//===--- StmtCXX.h - Classes for representing C++ statements ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the C++ statement AST node classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_STMTCXX_H
#define LLVM_CLANG_AST_STMTCXX_H
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Stmt.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class VarDecl;
/// CXXCatchStmt - This represents a C++ catch block.
///
class CXXCatchStmt : public Stmt {
SourceLocation CatchLoc;
/// The exception-declaration of the type.
VarDecl *ExceptionDecl;
/// The handler block.
Stmt *HandlerBlock;
public:
CXXCatchStmt(SourceLocation catchLoc, VarDecl *exDecl, Stmt *handlerBlock)
: Stmt(CXXCatchStmtClass), CatchLoc(catchLoc), ExceptionDecl(exDecl),
HandlerBlock(handlerBlock) {}
CXXCatchStmt(EmptyShell Empty)
: Stmt(CXXCatchStmtClass), ExceptionDecl(nullptr), HandlerBlock(nullptr) {}
SourceLocation getBeginLoc() const LLVM_READONLY { return CatchLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return HandlerBlock->getEndLoc();
}
SourceLocation getCatchLoc() const { return CatchLoc; }
VarDecl *getExceptionDecl() const { return ExceptionDecl; }
QualType getCaughtType() const;
Stmt *getHandlerBlock() const { return HandlerBlock; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXCatchStmtClass;
}
child_range children() { return child_range(&HandlerBlock, &HandlerBlock+1); }
const_child_range children() const {
return const_child_range(&HandlerBlock, &HandlerBlock + 1);
}
friend class ASTStmtReader;
};
/// CXXTryStmt - A C++ try block, including all handlers.
///
class CXXTryStmt final : public Stmt,
private llvm::TrailingObjects<CXXTryStmt, Stmt *> {
friend TrailingObjects;
friend class ASTStmtReader;
SourceLocation TryLoc;
unsigned NumHandlers;
size_t numTrailingObjects(OverloadToken<Stmt *>) const { return NumHandlers; }
CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock, ArrayRef<Stmt*> handlers);
CXXTryStmt(EmptyShell Empty, unsigned numHandlers)
: Stmt(CXXTryStmtClass), NumHandlers(numHandlers) { }
Stmt *const *getStmts() const { return getTrailingObjects<Stmt *>(); }
Stmt **getStmts() { return getTrailingObjects<Stmt *>(); }
public:
static CXXTryStmt *Create(const ASTContext &C, SourceLocation tryLoc,
Stmt *tryBlock, ArrayRef<Stmt*> handlers);
static CXXTryStmt *Create(const ASTContext &C, EmptyShell Empty,
unsigned numHandlers);
SourceLocation getBeginLoc() const LLVM_READONLY { return getTryLoc(); }
SourceLocation getTryLoc() const { return TryLoc; }
SourceLocation getEndLoc() const {
return getStmts()[NumHandlers]->getEndLoc();
}
CompoundStmt *getTryBlock() {
return cast<CompoundStmt>(getStmts()[0]);
}
const CompoundStmt *getTryBlock() const {
return cast<CompoundStmt>(getStmts()[0]);
}
unsigned getNumHandlers() const { return NumHandlers; }
CXXCatchStmt *getHandler(unsigned i) {
return cast<CXXCatchStmt>(getStmts()[i + 1]);
}
const CXXCatchStmt *getHandler(unsigned i) const {
return cast<CXXCatchStmt>(getStmts()[i + 1]);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTryStmtClass;
}
child_range children() {
return child_range(getStmts(), getStmts() + getNumHandlers() + 1);
}
const_child_range children() const {
return const_child_range(getStmts(), getStmts() + getNumHandlers() + 1);
}
};
/// CXXForRangeStmt - This represents C++0x [stmt.ranged]'s ranged for
/// statement, represented as 'for (range-declarator : range-expression)'
/// or 'for (init-statement range-declarator : range-expression)'.
///
/// This is stored in a partially-desugared form to allow full semantic
/// analysis of the constituent components. The original syntactic components
/// can be extracted using getLoopVariable and getRangeInit.
class CXXForRangeStmt : public Stmt {
SourceLocation ForLoc;
enum { INIT, RANGE, BEGINSTMT, ENDSTMT, COND, INC, LOOPVAR, BODY, END };
// SubExprs[RANGE] is an expression or declstmt.
// SubExprs[COND] and SubExprs[INC] are expressions.
Stmt *SubExprs[END];
SourceLocation CoawaitLoc;
SourceLocation ColonLoc;
SourceLocation RParenLoc;
friend class ASTStmtReader;
public:
CXXForRangeStmt(Stmt *InitStmt, DeclStmt *Range, DeclStmt *Begin,
DeclStmt *End, Expr *Cond, Expr *Inc, DeclStmt *LoopVar,
Stmt *Body, SourceLocation FL, SourceLocation CAL,
SourceLocation CL, SourceLocation RPL);
CXXForRangeStmt(EmptyShell Empty) : Stmt(CXXForRangeStmtClass, Empty) { }
Stmt *getInit() { return SubExprs[INIT]; }
VarDecl *getLoopVariable();
Expr *getRangeInit();
const Stmt *getInit() const { return SubExprs[INIT]; }
const VarDecl *getLoopVariable() const;
const Expr *getRangeInit() const;
DeclStmt *getRangeStmt() { return cast<DeclStmt>(SubExprs[RANGE]); }
DeclStmt *getBeginStmt() {
return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
}
DeclStmt *getEndStmt() { return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]); }
Expr *getCond() { return cast_or_null<Expr>(SubExprs[COND]); }
Expr *getInc() { return cast_or_null<Expr>(SubExprs[INC]); }
DeclStmt *getLoopVarStmt() { return cast<DeclStmt>(SubExprs[LOOPVAR]); }
Stmt *getBody() { return SubExprs[BODY]; }
const DeclStmt *getRangeStmt() const {
return cast<DeclStmt>(SubExprs[RANGE]);
}
const DeclStmt *getBeginStmt() const {
return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
}
const DeclStmt *getEndStmt() const {
return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]);
}
const Expr *getCond() const {
return cast_or_null<Expr>(SubExprs[COND]);
}
const Expr *getInc() const {
return cast_or_null<Expr>(SubExprs[INC]);
}
const DeclStmt *getLoopVarStmt() const {
return cast<DeclStmt>(SubExprs[LOOPVAR]);
}
const Stmt *getBody() const { return SubExprs[BODY]; }
void setInit(Stmt *S) { SubExprs[INIT] = S; }
void setRangeInit(Expr *E) { SubExprs[RANGE] = reinterpret_cast<Stmt*>(E); }
void setRangeStmt(Stmt *S) { SubExprs[RANGE] = S; }
void setBeginStmt(Stmt *S) { SubExprs[BEGINSTMT] = S; }
void setEndStmt(Stmt *S) { SubExprs[ENDSTMT] = S; }
void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
void setLoopVarStmt(Stmt *S) { SubExprs[LOOPVAR] = S; }
void setBody(Stmt *S) { SubExprs[BODY] = S; }
SourceLocation getForLoc() const { return ForLoc; }
SourceLocation getCoawaitLoc() const { return CoawaitLoc; }
SourceLocation getColonLoc() const { return ColonLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return ForLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return SubExprs[BODY]->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXForRangeStmtClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[END]);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[END]);
}
};
/// Representation of a Microsoft __if_exists or __if_not_exists
/// statement with a dependent name.
///
/// The __if_exists statement can be used to include a sequence of statements
/// in the program only when a particular dependent name does not exist. For
/// example:
///
/// \code
/// template<typename T>
/// void call_foo(T &t) {
/// __if_exists (T::foo) {
/// t.foo(); // okay: only called when T::foo exists.
/// }
/// }
/// \endcode
///
/// Similarly, the __if_not_exists statement can be used to include the
/// statements when a particular name does not exist.
///
/// Note that this statement only captures __if_exists and __if_not_exists
/// statements whose name is dependent. All non-dependent cases are handled
/// directly in the parser, so that they don't introduce a new scope. Clang
/// introduces scopes in the dependent case to keep names inside the compound
/// statement from leaking out into the surround statements, which would
/// compromise the template instantiation model. This behavior differs from
/// Visual C++ (which never introduces a scope), but is a fairly reasonable
/// approximation of the VC++ behavior.
class MSDependentExistsStmt : public Stmt {
SourceLocation KeywordLoc;
bool IsIfExists;
NestedNameSpecifierLoc QualifierLoc;
DeclarationNameInfo NameInfo;
Stmt *SubStmt;
friend class ASTReader;
friend class ASTStmtReader;
public:
MSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
CompoundStmt *SubStmt)
: Stmt(MSDependentExistsStmtClass),
KeywordLoc(KeywordLoc), IsIfExists(IsIfExists),
QualifierLoc(QualifierLoc), NameInfo(NameInfo),
SubStmt(reinterpret_cast<Stmt *>(SubStmt)) { }
/// Retrieve the location of the __if_exists or __if_not_exists
/// keyword.
SourceLocation getKeywordLoc() const { return KeywordLoc; }
/// Determine whether this is an __if_exists statement.
bool isIfExists() const { return IsIfExists; }
/// Determine whether this is an __if_exists statement.
bool isIfNotExists() const { return !IsIfExists; }
/// Retrieve the nested-name-specifier that qualifies this name, if
/// any.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the name of the entity we're testing for, along with
/// location information
DeclarationNameInfo getNameInfo() const { return NameInfo; }
/// Retrieve the compound statement that will be included in the
/// program only if the existence of the symbol matches the initial keyword.
CompoundStmt *getSubStmt() const {
return reinterpret_cast<CompoundStmt *>(SubStmt);
}
SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return SubStmt->getEndLoc();
}
child_range children() {
return child_range(&SubStmt, &SubStmt+1);
}
const_child_range children() const {
return const_child_range(&SubStmt, &SubStmt + 1);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MSDependentExistsStmtClass;
}
};
/// Represents the body of a coroutine. This wraps the normal function
/// body and holds the additional semantic context required to set up and tear
/// down the coroutine frame.
class CoroutineBodyStmt final
: public Stmt,
private llvm::TrailingObjects<CoroutineBodyStmt, Stmt *> {
enum SubStmt {
Body, ///< The body of the coroutine.
Promise, ///< The promise statement.
InitSuspend, ///< The initial suspend statement, run before the body.
FinalSuspend, ///< The final suspend statement, run after the body.
OnException, ///< Handler for exceptions thrown in the body.
OnFallthrough, ///< Handler for control flow falling off the body.
Allocate, ///< Coroutine frame memory allocation.
Deallocate, ///< Coroutine frame memory deallocation.
ReturnValue, ///< Return value for thunk function: p.get_return_object().
ReturnStmt, ///< Return statement for the thunk function.
ReturnStmtOnAllocFailure, ///< Return statement if allocation failed.
FirstParamMove ///< First offset for move construction of parameter copies.
};
unsigned NumParams;
friend class ASTStmtReader;
friend class ASTReader;
friend TrailingObjects;
Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
public:
struct CtorArgs {
Stmt *Body = nullptr;
Stmt *Promise = nullptr;
Expr *InitialSuspend = nullptr;
Expr *FinalSuspend = nullptr;
Stmt *OnException = nullptr;
Stmt *OnFallthrough = nullptr;
Expr *Allocate = nullptr;
Expr *Deallocate = nullptr;
Expr *ReturnValue = nullptr;
Stmt *ReturnStmt = nullptr;
Stmt *ReturnStmtOnAllocFailure = nullptr;
ArrayRef<Stmt *> ParamMoves;
};
private:
CoroutineBodyStmt(CtorArgs const& Args);
public:
static CoroutineBodyStmt *Create(const ASTContext &C, CtorArgs const &Args);
static CoroutineBodyStmt *Create(const ASTContext &C, EmptyShell,
unsigned NumParams);
bool hasDependentPromiseType() const {
return getPromiseDecl()->getType()->isDependentType();
}
/// Retrieve the body of the coroutine as written. This will be either
/// a CompoundStmt or a TryStmt.
Stmt *getBody() const {
return getStoredStmts()[SubStmt::Body];
}
Stmt *getPromiseDeclStmt() const {
return getStoredStmts()[SubStmt::Promise];
}
VarDecl *getPromiseDecl() const {
return cast<VarDecl>(cast<DeclStmt>(getPromiseDeclStmt())->getSingleDecl());
}
Stmt *getInitSuspendStmt() const {
return getStoredStmts()[SubStmt::InitSuspend];
}
Stmt *getFinalSuspendStmt() const {
return getStoredStmts()[SubStmt::FinalSuspend];
}
Stmt *getExceptionHandler() const {
return getStoredStmts()[SubStmt::OnException];
}
Stmt *getFallthroughHandler() const {
return getStoredStmts()[SubStmt::OnFallthrough];
}
Expr *getAllocate() const {
return cast_or_null<Expr>(getStoredStmts()[SubStmt::Allocate]);
}
Expr *getDeallocate() const {
return cast_or_null<Expr>(getStoredStmts()[SubStmt::Deallocate]);
}
Expr *getReturnValueInit() const {
return cast<Expr>(getStoredStmts()[SubStmt::ReturnValue]);
}
Expr *getReturnValue() const {
assert(getReturnStmt());
auto *RS = cast<clang::ReturnStmt>(getReturnStmt());
return RS->getRetValue();
}
Stmt *getReturnStmt() const { return getStoredStmts()[SubStmt::ReturnStmt]; }
Stmt *getReturnStmtOnAllocFailure() const {
return getStoredStmts()[SubStmt::ReturnStmtOnAllocFailure];
}
ArrayRef<Stmt const *> getParamMoves() const {
return {getStoredStmts() + SubStmt::FirstParamMove, NumParams};
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBody() ? getBody()->getBeginLoc()
: getPromiseDecl()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getBody() ? getBody()->getEndLoc() : getPromiseDecl()->getEndLoc();
}
child_range children() {
return child_range(getStoredStmts(),
getStoredStmts() + SubStmt::FirstParamMove + NumParams);
}
const_child_range children() const {
return const_child_range(getStoredStmts(), getStoredStmts() +
SubStmt::FirstParamMove +
NumParams);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CoroutineBodyStmtClass;
}
};
/// Represents a 'co_return' statement in the C++ Coroutines TS.
///
/// This statament models the initialization of the coroutine promise
/// (encapsulating the eventual notional return value) from an expression
/// (or braced-init-list), followed by termination of the coroutine.
///
/// This initialization is modeled by the evaluation of the operand
/// followed by a call to one of:
/// <promise>.return_value(<operand>)
/// <promise>.return_void()
/// which we name the "promise call".
class CoreturnStmt : public Stmt {
SourceLocation CoreturnLoc;
enum SubStmt { Operand, PromiseCall, Count };
Stmt *SubStmts[SubStmt::Count];
bool IsImplicit : 1;
friend class ASTStmtReader;
public:
CoreturnStmt(SourceLocation CoreturnLoc, Stmt *Operand, Stmt *PromiseCall,
bool IsImplicit = false)
: Stmt(CoreturnStmtClass), CoreturnLoc(CoreturnLoc),
IsImplicit(IsImplicit) {
SubStmts[SubStmt::Operand] = Operand;
SubStmts[SubStmt::PromiseCall] = PromiseCall;
}
CoreturnStmt(EmptyShell) : CoreturnStmt({}, {}, {}) {}
SourceLocation getKeywordLoc() const { return CoreturnLoc; }
/// Retrieve the operand of the 'co_return' statement. Will be nullptr
/// if none was specified.
Expr *getOperand() const { return static_cast<Expr*>(SubStmts[Operand]); }
/// Retrieve the promise call that results from this 'co_return'
/// statement. Will be nullptr if either the coroutine has not yet been
/// finalized or the coroutine has no eventual return type.
Expr *getPromiseCall() const {
return static_cast<Expr*>(SubStmts[PromiseCall]);
}
bool isImplicit() const { return IsImplicit; }
void setIsImplicit(bool value = true) { IsImplicit = value; }
SourceLocation getBeginLoc() const LLVM_READONLY { return CoreturnLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return getOperand() ? getOperand()->getEndLoc() : getBeginLoc();
}
child_range children() {
return child_range(SubStmts, SubStmts + SubStmt::Count);
}
const_child_range children() const {
return const_child_range(SubStmts, SubStmts + SubStmt::Count);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CoreturnStmtClass;
}
};
} // end namespace clang
#endif