//===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This contains code dealing with generation of the layout of virtual tables.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_AST_VTABLEBUILDER_H
 
#define LLVM_CLANG_AST_VTABLEBUILDER_H
 
 
 
#include "clang/AST/BaseSubobject.h"
 
#include "clang/AST/CXXInheritance.h"
 
#include "clang/AST/GlobalDecl.h"
 
#include "clang/AST/RecordLayout.h"
 
#include "clang/Basic/ABI.h"
 
#include "clang/Basic/Thunk.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include <memory>
 
#include <utility>
 
 
 
namespace clang {
 
  class CXXRecordDecl;
 
 
 
/// Represents a single component in a vtable.
 
class VTableComponent {
 
public:
 
  enum Kind {
 
    CK_VCallOffset,
 
    CK_VBaseOffset,
 
    CK_OffsetToTop,
 
    CK_RTTI,
 
    CK_FunctionPointer,
 
 
 
    /// A pointer to the complete destructor.
 
    CK_CompleteDtorPointer,
 
 
 
    /// A pointer to the deleting destructor.
 
    CK_DeletingDtorPointer,
 
 
 
    /// An entry that is never used.
 
    ///
 
    /// In some cases, a vtable function pointer will end up never being
 
    /// called. Such vtable function pointers are represented as a
 
    /// CK_UnusedFunctionPointer.
 
    CK_UnusedFunctionPointer
 
  };
 
 
 
  VTableComponent() = default;
 
 
 
  static VTableComponent MakeVCallOffset(CharUnits Offset) {
 
    return VTableComponent(CK_VCallOffset, Offset);
 
  }
 
 
 
  static VTableComponent MakeVBaseOffset(CharUnits Offset) {
 
    return VTableComponent(CK_VBaseOffset, Offset);
 
  }
 
 
 
  static VTableComponent MakeOffsetToTop(CharUnits Offset) {
 
    return VTableComponent(CK_OffsetToTop, Offset);
 
  }
 
 
 
  static VTableComponent MakeRTTI(const CXXRecordDecl *RD) {
 
    return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD));
 
  }
 
 
 
  static VTableComponent MakeFunction(const CXXMethodDecl *MD) {
 
    assert(!isa<CXXDestructorDecl>(MD) &&
 
           "Don't use MakeFunction with destructors!");
 
 
 
    return VTableComponent(CK_FunctionPointer,
 
                           reinterpret_cast<uintptr_t>(MD));
 
  }
 
 
 
  static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) {
 
    return VTableComponent(CK_CompleteDtorPointer,
 
                           reinterpret_cast<uintptr_t>(DD));
 
  }
 
 
 
  static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) {
 
    return VTableComponent(CK_DeletingDtorPointer,
 
                           reinterpret_cast<uintptr_t>(DD));
 
  }
 
 
 
  static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) {
 
    assert(!isa<CXXDestructorDecl>(MD) &&
 
           "Don't use MakeUnusedFunction with destructors!");
 
    return VTableComponent(CK_UnusedFunctionPointer,
 
                           reinterpret_cast<uintptr_t>(MD));
 
  }
 
 
 
  /// Get the kind of this vtable component.
 
  Kind getKind() const {
 
    return (Kind)(Value & 0x7);
 
  }
 
 
 
  CharUnits getVCallOffset() const {
 
    assert(getKind() == CK_VCallOffset && "Invalid component kind!");
 
 
 
    return getOffset();
 
  }
 
 
 
  CharUnits getVBaseOffset() const {
 
    assert(getKind() == CK_VBaseOffset && "Invalid component kind!");
 
 
 
    return getOffset();
 
  }
 
 
 
  CharUnits getOffsetToTop() const {
 
    assert(getKind() == CK_OffsetToTop && "Invalid component kind!");
 
 
 
    return getOffset();
 
  }
 
 
 
  const CXXRecordDecl *getRTTIDecl() const {
 
    assert(isRTTIKind() && "Invalid component kind!");
 
    return reinterpret_cast<CXXRecordDecl *>(getPointer());
 
  }
 
 
 
  const CXXMethodDecl *getFunctionDecl() const {
 
    assert(isFunctionPointerKind() && "Invalid component kind!");
 
    if (isDestructorKind())
 
      return getDestructorDecl();
 
    return reinterpret_cast<CXXMethodDecl *>(getPointer());
 
  }
 
 
 
  const CXXDestructorDecl *getDestructorDecl() const {
 
    assert(isDestructorKind() && "Invalid component kind!");
 
    return reinterpret_cast<CXXDestructorDecl *>(getPointer());
 
  }
 
 
 
  const CXXMethodDecl *getUnusedFunctionDecl() const {
 
    assert(getKind() == CK_UnusedFunctionPointer && "Invalid component kind!");
 
    return reinterpret_cast<CXXMethodDecl *>(getPointer());
 
  }
 
 
 
  bool isDestructorKind() const { return isDestructorKind(getKind()); }
 
 
 
  bool isUsedFunctionPointerKind() const {
 
    return isUsedFunctionPointerKind(getKind());
 
  }
 
 
 
  bool isFunctionPointerKind() const {
 
    return isFunctionPointerKind(getKind());
 
  }
 
 
 
  bool isRTTIKind() const { return isRTTIKind(getKind()); }
 
 
 
  GlobalDecl getGlobalDecl() const {
 
    assert(isUsedFunctionPointerKind() &&
 
           "GlobalDecl can be created only from virtual function");
 
 
 
    auto *DtorDecl = dyn_cast<CXXDestructorDecl>(getFunctionDecl());
 
    switch (getKind()) {
 
    case CK_FunctionPointer:
 
      return GlobalDecl(getFunctionDecl());
 
    case CK_CompleteDtorPointer:
 
      return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Complete);
 
    case CK_DeletingDtorPointer:
 
      return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Deleting);
 
    case CK_VCallOffset:
 
    case CK_VBaseOffset:
 
    case CK_OffsetToTop:
 
    case CK_RTTI:
 
    case CK_UnusedFunctionPointer:
 
      llvm_unreachable("Only function pointers kinds");
 
    }
 
    llvm_unreachable("Should already return");
 
  }
 
 
 
private:
 
  static bool isFunctionPointerKind(Kind ComponentKind) {
 
    return isUsedFunctionPointerKind(ComponentKind) ||
 
           ComponentKind == CK_UnusedFunctionPointer;
 
  }
 
  static bool isUsedFunctionPointerKind(Kind ComponentKind) {
 
    return ComponentKind == CK_FunctionPointer ||
 
           isDestructorKind(ComponentKind);
 
  }
 
  static bool isDestructorKind(Kind ComponentKind) {
 
    return ComponentKind == CK_CompleteDtorPointer ||
 
           ComponentKind == CK_DeletingDtorPointer;
 
  }
 
  static bool isRTTIKind(Kind ComponentKind) {
 
    return ComponentKind == CK_RTTI;
 
  }
 
 
 
  VTableComponent(Kind ComponentKind, CharUnits Offset) {
 
    assert((ComponentKind == CK_VCallOffset ||
 
            ComponentKind == CK_VBaseOffset ||
 
            ComponentKind == CK_OffsetToTop) && "Invalid component kind!");
 
    assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!");
 
    assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!");
 
 
 
    Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind;
 
  }
 
 
 
  VTableComponent(Kind ComponentKind, uintptr_t Ptr) {
 
    assert((isRTTIKind(ComponentKind) || isFunctionPointerKind(ComponentKind)) &&
 
           "Invalid component kind!");
 
 
 
    assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!");
 
 
 
    Value = Ptr | ComponentKind;
 
  }
 
 
 
  CharUnits getOffset() const {
 
    assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset ||
 
            getKind() == CK_OffsetToTop) && "Invalid component kind!");
 
 
 
    return CharUnits::fromQuantity(Value >> 3);
 
  }
 
 
 
  uintptr_t getPointer() const {
 
    assert((getKind() == CK_RTTI || isFunctionPointerKind()) &&
 
           "Invalid component kind!");
 
 
 
    return static_cast<uintptr_t>(Value & ~7ULL);
 
  }
 
 
 
  /// The kind is stored in the lower 3 bits of the value. For offsets, we
 
  /// make use of the facts that classes can't be larger than 2^55 bytes,
 
  /// so we store the offset in the lower part of the 61 bits that remain.
 
  /// (The reason that we're not simply using a PointerIntPair here is that we
 
  /// need the offsets to be 64-bit, even when on a 32-bit machine).
 
  int64_t Value;
 
};
 
 
 
class VTableLayout {
 
public:
 
  typedef std::pair<uint64_t, ThunkInfo> VTableThunkTy;
 
  struct AddressPointLocation {
 
    unsigned VTableIndex, AddressPointIndex;
 
  };
 
  typedef llvm::DenseMap<BaseSubobject, AddressPointLocation>
 
      AddressPointsMapTy;
 
 
 
  // Mapping between the VTable index and address point index. This is useful
 
  // when you don't care about the base subobjects and only want the address
 
  // point for a given vtable index.
 
  typedef llvm::SmallVector<unsigned, 4> AddressPointsIndexMapTy;
 
 
 
private:
 
  // Stores the component indices of the first component of each virtual table in
 
  // the virtual table group. To save a little memory in the common case where
 
  // the vtable group contains a single vtable, an empty vector here represents
 
  // the vector {0}.
 
  OwningArrayRef<size_t> VTableIndices;
 
 
 
  OwningArrayRef<VTableComponent> VTableComponents;
 
 
 
  /// Contains thunks needed by vtables, sorted by indices.
 
  OwningArrayRef<VTableThunkTy> VTableThunks;
 
 
 
  /// Address points for all vtables.
 
  AddressPointsMapTy AddressPoints;
 
 
 
  /// Address points for all vtable indices.
 
  AddressPointsIndexMapTy AddressPointIndices;
 
 
 
public:
 
  VTableLayout(ArrayRef<size_t> VTableIndices,
 
               ArrayRef<VTableComponent> VTableComponents,
 
               ArrayRef<VTableThunkTy> VTableThunks,
 
               const AddressPointsMapTy &AddressPoints);
 
  ~VTableLayout();
 
 
 
  ArrayRef<VTableComponent> vtable_components() const {
 
    return VTableComponents;
 
  }
 
 
 
  ArrayRef<VTableThunkTy> vtable_thunks() const {
 
    return VTableThunks;
 
  }
 
 
 
  AddressPointLocation getAddressPoint(BaseSubobject Base) const {
 
    assert(AddressPoints.count(Base) && "Did not find address point!");
 
    return AddressPoints.find(Base)->second;
 
  }
 
 
 
  const AddressPointsMapTy &getAddressPoints() const {
 
    return AddressPoints;
 
  }
 
 
 
  const AddressPointsIndexMapTy &getAddressPointIndices() const {
 
    return AddressPointIndices;
 
  }
 
 
 
  size_t getNumVTables() const {
 
    if (VTableIndices.empty())
 
      return 1;
 
    return VTableIndices.size();
 
  }
 
 
 
  size_t getVTableOffset(size_t i) const {
 
    if (VTableIndices.empty()) {
 
      assert(i == 0);
 
      return 0;
 
    }
 
    return VTableIndices[i];
 
  }
 
 
 
  size_t getVTableSize(size_t i) const {
 
    if (VTableIndices.empty()) {
 
      assert(i == 0);
 
      return vtable_components().size();
 
    }
 
 
 
    size_t thisIndex = VTableIndices[i];
 
    size_t nextIndex = (i + 1 == VTableIndices.size())
 
                           ? vtable_components().size()
 
                           : VTableIndices[i + 1];
 
    return nextIndex - thisIndex;
 
  }
 
};
 
 
 
class VTableContextBase {
 
public:
 
  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
 
 
 
  bool isMicrosoft() const { return IsMicrosoftABI; }
 
 
 
  virtual ~VTableContextBase() {}
 
 
 
protected:
 
  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
 
 
 
  /// Contains all thunks that a given method decl will need.
 
  ThunksMapTy Thunks;
 
 
 
  /// Compute and store all vtable related information (vtable layout, vbase
 
  /// offset offsets, thunks etc) for the given record decl.
 
  virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0;
 
 
 
  VTableContextBase(bool MS) : IsMicrosoftABI(MS) {}
 
 
 
public:
 
  virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) {
 
    const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()->getCanonicalDecl());
 
    computeVTableRelatedInformation(MD->getParent());
 
 
 
    // This assumes that all the destructors present in the vtable
 
    // use exactly the same set of thunks.
 
    ThunksMapTy::const_iterator I = Thunks.find(MD);
 
    if (I == Thunks.end()) {
 
      // We did not find a thunk for this method.
 
      return nullptr;
 
    }
 
 
 
    return &I->second;
 
  }
 
 
 
  bool IsMicrosoftABI;
 
 
 
  /// Determine whether this function should be assigned a vtable slot.
 
  static bool hasVtableSlot(const CXXMethodDecl *MD);
 
};
 
 
 
class ItaniumVTableContext : public VTableContextBase {
 
private:
 
 
 
  /// Contains the index (relative to the vtable address point)
 
  /// where the function pointer for a virtual function is stored.
 
  typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
 
  MethodVTableIndicesTy MethodVTableIndices;
 
 
 
  typedef llvm::DenseMap<const CXXRecordDecl *,
 
                         std::unique_ptr<const VTableLayout>>
 
      VTableLayoutMapTy;
 
  VTableLayoutMapTy VTableLayouts;
 
 
 
  typedef std::pair<const CXXRecordDecl *,
 
                    const CXXRecordDecl *> ClassPairTy;
 
 
 
  /// vtable offsets for offsets of virtual bases of a class.
 
  ///
 
  /// Contains the vtable offset (relative to the address point) in chars
 
  /// where the offsets for virtual bases of a class are stored.
 
  typedef llvm::DenseMap<ClassPairTy, CharUnits>
 
    VirtualBaseClassOffsetOffsetsMapTy;
 
  VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets;
 
 
 
  void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
 
 
 
public:
 
  enum VTableComponentLayout {
 
    /// Components in the vtable are pointers to other structs/functions.
 
    Pointer,
 
 
 
    /// Components in the vtable are relative offsets between the vtable and the
 
    /// other structs/functions.
 
    Relative,
 
  };
 
 
 
  ItaniumVTableContext(ASTContext &Context,
 
                       VTableComponentLayout ComponentLayout = Pointer);
 
  ~ItaniumVTableContext() override;
 
 
 
  const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) {
 
    computeVTableRelatedInformation(RD);
 
    assert(VTableLayouts.count(RD) && "No layout for this record decl!");
 
 
 
    return *VTableLayouts[RD];
 
  }
 
 
 
  std::unique_ptr<VTableLayout> createConstructionVTableLayout(
 
      const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
 
      bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass);
 
 
 
  /// Locate a virtual function in the vtable.
 
  ///
 
  /// Return the index (relative to the vtable address point) where the
 
  /// function pointer for the given virtual function is stored.
 
  uint64_t getMethodVTableIndex(GlobalDecl GD);
 
 
 
  /// Return the offset in chars (relative to the vtable address point) where
 
  /// the offset of the virtual base that contains the given base is stored,
 
  /// otherwise, if no virtual base contains the given class, return 0.
 
  ///
 
  /// Base must be a virtual base class or an unambiguous base.
 
  CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
 
                                       const CXXRecordDecl *VBase);
 
 
 
  static bool classof(const VTableContextBase *VT) {
 
    return !VT->isMicrosoft();
 
  }
 
 
 
  VTableComponentLayout getVTableComponentLayout() const {
 
    return ComponentLayout;
 
  }
 
 
 
  bool isPointerLayout() const { return ComponentLayout == Pointer; }
 
  bool isRelativeLayout() const { return ComponentLayout == Relative; }
 
 
 
private:
 
  VTableComponentLayout ComponentLayout;
 
};
 
 
 
/// Holds information about the inheritance path to a virtual base or function
 
/// table pointer.  A record may contain as many vfptrs or vbptrs as there are
 
/// base subobjects.
 
struct VPtrInfo {
 
  typedef SmallVector<const CXXRecordDecl *, 1> BasePath;
 
 
 
  VPtrInfo(const CXXRecordDecl *RD)
 
      : ObjectWithVPtr(RD), IntroducingObject(RD), NextBaseToMangle(RD) {}
 
 
 
  /// This is the most derived class that has this vptr at offset zero. When
 
  /// single inheritance is used, this is always the most derived class. If
 
  /// multiple inheritance is used, it may be any direct or indirect base.
 
  const CXXRecordDecl *ObjectWithVPtr;
 
 
 
  /// This is the class that introduced the vptr by declaring new virtual
 
  /// methods or virtual bases.
 
  const CXXRecordDecl *IntroducingObject;
 
 
 
  /// IntroducingObject is at this offset from its containing complete object or
 
  /// virtual base.
 
  CharUnits NonVirtualOffset;
 
 
 
  /// The bases from the inheritance path that got used to mangle the vbtable
 
  /// name.  This is not really a full path like a CXXBasePath.  It holds the
 
  /// subset of records that need to be mangled into the vbtable symbol name in
 
  /// order to get a unique name.
 
  BasePath MangledPath;
 
 
 
  /// The next base to push onto the mangled path if this path is ambiguous in a
 
  /// derived class.  If it's null, then it's already been pushed onto the path.
 
  const CXXRecordDecl *NextBaseToMangle;
 
 
 
  /// The set of possibly indirect vbases that contain this vbtable.  When a
 
  /// derived class indirectly inherits from the same vbase twice, we only keep
 
  /// vtables and their paths from the first instance.
 
  BasePath ContainingVBases;
 
 
 
  /// This holds the base classes path from the complete type to the first base
 
  /// with the given vfptr offset, in the base-to-derived order.  Only used for
 
  /// vftables.
 
  BasePath PathToIntroducingObject;
 
 
 
  /// Static offset from the top of the most derived class to this vfptr,
 
  /// including any virtual base offset.  Only used for vftables.
 
  CharUnits FullOffsetInMDC;
 
 
 
  /// The vptr is stored inside the non-virtual component of this virtual base.
 
  const CXXRecordDecl *getVBaseWithVPtr() const {
 
    return ContainingVBases.empty() ? nullptr : ContainingVBases.front();
 
  }
 
};
 
 
 
typedef SmallVector<std::unique_ptr<VPtrInfo>, 2> VPtrInfoVector;
 
 
 
/// All virtual base related information about a given record decl.  Includes
 
/// information on all virtual base tables and the path components that are used
 
/// to mangle them.
 
struct VirtualBaseInfo {
 
  /// A map from virtual base to vbtable index for doing a conversion from the
 
  /// the derived class to the a base.
 
  llvm::DenseMap<const CXXRecordDecl *, unsigned> VBTableIndices;
 
 
 
  /// Information on all virtual base tables used when this record is the most
 
  /// derived class.
 
  VPtrInfoVector VBPtrPaths;
 
};
 
 
 
struct MethodVFTableLocation {
 
  /// If nonzero, holds the vbtable index of the virtual base with the vfptr.
 
  uint64_t VBTableIndex;
 
 
 
  /// If nonnull, holds the last vbase which contains the vfptr that the
 
  /// method definition is adjusted to.
 
  const CXXRecordDecl *VBase;
 
 
 
  /// This is the offset of the vfptr from the start of the last vbase, or the
 
  /// complete type if there are no virtual bases.
 
  CharUnits VFPtrOffset;
 
 
 
  /// Method's index in the vftable.
 
  uint64_t Index;
 
 
 
  MethodVFTableLocation()
 
      : VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()),
 
        Index(0) {}
 
 
 
  MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase,
 
                        CharUnits VFPtrOffset, uint64_t Index)
 
      : VBTableIndex(VBTableIndex), VBase(VBase), VFPtrOffset(VFPtrOffset),
 
        Index(Index) {}
 
 
 
  bool operator<(const MethodVFTableLocation &other) const {
 
    if (VBTableIndex != other.VBTableIndex) {
 
      assert(VBase != other.VBase);
 
      return VBTableIndex < other.VBTableIndex;
 
    }
 
    return std::tie(VFPtrOffset, Index) <
 
           std::tie(other.VFPtrOffset, other.Index);
 
  }
 
};
 
 
 
class MicrosoftVTableContext : public VTableContextBase {
 
public:
 
 
 
private:
 
  ASTContext &Context;
 
 
 
  typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
 
    MethodVFTableLocationsTy;
 
  MethodVFTableLocationsTy MethodVFTableLocations;
 
 
 
  typedef llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VPtrInfoVector>>
 
      VFPtrLocationsMapTy;
 
  VFPtrLocationsMapTy VFPtrLocations;
 
 
 
  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
 
  typedef llvm::DenseMap<VFTableIdTy, std::unique_ptr<const VTableLayout>>
 
      VFTableLayoutMapTy;
 
  VFTableLayoutMapTy VFTableLayouts;
 
 
 
  llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VirtualBaseInfo>>
 
      VBaseInfo;
 
 
 
  void enumerateVFPtrs(const CXXRecordDecl *ForClass, VPtrInfoVector &Result);
 
 
 
  void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
 
 
 
  void dumpMethodLocations(const CXXRecordDecl *RD,
 
                           const MethodVFTableLocationsTy &NewMethods,
 
                           raw_ostream &);
 
 
 
  const VirtualBaseInfo &
 
  computeVBTableRelatedInformation(const CXXRecordDecl *RD);
 
 
 
  void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD,
 
                          VPtrInfoVector &Paths);
 
 
 
public:
 
  MicrosoftVTableContext(ASTContext &Context)
 
      : VTableContextBase(/*MS=*/true), Context(Context) {}
 
 
 
  ~MicrosoftVTableContext() override;
 
 
 
  const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD);
 
 
 
  const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD,
 
                                       CharUnits VFPtrOffset);
 
 
 
  MethodVFTableLocation getMethodVFTableLocation(GlobalDecl GD);
 
 
 
  const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override {
 
    // Complete destructors don't have a slot in a vftable, so no thunks needed.
 
    if (isa<CXXDestructorDecl>(GD.getDecl()) &&
 
        GD.getDtorType() == Dtor_Complete)
 
      return nullptr;
 
    return VTableContextBase::getThunkInfo(GD);
 
  }
 
 
 
  /// Returns the index of VBase in the vbtable of Derived.
 
  /// VBase must be a morally virtual base of Derived.
 
  /// The vbtable is an array of i32 offsets.  The first entry is a self entry,
 
  /// and the rest are offsets from the vbptr to virtual bases.
 
  unsigned getVBTableIndex(const CXXRecordDecl *Derived,
 
                           const CXXRecordDecl *VBase);
 
 
 
  const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD);
 
 
 
  static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); }
 
};
 
 
 
} // namespace clang
 
 
 
#endif