteral),
 
                          bool, Value, 0) {
 
  return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
 
    .matchesNode(Node);
 
}
 
 
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
 
                                                          CXXBoolLiteralExpr,
 
                                                          IntegerLiteral),
 
                          unsigned, Value, 1) {
 
  return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
 
    .matchesNode(Node);
 
}
 
 
 
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
 
                                                          CXXBoolLiteralExpr,
 
                                                          FloatingLiteral,
 
                                                          IntegerLiteral),
 
                          double, Value, 2) {
 
  return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
 
    .matchesNode(Node);
 
}
 
 
 
/// Matches the operator Name of operator expressions (binary or
 
/// unary).
 
///
 
/// Example matches a || b (matcher = binaryOperator(hasOperatorName("||")))
 
/// \code
 
///   !(a || b)
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P(
 
    hasOperatorName,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
 
                                    CXXRewrittenBinaryOperator, UnaryOperator),
 
    std::string, Name) {
 
  if (std::optional<StringRef> OpName = internal::getOpName(Node))
 
    return *OpName == Name;
 
  return false;
 
}
 
 
 
/// Matches operator expressions (binary or unary) that have any of the
 
/// specified names.
 
///
 
///    hasAnyOperatorName("+", "-")
 
///  Is equivalent to
 
///    anyOf(hasOperatorName("+"), hasOperatorName("-"))
 
extern const internal::VariadicFunction<
 
    internal::PolymorphicMatcher<internal::HasAnyOperatorNameMatcher,
 
                                 AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                                     BinaryOperator, CXXOperatorCallExpr,
 
                                     CXXRewrittenBinaryOperator, UnaryOperator),
 
                                 std::vector<std::string>>,
 
    StringRef, internal::hasAnyOperatorNameFunc>
 
    hasAnyOperatorName;
 
 
 
/// Matches all kinds of assignment operators.
 
///
 
/// Example 1: matches a += b (matcher = binaryOperator(isAssignmentOperator()))
 
/// \code
 
///   if (a == b)
 
///     a += b;
 
/// \endcode
 
///
 
/// Example 2: matches s1 = s2
 
///            (matcher = cxxOperatorCallExpr(isAssignmentOperator()))
 
/// \code
 
///   struct S { S& operator=(const S&); };
 
///   void x() { S s1, s2; s1 = s2; }
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER(
 
    isAssignmentOperator,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
 
                                    CXXRewrittenBinaryOperator)) {
 
  return Node.isAssignmentOp();
 
}
 
 
 
/// Matches comparison operators.
 
///
 
/// Example 1: matches a == b (matcher = binaryOperator(isComparisonOperator()))
 
/// \code
 
///   if (a == b)
 
///     a += b;
 
/// \endcode
 
///
 
/// Example 2: matches s1 < s2
 
///            (matcher = cxxOperatorCallExpr(isComparisonOperator()))
 
/// \code
 
///   struct S { bool operator<(const S& other); };
 
///   void x(S s1, S s2) { bool b1 = s1 < s2; }
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER(
 
    isComparisonOperator,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
 
                                    CXXRewrittenBinaryOperator)) {
 
  return Node.isComparisonOp();
 
}
 
 
 
/// Matches the left hand side of binary operator expressions.
 
///
 
/// Example matches a (matcher = binaryOperator(hasLHS()))
 
/// \code
 
///   a || b
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P(hasLHS,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                              BinaryOperator, CXXOperatorCallExpr,
 
                              CXXRewrittenBinaryOperator, ArraySubscriptExpr),
 
                          internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *LeftHandSide = internal::getLHS(Node);
 
  return (LeftHandSide != nullptr &&
 
          InnerMatcher.matches(*LeftHandSide, Finder, Builder));
 
}
 
 
 
/// Matches the right hand side of binary operator expressions.
 
///
 
/// Example matches b (matcher = binaryOperator(hasRHS()))
 
/// \code
 
///   a || b
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P(hasRHS,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                              BinaryOperator, CXXOperatorCallExpr,
 
                              CXXRewrittenBinaryOperator, ArraySubscriptExpr),
 
                          internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *RightHandSide = internal::getRHS(Node);
 
  return (RightHandSide != nullptr &&
 
          InnerMatcher.matches(*RightHandSide, Finder, Builder));
 
}
 
 
 
/// Matches if either the left hand side or the right hand side of a
 
/// binary operator matches.
 
AST_POLYMORPHIC_MATCHER_P(
 
    hasEitherOperand,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
 
                                    CXXRewrittenBinaryOperator),
 
    internal::Matcher<Expr>, InnerMatcher) {
 
  return internal::VariadicDynCastAllOfMatcher<Stmt, NodeType>()(
 
             anyOf(hasLHS(InnerMatcher), hasRHS(InnerMatcher)))
 
      .matches(Node, Finder, Builder);
 
}
 
 
 
/// Matches if both matchers match with opposite sides of the binary operator.
 
///
 
/// Example matcher = binaryOperator(hasOperands(integerLiteral(equals(1),
 
///                                              integerLiteral(equals(2)))
 
/// \code
 
///   1 + 2 // Match
 
///   2 + 1 // Match
 
///   1 + 1 // No match
 
///   2 + 2 // No match
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P2(
 
    hasOperands,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
 
                                    CXXRewrittenBinaryOperator),
 
    internal::Matcher<Expr>, Matcher1, internal::Matcher<Expr>, Matcher2) {
 
  return internal::VariadicDynCastAllOfMatcher<Stmt, NodeType>()(
 
             anyOf(allOf(hasLHS(Matcher1), hasRHS(Matcher2)),
 
                   allOf(hasLHS(Matcher2), hasRHS(Matcher1))))
 
      .matches(Node, Finder, Builder);
 
}
 
 
 
/// Matches if the operand of a unary operator matches.
 
///
 
/// Example matches true (matcher = hasUnaryOperand(
 
///                                   cxxBoolLiteral(equals(true))))
 
/// \code
 
///   !true
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P(hasUnaryOperand,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(UnaryOperator,
 
                                                          CXXOperatorCallExpr),
 
                          internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *const Operand = internal::getSubExpr(Node);
 
  return (Operand != nullptr &&
 
          InnerMatcher.matches(*Operand, Finder, Builder));
 
}
 
 
 
/// Matches if the cast's source expression
 
/// or opaque value's source expression matches the given matcher.
 
///
 
/// Example 1: matches "a string"
 
/// (matcher = castExpr(hasSourceExpression(cxxConstructExpr())))
 
/// \code
 
/// class URL { URL(string); };
 
/// URL url = "a string";
 
/// \endcode
 
///
 
/// Example 2: matches 'b' (matcher =
 
/// opaqueValueExpr(hasSourceExpression(implicitCastExpr(declRefExpr())))
 
/// \code
 
/// int a = b ?: 1;
 
/// \endcode
 
AST_POLYMORPHIC_MATCHER_P(hasSourceExpression,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(CastExpr,
 
                                                          OpaqueValueExpr),
 
                          internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *const SubExpression =
 
      internal::GetSourceExpressionMatcher<NodeType>::get(Node);
 
  return (SubExpression != nullptr &&
 
          InnerMatcher.matches(*SubExpression, Finder, Builder));
 
}
 
 
 
/// Matches casts that has a given cast kind.
 
///
 
/// Example: matches the implicit cast around \c 0
 
/// (matcher = castExpr(hasCastKind(CK_NullToPointer)))
 
/// \code
 
///   int *p = 0;
 
/// \endcode
 
///
 
/// If the matcher is use from clang-query, CastKind parameter
 
/// should be passed as a quoted string. e.g., hasCastKind("CK_NullToPointer").
 
AST_MATCHER_P(CastExpr, hasCastKind, CastKind, Kind) {
 
  return Node.getCastKind() == Kind;
 
}
 
 
 
/// Matches casts whose destination type matches a given matcher.
 
///
 
/// (Note: Clang's AST refers to other conversions as "casts" too, and calls
 
/// actual casts "explicit" casts.)
 
AST_MATCHER_P(ExplicitCastExpr, hasDestinationType,
 
              internal::Matcher<QualType>, InnerMatcher) {
 
  const QualType NodeType = Node.getTypeAsWritten();
 
  return InnerMatcher.matches(NodeType, Finder, Builder);
 
}
 
 
 
/// Matches implicit casts whose destination type matches a given
 
/// matcher.
 
AST_MATCHER_P(ImplicitCastExpr, hasImplicitDestinationType,
 
              internal::Matcher<QualType>, InnerMatcher) {
 
  return InnerMatcher.matches(Node.getType(), Finder, Builder);
 
}
 
 
 
/// Matches TagDecl object that are spelled with "struct."
 
///
 
/// Example matches S, but not C, U or E.
 
/// \code
 
///   struct S {};
 
///   class C {};
 
///   union U {};
 
///   enum E {};
 
/// \endcode
 
AST_MATCHER(TagDecl, isStruct) {
 
  return Node.isStruct();
 
}
 
 
 
/// Matches TagDecl object that are spelled with "union."
 
///
 
/// Example matches U, but not C, S or E.
 
/// \code
 
///   struct S {};
 
///   class C {};
 
///   union U {};
 
///   enum E {};
 
/// \endcode
 
AST_MATCHER(TagDecl, isUnion) {
 
  return Node.isUnion();
 
}
 
 
 
/// Matches TagDecl object that are spelled with "class."
 
///
 
/// Example matches C, but not S, U or E.
 
/// \code
 
///   struct S {};
 
///   class C {};
 
///   union U {};
 
///   enum E {};
 
/// \endcode
 
AST_MATCHER(TagDecl, isClass) {
 
  return Node.isClass();
 
}
 
 
 
/// Matches TagDecl object that are spelled with "enum."
 
///
 
/// Example matches E, but not C, S or U.
 
/// \code
 
///   struct S {};
 
///   class C {};
 
///   union U {};
 
///   enum E {};
 
/// \endcode
 
AST_MATCHER(TagDecl, isEnum) {
 
  return Node.isEnum();
 
}
 
 
 
/// Matches the true branch expression of a conditional operator.
 
///
 
/// Example 1 (conditional ternary operator): matches a
 
/// \code
 
///   condition ? a : b
 
/// \endcode
 
///
 
/// Example 2 (conditional binary operator): matches opaqueValueExpr(condition)
 
/// \code
 
///   condition ?: b
 
/// \endcode
 
AST_MATCHER_P(AbstractConditionalOperator, hasTrueExpression,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *Expression = Node.getTrueExpr();
 
  return (Expression != nullptr &&
 
          InnerMatcher.matches(*Expression, Finder, Builder));
 
}
 
 
 
/// Matches the false branch expression of a conditional operator
 
/// (binary or ternary).
 
///
 
/// Example matches b
 
/// \code
 
///   condition ? a : b
 
///   condition ?: b
 
/// \endcode
 
AST_MATCHER_P(AbstractConditionalOperator, hasFalseExpression,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  const Expr *Expression = Node.getFalseExpr();
 
  return (Expression != nullptr &&
 
          InnerMatcher.matches(*Expression, Finder, Builder));
 
}
 
 
 
/// Matches if a declaration has a body attached.
 
///
 
/// Example matches A, va, fa
 
/// \code
 
///   class A {};
 
///   class B;  // Doesn't match, as it has no body.
 
///   int va;
 
///   extern int vb;  // Doesn't match, as it doesn't define the variable.
 
///   void fa() {}
 
///   void fb();  // Doesn't match, as it has no body.
 
///   @interface X
 
///   - (void)ma; // Doesn't match, interface is declaration.
 
///   @end
 
///   @implementation X
 
///   - (void)ma {}
 
///   @end
 
/// \endcode
 
///
 
/// Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>,
 
///   Matcher<ObjCMethodDecl>
 
AST_POLYMORPHIC_MATCHER(isDefinition,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(TagDecl, VarDecl,
 
                                                        ObjCMethodDecl,
 
                                                        FunctionDecl)) {
 
  return Node.isThisDeclarationADefinition();
 
}
 
 
 
/// Matches if a function declaration is variadic.
 
///
 
/// Example matches f, but not g or h. The function i will not match, even when
 
/// compiled in C mode.
 
/// \code
 
///   void f(...);
 
///   void g(int);
 
///   template <typename... Ts> void h(Ts...);
 
///   void i();
 
/// \endcode
 
AST_MATCHER(FunctionDecl, isVariadic) {
 
  return Node.isVariadic();
 
}
 
 
 
/// Matches the class declaration that the given method declaration
 
/// belongs to.
 
///
 
/// FIXME: Generalize this for other kinds of declarations.
 
/// FIXME: What other kind of declarations would we need to generalize
 
/// this to?
 
///
 
/// Example matches A() in the last line
 
///     (matcher = cxxConstructExpr(hasDeclaration(cxxMethodDecl(
 
///         ofClass(hasName("A"))))))
 
/// \code
 
///   class A {
 
///    public:
 
///     A();
 
///   };
 
///   A a = A();
 
/// \endcode
 
AST_MATCHER_P(CXXMethodDecl, ofClass,
 
              internal::Matcher<CXXRecordDecl>, InnerMatcher) {
 
 
 
  ASTChildrenNotSpelledInSourceScope RAII(Finder, false);
 
 
 
  const CXXRecordDecl *Parent = Node.getParent();
 
  return (Parent != nullptr &&
 
          InnerMatcher.matches(*Parent, Finder, Builder));
 
}
 
 
 
/// Matches each method overridden by the given method. This matcher may
 
/// produce multiple matches.
 
///
 
/// Given
 
/// \code
 
///   class A { virtual void f(); };
 
///   class B : public A { void f(); };
 
///   class C : public B { void f(); };
 
/// \endcode
 
/// cxxMethodDecl(ofClass(hasName("C")),
 
///               forEachOverridden(cxxMethodDecl().bind("b"))).bind("d")
 
///   matches once, with "b" binding "A::f" and "d" binding "C::f" (Note
 
///   that B::f is not overridden by C::f).
 
///
 
/// The check can produce multiple matches in case of multiple inheritance, e.g.
 
/// \code
 
///   class A1 { virtual void f(); };
 
///   class A2 { virtual void f(); };
 
///   class C : public A1, public A2 { void f(); };
 
/// \endcode
 
/// cxxMethodDecl(ofClass(hasName("C")),
 
///               forEachOverridden(cxxMethodDecl().bind("b"))).bind("d")
 
///   matches twice, once with "b" binding "A1::f" and "d" binding "C::f", and
 
///   once with "b" binding "A2::f" and "d" binding "C::f".
 
AST_MATCHER_P(CXXMethodDecl, forEachOverridden,
 
              internal::Matcher<CXXMethodDecl>, InnerMatcher) {
 
  BoundNodesTreeBuilder Result;
 
  bool Matched = false;
 
  for (const auto *Overridden : Node.overridden_methods()) {
 
    BoundNodesTreeBuilder OverriddenBuilder(*Builder);
 
    const bool OverriddenMatched =
 
        InnerMatcher.matches(*Overridden, Finder, &OverriddenBuilder);
 
    if (OverriddenMatched) {
 
      Matched = true;
 
      Result.addMatch(OverriddenBuilder);
 
    }
 
  }
 
  *Builder = std::move(Result);
 
  return Matched;
 
}
 
 
 
/// Matches declarations of virtual methods and C++ base specifers that specify
 
/// virtual inheritance.
 
///
 
/// Example:
 
/// \code
 
///   class A {
 
///    public:
 
///     virtual void x(); // matches x
 
///   };
 
/// \endcode
 
///
 
/// Example:
 
/// \code
 
///   class Base {};
 
///   class DirectlyDerived : virtual Base {}; // matches Base
 
///   class IndirectlyDerived : DirectlyDerived, Base {}; // matches Base
 
/// \endcode
 
///
 
/// Usable as: Matcher<CXXMethodDecl>, Matcher<CXXBaseSpecifier>
 
AST_POLYMORPHIC_MATCHER(isVirtual,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(CXXMethodDecl,
 
                                                        CXXBaseSpecifier)) {
 
  return Node.isVirtual();
 
}
 
 
 
/// Matches if the given method declaration has an explicit "virtual".
 
///
 
/// Given
 
/// \code
 
///   class A {
 
///    public:
 
///     virtual void x();
 
///   };
 
///   class B : public A {
 
///    public:
 
///     void x();
 
///   };
 
/// \endcode
 
///   matches A::x but not B::x
 
AST_MATCHER(CXXMethodDecl, isVirtualAsWritten) {
 
  return Node.isVirtualAsWritten();
 
}
 
 
 
AST_MATCHER(CXXConstructorDecl, isInheritingConstructor) {
 
  return Node.isInheritingConstructor();
 
}
 
 
 
/// Matches if the given method or class declaration is final.
 
///
 
/// Given:
 
/// \code
 
///   class A final {};
 
///
 
///   struct B {
 
///     virtual void f();
 
///   };
 
///
 
///   struct C : B {
 
///     void f() final;
 
///   };
 
/// \endcode
 
/// matches A and C::f, but not B, C, or B::f
 
AST_POLYMORPHIC_MATCHER(isFinal,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl,
 
                                                        CXXMethodDecl)) {
 
  return Node.template hasAttr<FinalAttr>();
 
}
 
 
 
/// Matches if the given method declaration is pure.
 
///
 
/// Given
 
/// \code
 
///   class A {
 
///    public:
 
///     virtual void x() = 0;
 
///   };
 
/// \endcode
 
///   matches A::x
 
AST_MATCHER(CXXMethodDecl, isPure) {
 
  return Node.isPure();
 
}
 
 
 
/// Matches if the given method declaration is const.
 
///
 
/// Given
 
/// \code
 
/// struct A {
 
///   void foo() const;
 
///   void bar();
 
/// };
 
/// \endcode
 
///
 
/// cxxMethodDecl(isConst()) matches A::foo() but not A::bar()
 
AST_MATCHER(CXXMethodDecl, isConst) {
 
  return Node.isConst();
 
}
 
 
 
/// Matches if the given method declaration declares a copy assignment
 
/// operator.
 
///
 
/// Given
 
/// \code
 
/// struct A {
 
///   A &operator=(const A &);
 
///   A &operator=(A &&);
 
/// };
 
/// \endcode
 
///
 
/// cxxMethodDecl(isCopyAssignmentOperator()) matches the first method but not
 
/// the second one.
 
AST_MATCHER(CXXMethodDecl, isCopyAssignmentOperator) {
 
  return Node.isCopyAssignmentOperator();
 
}
 
 
 
/// Matches if the given method declaration declares a move assignment
 
/// operator.
 
///
 
/// Given
 
/// \code
 
/// struct A {
 
///   A &operator=(const A &);
 
///   A &operator=(A &&);
 
/// };
 
/// \endcode
 
///
 
/// cxxMethodDecl(isMoveAssignmentOperator()) matches the second method but not
 
/// the first one.
 
AST_MATCHER(CXXMethodDecl, isMoveAssignmentOperator) {
 
  return Node.isMoveAssignmentOperator();
 
}
 
 
 
/// Matches if the given method declaration overrides another method.
 
///
 
/// Given
 
/// \code
 
///   class A {
 
///    public:
 
///     virtual void x();
 
///   };
 
///   class B : public A {
 
///    public:
 
///     virtual void x();
 
///   };
 
/// \endcode
 
///   matches B::x
 
AST_MATCHER(CXXMethodDecl, isOverride) {
 
  return Node.size_overridden_methods() > 0 || Node.hasAttr<OverrideAttr>();
 
}
 
 
 
/// Matches method declarations that are user-provided.
 
///
 
/// Given
 
/// \code
 
///   struct S {
 
///     S(); // #1
 
///     S(const S &) = default; // #2
 
///     S(S &&) = delete; // #3
 
///   };
 
/// \endcode
 
/// cxxConstructorDecl(isUserProvided()) will match #1, but not #2 or #3.
 
AST_MATCHER(CXXMethodDecl, isUserProvided) {
 
  return Node.isUserProvided();
 
}
 
 
 
/// Matches member expressions that are called with '->' as opposed
 
/// to '.'.
 
///
 
/// Member calls on the implicit this pointer match as called with '->'.
 
///
 
/// Given
 
/// \code
 
///   class Y {
 
///     void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
 
///     template <class T> void f() { this->f<T>(); f<T>(); }
 
///     int a;
 
///     static int b;
 
///   };
 
///   template <class T>
 
///   class Z {
 
///     void x() { this->m; }
 
///   };
 
/// \endcode
 
/// memberExpr(isArrow())
 
///   matches this->x, x, y.x, a, this->b
 
/// cxxDependentScopeMemberExpr(isArrow())
 
///   matches this->m
 
/// unresolvedMemberExpr(isArrow())
 
///   matches this->f<T>, f<T>
 
AST_POLYMORPHIC_MATCHER(
 
    isArrow, AST_POLYMORPHIC_SUPPORTED_TYPES(MemberExpr, UnresolvedMemberExpr,
 
                                             CXXDependentScopeMemberExpr)) {
 
  return Node.isArrow();
 
}
 
 
 
/// Matches QualType nodes that are of integer type.
 
///
 
/// Given
 
/// \code
 
///   void a(int);
 
///   void b(long);
 
///   void c(double);
 
/// \endcode
 
/// functionDecl(hasAnyParameter(hasType(isInteger())))
 
/// matches "a(int)", "b(long)", but not "c(double)".
 
AST_MATCHER(QualType, isInteger) {
 
    return Node->isIntegerType();
 
}
 
 
 
/// Matches QualType nodes that are of unsigned integer type.
 
///
 
/// Given
 
/// \code
 
///   void a(int);
 
///   void b(unsigned long);
 
///   void c(double);
 
/// \endcode
 
/// functionDecl(hasAnyParameter(hasType(isUnsignedInteger())))
 
/// matches "b(unsigned long)", but not "a(int)" and "c(double)".
 
AST_MATCHER(QualType, isUnsignedInteger) {
 
    return Node->isUnsignedIntegerType();
 
}
 
 
 
/// Matches QualType nodes that are of signed integer type.
 
///
 
/// Given
 
/// \code
 
///   void a(int);
 
///   void b(unsigned long);
 
///   void c(double);
 
/// \endcode
 
/// functionDecl(hasAnyParameter(hasType(isSignedInteger())))
 
/// matches "a(int)", but not "b(unsigned long)" and "c(double)".
 
AST_MATCHER(QualType, isSignedInteger) {
 
    return Node->isSignedIntegerType();
 
}
 
 
 
/// Matches QualType nodes that are of character type.
 
///
 
/// Given
 
/// \code
 
///   void a(char);
 
///   void b(wchar_t);
 
///   void c(double);
 
/// \endcode
 
/// functionDecl(hasAnyParameter(hasType(isAnyCharacter())))
 
/// matches "a(char)", "b(wchar_t)", but not "c(double)".
 
AST_MATCHER(QualType, isAnyCharacter) {
 
    return Node->isAnyCharacterType();
 
}
 
 
 
/// Matches QualType nodes that are of any pointer type; this includes
 
/// the Objective-C object pointer type, which is different despite being
 
/// syntactically similar.
 
///
 
/// Given
 
/// \code
 
///   int *i = nullptr;
 
///
 
///   @interface Foo
 
///   @end
 
///   Foo *f;
 
///
 
///   int j;
 
/// \endcode
 
/// varDecl(hasType(isAnyPointer()))
 
///   matches "int *i" and "Foo *f", but not "int j".
 
AST_MATCHER(QualType, isAnyPointer) {
 
  return Node->isAnyPointerType();
 
}
 
 
 
/// Matches QualType nodes that are const-qualified, i.e., that
 
/// include "top-level" const.
 
///
 
/// Given
 
/// \code
 
///   void a(int);
 
///   void b(int const);
 
///   void c(const int);
 
///   void d(const int*);
 
///   void e(int const) {};
 
/// \endcode
 
/// functionDecl(hasAnyParameter(hasType(isConstQualified())))
 
///   matches "void b(int const)", "void c(const int)" and
 
///   "void e(int const) {}". It does not match d as there
 
///   is no top-level const on the parameter type "const int *".
 
AST_MATCHER(QualType, isConstQualified) {
 
  return Node.isConstQualified();
 
}
 
 
 
/// Matches QualType nodes that are volatile-qualified, i.e., that
 
/// include "top-level" volatile.
 
///
 
/// Given
 
/// \code
 
///   void a(int);
 
///   void b(int volatile);
 
///   void c(volatile int);
 
///   void d(volatile int*);
 
///   void e(int volatile) {};
 
/// \endcode
 
/// functionDecl(hasAnyParameter(hasType(isVolatileQualified())))
 
///   matches "void b(int volatile)", "void c(volatile int)" and
 
///   "void e(int volatile) {}". It does not match d as there
 
///   is no top-level volatile on the parameter type "volatile int *".
 
AST_MATCHER(QualType, isVolatileQualified) {
 
  return Node.isVolatileQualified();
 
}
 
 
 
/// Matches QualType nodes that have local CV-qualifiers attached to
 
/// the node, not hidden within a typedef.
 
///
 
/// Given
 
/// \code
 
///   typedef const int const_int;
 
///   const_int i;
 
///   int *const j;
 
///   int *volatile k;
 
///   int m;
 
/// \endcode
 
/// \c varDecl(hasType(hasLocalQualifiers())) matches only \c j and \c k.
 
/// \c i is const-qualified but the qualifier is not local.
 
AST_MATCHER(QualType, hasLocalQualifiers) {
 
  return Node.hasLocalQualifiers();
 
}
 
 
 
/// Matches a member expression where the member is matched by a
 
/// given matcher.
 
///
 
/// Given
 
/// \code
 
///   struct { int first, second; } first, second;
 
///   int i(second.first);
 
///   int j(first.second);
 
/// \endcode
 
/// memberExpr(member(hasName("first")))
 
///   matches second.first
 
///   but not first.second (because the member name there is "second").
 
AST_MATCHER_P(MemberExpr, member,
 
              internal::Matcher<ValueDecl>, InnerMatcher) {
 
  return InnerMatcher.matches(*Node.getMemberDecl(), Finder, Builder);
 
}
 
 
 
/// Matches a member expression where the object expression is matched by a
 
/// given matcher. Implicit object expressions are included; that is, it matches
 
/// use of implicit `this`.
 
///
 
/// Given
 
/// \code
 
///   struct X {
 
///     int m;
 
///     int f(X x) { x.m; return m; }
 
///   };
 
/// \endcode
 
/// memberExpr(hasObjectExpression(hasType(cxxRecordDecl(hasName("X")))))
 
///   matches `x.m`, but not `m`; however,
 
/// memberExpr(hasObjectExpression(hasType(pointsTo(
 
//      cxxRecordDecl(hasName("X"))))))
 
///   matches `m` (aka. `this->m`), but not `x.m`.
 
AST_POLYMORPHIC_MATCHER_P(
 
    hasObjectExpression,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(MemberExpr, UnresolvedMemberExpr,
 
                                    CXXDependentScopeMemberExpr),
 
    internal::Matcher<Expr>, InnerMatcher) {
 
  if (const auto *E = dyn_cast<UnresolvedMemberExpr>(&Node))
 
    if (E->isImplicitAccess())
 
      return false;
 
  if (const auto *E = dyn_cast<CXXDependentScopeMemberExpr>(&Node))
 
    if (E->isImplicitAccess())
 
      return false;
 
  return InnerMatcher.matches(*Node.getBase(), Finder, Builder);
 
}
 
 
 
/// Matches any using shadow declaration.
 
///
 
/// Given
 
/// \code
 
///   namespace X { void b(); }
 
///   using X::b;
 
/// \endcode
 
/// usingDecl(hasAnyUsingShadowDecl(hasName("b"))))
 
///   matches \code using X::b \endcode
 
AST_MATCHER_P(BaseUsingDecl, hasAnyUsingShadowDecl,
 
              internal::Matcher<UsingShadowDecl>, InnerMatcher) {
 
  return matchesFirstInPointerRange(InnerMatcher, Node.shadow_begin(),
 
                                    Node.shadow_end(), Finder,
 
                                    Builder) != Node.shadow_end();
 
}
 
 
 
/// Matches a using shadow declaration where the target declaration is
 
/// matched by the given matcher.
 
///
 
/// Given
 
/// \code
 
///   namespace X { int a; void b(); }
 
///   using X::a;
 
///   using X::b;
 
/// \endcode
 
/// usingDecl(hasAnyUsingShadowDecl(hasTargetDecl(functionDecl())))
 
///   matches \code using X::b \endcode
 
///   but not \code using X::a \endcode
 
AST_MATCHER_P(UsingShadowDecl, hasTargetDecl,
 
              internal::Matcher<NamedDecl>, InnerMatcher) {
 
  return InnerMatcher.matches(*Node.getTargetDecl(), Finder, Builder);
 
}
 
 
 
/// Matches template instantiations of function, class, or static
 
/// member variable template instantiations.
 
///
 
/// Given
 
/// \code
 
///   template <typename T> class X {}; class A {}; X<A> x;
 
/// \endcode
 
/// or
 
/// \code
 
///   template <typename T> class X {}; class A {}; template class X<A>;
 
/// \endcode
 
/// or
 
/// \code
 
///   template <typename T> class X {}; class A {}; extern template class X<A>;
 
/// \endcode
 
/// cxxRecordDecl(hasName("::X"), isTemplateInstantiation())
 
///   matches the template instantiation of X<A>.
 
///
 
/// But given
 
/// \code
 
///   template <typename T>  class X {}; class A {};
 
///   template <> class X<A> {}; X<A> x;
 
/// \endcode
 
/// cxxRecordDecl(hasName("::X"), isTemplateInstantiation())
 
///   does not match, as X<A> is an explicit template specialization.
 
///
 
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
 
AST_POLYMORPHIC_MATCHER(isTemplateInstantiation,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
 
                                                        CXXRecordDecl)) {
 
  return (Node.getTemplateSpecializationKind() == TSK_ImplicitInstantiation ||
 
          Node.getTemplateSpecializationKind() ==
 
              TSK_ExplicitInstantiationDefinition ||
 
          Node.getTemplateSpecializationKind() ==
 
              TSK_ExplicitInstantiationDeclaration);
 
}
 
 
 
/// Matches declarations that are template instantiations or are inside
 
/// template instantiations.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> void A(T t) { T i; }
 
///   A(0);
 
///   A(0U);
 
/// \endcode
 
/// functionDecl(isInstantiated())
 
///   matches 'A(int) {...};' and 'A(unsigned) {...}'.
 
AST_MATCHER_FUNCTION(internal::Matcher<Decl>, isInstantiated) {
 
  auto IsInstantiation = decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
 
                                    functionDecl(isTemplateInstantiation())));
 
  return decl(anyOf(IsInstantiation, hasAncestor(IsInstantiation)));
 
}
 
 
 
/// Matches statements inside of a template instantiation.
 
///
 
/// Given
 
/// \code
 
///   int j;
 
///   template<typename T> void A(T t) { T i; j += 42;}
 
///   A(0);
 
///   A(0U);
 
/// \endcode
 
/// declStmt(isInTemplateInstantiation())
 
///   matches 'int i;' and 'unsigned i'.
 
/// unless(stmt(isInTemplateInstantiation()))
 
///   will NOT match j += 42; as it's shared between the template definition and
 
///   instantiation.
 
AST_MATCHER_FUNCTION(internal::Matcher<Stmt>, isInTemplateInstantiation) {
 
  return stmt(
 
      hasAncestor(decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
 
                             functionDecl(isTemplateInstantiation())))));
 
}
 
 
 
/// Matches explicit template specializations of function, class, or
 
/// static member variable template instantiations.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> void A(T t) { }
 
///   template<> void A(int N) { }
 
/// \endcode
 
/// functionDecl(isExplicitTemplateSpecialization())
 
///   matches the specialization A<int>().
 
///
 
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
 
AST_POLYMORPHIC_MATCHER(isExplicitTemplateSpecialization,
 
                        AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
 
                                                        CXXRecordDecl)) {
 
  return (Node.getTemplateSpecializationKind() == TSK_ExplicitSpecialization);
 
}
 
 
 
/// Matches \c TypeLocs for which the given inner
 
/// QualType-matcher matches.
 
AST_MATCHER_FUNCTION_P_OVERLOAD(internal::BindableMatcher<TypeLoc>, loc,
 
                                internal::Matcher<QualType>, InnerMatcher, 0) {
 
  return internal::BindableMatcher<TypeLoc>(
 
      new internal::TypeLocTypeMatcher(InnerMatcher));
 
}
 
 
 
/// Matches `QualifiedTypeLoc`s in the clang AST.
 
///
 
/// Given
 
/// \code
 
///   const int x = 0;
 
/// \endcode
 
/// qualifiedTypeLoc()
 
///   matches `const int`.
 
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, QualifiedTypeLoc>
 
    qualifiedTypeLoc;
 
 
 
/// Matches `QualifiedTypeLoc`s that have an unqualified `TypeLoc` matching
 
/// `InnerMatcher`.
 
///
 
/// Given
 
/// \code
 
///   int* const x;
 
///   const int y;
 
/// \endcode
 
/// qualifiedTypeLoc(hasUnqualifiedLoc(pointerTypeLoc()))
 
///   matches the `TypeLoc` of the variable declaration of `x`, but not `y`.
 
AST_MATCHER_P(QualifiedTypeLoc, hasUnqualifiedLoc, internal::Matcher<TypeLoc>,
 
              InnerMatcher) {
 
  return InnerMatcher.matches(Node.getUnqualifiedLoc(), Finder, Builder);
 
}
 
 
 
/// Matches a function declared with the specified return `TypeLoc`.
 
///
 
/// Given
 
/// \code
 
///   int f() { return 5; }
 
///   void g() {}
 
/// \endcode
 
/// functionDecl(hasReturnTypeLoc(loc(asString("int"))))
 
///   matches the declaration of `f`, but not `g`.
 
AST_MATCHER_P(FunctionDecl, hasReturnTypeLoc, internal::Matcher<TypeLoc>,
 
              ReturnMatcher) {
 
  auto Loc = Node.getFunctionTypeLoc();
 
  return Loc && ReturnMatcher.matches(Loc.getReturnLoc(), Finder, Builder);
 
}
 
 
 
/// Matches pointer `TypeLoc`s.
 
///
 
/// Given
 
/// \code
 
///   int* x;
 
/// \endcode
 
/// pointerTypeLoc()
 
///   matches `int*`.
 
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, PointerTypeLoc>
 
    pointerTypeLoc;
 
 
 
/// Matches pointer `TypeLoc`s that have a pointee `TypeLoc` matching
 
/// `PointeeMatcher`.
 
///
 
/// Given
 
/// \code
 
///   int* x;
 
/// \endcode
 
/// pointerTypeLoc(hasPointeeLoc(loc(asString("int"))))
 
///   matches `int*`.
 
AST_MATCHER_P(PointerTypeLoc, hasPointeeLoc, internal::Matcher<TypeLoc>,
 
              PointeeMatcher) {
 
  return PointeeMatcher.matches(Node.getPointeeLoc(), Finder, Builder);
 
}
 
 
 
/// Matches reference `TypeLoc`s.
 
///
 
/// Given
 
/// \code
 
///   int x = 3;
 
///   int& l = x;
 
///   int&& r = 3;
 
/// \endcode
 
/// referenceTypeLoc()
 
///   matches `int&` and `int&&`.
 
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, ReferenceTypeLoc>
 
    referenceTypeLoc;
 
 
 
/// Matches reference `TypeLoc`s that have a referent `TypeLoc` matching
 
/// `ReferentMatcher`.
 
///
 
/// Given
 
/// \code
 
///   int x = 3;
 
///   int& xx = x;
 
/// \endcode
 
/// referenceTypeLoc(hasReferentLoc(loc(asString("int"))))
 
///   matches `int&`.
 
AST_MATCHER_P(ReferenceTypeLoc, hasReferentLoc, internal::Matcher<TypeLoc>,
 
              ReferentMatcher) {
 
  return ReferentMatcher.matches(Node.getPointeeLoc(), Finder, Builder);
 
}
 
 
 
/// Matches template specialization `TypeLoc`s.
 
///
 
/// Given
 
/// \code
 
///   template <typename T> class C {};
 
///   C<char> var;
 
/// \endcode
 
/// varDecl(hasTypeLoc(templateSpecializationTypeLoc(typeLoc())))
 
///   matches `C<char> var`.
 
extern const internal::VariadicDynCastAllOfMatcher<
 
    TypeLoc, TemplateSpecializationTypeLoc>
 
    templateSpecializationTypeLoc;
 
 
 
/// Matches template specialization `TypeLoc`s that have at least one
 
/// `TemplateArgumentLoc` matching the given `InnerMatcher`.
 
///
 
/// Given
 
/// \code
 
///   template<typename T> class A {};
 
///   A<int> a;
 
/// \endcode
 
/// varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc(
 
///   hasTypeLoc(loc(asString("int")))))))
 
///   matches `A<int> a`.
 
AST_MATCHER_P(TemplateSpecializationTypeLoc, hasAnyTemplateArgumentLoc,
 
              internal::Matcher<TemplateArgumentLoc>, InnerMatcher) {
 
  for (unsigned Index = 0, N = Node.getNumArgs(); Index < N; ++Index) {
 
    clang::ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
 
    if (InnerMatcher.matches(Node.getArgLoc(Index), Finder, &Result)) {
 
      *Builder = std::move(Result);
 
      return true;
 
    }
 
  }
 
  return false;
 
}
 
 
 
/// Matches template specialization `TypeLoc`s where the n'th
 
/// `TemplateArgumentLoc` matches the given `InnerMatcher`.
 
///
 
/// Given
 
/// \code
 
///   template<typename T, typename U> class A {};
 
///   A<double, int> b;
 
///   A<int, double> c;
 
/// \endcode
 
/// varDecl(hasTypeLoc(templateSpecializationTypeLoc(hasTemplateArgumentLoc(0,
 
///   hasTypeLoc(loc(asString("double")))))))
 
///   matches `A<double, int> b`, but not `A<int, double> c`.
 
AST_POLYMORPHIC_MATCHER_P2(
 
    hasTemplateArgumentLoc,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(DeclRefExpr, TemplateSpecializationTypeLoc),
 
    unsigned, Index, internal::Matcher<TemplateArgumentLoc>, InnerMatcher) {
 
  return internal::MatchTemplateArgLocAt(Node, Index, InnerMatcher, Finder,
 
                                         Builder);
 
}
 
 
 
/// Matches C or C++ elaborated `TypeLoc`s.
 
///
 
/// Given
 
/// \code
 
///   struct s {};
 
///   struct s ss;
 
/// \endcode
 
/// elaboratedTypeLoc()
 
///   matches the `TypeLoc` of the variable declaration of `ss`.
 
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, ElaboratedTypeLoc>
 
    elaboratedTypeLoc;
 
 
 
/// Matches elaborated `TypeLoc`s that have a named `TypeLoc` matching
 
/// `InnerMatcher`.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   class C {};
 
///   class C<int> c;
 
///
 
///   class D {};
 
///   class D d;
 
/// \endcode
 
/// elaboratedTypeLoc(hasNamedTypeLoc(templateSpecializationTypeLoc()));
 
///   matches the `TypeLoc` of the variable declaration of `c`, but not `d`.
 
AST_MATCHER_P(ElaboratedTypeLoc, hasNamedTypeLoc, internal::Matcher<TypeLoc>,
 
              InnerMatcher) {
 
  return InnerMatcher.matches(Node.getNamedTypeLoc(), Finder, Builder);
 
}
 
 
 
/// Matches type \c bool.
 
///
 
/// Given
 
/// \code
 
///  struct S { bool func(); };
 
/// \endcode
 
/// functionDecl(returns(booleanType()))
 
///   matches "bool func();"
 
AST_MATCHER(Type, booleanType) {
 
  return Node.isBooleanType();
 
}
 
 
 
/// Matches type \c void.
 
///
 
/// Given
 
/// \code
 
///  struct S { void func(); };
 
/// \endcode
 
/// functionDecl(returns(voidType()))
 
///   matches "void func();"
 
AST_MATCHER(Type, voidType) {
 
  return Node.isVoidType();
 
}
 
 
 
template <typename NodeType>
 
using AstTypeMatcher = internal::VariadicDynCastAllOfMatcher<Type, NodeType>;
 
 
 
/// Matches builtin Types.
 
///
 
/// Given
 
/// \code
 
///   struct A {};
 
///   A a;
 
///   int b;
 
///   float c;
 
///   bool d;
 
/// \endcode
 
/// builtinType()
 
///   matches "int b", "float c" and "bool d"
 
extern const AstTypeMatcher<BuiltinType> builtinType;
 
 
 
/// Matches all kinds of arrays.
 
///
 
/// Given
 
/// \code
 
///   int a[] = { 2, 3 };
 
///   int b[4];
 
///   void f() { int c[a[0]]; }
 
/// \endcode
 
/// arrayType()
 
///   matches "int a[]", "int b[4]" and "int c[a[0]]";
 
extern const AstTypeMatcher<ArrayType> arrayType;
 
 
 
/// Matches C99 complex types.
 
///
 
/// Given
 
/// \code
 
///   _Complex float f;
 
/// \endcode
 
/// complexType()
 
///   matches "_Complex float f"
 
extern const AstTypeMatcher<ComplexType> complexType;
 
 
 
/// Matches any real floating-point type (float, double, long double).
 
///
 
/// Given
 
/// \code
 
///   int i;
 
///   float f;
 
/// \endcode
 
/// realFloatingPointType()
 
///   matches "float f" but not "int i"
 
AST_MATCHER(Type, realFloatingPointType) {
 
  return Node.isRealFloatingType();
 
}
 
 
 
/// Matches arrays and C99 complex types that have a specific element
 
/// type.
 
///
 
/// Given
 
/// \code
 
///   struct A {};
 
///   A a[7];
 
///   int b[7];
 
/// \endcode
 
/// arrayType(hasElementType(builtinType()))
 
///   matches "int b[7]"
 
///
 
/// Usable as: Matcher<ArrayType>, Matcher<ComplexType>
 
AST_TYPELOC_TRAVERSE_MATCHER_DECL(hasElementType, getElement,
 
                                  AST_POLYMORPHIC_SUPPORTED_TYPES(ArrayType,
 
                                                                  ComplexType));
 
 
 
/// Matches C arrays with a specified constant size.
 
///
 
/// Given
 
/// \code
 
///   void() {
 
///     int a[2];
 
///     int b[] = { 2, 3 };
 
///     int c[b[0]];
 
///   }
 
/// \endcode
 
/// constantArrayType()
 
///   matches "int a[2]"
 
extern const AstTypeMatcher<ConstantArrayType> constantArrayType;
 
 
 
/// Matches nodes that have the specified size.
 
///
 
/// Given
 
/// \code
 
///   int a[42];
 
///   int b[2 * 21];
 
///   int c[41], d[43];
 
///   char *s = "abcd";
 
///   wchar_t *ws = L"abcd";
 
///   char *w = "a";
 
/// \endcode
 
/// constantArrayType(hasSize(42))
 
///   matches "int a[42]" and "int b[2 * 21]"
 
/// stringLiteral(hasSize(4))
 
///   matches "abcd", L"abcd"
 
AST_POLYMORPHIC_MATCHER_P(hasSize,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(ConstantArrayType,
 
                                                          StringLiteral),
 
                          unsigned, N) {
 
  return internal::HasSizeMatcher<NodeType>::hasSize(Node, N);
 
}
 
 
 
/// Matches C++ arrays whose size is a value-dependent expression.
 
///
 
/// Given
 
/// \code
 
///   template<typename T, int Size>
 
///   class array {
 
///     T data[Size];
 
///   };
 
/// \endcode
 
/// dependentSizedArrayType
 
///   matches "T data[Size]"
 
extern const AstTypeMatcher<DependentSizedArrayType> dependentSizedArrayType;
 
 
 
/// Matches C arrays with unspecified size.
 
///
 
/// Given
 
/// \code
 
///   int a[] = { 2, 3 };
 
///   int b[42];
 
///   void f(int c[]) { int d[a[0]]; };
 
/// \endcode
 
/// incompleteArrayType()
 
///   matches "int a[]" and "int c[]"
 
extern const AstTypeMatcher<IncompleteArrayType> incompleteArrayType;
 
 
 
/// Matches C arrays with a specified size that is not an
 
/// integer-constant-expression.
 
///
 
/// Given
 
/// \code
 
///   void f() {
 
///     int a[] = { 2, 3 }
 
///     int b[42];
 
///     int c[a[0]];
 
///   }
 
/// \endcode
 
/// variableArrayType()
 
///   matches "int c[a[0]]"
 
extern const AstTypeMatcher<VariableArrayType> variableArrayType;
 
 
 
/// Matches \c VariableArrayType nodes that have a specific size
 
/// expression.
 
///
 
/// Given
 
/// \code
 
///   void f(int b) {
 
///     int a[b];
 
///   }
 
/// \endcode
 
/// variableArrayType(hasSizeExpr(ignoringImpCasts(declRefExpr(to(
 
///   varDecl(hasName("b")))))))
 
///   matches "int a[b]"
 
AST_MATCHER_P(VariableArrayType, hasSizeExpr,
 
              internal::Matcher<Expr>, InnerMatcher) {
 
  return InnerMatcher.matches(*Node.getSizeExpr(), Finder, Builder);
 
}
 
 
 
/// Matches atomic types.
 
///
 
/// Given
 
/// \code
 
///   _Atomic(int) i;
 
/// \endcode
 
/// atomicType()
 
///   matches "_Atomic(int) i"
 
extern const AstTypeMatcher<AtomicType> atomicType;
 
 
 
/// Matches atomic types with a specific value type.
 
///
 
/// Given
 
/// \code
 
///   _Atomic(int) i;
 
///   _Atomic(float) f;
 
/// \endcode
 
/// atomicType(hasValueType(isInteger()))
 
///  matches "_Atomic(int) i"
 
///
 
/// Usable as: Matcher<AtomicType>
 
AST_TYPELOC_TRAVERSE_MATCHER_DECL(hasValueType, getValue,
 
                                  AST_POLYMORPHIC_SUPPORTED_TYPES(AtomicType));
 
 
 
/// Matches types nodes representing C++11 auto types.
 
///
 
/// Given:
 
/// \code
 
///   auto n = 4;
 
///   int v[] = { 2, 3 }
 
///   for (auto i : v) { }
 
/// \endcode
 
/// autoType()
 
///   matches "auto n" and "auto i"
 
extern const AstTypeMatcher<AutoType> autoType;
 
 
 
/// Matches types nodes representing C++11 decltype(<expr>) types.
 
///
 
/// Given:
 
/// \code
 
///   short i = 1;
 
///   int j = 42;
 
///   decltype(i + j) result = i + j;
 
/// \endcode
 
/// decltypeType()
 
///   matches "decltype(i + j)"
 
extern const AstTypeMatcher<DecltypeType> decltypeType;
 
 
 
/// Matches \c AutoType nodes where the deduced type is a specific type.
 
///
 
/// Note: There is no \c TypeLoc for the deduced type and thus no
 
/// \c getDeducedLoc() matcher.
 
///
 
/// Given
 
/// \code
 
///   auto a = 1;
 
///   auto b = 2.0;
 
/// \endcode
 
/// autoType(hasDeducedType(isInteger()))
 
///   matches "auto a"
 
///
 
/// Usable as: Matcher<AutoType>
 
AST_TYPE_TRAVERSE_MATCHER(hasDeducedType, getDeducedType,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(AutoType));
 
 
 
/// Matches \c DecltypeType or \c UsingType nodes to find the underlying type.
 
///
 
/// Given
 
/// \code
 
///   decltype(1) a = 1;
 
///   decltype(2.0) b = 2.0;
 
/// \endcode
 
/// decltypeType(hasUnderlyingType(isInteger()))
 
///   matches the type of "a"
 
///
 
/// Usable as: Matcher<DecltypeType>, Matcher<UsingType>
 
AST_TYPE_TRAVERSE_MATCHER(hasUnderlyingType, getUnderlyingType,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(DecltypeType,
 
                                                          UsingType));
 
 
 
/// Matches \c FunctionType nodes.
 
///
 
/// Given
 
/// \code
 
///   int (*f)(int);
 
///   void g();
 
/// \endcode
 
/// functionType()
 
///   matches "int (*f)(int)" and the type of "g".
 
extern const AstTypeMatcher<FunctionType> functionType;
 
 
 
/// Matches \c FunctionProtoType nodes.
 
///
 
/// Given
 
/// \code
 
///   int (*f)(int);
 
///   void g();
 
/// \endcode
 
/// functionProtoType()
 
///   matches "int (*f)(int)" and the type of "g" in C++ mode.
 
///   In C mode, "g" is not matched because it does not contain a prototype.
 
extern const AstTypeMatcher<FunctionProtoType> functionProtoType;
 
 
 
/// Matches \c ParenType nodes.
 
///
 
/// Given
 
/// \code
 
///   int (*ptr_to_array)[4];
 
///   int *array_of_ptrs[4];
 
/// \endcode
 
///
 
/// \c varDecl(hasType(pointsTo(parenType()))) matches \c ptr_to_array but not
 
/// \c array_of_ptrs.
 
extern const AstTypeMatcher<ParenType> parenType;
 
 
 
/// Matches \c ParenType nodes where the inner type is a specific type.
 
///
 
/// Given
 
/// \code
 
///   int (*ptr_to_array)[4];
 
///   int (*ptr_to_func)(int);
 
/// \endcode
 
///
 
/// \c varDecl(hasType(pointsTo(parenType(innerType(functionType()))))) matches
 
/// \c ptr_to_func but not \c ptr_to_array.
 
///
 
/// Usable as: Matcher<ParenType>
 
AST_TYPE_TRAVERSE_MATCHER(innerType, getInnerType,
 
                          AST_POLYMORPHIC_SUPPORTED_TYPES(ParenType));
 
 
 
/// Matches block pointer types, i.e. types syntactically represented as
 
/// "void (^)(int)".
 
///
 
/// The \c pointee is always required to be a \c FunctionType.
 
extern const AstTypeMatcher<BlockPointerType> blockPointerType;
 
 
 
/// Matches member pointer types.
 
/// Given
 
/// \code
 
///   struct A { int i; }
 
///   A::* ptr = A::i;
 
/// \endcode
 
/// memberPointerType()
 
///   matches "A::* ptr"
 
extern const AstTypeMatcher<MemberPointerType> memberPointerType;
 
 
 
/// Matches pointer types, but does not match Objective-C object pointer
 
/// types.
 
///
 
/// Given
 
/// \code
 
///   int *a;
 
///   int &b = *a;
 
///   int c = 5;
 
///
 
///   @interface Foo
 
///   @end
 
///   Foo *f;
 
/// \endcode
 
/// pointerType()
 
///   matches "int *a", but does not match "Foo *f".
 
extern const AstTypeMatcher<PointerType> pointerType;
 
 
 
/// Matches an Objective-C object pointer type, which is different from
 
/// a pointer type, despite being syntactically similar.
 
///
 
/// Given
 
/// \code
 
///   int *a;
 
///
 
///   @interface Foo
 
///   @end
 
///   Foo *f;
 
/// \endcode
 
/// pointerType()
 
///   matches "Foo *f", but does not match "int *a".
 
extern const AstTypeMatcher<ObjCObjectPointerType> objcObjectPointerType;
 
 
 
/// Matches both lvalue and rvalue reference types.
 
///
 
/// Given
 
/// \code
 
///   int *a;
 
///   int &b = *a;
 
///   int &&c = 1;
 
///   auto &d = b;
 
///   auto &&e = c;
 
///   auto &&f = 2;
 
///   int g = 5;
 
/// \endcode
 
///
 
/// \c referenceType() matches the types of \c b, \c c, \c d, \c e, and \c f.
 
extern const AstTypeMatcher<ReferenceType> referenceType;
 
 
 
/// Matches lvalue reference types.
 
///
 
/// Given:
 
/// \code
 
///   int *a;
 
///   int &b = *a;
 
///   int &&c = 1;
 
///   auto &d = b;
 
///   auto &&e = c;
 
///   auto &&f = 2;
 
///   int g = 5;
 
/// \endcode
 
///
 
/// \c lValueReferenceType() matches the types of \c b, \c d, and \c e. \c e is
 
/// matched since the type is deduced as int& by reference collapsing rules.
 
extern const AstTypeMatcher<LValueReferenceType> lValueReferenceType;
 
 
 
/// Matches rvalue reference types.
 
///
 
/// Given:
 
/// \code
 
///   int *a;
 
///   int &b = *a;
 
///   int &&c = 1;
 
///   auto &d = b;
 
///   auto &&e = c;
 
///   auto &&f = 2;
 
///   int g = 5;
 
/// \endcode
 
///
 
/// \c rValueReferenceType() matches the types of \c c and \c f. \c e is not
 
/// matched as it is deduced to int& by reference collapsing rules.
 
extern const AstTypeMatcher<RValueReferenceType> rValueReferenceType;
 
 
 
/// Narrows PointerType (and similar) matchers to those where the
 
/// \c pointee matches a given matcher.
 
///
 
/// Given
 
/// \code
 
///   int *a;
 
///   int const *b;
 
///   float const *f;
 
/// \endcode
 
/// pointerType(pointee(isConstQualified(), isInteger()))
 
///   matches "int const *b"
 
///
 
/// Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>,
 
///   Matcher<PointerType>, Matcher<ReferenceType>
 
AST_TYPELOC_TRAVERSE_MATCHER_DECL(
 
    pointee, getPointee,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(BlockPointerType, MemberPointerType,
 
                                    PointerType, ReferenceType));
 
 
 
/// Matches typedef types.
 
///
 
/// Given
 
/// \code
 
///   typedef int X;
 
/// \endcode
 
/// typedefType()
 
///   matches "typedef int X"
 
extern const AstTypeMatcher<TypedefType> typedefType;
 
 
 
/// Matches enum types.
 
///
 
/// Given
 
/// \code
 
///   enum C { Green };
 
///   enum class S { Red };
 
///
 
///   C c;
 
///   S s;
 
/// \endcode
 
//
 
/// \c enumType() matches the type of the variable declarations of both \c c and
 
/// \c s.
 
extern const AstTypeMatcher<EnumType> enumType;
 
 
 
/// Matches template specialization types.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   class C { };
 
///
 
///   template class C<int>;  // A
 
///   C<char> var;            // B
 
/// \endcode
 
///
 
/// \c templateSpecializationType() matches the type of the explicit
 
/// instantiation in \c A and the type of the variable declaration in \c B.
 
extern const AstTypeMatcher<TemplateSpecializationType>
 
    templateSpecializationType;
 
 
 
/// Matches C++17 deduced template specialization types, e.g. deduced class
 
/// template types.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   class C { public: C(T); };
 
///
 
///   C c(123);
 
/// \endcode
 
/// \c deducedTemplateSpecializationType() matches the type in the declaration
 
/// of the variable \c c.
 
extern const AstTypeMatcher<DeducedTemplateSpecializationType>
 
    deducedTemplateSpecializationType;
 
 
 
/// Matches types nodes representing unary type transformations.
 
///
 
/// Given:
 
/// \code
 
///   typedef __underlying_type(T) type;
 
/// \endcode
 
/// unaryTransformType()
 
///   matches "__underlying_type(T)"
 
extern const AstTypeMatcher<UnaryTransformType> unaryTransformType;
 
 
 
/// Matches record types (e.g. structs, classes).
 
///
 
/// Given
 
/// \code
 
///   class C {};
 
///   struct S {};
 
///
 
///   C c;
 
///   S s;
 
/// \endcode
 
///
 
/// \c recordType() matches the type of the variable declarations of both \c c
 
/// and \c s.
 
extern const AstTypeMatcher<RecordType> recordType;
 
 
 
/// Matches tag types (record and enum types).
 
///
 
/// Given
 
/// \code
 
///   enum E {};
 
///   class C {};
 
///
 
///   E e;
 
///   C c;
 
/// \endcode
 
///
 
/// \c tagType() matches the type of the variable declarations of both \c e
 
/// and \c c.
 
extern const AstTypeMatcher<TagType> tagType;
 
 
 
/// Matches types specified with an elaborated type keyword or with a
 
/// qualified name.
 
///
 
/// Given
 
/// \code
 
///   namespace N {
 
///     namespace M {
 
///       class D {};
 
///     }
 
///   }
 
///   class C {};
 
///
 
///   class C c;
 
///   N::M::D d;
 
/// \endcode
 
///
 
/// \c elaboratedType() matches the type of the variable declarations of both
 
/// \c c and \c d.
 
extern const AstTypeMatcher<ElaboratedType> elaboratedType;
 
 
 
/// Matches ElaboratedTypes whose qualifier, a NestedNameSpecifier,
 
/// matches \c InnerMatcher if the qualifier exists.
 
///
 
/// Given
 
/// \code
 
///   namespace N {
 
///     namespace M {
 
///       class D {};
 
///     }
 
///   }
 
///   N::M::D d;
 
/// \endcode
 
///
 
/// \c elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N"))))
 
/// matches the type of the variable declaration of \c d.
 
AST_MATCHER_P(ElaboratedType, hasQualifier,
 
              internal::Matcher<NestedNameSpecifier>, InnerMatcher) {
 
  if (const NestedNameSpecifier *Qualifier = Node.getQualifier())
 
    return InnerMatcher.matches(*Qualifier, Finder, Builder);
 
 
 
  return false;
 
}
 
 
 
/// Matches ElaboratedTypes whose named type matches \c InnerMatcher.
 
///
 
/// Given
 
/// \code
 
///   namespace N {
 
///     namespace M {
 
///       class D {};
 
///     }
 
///   }
 
///   N::M::D d;
 
/// \endcode
 
///
 
/// \c elaboratedType(namesType(recordType(
 
/// hasDeclaration(namedDecl(hasName("D")))))) matches the type of the variable
 
/// declaration of \c d.
 
AST_MATCHER_P(ElaboratedType, namesType, internal::Matcher<QualType>,
 
              InnerMatcher) {
 
  return InnerMatcher.matches(Node.getNamedType(), Finder, Builder);
 
}
 
 
 
/// Matches types specified through a using declaration.
 
///
 
/// Given
 
/// \code
 
///   namespace a { struct S {}; }
 
///   using a::S;
 
///   S s;
 
/// \endcode
 
///
 
/// \c usingType() matches the type of the variable declaration of \c s.
 
extern const AstTypeMatcher<UsingType> usingType;
 
 
 
/// Matches types that represent the result of substituting a type for a
 
/// template type parameter.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   void F(T t) {
 
///     int i = 1 + t;
 
///   }
 
/// \endcode
 
///
 
/// \c substTemplateTypeParmType() matches the type of 't' but not '1'
 
extern const AstTypeMatcher<SubstTemplateTypeParmType>
 
    substTemplateTypeParmType;
 
 
 
/// Matches template type parameter substitutions that have a replacement
 
/// type that matches the provided matcher.
 
///
 
/// Given
 
/// \code
 
///   template <typename T>
 
///   double F(T t);
 
///   int i;
 
///   double j = F(i);
 
/// \endcode
 
///
 
/// \c substTemplateTypeParmType(hasReplacementType(type())) matches int
 
AST_TYPE_TRAVERSE_MATCHER(
 
    hasReplacementType, getReplacementType,
 
    AST_POLYMORPHIC_SUPPORTED_TYPES(SubstTemplateTypeParmType));
 
 
 
/// Matches template type parameter types.
 
///
 
/// Example matches T, but not int.
 
///     (matcher = templateTypeParmType())
 
/// \code
 
///   template <typename T> void f(int i);
 
/// \endcode
 
extern const AstTypeMatcher<TemplateTypeParmType> templateTypeParmType;
 
 
 
/// Matches injected class name types.
 
///
 
/// Example matches S s, but not S<T> s.
 
///     (matcher = parmVarDecl(hasType(injectedClassNameType())))
 
/// \code
 
///   template <typename T> struct S {
 
///     void f(S s);
 
///     void g(S<T> s);
 
///   };
 
/// \endcode
 
extern const AstTypeMatcher<InjectedClassNameType> injectedClassNameType;
 
 
 
/// Matches decayed type
 
/// Example matches i[] in declaration of f.
 
///     (matcher = valueDecl(hasType(decayedType(hasDecayedType(pointerType())))))
 
/// Example matches i[1].
 
///     (matcher = expr(hasType(decayedType(hasDecayedType(pointerType())))))
 
/// \code
 
///   void f(int i[]) {
 
///     i[1] = 0;
 
///   }
 
/// \endcode
 
extern const AstTypeMatcher<DecayedType> decayedType;
 
 
 
/// Matches the decayed type, whoes decayed type matches \c InnerMatcher
 
AST_MATCHER_P(DecayedType, hasDecayedType, internal::Matcher<QualType>,
 
              InnerType) {
 
  return InnerType.matches(Node.getDecayedType(), Finder, Builder);
 
}
 
 
 
/// Matches declarations whose declaration context, interpreted as a
 
/// Decl, matches \c InnerMatcher.
 
///
 
/// Given
 
/// \code
 
///   namespace N {
 
///     namespace M {
 
///       class D {};
 
///     }
 
///   }
 
/// \endcode
 
///
 
/// \c cxxRcordDecl(hasDeclContext(namedDecl(hasName("M")))) matches the
 
/// declaration of \c class \c D.
 
AST_MATCHER_P(Decl, hasDeclContext, internal::Matcher<Decl>, InnerMatcher) {
 
  const DeclContext *DC = Node.getDeclContext();
 
  if (!DC) return false;
 
  return InnerMatcher.matches(*Decl::castFromDeclContext(DC), Finder, Builder);
 
}
 
 
 
/// Matches nested name specifiers.
 
///
 
/// Given
 
/// \code
 
///   namespace ns {
 
///     struct A { static void f(); };
 
///     void A::f() {}
 
///     void g() { A::f(); }
 
///   }
 
///   ns::A a;
 
/// \endcode
 
/// nestedNameSpecifier()
 
///   matches "ns::" and both "A::"
 
extern const internal::VariadicAllOfMatcher<NestedNameSpecifier>
 
    nestedNameSpecifier;
 
 
 
/// Same as \c nestedNameSpecifier but matches \c NestedNameSpecifierLoc.
 
extern const internal::VariadicAllOfMatcher<NestedNameSpecifierLoc>
 
    nestedNameSpecifierLoc;
 
 
 
/// Matches \c NestedNameSpecifierLocs for which the given inner
 
/// NestedNameSpecifier-matcher matches.
 
AST_MATCHER_FUNCTION_P_OVERLOAD(
 
    internal::BindableMatcher<NestedNameSpecifierLoc>, loc,
 
    internal::Matcher<NestedNameSpecifier>, InnerMatcher, 1) {
 
  return internal::BindableMatcher<NestedNameSpecifierLoc>(
 
      new internal::LocMatcher<NestedNameSpecifierLoc, NestedNameSpecifier>(
 
          InnerMatcher));
 
}
 
 
 
/// Matches nested name specifiers that specify a type matching the
 
/// given \c QualType matcher without qualifiers.
 
///
 
/// Given
 
/// \code
 
///   struct A { struct B { struct C {}; }; };
 
///   A::B::C c;
 
/// \endcode
 
/// nestedNameSpecifier(specifiesType(
 
///   hasDeclaration(cxxRecordDecl(hasName("A")))
 
/// ))
 
///   matches "A::"
 
AST_MATCHER_P(NestedNameSpecifier, specifiesType,
 
              internal::Matcher<QualType>, InnerMatcher) {
 
  if (!Node.getAsType())
 
    return false;
 
  return InnerMatcher.matches(QualType(Node.getAsType(), 0), Finder, Builder);
 
}
 
 
 
/// Matches nested name specifier locs that specify a type matching the
 
/// given \c TypeLoc.
 
///
 
/// Given
 
/// \code
 
///   struct A { struct B { struct C {}; }; };
 
///   A::B::C c;
 
/// \endcode
 
/// nestedNameSpecifierLoc(specifiesTypeLoc(loc(type(
 
///   hasDeclaration(cxxRecordDecl(hasName("A")))))))
 
///   matches "A::"
 
AST_MATCHER_P(NestedNameSpecifierLoc, specifiesTypeLoc,
 
              internal::Matcher<TypeLoc>, InnerMatcher) {
 
  return Node && Node.getNestedNameSpecifier()->getAsType() &&
 
         InnerMatcher.matches(Node.getTypeLoc(), Finder, Builder);
 
}
 
 
 
/// Matches on the prefix of a \c NestedNameSpecifier.
 
///
 
/// Given
 
/// \code
 
///   struct A { struct B { struct C {}; }; };
 
///   A::B::C c;
 
/// \endcode
 
/// nestedNameSpecifier(hasPrefix(specifiesType(asString("struct A")))) and
 
///   matches "A::"
 
AST_MATCHER_P_OVERLOAD(NestedNameSpecifier, hasPrefix,
 
                       internal::Matcher<NestedNameSpecifier>, InnerMatcher,
 
                       0) {
 
  const NestedNameSpecifier *NextNode = Node.getPrefix();
 
  if (!NextNode)
 
    return false;
 
  return InnerMatcher.matches(*NextNode, Finder, Builder);
 
}
 
 
 
/// Matches on the prefix of a \c NestedNameSpecifierLoc.
 
///
 
/// Given
 
/// \code
 
///   struct A { struct B { struct C {}; }; };
 
///   A::B::C c;
 
/// \endcode
 
/// nestedNameSpecifierLoc(hasPrefix(loc(specifiesType(asString("struct A")))))
 
///   matches "A::"
 
AST_MATCHER_P_OVERLOAD(NestedNameSpecifierLoc, hasPrefix,
 
                       internal::Matcher<NestedNameSpecifierLoc>, InnerMatcher,
 
                       1) {
 
  NestedNameSpecifierLoc NextNode = Node.getPrefix();
 
  if (!NextNode)
 
    return false;
 
  return InnerMatcher.matches(NextNode, Finder, Builder);
 
}
 
 
 
/// Matches nested name specifiers that specify a namespace matching the
 
/// given namespace matcher.
 
///
 
/// Given
 
/// \code
 
///   namespace ns { struct A {}; }
 
///   ns::A a;
 
/// \endcode
 
/// nestedNameSpecifier(specifiesNamespace(hasName("ns")))
 
///   matches "ns::"
 
AST_MATCHER_P(NestedNameSpecifier, specifiesNamespace,
 
              internal::Matcher<NamespaceDecl>, InnerMatcher) {
 
  if (!Node.getAsNamespace())
 
    return false;
 
  return InnerMatcher.matches(*Node.getAsNamespace(), Finder, Builder);
 
}
 
 
 
/// Matches attributes.
 
/// Attributes may be attached with a variety of different syntaxes (including
 
/// keywords, C++11 attributes, GNU ``__attribute``` and MSVC `__declspec``,
 
/// and ``#pragma``s). They may also be implicit.
 
///
 
/// Given
 
/// \code
 
///   struct [[nodiscard]] Foo{};
 
///   void bar(int * __attribute__((nonnull)) );
 
///   __declspec(noinline) void baz();
 
///
 
///   #pragma omp declare simd
 
///   int min();
 
/// \endcode
 
/// attr()
 
///   matches "nodiscard", "nonnull", "noinline", and the whole "#pragma" line.
 
extern const internal::VariadicAllOfMatcher<Attr> attr;
 
 
 
/// Overloads for the \c equalsNode matcher.
 
/// FIXME: Implement for other node types.
 
/// @{
 
 
 
/// Matches if a node equals another node.
 
///
 
/// \c Decl has pointer identity in the AST.
 
AST_MATCHER_P_OVERLOAD(Decl, equalsNode, const Decl*, Other, 0) {
 
  return &Node == Other;
 
}
 
/// Matches if a node equals another node.
 
///
 
/// \c Stmt has pointer identity in the AST.
 
AST_MATCHER_P_OVERLOAD(Stmt, equalsNode, const Stmt*, Other, 1) {
 
  return &Node == Other;
 
}
 
/// Matches if a node equals another node.
 
///
 
/// \c Type has pointer identity in the AST.
 
AST_MATCHER_P_OVERLOAD(Type, equalsNode, const Type*, Other, 2) {
 
    return &Node == Other;
 
}
 
 
 
/// @}
 
 
 
/// Matches each case or default statement belonging to the given switch
 
/// statement. This matcher may produce multiple matches.
 
///
 
/// Given
 
/// \code
 
///   switch (1) { case 1: case 2: default: switch (2) { case 3: case 4: ; } }
 
/// \endcode
 
/// switchStmt(forEachSwitchCase(caseStmt().bind("c"))).bind("s")
 
///   matches four times, with "c" binding each of "case 1:", "case 2:",
 
/// "case 3:" and "case 4:", and "s" respectively binding "switch (1)",
 
/// "switch (1)", "switch (2)" and "switch (2)".
 
AST_MATCHER_P(SwitchStmt, forEachSwitchCase, internal::Matcher<SwitchCase>,
 
              InnerMatcher) {
 
  BoundNodesTreeBuilder Result;
 
  // FIXME: getSwitchCaseList() does not necessarily guarantee a stable
 
  // iteration order. We should use the more general iterating matchers once
 
  // they are capable of expressing this matcher (for example, it should ignore
 
  // case statements belonging to nested switch statements).
 
  bool Matched = false;
 
  for (const SwitchCase *SC = Node.getSwitchCaseList(); SC;
 
       SC = SC->getNextSwitchCase()) {
 
    BoundNodesTreeBuilder CaseBuilder(*Builder);
 
    bool CaseMatched = InnerMatcher.matches(*SC, Finder, &CaseBuilder);
 
    if (CaseMatched) {
 
      Matched = true;
 
      Result.addMatch(CaseBuilder);
 
    }
 
  }
 
  *Builder = std::move(Result);
 
  return Matched;
 
}
 
 
 
/// Matches each constructor initializer in a constructor definition.
 
///
 
/// Given
 
/// \code
 
///   class A { A() : i(42), j(42) {} int i; int j; };
 
/// \endcode
 
/// cxxConstructorDecl(forEachConstructorInitializer(
 
///   forField(decl().bind("x"))
 
/// ))
 
///   will trigger two matches, binding for 'i' and 'j' respectively.
 
AST_MATCHER_P(CXXConstructorDecl, forEachConstructorInitializer,
 
              internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
 
  BoundNodesTreeBuilder Result;
 
  bool Matched = false;
 
  for (const auto *I : Node.inits()) {
 
    if (Finder->isTraversalIgnoringImplicitNodes() && !I->isWritten())
 
      continue;
 
    BoundNodesTreeBuilder InitBuilder(*Builder);
 
    if (InnerMatcher.matches(*I, Finder, &InitBuilder)) {
 
      Matched = true;
 
      Result.addMatch(InitBuilder);
 
    }
 
  }
 
  *Builder = std::move(Result);
 
  return Matched;
 
}
 
 
 
/// Matches constructor declarations that are copy constructors.
 
///
 
/// Given
 
/// \code
 
///   struct S {
 
///     S(); // #1
 
///     S(const S &); // #2
 
///     S(S &&); // #3
 
///   };
 
/// \endcode
 
/// cxxConstructorDecl(isCopyConstructor()) will match #2, but not #1 or #3.
 
AST_MATCHER(CXXConstructorDecl, isCopyConstructor) {
 
  return Node.isCopyConstructor();
 
}
 
 
 
/// Matches constructor declarations that are move constructors.
 
///
 
/// Given
 
/// \code
 
///   struct S {
 
///     S(); // #1
 
///     S(const S &); // #2
 
///     S(S &&); // #3
 
///   };
 
/// \endcode
 
/// cxxConstructorDecl(isMoveConstructor()) will match #3, but not #1 or #2.
 
AST_MATCHER(CXXConstructorDecl, isMoveConstructor) {
 
  return Node.isMoveConstructor();
 
}
 
 
 
/// Matches constructor declarations that are default constructors.
 
///
 
/// Given
 
/// \code
 
///   struct S {
 
///     S(); // #1
 
///     S(const S &); // #2
 
///     S(S &&); // #3
 
///   };
 
/// \endcode
 
/// cxxConstructorDecl(isDefaultConstructor()) will match #1, but not #2 or #3.
 
AST_MATCHER(CXXConstructorDecl, isDefaultConstructor) {
 
  return Node.isDefaultConstructor();
 
}
 
 
 
/// Matches constructors that delegate to another constructor.
 
///
 
/// Given
 
/// \code
 
///   struct S {
 
///     S(); // #1
 
///     S(int) {} // #2
 
///     S(S &&) : S() {} // #3
 
///   };
 
///   S::S() : S(0) {} // #4
 
/// \endcode
 
/// cxxConstructorDecl(isDelegatingConstructor()) will match #3 and #4, but not
 
/// #1 or #2.
 
AST_MATCHER(CXXConstructorDecl, isDelegatingConstructor) {
 
  return Node.isDelegatingConstructor();
 
}
 
 
 
/// Matches constructor, conversion function, and deduction guide declarations
 
/// that have an explicit specifier if this explicit specifier is resolved to
 
/// true.
 
///
 
/// Given
 
/// \code
 
///   template<bool b>
 
///   struct S {
 
///     S(int); // #1
 
///     explicit S(double); // #2
 
///     operator int(); // #3
 
///     explicit operator bool(); // #4
 
///     explicit(false) S(bool) // # 7
 
///     explicit(true) S(char) // # 8
 
///     explicit(b) S(S) // # 9
 
///   };
 
///   S(int) -> S<true> // #5
 
///   explicit S(double) -> S<false> // #6
 
/// \endcode
 
/// cxxConstructorDecl(isExplicit()) will match #2 and #8, but not #1, #7 or #9.
 
/// cxxConversionDecl(isExplicit()) will match #4, but not #3.
 
/// cxxDeductionGuideDecl(isExplicit()) will match #6, but not #5.
 
AST_POLYMORPHIC_MATCHER(isExplicit, AST_POLYMORPHIC_SUPPORTED_TYPES(
 
                                        CXXConstructorDecl, CXXConversionDecl,
 
                                        CXXDeductionGuideDecl)) {
 
  return Node.isExplicit();
 
}
 
 
 
/// Matches the expression in an explicit specifier if present in the given
 
/// declaration.
 
///
 
/// Given
 
/// \code
 
///   template<bool b>
 
///   struct S {
 
///     S(int); // #1
 
///     explicit S(double); // #2
 
///     operator int(); // #3
 
///     explicit operator bool(); // #4
 
///     explicit(false) S(bool) // # 7
 
///     explicit(true) S(char) // # 8
 
///     explicit(b) S(S) // # 9
 
///   };
 
///   S(int) -> S<true> // #5
 
///   explicit S(double) -> S<false> // #6
 
/// \endcode
 
/// cxxConstructorDecl(hasExplicitSpecifier(constantExpr())) will match #7, #8 and #9, but not #1 or #2.
 
/// cxxConversionDecl(hasExplicitSpecifier(constantExpr())) will not match #3 or #4.
 
/// cxxDeductionGuideDecl(hasExplicitSpecifier(constantExpr())) will not match #5 or #6.
 
AST_MATCHER_P(FunctionDecl, hasExplicitSpecifier, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(&Node);
 
  if (!ES.getExpr())
 
    return false;
 
 
 
  ASTChildrenNotSpelledInSourceScope RAII(Finder, false);
 
 
 
  return InnerMatcher.matches(*ES.getExpr(), Finder, Builder);
 
}
 
 
 
/// Matches functions, variables and namespace declarations that are marked with
 
/// the inline keyword.
 
///
 
/// Given
 
/// \code
 
///   inline void f();
 
///   void g();
 
///   namespace n {
 
///   inline namespace m {}
 
///   }
 
///   inline int Foo = 5;
 
/// \endcode
 
/// functionDecl(isInline()) will match ::f().
 
/// namespaceDecl(isInline()) will match n::m.
 
/// varDecl(isInline()) will match Foo;
 
AST_POLYMORPHIC_MATCHER(isInline, AST_POLYMORPHIC_SUPPORTED_TYPES(NamespaceDecl,
 
                                                                  FunctionDecl,
 
                                                                  VarDecl)) {
 
  // This is required because the spelling of the function used to determine
 
  // whether inline is specified or not differs between the polymorphic types.
 
  if (const auto *FD = dyn_cast<FunctionDecl>(&Node))
 
    return FD->isInlineSpecified();
 
  if (const auto *NSD = dyn_cast<NamespaceDecl>(&Node))
 
    return NSD->isInline();
 
  if (const auto *VD = dyn_cast<VarDecl>(&Node))
 
    return VD->isInline();
 
  llvm_unreachable("Not a valid polymorphic type");
 
}
 
 
 
/// Matches anonymous namespace declarations.
 
///
 
/// Given
 
/// \code
 
///   namespace n {
 
///   namespace {} // #1
 
///   }
 
/// \endcode
 
/// namespaceDecl(isAnonymous()) will match #1 but not ::n.
 
AST_MATCHER(NamespaceDecl, isAnonymous) {
 
  return Node.isAnonymousNamespace();
 
}
 
 
 
/// Matches declarations in the namespace `std`, but not in nested namespaces.
 
///
 
/// Given
 
/// \code
 
///   class vector {};
 
///   namespace foo {
 
///     class vector {};
 
///     namespace std {
 
///       class vector {};
 
///     }
 
///   }
 
///   namespace std {
 
///     inline namespace __1 {
 
///       class vector {}; // #1
 
///       namespace experimental {
 
///         class vector {};
 
///       }
 
///     }
 
///   }
 
/// \endcode
 
/// cxxRecordDecl(hasName("vector"), isInStdNamespace()) will match only #1.
 
AST_MATCHER(Decl, isInStdNamespace) { return Node.isInStdNamespace(); }
 
 
 
/// Matches declarations in an anonymous namespace.
 
///
 
/// Given
 
/// \code
 
///   class vector {};
 
///   namespace foo {
 
///     class vector {};
 
///     namespace {
 
///       class vector {}; // #1
 
///     }
 
///   }
 
///   namespace {
 
///     class vector {}; // #2
 
///     namespace foo {
 
///       class vector{}; // #3
 
///     }
 
///   }
 
/// \endcode
 
/// cxxRecordDecl(hasName("vector"), isInAnonymousNamespace()) will match
 
/// #1, #2 and #3.
 
AST_MATCHER(Decl, isInAnonymousNamespace) {
 
  return Node.isInAnonymousNamespace();
 
}
 
 
 
/// If the given case statement does not use the GNU case range
 
/// extension, matches the constant given in the statement.
 
///
 
/// Given
 
/// \code
 
///   switch (1) { case 1: case 1+1: case 3 ... 4: ; }
 
/// \endcode
 
/// caseStmt(hasCaseConstant(integerLiteral()))
 
///   matches "case 1:"
 
AST_MATCHER_P(CaseStmt, hasCaseConstant, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  if (Node.getRHS())
 
    return false;
 
 
 
  return InnerMatcher.matches(*Node.getLHS(), Finder, Builder);
 
}
 
 
 
/// Matches declaration that has a given attribute.
 
///
 
/// Given
 
/// \code
 
///   __attribute__((device)) void f() { ... }
 
/// \endcode
 
/// decl(hasAttr(clang::attr::CUDADevice)) matches the function declaration of
 
/// f. If the matcher is used from clang-query, attr::Kind parameter should be
 
/// passed as a quoted string. e.g., hasAttr("attr::CUDADevice").
 
AST_MATCHER_P(Decl, hasAttr, attr::Kind, AttrKind) {
 
  for (const auto *Attr : Node.attrs()) {
 
    if (Attr->getKind() == AttrKind)
 
      return true;
 
  }
 
  return false;
 
}
 
 
 
/// Matches the return value expression of a return statement
 
///
 
/// Given
 
/// \code
 
///   return a + b;
 
/// \endcode
 
/// hasReturnValue(binaryOperator())
 
///   matches 'return a + b'
 
/// with binaryOperator()
 
///   matching 'a + b'
 
AST_MATCHER_P(ReturnStmt, hasReturnValue, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  if (const auto *RetValue = Node.getRetValue())
 
    return InnerMatcher.matches(*RetValue, Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches CUDA kernel call expression.
 
///
 
/// Example matches,
 
/// \code
 
///   kernel<<<i,j>>>();
 
/// \endcode
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CUDAKernelCallExpr>
 
    cudaKernelCallExpr;
 
 
 
/// Matches expressions that resolve to a null pointer constant, such as
 
/// GNU's __null, C++11's nullptr, or C's NULL macro.
 
///
 
/// Given:
 
/// \code
 
///   void *v1 = NULL;
 
///   void *v2 = nullptr;
 
///   void *v3 = __null; // GNU extension
 
///   char *cp = (char *)0;
 
///   int *ip = 0;
 
///   int i = 0;
 
/// \endcode
 
/// expr(nullPointerConstant())
 
///   matches the initializer for v1, v2, v3, cp, and ip. Does not match the
 
///   initializer for i.
 
AST_MATCHER_FUNCTION(internal::Matcher<Expr>, nullPointerConstant) {
 
  return anyOf(
 
      gnuNullExpr(), cxxNullPtrLiteralExpr(),
 
      integerLiteral(equals(0), hasParent(expr(hasType(pointerType())))));
 
}
 
 
 
/// Matches the DecompositionDecl the binding belongs to.
 
///
 
/// For example, in:
 
/// \code
 
/// void foo()
 
/// {
 
///     int arr[3];
 
///     auto &[f, s, t] = arr;
 
///
 
///     f = 42;
 
/// }
 
/// \endcode
 
/// The matcher:
 
/// \code
 
///   bindingDecl(hasName("f"),
 
///                 forDecomposition(decompositionDecl())
 
/// \endcode
 
/// matches 'f' in 'auto &[f, s, t]'.
 
AST_MATCHER_P(BindingDecl, forDecomposition, internal::Matcher<ValueDecl>,
 
              InnerMatcher) {
 
  if (const ValueDecl *VD = Node.getDecomposedDecl())
 
    return InnerMatcher.matches(*VD, Finder, Builder);
 
  return false;
 
}
 
 
 
/// Matches the Nth binding of a DecompositionDecl.
 
///
 
/// For example, in:
 
/// \code
 
/// void foo()
 
/// {
 
///     int arr[3];
 
///     auto &[f, s, t] = arr;
 
///
 
///     f = 42;
 
/// }
 
/// \endcode
 
/// The matcher:
 
/// \code
 
///   decompositionDecl(hasBinding(0,
 
///   bindingDecl(hasName("f").bind("fBinding"))))
 
/// \endcode
 
/// matches the decomposition decl with 'f' bound to "fBinding".
 
AST_MATCHER_P2(DecompositionDecl, hasBinding, unsigned, N,
 
               internal::Matcher<BindingDecl>, InnerMatcher) {
 
  if (Node.bindings().size() <= N)
 
    return false;
 
  return InnerMatcher.matches(*Node.bindings()[N], Finder, Builder);
 
}
 
 
 
/// Matches any binding of a DecompositionDecl.
 
///
 
/// For example, in:
 
/// \code
 
/// void foo()
 
/// {
 
///     int arr[3];
 
///     auto &[f, s, t] = arr;
 
///
 
///     f = 42;
 
/// }
 
/// \endcode
 
/// The matcher:
 
/// \code
 
///   decompositionDecl(hasAnyBinding(bindingDecl(hasName("f").bind("fBinding"))))
 
/// \endcode
 
/// matches the decomposition decl with 'f' bound to "fBinding".
 
AST_MATCHER_P(DecompositionDecl, hasAnyBinding, internal::Matcher<BindingDecl>,
 
              InnerMatcher) {
 
  return llvm::any_of(Node.bindings(), [&](const auto *Binding) {
 
    return InnerMatcher.matches(*Binding, Finder, Builder);
 
  });
 
}
 
 
 
/// Matches declaration of the function the statement belongs to.
 
///
 
/// Deprecated. Use forCallable() to correctly handle the situation when
 
/// the declaration is not a function (but a block or an Objective-C method).
 
/// forFunction() not only fails to take non-functions into account but also
 
/// may match the wrong declaration in their presence.
 
///
 
/// Given:
 
/// \code
 
/// F& operator=(const F& o) {
 
///   std::copy_if(o.begin(), o.end(), begin(), [](V v) { return v > 0; });
 
///   return *this;
 
/// }
 
/// \endcode
 
/// returnStmt(forFunction(hasName("operator=")))
 
///   matches 'return *this'
 
///   but does not match 'return v > 0'
 
AST_MATCHER_P(Stmt, forFunction, internal::Matcher<FunctionDecl>,
 
              InnerMatcher) {
 
  const auto &Parents = Finder->getASTContext().getParents(Node);
 
 
 
  llvm::SmallVector<DynTypedNode, 8> Stack(Parents.begin(), Parents.end());
 
  while (!Stack.empty()) {
 
    const auto &CurNode = Stack.back();
 
    Stack.pop_back();
 
    if (const auto *FuncDeclNode = CurNode.get<FunctionDecl>()) {
 
      if (InnerMatcher.matches(*FuncDeclNode, Finder, Builder)) {
 
        return true;
 
      }
 
    } else if (const auto *LambdaExprNode = CurNode.get<LambdaExpr>()) {
 
      if (InnerMatcher.matches(*LambdaExprNode->getCallOperator(), Finder,
 
                               Builder)) {
 
        return true;
 
      }
 
    } else {
 
      llvm::append_range(Stack, Finder->getASTContext().getParents(CurNode));
 
    }
 
  }
 
  return false;
 
}
 
 
 
/// Matches declaration of the function, method, or block the statement
 
/// belongs to.
 
///
 
/// Given:
 
/// \code
 
/// F& operator=(const F& o) {
 
///   std::copy_if(o.begin(), o.end(), begin(), [](V v) { return v > 0; });
 
///   return *this;
 
/// }
 
/// \endcode
 
/// returnStmt(forCallable(functionDecl(hasName("operator="))))
 
///   matches 'return *this'
 
///   but does not match 'return v > 0'
 
///
 
/// Given:
 
/// \code
 
/// -(void) foo {
 
///   int x = 1;
 
///   dispatch_sync(queue, ^{ int y = 2; });
 
/// }
 
/// \endcode
 
/// declStmt(forCallable(objcMethodDecl()))
 
///   matches 'int x = 1'
 
///   but does not match 'int y = 2'.
 
/// whereas declStmt(forCallable(blockDecl()))
 
///   matches 'int y = 2'
 
///   but does not match 'int x = 1'.
 
AST_MATCHER_P(Stmt, forCallable, internal::Matcher<Decl>, InnerMatcher) {
 
  const auto &Parents = Finder->getASTContext().getParents(Node);
 
 
 
  llvm::SmallVector<DynTypedNode, 8> Stack(Parents.begin(), Parents.end());
 
  while (!Stack.empty()) {
 
    const auto &CurNode = Stack.back();
 
    Stack.pop_back();
 
    if (const auto *FuncDeclNode = CurNode.get<FunctionDecl>()) {
 
      if (InnerMatcher.matches(*FuncDeclNode, Finder, Builder)) {
 
        return true;
 
      }
 
    } else if (const auto *LambdaExprNode = CurNode.get<LambdaExpr>()) {
 
      if (InnerMatcher.matches(*LambdaExprNode->getCallOperator(), Finder,
 
                               Builder)) {
 
        return true;
 
      }
 
    } else if (const auto *ObjCMethodDeclNode = CurNode.get<ObjCMethodDecl>()) {
 
      if (InnerMatcher.matches(*ObjCMethodDeclNode, Finder, Builder)) {
 
        return true;
 
      }
 
    } else if (const auto *BlockDeclNode = CurNode.get<BlockDecl>()) {
 
      if (InnerMatcher.matches(*BlockDeclNode, Finder, Builder)) {
 
        return true;
 
      }
 
    } else {
 
      llvm::append_range(Stack, Finder->getASTContext().getParents(CurNode));
 
    }
 
  }
 
  return false;
 
}
 
 
 
/// Matches a declaration that has external formal linkage.
 
///
 
/// Example matches only z (matcher = varDecl(hasExternalFormalLinkage()))
 
/// \code
 
/// void f() {
 
///   int x;
 
///   static int y;
 
/// }
 
/// int z;
 
/// \endcode
 
///
 
/// Example matches f() because it has external formal linkage despite being
 
/// unique to the translation unit as though it has internal likage
 
/// (matcher = functionDecl(hasExternalFormalLinkage()))
 
///
 
/// \code
 
/// namespace {
 
/// void f() {}
 
/// }
 
/// \endcode
 
AST_MATCHER(NamedDecl, hasExternalFormalLinkage) {
 
  return Node.hasExternalFormalLinkage();
 
}
 
 
 
/// Matches a declaration that has default arguments.
 
///
 
/// Example matches y (matcher = parmVarDecl(hasDefaultArgument()))
 
/// \code
 
/// void x(int val) {}
 
/// void y(int val = 0) {}
 
/// \endcode
 
///
 
/// Deprecated. Use hasInitializer() instead to be able to
 
/// match on the contents of the default argument.  For example:
 
///
 
/// \code
 
/// void x(int val = 7) {}
 
/// void y(int val = 42) {}
 
/// \endcode
 
/// parmVarDecl(hasInitializer(integerLiteral(equals(42))))
 
///   matches the parameter of y
 
///
 
/// A matcher such as
 
///   parmVarDecl(hasInitializer(anything()))
 
/// is equivalent to parmVarDecl(hasDefaultArgument()).
 
AST_MATCHER(ParmVarDecl, hasDefaultArgument) {
 
  return Node.hasDefaultArg();
 
}
 
 
 
/// Matches array new expressions.
 
///
 
/// Given:
 
/// \code
 
///   MyClass *p1 = new MyClass[10];
 
/// \endcode
 
/// cxxNewExpr(isArray())
 
///   matches the expression 'new MyClass[10]'.
 
AST_MATCHER(CXXNewExpr, isArray) {
 
  return Node.isArray();
 
}
 
 
 
/// Matches placement new expression arguments.
 
///
 
/// Given:
 
/// \code
 
///   MyClass *p1 = new (Storage, 16) MyClass();
 
/// \endcode
 
/// cxxNewExpr(hasPlacementArg(1, integerLiteral(equals(16))))
 
///   matches the expression 'new (Storage, 16) MyClass()'.
 
AST_MATCHER_P2(CXXNewExpr, hasPlacementArg, unsigned, Index,
 
               internal::Matcher<Expr>, InnerMatcher) {
 
  return Node.getNumPlacementArgs() > Index &&
 
         InnerMatcher.matches(*Node.getPlacementArg(Index), Finder, Builder);
 
}
 
 
 
/// Matches any placement new expression arguments.
 
///
 
/// Given:
 
/// \code
 
///   MyClass *p1 = new (Storage) MyClass();
 
/// \endcode
 
/// cxxNewExpr(hasAnyPlacementArg(anything()))
 
///   matches the expression 'new (Storage, 16) MyClass()'.
 
AST_MATCHER_P(CXXNewExpr, hasAnyPlacementArg, internal::Matcher<Expr>,
 
              InnerMatcher) {
 
  return llvm::any_of(Node.placement_arguments(), [&](const Expr *Arg) {
 
    return InnerMatcher.matches(*Arg, Finder, Builder);
 
  });
 
}
 
 
 
/// Matches array new expressions with a given array size.
 
///
 
/// Given:
 
/// \code
 
///   MyClass *p1 = new MyClass[10];
 
/// \endcode
 
/// cxxNewExpr(hasArraySize(integerLiteral(equals(10))))
 
///   matches the expression 'new MyClass[10]'.
 
AST_MATCHER_P(CXXNewExpr, hasArraySize, internal::Matcher<Expr>, InnerMatcher) {
 
  return Node.isArray() && *Node.getArraySize() &&
 
         InnerMatcher.matches(**Node.getArraySize(), Finder, Builder);
 
}
 
 
 
/// Matches a class declaration that is defined.
 
///
 
/// Example matches x (matcher = cxxRecordDecl(hasDefinition()))
 
/// \code
 
/// class x {};
 
/// class y;
 
/// \endcode
 
AST_MATCHER(CXXRecordDecl, hasDefinition) {
 
  return Node.hasDefinition();
 
}
 
 
 
/// Matches C++11 scoped enum declaration.
 
///
 
/// Example matches Y (matcher = enumDecl(isScoped()))
 
/// \code
 
/// enum X {};
 
/// enum class Y {};
 
/// \endcode
 
AST_MATCHER(EnumDecl, isScoped) {
 
  return Node.isScoped();
 
}
 
 
 
/// Matches a function declared with a trailing return type.
 
///
 
/// Example matches Y (matcher = functionDecl(hasTrailingReturn()))
 
/// \code
 
/// int X() {}
 
/// auto Y() -> int {}
 
/// \endcode
 
AST_MATCHER(FunctionDecl, hasTrailingReturn) {
 
  if (const auto *F = Node.getType()->getAs<FunctionProtoType>())
 
    return F->hasTrailingReturn();
 
  return false;
 
}
 
 
 
/// Matches expressions that match InnerMatcher that are possibly wrapped in an
 
/// elidable constructor and other corresponding bookkeeping nodes.
 
///
 
/// In C++17, elidable copy constructors are no longer being generated in the
 
/// AST as it is not permitted by the standard. They are, however, part of the
 
/// AST in C++14 and earlier. So, a matcher must abstract over these differences
 
/// to work in all language modes. This matcher skips elidable constructor-call
 
/// AST nodes, `ExprWithCleanups` nodes wrapping elidable constructor-calls and
 
/// various implicit nodes inside the constructor calls, all of which will not
 
/// appear in the C++17 AST.
 
///
 
/// Given
 
///
 
/// \code
 
/// struct H {};
 
/// H G();
 
/// void f() {
 
///   H D = G();
 
/// }
 
/// \endcode
 
///
 
/// ``varDecl(hasInitializer(ignoringElidableConstructorCall(callExpr())))``
 
/// matches ``H D = G()`` in C++11 through C++17 (and beyond).
 
AST_MATCHER_P(Expr, ignoringElidableConstructorCall,
 
              ast_matchers::internal::Matcher<Expr>, InnerMatcher) {
 
  // E tracks the node that we are examining.
 
  const Expr *E = &Node;
 
  // If present, remove an outer `ExprWithCleanups` corresponding to the
 
  // underlying `CXXConstructExpr`. This check won't cover all cases of added
 
  // `ExprWithCleanups` corresponding to `CXXConstructExpr` nodes (because the
 
  // EWC is placed on the outermost node of the expression, which this may not
 
  // be), but, it still improves the coverage of this matcher.
 
  if (const auto *CleanupsExpr = dyn_cast<ExprWithCleanups>(&Node))
 
    E = CleanupsExpr->getSubExpr();
 
  if (const auto *CtorExpr = dyn_cast<CXXConstructExpr>(E)) {
 
    if (CtorExpr->isElidable()) {
 
      if (const auto *MaterializeTemp =
 
              dyn_cast<MaterializeTemporaryExpr>(CtorExpr->getArg(0))) {
 
        return InnerMatcher.matches(*MaterializeTemp->getSubExpr(), Finder,
 
                                    Builder);
 
      }
 
    }
 
  }
 
  return InnerMatcher.matches(Node, Finder, Builder);
 
}
 
 
 
//----------------------------------------------------------------------------//
 
// OpenMP handling.
 
//----------------------------------------------------------------------------//
 
 
 
/// Matches any ``#pragma omp`` executable directive.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   #pragma omp parallel default(none)
 
///   #pragma omp taskyield
 
/// \endcode
 
///
 
/// ``ompExecutableDirective()`` matches ``omp parallel``,
 
/// ``omp parallel default(none)`` and ``omp taskyield``.
 
extern const internal::VariadicDynCastAllOfMatcher<Stmt, OMPExecutableDirective>
 
    ompExecutableDirective;
 
 
 
/// Matches standalone OpenMP directives,
 
/// i.e., directives that can't have a structured block.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   {}
 
///   #pragma omp taskyield
 
/// \endcode
 
///
 
/// ``ompExecutableDirective(isStandaloneDirective()))`` matches
 
/// ``omp taskyield``.
 
AST_MATCHER(OMPExecutableDirective, isStandaloneDirective) {
 
  return Node.isStandaloneDirective();
 
}
 
 
 
/// Matches the structured-block of the OpenMP executable directive
 
///
 
/// Prerequisite: the executable directive must not be standalone directive.
 
/// If it is, it will never match.
 
///
 
/// Given
 
///
 
/// \code
 
///    #pragma omp parallel
 
///    ;
 
///    #pragma omp parallel
 
///    {}
 
/// \endcode
 
///
 
/// ``ompExecutableDirective(hasStructuredBlock(nullStmt()))`` will match ``;``
 
AST_MATCHER_P(OMPExecutableDirective, hasStructuredBlock,
 
              internal::Matcher<Stmt>, InnerMatcher) {
 
  if (Node.isStandaloneDirective())
 
    return false; // Standalone directives have no structured blocks.
 
  return InnerMatcher.matches(*Node.getStructuredBlock(), Finder, Builder);
 
}
 
 
 
/// Matches any clause in an OpenMP directive.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   #pragma omp parallel default(none)
 
/// \endcode
 
///
 
/// ``ompExecutableDirective(hasAnyClause(anything()))`` matches
 
/// ``omp parallel default(none)``.
 
AST_MATCHER_P(OMPExecutableDirective, hasAnyClause,
 
              internal::Matcher<OMPClause>, InnerMatcher) {
 
  ArrayRef<OMPClause *> Clauses = Node.clauses();
 
  return matchesFirstInPointerRange(InnerMatcher, Clauses.begin(),
 
                                    Clauses.end(), Finder,
 
                                    Builder) != Clauses.end();
 
}
 
 
 
/// Matches OpenMP ``default`` clause.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel default(none)
 
///   #pragma omp parallel default(shared)
 
///   #pragma omp parallel default(private)
 
///   #pragma omp parallel default(firstprivate)
 
///   #pragma omp parallel
 
/// \endcode
 
///
 
/// ``ompDefaultClause()`` matches ``default(none)``, ``default(shared)``,
 
/// `` default(private)`` and ``default(firstprivate)``
 
extern const internal::VariadicDynCastAllOfMatcher<OMPClause, OMPDefaultClause>
 
    ompDefaultClause;
 
 
 
/// Matches if the OpenMP ``default`` clause has ``none`` kind specified.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   #pragma omp parallel default(none)
 
///   #pragma omp parallel default(shared)
 
///   #pragma omp parallel default(private)
 
///   #pragma omp parallel default(firstprivate)
 
/// \endcode
 
///
 
/// ``ompDefaultClause(isNoneKind())`` matches only ``default(none)``.
 
AST_MATCHER(OMPDefaultClause, isNoneKind) {
 
  return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_none;
 
}
 
 
 
/// Matches if the OpenMP ``default`` clause has ``shared`` kind specified.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   #pragma omp parallel default(none)
 
///   #pragma omp parallel default(shared)
 
///   #pragma omp parallel default(private)
 
///   #pragma omp parallel default(firstprivate)
 
/// \endcode
 
///
 
/// ``ompDefaultClause(isSharedKind())`` matches only ``default(shared)``.
 
AST_MATCHER(OMPDefaultClause, isSharedKind) {
 
  return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_shared;
 
}
 
 
 
/// Matches if the OpenMP ``default`` clause has ``private`` kind
 
/// specified.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   #pragma omp parallel default(none)
 
///   #pragma omp parallel default(shared)
 
///   #pragma omp parallel default(private)
 
///   #pragma omp parallel default(firstprivate)
 
/// \endcode
 
///
 
/// ``ompDefaultClause(isPrivateKind())`` matches only
 
/// ``default(private)``.
 
AST_MATCHER(OMPDefaultClause, isPrivateKind) {
 
  return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_private;
 
}
 
 
 
/// Matches if the OpenMP ``default`` clause has ``firstprivate`` kind
 
/// specified.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   #pragma omp parallel default(none)
 
///   #pragma omp parallel default(shared)
 
///   #pragma omp parallel default(private)
 
///   #pragma omp parallel default(firstprivate)
 
/// \endcode
 
///
 
/// ``ompDefaultClause(isFirstPrivateKind())`` matches only
 
/// ``default(firstprivate)``.
 
AST_MATCHER(OMPDefaultClause, isFirstPrivateKind) {
 
  return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_firstprivate;
 
}
 
 
 
/// Matches if the OpenMP directive is allowed to contain the specified OpenMP
 
/// clause kind.
 
///
 
/// Given
 
///
 
/// \code
 
///   #pragma omp parallel
 
///   #pragma omp parallel for
 
///   #pragma omp          for
 
/// \endcode
 
///
 
/// `ompExecutableDirective(isAllowedToContainClause(OMPC_default))`` matches
 
/// ``omp parallel`` and ``omp parallel for``.
 
///
 
/// If the matcher is use from clang-query, ``OpenMPClauseKind`` parameter
 
/// should be passed as a quoted string. e.g.,
 
/// ``isAllowedToContainClauseKind("OMPC_default").``
 
AST_MATCHER_P(OMPExecutableDirective, isAllowedToContainClauseKind,
 
              OpenMPClauseKind, CKind) {
 
  return llvm::omp::isAllowedClauseForDirective(
 
      Node.getDirectiveKind(), CKind,
 
      Finder->getASTContext().getLangOpts().OpenMP);
 
}
 
 
 
//----------------------------------------------------------------------------//
 
// End OpenMP handling.
 
//----------------------------------------------------------------------------//
 
 
 
} // namespace ast_matchers
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H