//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  This file defines the Decl subclasses.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_AST_DECL_H
 
#define LLVM_CLANG_AST_DECL_H
 
 
 
#include "clang/AST/APValue.h"
 
#include "clang/AST/ASTContextAllocate.h"
 
#include "clang/AST/DeclAccessPair.h"
 
#include "clang/AST/DeclBase.h"
 
#include "clang/AST/DeclarationName.h"
 
#include "clang/AST/ExternalASTSource.h"
 
#include "clang/AST/NestedNameSpecifier.h"
 
#include "clang/AST/Redeclarable.h"
 
#include "clang/AST/Type.h"
 
#include "clang/Basic/AddressSpaces.h"
 
#include "clang/Basic/Diagnostic.h"
 
#include "clang/Basic/IdentifierTable.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Basic/Linkage.h"
 
#include "clang/Basic/OperatorKinds.h"
 
#include "clang/Basic/PartialDiagnostic.h"
 
#include "clang/Basic/PragmaKinds.h"
 
#include "clang/Basic/SourceLocation.h"
 
#include "clang/Basic/Specifiers.h"
 
#include "clang/Basic/Visibility.h"
 
#include "llvm/ADT/APSInt.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/TrailingObjects.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <optional>
 
#include <string>
 
#include <utility>
 
 
 
namespace clang {
 
 
 
class ASTContext;
 
struct ASTTemplateArgumentListInfo;
 
class CompoundStmt;
 
class DependentFunctionTemplateSpecializationInfo;
 
class EnumDecl;
 
class Expr;
 
class FunctionTemplateDecl;
 
class FunctionTemplateSpecializationInfo;
 
class FunctionTypeLoc;
 
class LabelStmt;
 
class MemberSpecializationInfo;
 
class Module;
 
class NamespaceDecl;
 
class ParmVarDecl;
 
class RecordDecl;
 
class Stmt;
 
class StringLiteral;
 
class TagDecl;
 
class TemplateArgumentList;
 
class TemplateArgumentListInfo;
 
class TemplateParameterList;
 
class TypeAliasTemplateDecl;
 
class UnresolvedSetImpl;
 
class VarTemplateDecl;
 
 
 
/// The top declaration context.
 
class TranslationUnitDecl : public Decl,
 
                            public DeclContext,
 
                            public Redeclarable<TranslationUnitDecl> {
 
  using redeclarable_base = Redeclarable<TranslationUnitDecl>;
 
 
 
  TranslationUnitDecl *getNextRedeclarationImpl() override {
 
    return getNextRedeclaration();
 
  }
 
 
 
  TranslationUnitDecl *getPreviousDeclImpl() override {
 
    return getPreviousDecl();
 
  }
 
 
 
  TranslationUnitDecl *getMostRecentDeclImpl() override {
 
    return getMostRecentDecl();
 
  }
 
 
 
  ASTContext &Ctx;
 
 
 
  /// The (most recently entered) anonymous namespace for this
 
  /// translation unit, if one has been created.
 
  NamespaceDecl *AnonymousNamespace = nullptr;
 
 
 
  explicit TranslationUnitDecl(ASTContext &ctx);
 
 
 
  virtual void anchor();
 
 
 
public:
 
  using redecl_range = redeclarable_base::redecl_range;
 
  using redecl_iterator = redeclarable_base::redecl_iterator;
 
 
 
  using redeclarable_base::getMostRecentDecl;
 
  using redeclarable_base::getPreviousDecl;
 
  using redeclarable_base::isFirstDecl;
 
  using redeclarable_base::redecls;
 
  using redeclarable_base::redecls_begin;
 
  using redeclarable_base::redecls_end;
 
 
 
  ASTContext &getASTContext() const { return Ctx; }
 
 
 
  NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
 
  void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
 
 
 
  static TranslationUnitDecl *Create(ASTContext &C);
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == TranslationUnit; }
 
  static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
 
  }
 
  static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
 
  }
 
};
 
 
 
/// Represents a `#pragma comment` line. Always a child of
 
/// TranslationUnitDecl.
 
class PragmaCommentDecl final
 
    : public Decl,
 
      private llvm::TrailingObjects<PragmaCommentDecl, char> {
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
  friend TrailingObjects;
 
 
 
  PragmaMSCommentKind CommentKind;
 
 
 
  PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
 
                    PragmaMSCommentKind CommentKind)
 
      : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
 
 
 
  virtual void anchor();
 
 
 
public:
 
  static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
 
                                   SourceLocation CommentLoc,
 
                                   PragmaMSCommentKind CommentKind,
 
                                   StringRef Arg);
 
  static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
 
                                               unsigned ArgSize);
 
 
 
  PragmaMSCommentKind getCommentKind() const { return CommentKind; }
 
 
 
  StringRef getArg() const { return getTrailingObjects<char>(); }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == PragmaComment; }
 
};
 
 
 
/// Represents a `#pragma detect_mismatch` line. Always a child of
 
/// TranslationUnitDecl.
 
class PragmaDetectMismatchDecl final
 
    : public Decl,
 
      private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
  friend TrailingObjects;
 
 
 
  size_t ValueStart;
 
 
 
  PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
 
                           size_t ValueStart)
 
      : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
 
 
 
  virtual void anchor();
 
 
 
public:
 
  static PragmaDetectMismatchDecl *Create(const ASTContext &C,
 
                                          TranslationUnitDecl *DC,
 
                                          SourceLocation Loc, StringRef Name,
 
                                          StringRef Value);
 
  static PragmaDetectMismatchDecl *
 
  CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
 
 
 
  StringRef getName() const { return getTrailingObjects<char>(); }
 
  StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
 
};
 
 
 
/// Declaration context for names declared as extern "C" in C++. This
 
/// is neither the semantic nor lexical context for such declarations, but is
 
/// used to check for conflicts with other extern "C" declarations. Example:
 
///
 
/// \code
 
///   namespace N { extern "C" void f(); } // #1
 
///   void N::f() {}                       // #2
 
///   namespace M { extern "C" void f(); } // #3
 
/// \endcode
 
///
 
/// The semantic context of #1 is namespace N and its lexical context is the
 
/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
 
/// context is the TU. However, both declarations are also visible in the
 
/// extern "C" context.
 
///
 
/// The declaration at #3 finds it is a redeclaration of \c N::f through
 
/// lookup in the extern "C" context.
 
class ExternCContextDecl : public Decl, public DeclContext {
 
  explicit ExternCContextDecl(TranslationUnitDecl *TU)
 
    : Decl(ExternCContext, TU, SourceLocation()),
 
      DeclContext(ExternCContext) {}
 
 
 
  virtual void anchor();
 
 
 
public:
 
  static ExternCContextDecl *Create(const ASTContext &C,
 
                                    TranslationUnitDecl *TU);
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == ExternCContext; }
 
  static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
 
  }
 
  static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
 
  }
 
};
 
 
 
/// This represents a decl that may have a name.  Many decls have names such
 
/// as ObjCMethodDecl, but not \@class, etc.
 
///
 
/// Note that not every NamedDecl is actually named (e.g., a struct might
 
/// be anonymous), and not every name is an identifier.
 
class NamedDecl : public Decl {
 
  /// The name of this declaration, which is typically a normal
 
  /// identifier but may also be a special kind of name (C++
 
  /// constructor, Objective-C selector, etc.)
 
  DeclarationName Name;
 
 
 
  virtual void anchor();
 
 
 
private:
 
  NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
 
 
 
protected:
 
  NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
 
      : Decl(DK, DC, L), Name(N) {}
 
 
 
public:
 
  /// Get the identifier that names this declaration, if there is one.
 
  ///
 
  /// This will return NULL if this declaration has no name (e.g., for
 
  /// an unnamed class) or if the name is a special name (C++ constructor,
 
  /// Objective-C selector, etc.).
 
  IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
 
 
 
  /// Get the name of identifier for this declaration as a StringRef.
 
  ///
 
  /// This requires that the declaration have a name and that it be a simple
 
  /// identifier.
 
  StringRef getName() const {
 
    assert(Name.isIdentifier() && "Name is not a simple identifier");
 
    return getIdentifier() ? getIdentifier()->getName() : "";
 
  }
 
 
 
  /// Get a human-readable name for the declaration, even if it is one of the
 
  /// special kinds of names (C++ constructor, Objective-C selector, etc).
 
  ///
 
  /// Creating this name requires expensive string manipulation, so it should
 
  /// be called only when performance doesn't matter. For simple declarations,
 
  /// getNameAsCString() should suffice.
 
  //
 
  // FIXME: This function should be renamed to indicate that it is not just an
 
  // alternate form of getName(), and clients should move as appropriate.
 
  //
 
  // FIXME: Deprecated, move clients to getName().
 
  std::string getNameAsString() const { return Name.getAsString(); }
 
 
 
  /// Pretty-print the unqualified name of this declaration. Can be overloaded
 
  /// by derived classes to provide a more user-friendly name when appropriate.
 
  virtual void printName(raw_ostream &OS, const PrintingPolicy &Policy) const;
 
  /// Calls printName() with the ASTContext printing policy from the decl.
 
  void printName(raw_ostream &OS) const;
 
 
 
  /// Get the actual, stored name of the declaration, which may be a special
 
  /// name.
 
  ///
 
  /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
 
  /// should be sent into the diagnostic instead of using the result of
 
  /// \p getDeclName().
 
  ///
 
  /// A \p DeclarationName in a diagnostic will just be streamed to the output,
 
  /// which will directly result in a call to \p DeclarationName::print.
 
  ///
 
  /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
 
  /// \p DeclarationName::print, but with two customisation points along the
 
  /// way (\p getNameForDiagnostic and \p printName). These are used to print
 
  /// the template arguments if any, and to provide a user-friendly name for
 
  /// some entities (such as unnamed variables and anonymous records).
 
  DeclarationName getDeclName() const { return Name; }
 
 
 
  /// Set the name of this declaration.
 
  void setDeclName(DeclarationName N) { Name = N; }
 
 
 
  /// Returns a human-readable qualified name for this declaration, like
 
  /// A::B::i, for i being member of namespace A::B.
 
  ///
 
  /// If the declaration is not a member of context which can be named (record,
 
  /// namespace), it will return the same result as printName().
 
  ///
 
  /// Creating this name is expensive, so it should be called only when
 
  /// performance doesn't matter.
 
  void printQualifiedName(raw_ostream &OS) const;
 
  void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
 
 
 
  /// Print only the nested name specifier part of a fully-qualified name,
 
  /// including the '::' at the end. E.g.
 
  ///    when `printQualifiedName(D)` prints "A::B::i",
 
  ///    this function prints "A::B::".
 
  void printNestedNameSpecifier(raw_ostream &OS) const;
 
  void printNestedNameSpecifier(raw_ostream &OS,
 
                                const PrintingPolicy &Policy) const;
 
 
 
  // FIXME: Remove string version.
 
  std::string getQualifiedNameAsString() const;
 
 
 
  /// Appends a human-readable name for this declaration into the given stream.
 
  ///
 
  /// This is the method invoked by Sema when displaying a NamedDecl
 
  /// in a diagnostic.  It does not necessarily produce the same
 
  /// result as printName(); for example, class template
 
  /// specializations are printed with their template arguments.
 
  virtual void getNameForDiagnostic(raw_ostream &OS,
 
                                    const PrintingPolicy &Policy,
 
                                    bool Qualified) const;
 
 
 
  /// Determine whether this declaration, if known to be well-formed within
 
  /// its context, will replace the declaration OldD if introduced into scope.
 
  ///
 
  /// A declaration will replace another declaration if, for example, it is
 
  /// a redeclaration of the same variable or function, but not if it is a
 
  /// declaration of a different kind (function vs. class) or an overloaded
 
  /// function.
 
  ///
 
  /// \param IsKnownNewer \c true if this declaration is known to be newer
 
  /// than \p OldD (for instance, if this declaration is newly-created).
 
  bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
 
 
 
  /// Determine whether this declaration has linkage.
 
  bool hasLinkage() const;
 
 
 
  using Decl::isModulePrivate;
 
  using Decl::setModulePrivate;
 
 
 
  /// Determine whether this declaration is a C++ class member.
 
  bool isCXXClassMember() const {
 
    const DeclContext *DC = getDeclContext();
 
 
 
    // C++0x [class.mem]p1:
 
    //   The enumerators of an unscoped enumeration defined in
 
    //   the class are members of the class.
 
    if (isa<EnumDecl>(DC))
 
      DC = DC->getRedeclContext();
 
 
 
    return DC->isRecord();
 
  }
 
 
 
  /// Determine whether the given declaration is an instance member of
 
  /// a C++ class.
 
  bool isCXXInstanceMember() const;
 
 
 
  /// Determine if the declaration obeys the reserved identifier rules of the
 
  /// given language.
 
  ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
 
 
 
  /// Determine what kind of linkage this entity has.
 
  ///
 
  /// This is not the linkage as defined by the standard or the codegen notion
 
  /// of linkage. It is just an implementation detail that is used to compute
 
  /// those.
 
  Linkage getLinkageInternal() const;
 
 
 
  /// Get the linkage from a semantic point of view. Entities in
 
  /// anonymous namespaces are external (in c++98).
 
  Linkage getFormalLinkage() const {
 
    return clang::getFormalLinkage(getLinkageInternal());
 
  }
 
 
 
  /// True if this decl has external linkage.
 
  bool hasExternalFormalLinkage() const {
 
    return isExternalFormalLinkage(getLinkageInternal());
 
  }
 
 
 
  bool isExternallyVisible() const {
 
    return clang::isExternallyVisible(getLinkageInternal());
 
  }
 
 
 
  /// Determine whether this declaration can be redeclared in a
 
  /// different translation unit.
 
  bool isExternallyDeclarable() const {
 
    return isExternallyVisible() && !getOwningModuleForLinkage();
 
  }
 
 
 
  /// Determines the visibility of this entity.
 
  Visibility getVisibility() const {
 
    return getLinkageAndVisibility().getVisibility();
 
  }
 
 
 
  /// Determines the linkage and visibility of this entity.
 
  LinkageInfo getLinkageAndVisibility() const;
 
 
 
  /// Kinds of explicit visibility.
 
  enum ExplicitVisibilityKind {
 
    /// Do an LV computation for, ultimately, a type.
 
    /// Visibility may be restricted by type visibility settings and
 
    /// the visibility of template arguments.
 
    VisibilityForType,
 
 
 
    /// Do an LV computation for, ultimately, a non-type declaration.
 
    /// Visibility may be restricted by value visibility settings and
 
    /// the visibility of template arguments.
 
    VisibilityForValue
 
  };
 
 
 
  /// If visibility was explicitly specified for this
 
  /// declaration, return that visibility.
 
  std::optional<Visibility>
 
  getExplicitVisibility(ExplicitVisibilityKind kind) const;
 
 
 
  /// True if the computed linkage is valid. Used for consistency
 
  /// checking. Should always return true.
 
  bool isLinkageValid() const;
 
 
 
  /// True if something has required us to compute the linkage
 
  /// of this declaration.
 
  ///
 
  /// Language features which can retroactively change linkage (like a
 
  /// typedef name for linkage purposes) may need to consider this,
 
  /// but hopefully only in transitory ways during parsing.
 
  bool hasLinkageBeenComputed() const {
 
    return hasCachedLinkage();
 
  }
 
 
 
  /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
 
  /// the underlying named decl.
 
  NamedDecl *getUnderlyingDecl() {
 
    // Fast-path the common case.
 
    if (this->getKind() != UsingShadow &&
 
        this->getKind() != ConstructorUsingShadow &&
 
        this->getKind() != ObjCCompatibleAlias &&
 
        this->getKind() != NamespaceAlias)
 
      return this;
 
 
 
    return getUnderlyingDeclImpl();
 
  }
 
  const NamedDecl *getUnderlyingDecl() const {
 
    return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
 
  }
 
 
 
  NamedDecl *getMostRecentDecl() {
 
    return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
 
  }
 
  const NamedDecl *getMostRecentDecl() const {
 
    return const_cast<NamedDecl*>(this)->getMostRecentDecl();
 
  }
 
 
 
  ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
 
  ND.printName(OS);
 
  return OS;
 
}
 
 
 
/// Represents the declaration of a label.  Labels also have a
 
/// corresponding LabelStmt, which indicates the position that the label was
 
/// defined at.  For normal labels, the location of the decl is the same as the
 
/// location of the statement.  For GNU local labels (__label__), the decl
 
/// location is where the __label__ is.
 
class LabelDecl : public NamedDecl {
 
  LabelStmt *TheStmt;
 
  StringRef MSAsmName;
 
  bool MSAsmNameResolved = false;
 
 
 
  /// For normal labels, this is the same as the main declaration
 
  /// label, i.e., the location of the identifier; for GNU local labels,
 
  /// this is the location of the __label__ keyword.
 
  SourceLocation LocStart;
 
 
 
  LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
 
            LabelStmt *S, SourceLocation StartL)
 
      : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
 
 
 
  void anchor() override;
 
 
 
public:
 
  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
 
                           SourceLocation IdentL, IdentifierInfo *II);
 
  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
 
                           SourceLocation IdentL, IdentifierInfo *II,
 
                           SourceLocation GnuLabelL);
 
  static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  LabelStmt *getStmt() const { return TheStmt; }
 
  void setStmt(LabelStmt *T) { TheStmt = T; }
 
 
 
  bool isGnuLocal() const { return LocStart != getLocation(); }
 
  void setLocStart(SourceLocation L) { LocStart = L; }
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY {
 
    return SourceRange(LocStart, getLocation());
 
  }
 
 
 
  bool isMSAsmLabel() const { return !MSAsmName.empty(); }
 
  bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
 
  void setMSAsmLabel(StringRef Name);
 
  StringRef getMSAsmLabel() const { return MSAsmName; }
 
  void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Label; }
 
};
 
 
 
/// Represent a C++ namespace.
 
class NamespaceDecl : public NamedDecl, public DeclContext,
 
                      public Redeclarable<NamespaceDecl>
 
{
 
 
 
  enum Flags : unsigned { F_Inline = 1 << 0, F_Nested = 1 << 1 };
 
 
 
  /// The starting location of the source range, pointing
 
  /// to either the namespace or the inline keyword.
 
  SourceLocation LocStart;
 
 
 
  /// The ending location of the source range.
 
  SourceLocation RBraceLoc;
 
 
 
  /// A pointer to either the anonymous namespace that lives just inside
 
  /// this namespace or to the first namespace in the chain (the latter case
 
  /// only when this is not the first in the chain), along with a
 
  /// boolean value indicating whether this is an inline namespace.
 
  llvm::PointerIntPair<NamespaceDecl *, 2, unsigned>
 
      AnonOrFirstNamespaceAndFlags;
 
 
 
  NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
 
                SourceLocation StartLoc, SourceLocation IdLoc,
 
                IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested);
 
 
 
  using redeclarable_base = Redeclarable<NamespaceDecl>;
 
 
 
  NamespaceDecl *getNextRedeclarationImpl() override;
 
  NamespaceDecl *getPreviousDeclImpl() override;
 
  NamespaceDecl *getMostRecentDeclImpl() override;
 
 
 
public:
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
 
 
  static NamespaceDecl *Create(ASTContext &C, DeclContext *DC, bool Inline,
 
                               SourceLocation StartLoc, SourceLocation IdLoc,
 
                               IdentifierInfo *Id, NamespaceDecl *PrevDecl,
 
                               bool Nested);
 
 
 
  static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  using redecl_range = redeclarable_base::redecl_range;
 
  using redecl_iterator = redeclarable_base::redecl_iterator;
 
 
 
  using redeclarable_base::redecls_begin;
 
  using redeclarable_base::redecls_end;
 
  using redeclarable_base::redecls;
 
  using redeclarable_base::getPreviousDecl;
 
  using redeclarable_base::getMostRecentDecl;
 
  using redeclarable_base::isFirstDecl;
 
 
 
  /// Returns true if this is an anonymous namespace declaration.
 
  ///
 
  /// For example:
 
  /// \code
 
  ///   namespace {
 
  ///     ...
 
  ///   };
 
  /// \endcode
 
  /// q.v. C++ [namespace.unnamed]
 
  bool isAnonymousNamespace() const {
 
    return !getIdentifier();
 
  }
 
 
 
  /// Returns true if this is an inline namespace declaration.
 
  bool isInline() const {
 
    return AnonOrFirstNamespaceAndFlags.getInt() & F_Inline;
 
  }
 
 
 
  /// Set whether this is an inline namespace declaration.
 
  void setInline(bool Inline) {
 
    unsigned F = AnonOrFirstNamespaceAndFlags.getInt();
 
    if (Inline)
 
      AnonOrFirstNamespaceAndFlags.setInt(F | F_Inline);
 
    else
 
      AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Inline);
 
  }
 
 
 
  /// Returns true if this is a nested namespace declaration.
 
  /// \code
 
  /// namespace outer::nested { }
 
  /// \endcode
 
  bool isNested() const {
 
    return AnonOrFirstNamespaceAndFlags.getInt() & F_Nested;
 
  }
 
 
 
  /// Set whether this is a nested namespace declaration.
 
  void setNested(bool Nested) {
 
    unsigned F = AnonOrFirstNamespaceAndFlags.getInt();
 
    if (Nested)
 
      AnonOrFirstNamespaceAndFlags.setInt(F | F_Nested);
 
    else
 
      AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Nested);
 
  }
 
 
 
  /// Returns true if the inline qualifier for \c Name is redundant.
 
  bool isRedundantInlineQualifierFor(DeclarationName Name) const {
 
    if (!isInline())
 
      return false;
 
    auto X = lookup(Name);
 
    // We should not perform a lookup within a transparent context, so find a
 
    // non-transparent parent context.
 
    auto Y = getParent()->getNonTransparentContext()->lookup(Name);
 
    return std::distance(X.begin(), X.end()) ==
 
      std::distance(Y.begin(), Y.end());
 
  }
 
 
 
  /// Get the original (first) namespace declaration.
 
  NamespaceDecl *getOriginalNamespace();
 
 
 
  /// Get the original (first) namespace declaration.
 
  const NamespaceDecl *getOriginalNamespace() const;
 
 
 
  /// Return true if this declaration is an original (first) declaration
 
  /// of the namespace. This is false for non-original (subsequent) namespace
 
  /// declarations and anonymous namespaces.
 
  bool isOriginalNamespace() const;
 
 
 
  /// Retrieve the anonymous namespace nested inside this namespace,
 
  /// if any.
 
  NamespaceDecl *getAnonymousNamespace() const {
 
    return getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.getPointer();
 
  }
 
 
 
  void setAnonymousNamespace(NamespaceDecl *D) {
 
    getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.setPointer(D);
 
  }
 
 
 
  /// Retrieves the canonical declaration of this namespace.
 
  NamespaceDecl *getCanonicalDecl() override {
 
    return getOriginalNamespace();
 
  }
 
  const NamespaceDecl *getCanonicalDecl() const {
 
    return getOriginalNamespace();
 
  }
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY {
 
    return SourceRange(LocStart, RBraceLoc);
 
  }
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
 
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
 
  void setLocStart(SourceLocation L) { LocStart = L; }
 
  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Namespace; }
 
  static DeclContext *castToDeclContext(const NamespaceDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
 
  }
 
  static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
 
  }
 
};
 
 
 
class VarDecl;
 
 
 
/// Represent the declaration of a variable (in which case it is
 
/// an lvalue) a function (in which case it is a function designator) or
 
/// an enum constant.
 
class ValueDecl : public NamedDecl {
 
  QualType DeclType;
 
 
 
  void anchor() override;
 
 
 
protected:
 
  ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
 
            DeclarationName N, QualType T)
 
    : NamedDecl(DK, DC, L, N), DeclType(T) {}
 
 
 
public:
 
  QualType getType() const { return DeclType; }
 
  void setType(QualType newType) { DeclType = newType; }
 
 
 
  /// Determine whether this symbol is weakly-imported,
 
  ///        or declared with the weak or weak-ref attr.
 
  bool isWeak() const;
 
 
 
  /// Whether this variable is the implicit variable for a lambda init-capture.
 
  /// Only VarDecl can be init captures, but both VarDecl and BindingDecl
 
  /// can be captured.
 
  bool isInitCapture() const;
 
 
 
  // If this is a VarDecl, or a BindindDecl with an
 
  // associated decomposed VarDecl, return that VarDecl.
 
  VarDecl *getPotentiallyDecomposedVarDecl();
 
  const VarDecl *getPotentiallyDecomposedVarDecl() const {
 
    return const_cast<ValueDecl *>(this)->getPotentiallyDecomposedVarDecl();
 
  }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
 
};
 
 
 
/// A struct with extended info about a syntactic
 
/// name qualifier, to be used for the case of out-of-line declarations.
 
struct QualifierInfo {
 
  NestedNameSpecifierLoc QualifierLoc;
 
 
 
  /// The number of "outer" template parameter lists.
 
  /// The count includes all of the template parameter lists that were matched
 
  /// against the template-ids occurring into the NNS and possibly (in the
 
  /// case of an explicit specialization) a final "template <>".
 
  unsigned NumTemplParamLists = 0;
 
 
 
  /// A new-allocated array of size NumTemplParamLists,
 
  /// containing pointers to the "outer" template parameter lists.
 
  /// It includes all of the template parameter lists that were matched
 
  /// against the template-ids occurring into the NNS and possibly (in the
 
  /// case of an explicit specialization) a final "template <>".
 
  TemplateParameterList** TemplParamLists = nullptr;
 
 
 
  QualifierInfo() = default;
 
  QualifierInfo(const QualifierInfo &) = delete;
 
  QualifierInfo& operator=(const QualifierInfo &) = delete;
 
 
 
  /// Sets info about "outer" template parameter lists.
 
  void setTemplateParameterListsInfo(ASTContext &Context,
 
                                     ArrayRef<TemplateParameterList *> TPLists);
 
};
 
 
 
/// Represents a ValueDecl that came out of a declarator.
 
/// Contains type source information through TypeSourceInfo.
 
class DeclaratorDecl : public ValueDecl {
 
  // A struct representing a TInfo, a trailing requires-clause and a syntactic
 
  // qualifier, to be used for the (uncommon) case of out-of-line declarations
 
  // and constrained function decls.
 
  struct ExtInfo : public QualifierInfo {
 
    TypeSourceInfo *TInfo;
 
    Expr *TrailingRequiresClause = nullptr;
 
  };
 
 
 
  llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
 
 
 
  /// The start of the source range for this declaration,
 
  /// ignoring outer template declarations.
 
  SourceLocation InnerLocStart;
 
 
 
  bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
 
  ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
 
  const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
 
 
 
protected:
 
  DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
 
                 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
 
                 SourceLocation StartL)
 
      : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
 
 
 
public:
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
 
 
  TypeSourceInfo *getTypeSourceInfo() const {
 
    return hasExtInfo()
 
      ? getExtInfo()->TInfo
 
      : DeclInfo.get<TypeSourceInfo*>();
 
  }
 
 
 
  void setTypeSourceInfo(TypeSourceInfo *TI) {
 
    if (hasExtInfo())
 
      getExtInfo()->TInfo = TI;
 
    else
 
      DeclInfo = TI;
 
  }
 
 
 
  /// Return start of source range ignoring outer template declarations.
 
  SourceLocation getInnerLocStart() const { return InnerLocStart; }
 
  void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
 
 
 
  /// Return start of source range taking into account any outer template
 
  /// declarations.
 
  SourceLocation getOuterLocStart() const;
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY {
 
    return getOuterLocStart();
 
  }
 
 
 
  /// Retrieve the nested-name-specifier that qualifies the name of this
 
  /// declaration, if it was present in the source.
 
  NestedNameSpecifier *getQualifier() const {
 
    return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
 
                        : nullptr;
 
  }
 
 
 
  /// Retrieve the nested-name-specifier (with source-location
 
  /// information) that qualifies the name of this declaration, if it was
 
  /// present in the source.
 
  NestedNameSpecifierLoc getQualifierLoc() const {
 
    return hasExtInfo() ? getExtInfo()->QualifierLoc
 
                        : NestedNameSpecifierLoc();
 
  }
 
 
 
  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
 
 
 
  /// \brief Get the constraint-expression introduced by the trailing
 
  /// requires-clause in the function/member declaration, or null if no
 
  /// requires-clause was provided.
 
  Expr *getTrailingRequiresClause() {
 
    return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
 
                        : nullptr;
 
  }
 
 
 
  const Expr *getTrailingRequiresClause() const {
 
    return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
 
                        : nullptr;
 
  }
 
 
 
  void setTrailingRequiresClause(Expr *TrailingRequiresClause);
 
 
 
  unsigned getNumTemplateParameterLists() const {
 
    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
 
  }
 
 
 
  TemplateParameterList *getTemplateParameterList(unsigned index) const {
 
    assert(index < getNumTemplateParameterLists());
 
    return getExtInfo()->TemplParamLists[index];
 
  }
 
 
 
  void setTemplateParameterListsInfo(ASTContext &Context,
 
                                     ArrayRef<TemplateParameterList *> TPLists);
 
 
 
  SourceLocation getTypeSpecStartLoc() const;
 
  SourceLocation getTypeSpecEndLoc() const;
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) {
 
    return K >= firstDeclarator && K <= lastDeclarator;
 
  }
 
};
 
 
 
/// Structure used to store a statement, the constant value to
 
/// which it was evaluated (if any), and whether or not the statement
 
/// is an integral constant expression (if known).
 
struct EvaluatedStmt {
 
  /// Whether this statement was already evaluated.
 
  bool WasEvaluated : 1;
 
 
 
  /// Whether this statement is being evaluated.
 
  bool IsEvaluating : 1;
 
 
 
  /// Whether this variable is known to have constant initialization. This is
 
  /// currently only computed in C++, for static / thread storage duration
 
  /// variables that might have constant initialization and for variables that
 
  /// are usable in constant expressions.
 
  bool HasConstantInitialization : 1;
 
 
 
  /// Whether this variable is known to have constant destruction. That is,
 
  /// whether running the destructor on the initial value is a side-effect
 
  /// (and doesn't inspect any state that might have changed during program
 
  /// execution). This is currently only computed if the destructor is
 
  /// non-trivial.
 
  bool HasConstantDestruction : 1;
 
 
 
  /// In C++98, whether the initializer is an ICE. This affects whether the
 
  /// variable is usable in constant expressions.
 
  bool HasICEInit : 1;
 
  bool CheckedForICEInit : 1;
 
 
 
  Stmt *Value;
 
  APValue Evaluated;
 
 
 
  EvaluatedStmt()
 
      : WasEvaluated(false), IsEvaluating(false),
 
        HasConstantInitialization(false), HasConstantDestruction(false),
 
        HasICEInit(false), CheckedForICEInit(false) {}
 
};
 
 
 
/// Represents a variable declaration or definition.
 
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
 
public:
 
  /// Initialization styles.
 
  enum InitializationStyle {
 
    /// C-style initialization with assignment
 
    CInit,
 
 
 
    /// Call-style initialization (C++98)
 
    CallInit,
 
 
 
    /// Direct list-initialization (C++11)
 
    ListInit,
 
 
 
    /// Parenthesized list-initialization (C++20)
 
    ParenListInit
 
  };
 
 
 
  /// Kinds of thread-local storage.
 
  enum TLSKind {
 
    /// Not a TLS variable.
 
    TLS_None,
 
 
 
    /// TLS with a known-constant initializer.
 
    TLS_Static,
 
 
 
    /// TLS with a dynamic initializer.
 
    TLS_Dynamic
 
  };
 
 
 
  /// Return the string used to specify the storage class \p SC.
 
  ///
 
  /// It is illegal to call this function with SC == None.
 
  static const char *getStorageClassSpecifierString(StorageClass SC);
 
 
 
protected:
 
  // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
 
  // have allocated the auxiliary struct of information there.
 
  //
 
  // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
 
  // this as *many* VarDecls are ParmVarDecls that don't have default
 
  // arguments. We could save some space by moving this pointer union to be
 
  // allocated in trailing space when necessary.
 
  using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
 
 
 
  /// The initializer for this variable or, for a ParmVarDecl, the
 
  /// C++ default argument.
 
  mutable InitType Init;
 
 
 
private:
 
  friend class ASTDeclReader;
 
  friend class ASTNodeImporter;
 
  friend class StmtIteratorBase;
 
 
 
  class VarDeclBitfields {
 
    friend class ASTDeclReader;
 
    friend class VarDecl;
 
 
 
    unsigned SClass : 3;
 
    unsigned TSCSpec : 2;
 
    unsigned InitStyle : 2;
 
 
 
    /// Whether this variable is an ARC pseudo-__strong variable; see
 
    /// isARCPseudoStrong() for details.
 
    unsigned ARCPseudoStrong : 1;
 
  };
 
  enum { NumVarDeclBits = 8 };
 
 
 
protected:
 
  enum { NumParameterIndexBits = 8 };
 
 
 
  enum DefaultArgKind {
 
    DAK_None,
 
    DAK_Unparsed,
 
    DAK_Uninstantiated,
 
    DAK_Normal
 
  };
 
 
 
  enum { NumScopeDepthOrObjCQualsBits = 7 };
 
 
 
  class ParmVarDeclBitfields {
 
    friend class ASTDeclReader;
 
    friend class ParmVarDecl;
 
 
 
    unsigned : NumVarDeclBits;
 
 
 
    /// Whether this parameter inherits a default argument from a
 
    /// prior declaration.
 
    unsigned HasInheritedDefaultArg : 1;
 
 
 
    /// Describes the kind of default argument for this parameter. By default
 
    /// this is none. If this is normal, then the default argument is stored in
 
    /// the \c VarDecl initializer expression unless we were unable to parse
 
    /// (even an invalid) expression for the default argument.
 
    unsigned DefaultArgKind : 2;
 
 
 
    /// Whether this parameter undergoes K&R argument promotion.
 
    unsigned IsKNRPromoted : 1;
 
 
 
    /// Whether this parameter is an ObjC method parameter or not.
 
    unsigned IsObjCMethodParam : 1;
 
 
 
    /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
 
    /// Otherwise, the number of function parameter scopes enclosing
 
    /// the function parameter scope in which this parameter was
 
    /// declared.
 
    unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
 
 
 
    /// The number of parameters preceding this parameter in the
 
    /// function parameter scope in which it was declared.
 
    unsigned ParameterIndex : NumParameterIndexBits;
 
  };
 
 
 
  class NonParmVarDeclBitfields {
 
    friend class ASTDeclReader;
 
    friend class ImplicitParamDecl;
 
    friend class VarDecl;
 
 
 
    unsigned : NumVarDeclBits;
 
 
 
    // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
 
    /// Whether this variable is a definition which was demoted due to
 
    /// module merge.
 
    unsigned IsThisDeclarationADemotedDefinition : 1;
 
 
 
    /// Whether this variable is the exception variable in a C++ catch
 
    /// or an Objective-C @catch statement.
 
    unsigned ExceptionVar : 1;
 
 
 
    /// Whether this local variable could be allocated in the return
 
    /// slot of its function, enabling the named return value optimization
 
    /// (NRVO).
 
    unsigned NRVOVariable : 1;
 
 
 
    /// Whether this variable is the for-range-declaration in a C++0x
 
    /// for-range statement.
 
    unsigned CXXForRangeDecl : 1;
 
 
 
    /// Whether this variable is the for-in loop declaration in Objective-C.
 
    unsigned ObjCForDecl : 1;
 
 
 
    /// Whether this variable is (C++1z) inline.
 
    unsigned IsInline : 1;
 
 
 
    /// Whether this variable has (C++1z) inline explicitly specified.
 
    unsigned IsInlineSpecified : 1;
 
 
 
    /// Whether this variable is (C++0x) constexpr.
 
    unsigned IsConstexpr : 1;
 
 
 
    /// Whether this variable is the implicit variable for a lambda
 
    /// init-capture.
 
    unsigned IsInitCapture : 1;
 
 
 
    /// Whether this local extern variable's previous declaration was
 
    /// declared in the same block scope. This controls whether we should merge
 
    /// the type of this declaration with its previous declaration.
 
    unsigned PreviousDeclInSameBlockScope : 1;
 
 
 
    /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
 
    /// something else.
 
    unsigned ImplicitParamKind : 3;
 
 
 
    unsigned EscapingByref : 1;
 
  };
 
 
 
  union {
 
    unsigned AllBits;
 
    VarDeclBitfields VarDeclBits;
 
    ParmVarDeclBitfields ParmVarDeclBits;
 
    NonParmVarDeclBitfields NonParmVarDeclBits;
 
  };
 
 
 
  VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
          SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
 
          TypeSourceInfo *TInfo, StorageClass SC);
 
 
 
  using redeclarable_base = Redeclarable<VarDecl>;
 
 
 
  VarDecl *getNextRedeclarationImpl() override {
 
    return getNextRedeclaration();
 
  }
 
 
 
  VarDecl *getPreviousDeclImpl() override {
 
    return getPreviousDecl();
 
  }
 
 
 
  VarDecl *getMostRecentDeclImpl() override {
 
    return getMostRecentDecl();
 
  }
 
 
 
public:
 
  using redecl_range = redeclarable_base::redecl_range;
 
  using redecl_iterator = redeclarable_base::redecl_iterator;
 
 
 
  using redeclarable_base::redecls_begin;
 
  using redeclarable_base::redecls_end;
 
  using redeclarable_base::redecls;
 
  using redeclarable_base::getPreviousDecl;
 
  using redeclarable_base::getMostRecentDecl;
 
  using redeclarable_base::isFirstDecl;
 
 
 
  static VarDecl *Create(ASTContext &C, DeclContext *DC,
 
                         SourceLocation StartLoc, SourceLocation IdLoc,
 
                         const IdentifierInfo *Id, QualType T,
 
                         TypeSourceInfo *TInfo, StorageClass S);
 
 
 
  static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  /// Returns the storage class as written in the source. For the
 
  /// computed linkage of symbol, see getLinkage.
 
  StorageClass getStorageClass() const {
 
    return (StorageClass) VarDeclBits.SClass;
 
  }
 
  void setStorageClass(StorageClass SC);
 
 
 
  void setTSCSpec(ThreadStorageClassSpecifier TSC) {
 
    VarDeclBits.TSCSpec = TSC;
 
    assert(VarDeclBits.TSCSpec == TSC && "truncation");
 
  }
 
  ThreadStorageClassSpecifier getTSCSpec() const {
 
    return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
 
  }
 
  TLSKind getTLSKind() const;
 
 
 
  /// Returns true if a variable with function scope is a non-static local
 
  /// variable.
 
  bool hasLocalStorage() const {
 
    if (getStorageClass() == SC_None) {
 
      // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
 
      // used to describe variables allocated in global memory and which are
 
      // accessed inside a kernel(s) as read-only variables. As such, variables
 
      // in constant address space cannot have local storage.
 
      if (getType().getAddressSpace() == LangAS::opencl_constant)
 
        return false;
 
      // Second check is for C++11 [dcl.stc]p4.
 
      return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
 
    }
 
 
 
    // Global Named Register (GNU extension)
 
    if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
 
      return false;
 
 
 
    // Return true for:  Auto, Register.
 
    // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
 
 
 
    return getStorageClass() >= SC_Auto;
 
  }
 
 
 
  /// Returns true if a variable with function scope is a static local
 
  /// variable.
 
  bool isStaticLocal() const {
 
    return (getStorageClass() == SC_Static ||
 
            // C++11 [dcl.stc]p4
 
            (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
 
      && !isFileVarDecl();
 
  }
 
 
 
  /// Returns true if a variable has extern or __private_extern__
 
  /// storage.
 
  bool hasExternalStorage() const {
 
    return getStorageClass() == SC_Extern ||
 
           getStorageClass() == SC_PrivateExtern;
 
  }
 
 
 
  /// Returns true for all variables that do not have local storage.
 
  ///
 
  /// This includes all global variables as well as static variables declared
 
  /// within a function.
 
  bool hasGlobalStorage() const { return !hasLocalStorage(); }
 
 
 
  /// Get the storage duration of this variable, per C++ [basic.stc].
 
  StorageDuration getStorageDuration() const {
 
    return hasLocalStorage() ? SD_Automatic :
 
           getTSCSpec() ? SD_Thread : SD_Static;
 
  }
 
 
 
  /// Compute the language linkage.
 
  LanguageLinkage getLanguageLinkage() const;
 
 
 
  /// Determines whether this variable is a variable with external, C linkage.
 
  bool isExternC() const;
 
 
 
  /// Determines whether this variable's context is, or is nested within,
 
  /// a C++ extern "C" linkage spec.
 
  bool isInExternCContext() const;
 
 
 
  /// Determines whether this variable's context is, or is nested within,
 
  /// a C++ extern "C++" linkage spec.
 
  bool isInExternCXXContext() const;
 
 
 
  /// Returns true for local variable declarations other than parameters.
 
  /// Note that this includes static variables inside of functions. It also
 
  /// includes variables inside blocks.
 
  ///
 
  ///   void foo() { int x; static int y; extern int z; }
 
  bool isLocalVarDecl() const {
 
    if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
 
      return false;
 
    if (const DeclContext *DC = getLexicalDeclContext())
 
      return DC->getRedeclContext()->isFunctionOrMethod();
 
    return false;
 
  }
 
 
 
  /// Similar to isLocalVarDecl but also includes parameters.
 
  bool isLocalVarDeclOrParm() const {
 
    return isLocalVarDecl() || getKind() == Decl::ParmVar;
 
  }
 
 
 
  /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
 
  bool isFunctionOrMethodVarDecl() const {
 
    if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
 
      return false;
 
    const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
 
    return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
 
  }
 
 
 
  /// Determines whether this is a static data member.
 
  ///
 
  /// This will only be true in C++, and applies to, e.g., the
 
  /// variable 'x' in:
 
  /// \code
 
  /// struct S {
 
  ///   static int x;
 
  /// };
 
  /// \endcode
 
  bool isStaticDataMember() const {
 
    // If it wasn't static, it would be a FieldDecl.
 
    return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
 
  }
 
 
 
  VarDecl *getCanonicalDecl() override;
 
  const VarDecl *getCanonicalDecl() const {
 
    return const_cast<VarDecl*>(this)->getCanonicalDecl();
 
  }
 
 
 
  enum DefinitionKind {
 
    /// This declaration is only a declaration.
 
    DeclarationOnly,
 
 
 
    /// This declaration is a tentative definition.
 
    TentativeDefinition,
 
 
 
    /// This declaration is definitely a definition.
 
    Definition
 
  };
 
 
 
  /// Check whether this declaration is a definition. If this could be
 
  /// a tentative definition (in C), don't check whether there's an overriding
 
  /// definition.
 
  DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
 
  DefinitionKind isThisDeclarationADefinition() const {
 
    return isThisDeclarationADefinition(getASTContext());
 
  }
 
 
 
  /// Check whether this variable is defined in this translation unit.
 
  DefinitionKind hasDefinition(ASTContext &) const;
 
  DefinitionKind hasDefinition() const {
 
    return hasDefinition(getASTContext());
 
  }
 
 
 
  /// Get the tentative definition that acts as the real definition in a TU.
 
  /// Returns null if there is a proper definition available.
 
  VarDecl *getActingDefinition();
 
  const VarDecl *getActingDefinition() const {
 
    return const_cast<VarDecl*>(this)->getActingDefinition();
 
  }
 
 
 
  /// Get the real (not just tentative) definition for this declaration.
 
  VarDecl *getDefinition(ASTContext &);
 
  const VarDecl *getDefinition(ASTContext &C) const {
 
    return const_cast<VarDecl*>(this)->getDefinition(C);
 
  }
 
  VarDecl *getDefinition() {
 
    return getDefinition(getASTContext());
 
  }
 
  const VarDecl *getDefinition() const {
 
    return const_cast<VarDecl*>(this)->getDefinition();
 
  }
 
 
 
  /// Determine whether this is or was instantiated from an out-of-line
 
  /// definition of a static data member.
 
  bool isOutOfLine() const override;
 
 
 
  /// Returns true for file scoped variable declaration.
 
  bool isFileVarDecl() const {
 
    Kind K = getKind();
 
    if (K == ParmVar || K == ImplicitParam)
 
      return false;
 
 
 
    if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
 
      return true;
 
 
 
    if (isStaticDataMember())
 
      return true;
 
 
 
    return false;
 
  }
 
 
 
  /// Get the initializer for this variable, no matter which
 
  /// declaration it is attached to.
 
  const Expr *getAnyInitializer() const {
 
    const VarDecl *D;
 
    return getAnyInitializer(D);
 
  }
 
 
 
  /// Get the initializer for this variable, no matter which
 
  /// declaration it is attached to. Also get that declaration.
 
  const Expr *getAnyInitializer(const VarDecl *&D) const;
 
 
 
  bool hasInit() const;
 
  const Expr *getInit() const {
 
    return const_cast<VarDecl *>(this)->getInit();
 
  }
 
  Expr *getInit();
 
 
 
  /// Retrieve the address of the initializer expression.
 
  Stmt **getInitAddress();
 
 
 
  void setInit(Expr *I);
 
 
 
  /// Get the initializing declaration of this variable, if any. This is
 
  /// usually the definition, except that for a static data member it can be
 
  /// the in-class declaration.
 
  VarDecl *getInitializingDeclaration();
 
  const VarDecl *getInitializingDeclaration() const {
 
    return const_cast<VarDecl *>(this)->getInitializingDeclaration();
 
  }
 
 
 
  /// Determine whether this variable's value might be usable in a
 
  /// constant expression, according to the relevant language standard.
 
  /// This only checks properties of the declaration, and does not check
 
  /// whether the initializer is in fact a constant expression.
 
  ///
 
  /// This corresponds to C++20 [expr.const]p3's notion of a
 
  /// "potentially-constant" variable.
 
  bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
 
 
 
  /// Determine whether this variable's value can be used in a
 
  /// constant expression, according to the relevant language standard,
 
  /// including checking whether it was initialized by a constant expression.
 
  bool isUsableInConstantExpressions(const ASTContext &C) const;
 
 
 
  EvaluatedStmt *ensureEvaluatedStmt() const;
 
  EvaluatedStmt *getEvaluatedStmt() const;
 
 
 
  /// Attempt to evaluate the value of the initializer attached to this
 
  /// declaration, and produce notes explaining why it cannot be evaluated.
 
  /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
 
  APValue *evaluateValue() const;
 
 
 
private:
 
  APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
 
                             bool IsConstantInitialization) const;
 
 
 
public:
 
  /// Return the already-evaluated value of this variable's
 
  /// initializer, or NULL if the value is not yet known. Returns pointer
 
  /// to untyped APValue if the value could not be evaluated.
 
  APValue *getEvaluatedValue() const;
 
 
 
  /// Evaluate the destruction of this variable to determine if it constitutes
 
  /// constant destruction.
 
  ///
 
  /// \pre hasConstantInitialization()
 
  /// \return \c true if this variable has constant destruction, \c false if
 
  ///         not.
 
  bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
 
 
 
  /// Determine whether this variable has constant initialization.
 
  ///
 
  /// This is only set in two cases: when the language semantics require
 
  /// constant initialization (globals in C and some globals in C++), and when
 
  /// the variable is usable in constant expressions (constexpr, const int, and
 
  /// reference variables in C++).
 
  bool hasConstantInitialization() const;
 
 
 
  /// Determine whether the initializer of this variable is an integer constant
 
  /// expression. For use in C++98, where this affects whether the variable is
 
  /// usable in constant expressions.
 
  bool hasICEInitializer(const ASTContext &Context) const;
 
 
 
  /// Evaluate the initializer of this variable to determine whether it's a
 
  /// constant initializer. Should only be called once, after completing the
 
  /// definition of the variable.
 
  bool checkForConstantInitialization(
 
      SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
 
 
 
  void setInitStyle(InitializationStyle Style) {
 
    VarDeclBits.InitStyle = Style;
 
  }
 
 
 
  /// The style of initialization for this declaration.
 
  ///
 
  /// C-style initialization is "int x = 1;". Call-style initialization is
 
  /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
 
  /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
 
  /// expression for class types. List-style initialization is C++11 syntax,
 
  /// e.g. "int x{1};". Clients can distinguish between different forms of
 
  /// initialization by checking this value. In particular, "int x = {1};" is
 
  /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
 
  /// Init expression in all three cases is an InitListExpr.
 
  InitializationStyle getInitStyle() const {
 
    return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
 
  }
 
 
 
  /// Whether the initializer is a direct-initializer (list or call).
 
  bool isDirectInit() const {
 
    return getInitStyle() != CInit;
 
  }
 
 
 
  /// If this definition should pretend to be a declaration.
 
  bool isThisDeclarationADemotedDefinition() const {
 
    return isa<ParmVarDecl>(this) ? false :
 
      NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
 
  }
 
 
 
  /// This is a definition which should be demoted to a declaration.
 
  ///
 
  /// In some cases (mostly module merging) we can end up with two visible
 
  /// definitions one of which needs to be demoted to a declaration to keep
 
  /// the AST invariants.
 
  void demoteThisDefinitionToDeclaration() {
 
    assert(isThisDeclarationADefinition() && "Not a definition!");
 
    assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
 
    NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
 
  }
 
 
 
  /// Determine whether this variable is the exception variable in a
 
  /// C++ catch statememt or an Objective-C \@catch statement.
 
  bool isExceptionVariable() const {
 
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
 
  }
 
  void setExceptionVariable(bool EV) {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.ExceptionVar = EV;
 
  }
 
 
 
  /// Determine whether this local variable can be used with the named
 
  /// return value optimization (NRVO).
 
  ///
 
  /// The named return value optimization (NRVO) works by marking certain
 
  /// non-volatile local variables of class type as NRVO objects. These
 
  /// locals can be allocated within the return slot of their containing
 
  /// function, in which case there is no need to copy the object to the
 
  /// return slot when returning from the function. Within the function body,
 
  /// each return that returns the NRVO object will have this variable as its
 
  /// NRVO candidate.
 
  bool isNRVOVariable() const {
 
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
 
  }
 
  void setNRVOVariable(bool NRVO) {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.NRVOVariable = NRVO;
 
  }
 
 
 
  /// Determine whether this variable is the for-range-declaration in
 
  /// a C++0x for-range statement.
 
  bool isCXXForRangeDecl() const {
 
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
 
  }
 
  void setCXXForRangeDecl(bool FRD) {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.CXXForRangeDecl = FRD;
 
  }
 
 
 
  /// Determine whether this variable is a for-loop declaration for a
 
  /// for-in statement in Objective-C.
 
  bool isObjCForDecl() const {
 
    return NonParmVarDeclBits.ObjCForDecl;
 
  }
 
 
 
  void setObjCForDecl(bool FRD) {
 
    NonParmVarDeclBits.ObjCForDecl = FRD;
 
  }
 
 
 
  /// Determine whether this variable is an ARC pseudo-__strong variable. A
 
  /// pseudo-__strong variable has a __strong-qualified type but does not
 
  /// actually retain the object written into it. Generally such variables are
 
  /// also 'const' for safety. There are 3 cases where this will be set, 1) if
 
  /// the variable is annotated with the objc_externally_retained attribute, 2)
 
  /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
 
  /// loop.
 
  bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
 
  void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
 
 
 
  /// Whether this variable is (C++1z) inline.
 
  bool isInline() const {
 
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
 
  }
 
  bool isInlineSpecified() const {
 
    return isa<ParmVarDecl>(this) ? false
 
                                  : NonParmVarDeclBits.IsInlineSpecified;
 
  }
 
  void setInlineSpecified() {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.IsInline = true;
 
    NonParmVarDeclBits.IsInlineSpecified = true;
 
  }
 
  void setImplicitlyInline() {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.IsInline = true;
 
  }
 
 
 
  /// Whether this variable is (C++11) constexpr.
 
  bool isConstexpr() const {
 
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
 
  }
 
  void setConstexpr(bool IC) {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.IsConstexpr = IC;
 
  }
 
 
 
  /// Whether this variable is the implicit variable for a lambda init-capture.
 
  bool isInitCapture() const {
 
    return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
 
  }
 
  void setInitCapture(bool IC) {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.IsInitCapture = IC;
 
  }
 
 
 
  /// Determine whether this variable is actually a function parameter pack or
 
  /// init-capture pack.
 
  bool isParameterPack() const;
 
 
 
  /// Whether this local extern variable declaration's previous declaration
 
  /// was declared in the same block scope. Only correct in C++.
 
  bool isPreviousDeclInSameBlockScope() const {
 
    return isa<ParmVarDecl>(this)
 
               ? false
 
               : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
 
  }
 
  void setPreviousDeclInSameBlockScope(bool Same) {
 
    assert(!isa<ParmVarDecl>(this));
 
    NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
 
  }
 
 
 
  /// Indicates the capture is a __block variable that is captured by a block
 
  /// that can potentially escape (a block for which BlockDecl::doesNotEscape
 
  /// returns false).
 
  bool isEscapingByref() const;
 
 
 
  /// Indicates the capture is a __block variable that is never captured by an
 
  /// escaping block.
 
  bool isNonEscapingByref() const;
 
 
 
  void setEscapingByref() {
 
    NonParmVarDeclBits.EscapingByref = true;
 
  }
 
 
 
  /// Determines if this variable's alignment is dependent.
 
  bool hasDependentAlignment() const;
 
 
 
  /// Retrieve the variable declaration from which this variable could
 
  /// be instantiated, if it is an instantiation (rather than a non-template).
 
  VarDecl *getTemplateInstantiationPattern() const;
 
 
 
  /// If this variable is an instantiated static data member of a
 
  /// class template specialization, returns the templated static data member
 
  /// from which it was instantiated.
 
  VarDecl *getInstantiatedFromStaticDataMember() const;
 
 
 
  /// If this variable is an instantiation of a variable template or a
 
  /// static data member of a class template, determine what kind of
 
  /// template specialization or instantiation this is.
 
  TemplateSpecializationKind getTemplateSpecializationKind() const;
 
 
 
  /// Get the template specialization kind of this variable for the purposes of
 
  /// template instantiation. This differs from getTemplateSpecializationKind()
 
  /// for an instantiation of a class-scope explicit specialization.
 
  TemplateSpecializationKind
 
  getTemplateSpecializationKindForInstantiation() const;
 
 
 
  /// If this variable is an instantiation of a variable template or a
 
  /// static data member of a class template, determine its point of
 
  /// instantiation.
 
  SourceLocation getPointOfInstantiation() const;
 
 
 
  /// If this variable is an instantiation of a static data member of a
 
  /// class template specialization, retrieves the member specialization
 
  /// information.
 
  MemberSpecializationInfo *getMemberSpecializationInfo() const;
 
 
 
  /// For a static data member that was instantiated from a static
 
  /// data member of a class template, set the template specialiation kind.
 
  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
 
                        SourceLocation PointOfInstantiation = SourceLocation());
 
 
 
  /// Specify that this variable is an instantiation of the
 
  /// static data member VD.
 
  void setInstantiationOfStaticDataMember(VarDecl *VD,
 
                                          TemplateSpecializationKind TSK);
 
 
 
  /// Retrieves the variable template that is described by this
 
  /// variable declaration.
 
  ///
 
  /// Every variable template is represented as a VarTemplateDecl and a
 
  /// VarDecl. The former contains template properties (such as
 
  /// the template parameter lists) while the latter contains the
 
  /// actual description of the template's
 
  /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
 
  /// VarDecl that from a VarTemplateDecl, while
 
  /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
 
  /// a VarDecl.
 
  VarTemplateDecl *getDescribedVarTemplate() const;
 
 
 
  void setDescribedVarTemplate(VarTemplateDecl *Template);
 
 
 
  // Is this variable known to have a definition somewhere in the complete
 
  // program? This may be true even if the declaration has internal linkage and
 
  // has no definition within this source file.
 
  bool isKnownToBeDefined() const;
 
 
 
  /// Is destruction of this variable entirely suppressed? If so, the variable
 
  /// need not have a usable destructor at all.
 
  bool isNoDestroy(const ASTContext &) const;
 
 
 
  /// Would the destruction of this variable have any effect, and if so, what
 
  /// kind?
 
  QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
 
 
 
  /// Whether this variable has a flexible array member initialized with one
 
  /// or more elements. This can only be called for declarations where
 
  /// hasInit() is true.
 
  ///
 
  /// (The standard doesn't allow initializing flexible array members; this is
 
  /// a gcc/msvc extension.)
 
  bool hasFlexibleArrayInit(const ASTContext &Ctx) const;
 
 
 
  /// If hasFlexibleArrayInit is true, compute the number of additional bytes
 
  /// necessary to store those elements. Otherwise, returns zero.
 
  ///
 
  /// This can only be called for declarations where hasInit() is true.
 
  CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const;
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
 
};
 
 
 
class ImplicitParamDecl : public VarDecl {
 
  void anchor() override;
 
 
 
public:
 
  /// Defines the kind of the implicit parameter: is this an implicit parameter
 
  /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
 
  /// context or something else.
 
  enum ImplicitParamKind : unsigned {
 
    /// Parameter for Objective-C 'self' argument
 
    ObjCSelf,
 
 
 
    /// Parameter for Objective-C '_cmd' argument
 
    ObjCCmd,
 
 
 
    /// Parameter for C++ 'this' argument
 
    CXXThis,
 
 
 
    /// Parameter for C++ virtual table pointers
 
    CXXVTT,
 
 
 
    /// Parameter for captured context
 
    CapturedContext,
 
 
 
    /// Parameter for Thread private variable
 
    ThreadPrivateVar,
 
 
 
    /// Other implicit parameter
 
    Other,
 
  };
 
 
 
  /// Create implicit parameter.
 
  static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
 
                                   SourceLocation IdLoc, IdentifierInfo *Id,
 
                                   QualType T, ImplicitParamKind ParamKind);
 
  static ImplicitParamDecl *Create(ASTContext &C, QualType T,
 
                                   ImplicitParamKind ParamKind);
 
 
 
  static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
 
                    IdentifierInfo *Id, QualType Type,
 
                    ImplicitParamKind ParamKind)
 
      : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
 
                /*TInfo=*/nullptr, SC_None) {
 
    NonParmVarDeclBits.ImplicitParamKind = ParamKind;
 
    setImplicit();
 
  }
 
 
 
  ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
 
      : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
 
                SourceLocation(), /*Id=*/nullptr, Type,
 
                /*TInfo=*/nullptr, SC_None) {
 
    NonParmVarDeclBits.ImplicitParamKind = ParamKind;
 
    setImplicit();
 
  }
 
 
 
  /// Returns the implicit parameter kind.
 
  ImplicitParamKind getParameterKind() const {
 
    return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
 
  }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == ImplicitParam; }
 
};
 
 
 
/// Represents a parameter to a function.
 
class ParmVarDecl : public VarDecl {
 
public:
 
  enum { MaxFunctionScopeDepth = 255 };
 
  enum { MaxFunctionScopeIndex = 255 };
 
 
 
protected:
 
  ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
              SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
 
              TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
 
      : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
 
    assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
 
    assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
 
    assert(ParmVarDeclBits.IsKNRPromoted == false);
 
    assert(ParmVarDeclBits.IsObjCMethodParam == false);
 
    setDefaultArg(DefArg);
 
  }
 
 
 
public:
 
  static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
 
                             SourceLocation StartLoc,
 
                             SourceLocation IdLoc, IdentifierInfo *Id,
 
                             QualType T, TypeSourceInfo *TInfo,
 
                             StorageClass S, Expr *DefArg);
 
 
 
  static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  void setObjCMethodScopeInfo(unsigned parameterIndex) {
 
    ParmVarDeclBits.IsObjCMethodParam = true;
 
    setParameterIndex(parameterIndex);
 
  }
 
 
 
  void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
 
    assert(!ParmVarDeclBits.IsObjCMethodParam);
 
 
 
    ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
 
    assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
 
           && "truncation!");
 
 
 
    setParameterIndex(parameterIndex);
 
  }
 
 
 
  bool isObjCMethodParameter() const {
 
    return ParmVarDeclBits.IsObjCMethodParam;
 
  }
 
 
 
  /// Determines whether this parameter is destroyed in the callee function.
 
  bool isDestroyedInCallee() const;
 
 
 
  unsigned getFunctionScopeDepth() const {
 
    if (ParmVarDeclBits.IsObjCMethodParam) return 0;
 
    return ParmVarDeclBits.ScopeDepthOrObjCQuals;
 
  }
 
 
 
  static constexpr unsigned getMaxFunctionScopeDepth() {
 
    return (1u << NumScopeDepthOrObjCQualsBits) - 1;
 
  }
 
 
 
  /// Returns the index of this parameter in its prototype or method scope.
 
  unsigned getFunctionScopeIndex() const {
 
    return getParameterIndex();
 
  }
 
 
 
  ObjCDeclQualifier getObjCDeclQualifier() const {
 
    if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
 
    return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
 
  }
 
  void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
 
    assert(ParmVarDeclBits.IsObjCMethodParam);
 
    ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
 
  }
 
 
 
  /// True if the value passed to this parameter must undergo
 
  /// K&R-style default argument promotion:
 
  ///
 
  /// C99 6.5.2.2.
 
  ///   If the expression that denotes the called function has a type
 
  ///   that does not include a prototype, the integer promotions are
 
  ///   performed on each argument, and arguments that have type float
 
  ///   are promoted to double.
 
  bool isKNRPromoted() const {
 
    return ParmVarDeclBits.IsKNRPromoted;
 
  }
 
  void setKNRPromoted(bool promoted) {
 
    ParmVarDeclBits.IsKNRPromoted = promoted;
 
  }
 
 
 
  Expr *getDefaultArg();
 
  const Expr *getDefaultArg() const {
 
    return const_cast<ParmVarDecl *>(this)->getDefaultArg();
 
  }
 
 
 
  void setDefaultArg(Expr *defarg);
 
 
 
  /// Retrieve the source range that covers the entire default
 
  /// argument.
 
  SourceRange getDefaultArgRange() const;
 
  void setUninstantiatedDefaultArg(Expr *arg);
 
  Expr *getUninstantiatedDefaultArg();
 
  const Expr *getUninstantiatedDefaultArg() const {
 
    return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
 
  }
 
 
 
  /// Determines whether this parameter has a default argument,
 
  /// either parsed or not.
 
  bool hasDefaultArg() const;
 
 
 
  /// Determines whether this parameter has a default argument that has not
 
  /// yet been parsed. This will occur during the processing of a C++ class
 
  /// whose member functions have default arguments, e.g.,
 
  /// @code
 
  ///   class X {
 
  ///   public:
 
  ///     void f(int x = 17); // x has an unparsed default argument now
 
  ///   }; // x has a regular default argument now
 
  /// @endcode
 
  bool hasUnparsedDefaultArg() const {
 
    return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
 
  }
 
 
 
  bool hasUninstantiatedDefaultArg() const {
 
    return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
 
  }
 
 
 
  /// Specify that this parameter has an unparsed default argument.
 
  /// The argument will be replaced with a real default argument via
 
  /// setDefaultArg when the class definition enclosing the function
 
  /// declaration that owns this default argument is completed.
 
  void setUnparsedDefaultArg() {
 
    ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
 
  }
 
 
 
  bool hasInheritedDefaultArg() const {
 
    return ParmVarDeclBits.HasInheritedDefaultArg;
 
  }
 
 
 
  void setHasInheritedDefaultArg(bool I = true) {
 
    ParmVarDeclBits.HasInheritedDefaultArg = I;
 
  }
 
 
 
  QualType getOriginalType() const;
 
 
 
  /// Sets the function declaration that owns this
 
  /// ParmVarDecl. Since ParmVarDecls are often created before the
 
  /// FunctionDecls that own them, this routine is required to update
 
  /// the DeclContext appropriately.
 
  void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == ParmVar; }
 
 
 
private:
 
  enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
 
 
 
  void setParameterIndex(unsigned parameterIndex) {
 
    if (parameterIndex >= ParameterIndexSentinel) {
 
      setParameterIndexLarge(parameterIndex);
 
      return;
 
    }
 
 
 
    ParmVarDeclBits.ParameterIndex = parameterIndex;
 
    assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
 
  }
 
  unsigned getParameterIndex() const {
 
    unsigned d = ParmVarDeclBits.ParameterIndex;
 
    return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
 
  }
 
 
 
  void setParameterIndexLarge(unsigned parameterIndex);
 
  unsigned getParameterIndexLarge() const;
 
};
 
 
 
enum class MultiVersionKind {
 
  None,
 
  Target,
 
  CPUSpecific,
 
  CPUDispatch,
 
  TargetClones,
 
  TargetVersion
 
};
 
 
 
/// Represents a function declaration or definition.
 
///
 
/// Since a given function can be declared several times in a program,
 
/// there may be several FunctionDecls that correspond to that
 
/// function. Only one of those FunctionDecls will be found when
 
/// traversing the list of declarations in the context of the
 
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
 
/// contains all of the information known about the function. Other,
 
/// previous declarations of the function are available via the
 
/// getPreviousDecl() chain.
 
class FunctionDecl : public DeclaratorDecl,
 
                     public DeclContext,
 
                     public Redeclarable<FunctionDecl> {
 
  // This class stores some data in DeclContext::FunctionDeclBits
 
  // to save some space. Use the provided accessors to access it.
 
public:
 
  /// The kind of templated function a FunctionDecl can be.
 
  enum TemplatedKind {
 
    // Not templated.
 
    TK_NonTemplate,
 
    // The pattern in a function template declaration.
 
    TK_FunctionTemplate,
 
    // A non-template function that is an instantiation or explicit
 
    // specialization of a member of a templated class.
 
    TK_MemberSpecialization,
 
    // An instantiation or explicit specialization of a function template.
 
    // Note: this might have been instantiated from a templated class if it
 
    // is a class-scope explicit specialization.
 
    TK_FunctionTemplateSpecialization,
 
    // A function template specialization that hasn't yet been resolved to a
 
    // particular specialized function template.
 
    TK_DependentFunctionTemplateSpecialization,
 
    // A non-template function which is in a dependent scope.
 
    TK_DependentNonTemplate
 
 
 
  };
 
 
 
  /// Stashed information about a defaulted function definition whose body has
 
  /// not yet been lazily generated.
 
  class DefaultedFunctionInfo final
 
      : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
 
    friend TrailingObjects;
 
    unsigned NumLookups;
 
 
 
  public:
 
    static DefaultedFunctionInfo *Create(ASTContext &Context,
 
                                         ArrayRef<DeclAccessPair> Lookups);
 
    /// Get the unqualified lookup results that should be used in this
 
    /// defaulted function definition.
 
    ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
 
      return {getTrailingObjects<DeclAccessPair>(), NumLookups};
 
    }
 
  };
 
 
 
private:
 
  /// A new[]'d array of pointers to VarDecls for the formal
 
  /// parameters of this function.  This is null if a prototype or if there are
 
  /// no formals.
 
  ParmVarDecl **ParamInfo = nullptr;
 
 
 
  /// The active member of this union is determined by
 
  /// FunctionDeclBits.HasDefaultedFunctionInfo.
 
  union {
 
    /// The body of the function.
 
    LazyDeclStmtPtr Body;
 
    /// Information about a future defaulted function definition.
 
    DefaultedFunctionInfo *DefaultedInfo;
 
  };
 
 
 
  unsigned ODRHash;
 
 
 
  /// End part of this FunctionDecl's source range.
 
  ///
 
  /// We could compute the full range in getSourceRange(). However, when we're
 
  /// dealing with a function definition deserialized from a PCH/AST file,
 
  /// we can only compute the full range once the function body has been
 
  /// de-serialized, so it's far better to have the (sometimes-redundant)
 
  /// EndRangeLoc.
 
  SourceLocation EndRangeLoc;
 
 
 
  SourceLocation DefaultKWLoc;
 
 
 
  /// The template or declaration that this declaration
 
  /// describes or was instantiated from, respectively.
 
  ///
 
  /// For non-templates this value will be NULL, unless this declaration was
 
  /// declared directly inside of a function template, in which case it will
 
  /// have a pointer to a FunctionDecl, stored in the NamedDecl. For function
 
  /// declarations that describe a function template, this will be a pointer to
 
  /// a FunctionTemplateDecl, stored in the NamedDecl. For member functions of
 
  /// class template specializations, this will be a MemberSpecializationInfo
 
  /// pointer containing information about the specialization.
 
  /// For function template specializations, this will be a
 
  /// FunctionTemplateSpecializationInfo, which contains information about
 
  /// the template being specialized and the template arguments involved in
 
  /// that specialization.
 
  llvm::PointerUnion<NamedDecl *, MemberSpecializationInfo *,
 
                     FunctionTemplateSpecializationInfo *,
 
                     DependentFunctionTemplateSpecializationInfo *>
 
      TemplateOrSpecialization;
 
 
 
  /// Provides source/type location info for the declaration name embedded in
 
  /// the DeclaratorDecl base class.
 
  DeclarationNameLoc DNLoc;
 
 
 
  /// Specify that this function declaration is actually a function
 
  /// template specialization.
 
  ///
 
  /// \param C the ASTContext.
 
  ///
 
  /// \param Template the function template that this function template
 
  /// specialization specializes.
 
  ///
 
  /// \param TemplateArgs the template arguments that produced this
 
  /// function template specialization from the template.
 
  ///
 
  /// \param InsertPos If non-NULL, the position in the function template
 
  /// specialization set where the function template specialization data will
 
  /// be inserted.
 
  ///
 
  /// \param TSK the kind of template specialization this is.
 
  ///
 
  /// \param TemplateArgsAsWritten location info of template arguments.
 
  ///
 
  /// \param PointOfInstantiation point at which the function template
 
  /// specialization was first instantiated.
 
  void setFunctionTemplateSpecialization(ASTContext &C,
 
                                         FunctionTemplateDecl *Template,
 
                                       const TemplateArgumentList *TemplateArgs,
 
                                         void *InsertPos,
 
                                         TemplateSpecializationKind TSK,
 
                          const TemplateArgumentListInfo *TemplateArgsAsWritten,
 
                                         SourceLocation PointOfInstantiation);
 
 
 
  /// Specify that this record is an instantiation of the
 
  /// member function FD.
 
  void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
 
                                        TemplateSpecializationKind TSK);
 
 
 
  void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
 
 
 
  // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
 
  // need to access this bit but we want to avoid making ASTDeclWriter
 
  // a friend of FunctionDeclBitfields just for this.
 
  bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
 
 
 
  /// Whether an ODRHash has been stored.
 
  bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
 
 
 
  /// State that an ODRHash has been stored.
 
  void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
 
 
 
protected:
 
  FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
               const DeclarationNameInfo &NameInfo, QualType T,
 
               TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
 
               bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
 
               Expr *TrailingRequiresClause = nullptr);
 
 
 
  using redeclarable_base = Redeclarable<FunctionDecl>;
 
 
 
  FunctionDecl *getNextRedeclarationImpl() override {
 
    return getNextRedeclaration();
 
  }
 
 
 
  FunctionDecl *getPreviousDeclImpl() override {
 
    return getPreviousDecl();
 
  }
 
 
 
  FunctionDecl *getMostRecentDeclImpl() override {
 
    return getMostRecentDecl();
 
  }
 
 
 
public:
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
 
 
  using redecl_range = redeclarable_base::redecl_range;
 
  using redecl_iterator = redeclarable_base::redecl_iterator;
 
 
 
  using redeclarable_base::redecls_begin;
 
  using redeclarable_base::redecls_end;
 
  using redeclarable_base::redecls;
 
  using redeclarable_base::getPreviousDecl;
 
  using redeclarable_base::getMostRecentDecl;
 
  using redeclarable_base::isFirstDecl;
 
 
 
  static FunctionDecl *
 
  Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
         SourceLocation NLoc, DeclarationName N, QualType T,
 
         TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
 
         bool isInlineSpecified = false, bool hasWrittenPrototype = true,
 
         ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
 
         Expr *TrailingRequiresClause = nullptr) {
 
    DeclarationNameInfo NameInfo(N, NLoc);
 
    return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
 
                                UsesFPIntrin, isInlineSpecified,
 
                                hasWrittenPrototype, ConstexprKind,
 
                                TrailingRequiresClause);
 
  }
 
 
 
  static FunctionDecl *
 
  Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
         const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
 
         StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified,
 
         bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
 
         Expr *TrailingRequiresClause);
 
 
 
  static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  DeclarationNameInfo getNameInfo() const {
 
    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
 
  }
 
 
 
  void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
 
                            bool Qualified) const override;
 
 
 
  void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
 
 
 
  /// Returns the location of the ellipsis of a variadic function.
 
  SourceLocation getEllipsisLoc() const {
 
    const auto *FPT = getType()->getAs<FunctionProtoType>();
 
    if (FPT && FPT->isVariadic())
 
      return FPT->getEllipsisLoc();
 
    return SourceLocation();
 
  }
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  // Function definitions.
 
  //
 
  // A function declaration may be:
 
  // - a non defining declaration,
 
  // - a definition. A function may be defined because:
 
  //   - it has a body, or will have it in the case of late parsing.
 
  //   - it has an uninstantiated body. The body does not exist because the
 
  //     function is not used yet, but the declaration is considered a
 
  //     definition and does not allow other definition of this function.
 
  //   - it does not have a user specified body, but it does not allow
 
  //     redefinition, because it is deleted/defaulted or is defined through
 
  //     some other mechanism (alias, ifunc).
 
 
 
  /// Returns true if the function has a body.
 
  ///
 
  /// The function body might be in any of the (re-)declarations of this
 
  /// function. The variant that accepts a FunctionDecl pointer will set that
 
  /// function declaration to the actual declaration containing the body (if
 
  /// there is one).
 
  bool hasBody(const FunctionDecl *&Definition) const;
 
 
 
  bool hasBody() const override {
 
    const FunctionDecl* Definition;
 
    return hasBody(Definition);
 
  }
 
 
 
  /// Returns whether the function has a trivial body that does not require any
 
  /// specific codegen.
 
  bool hasTrivialBody() const;
 
 
 
  /// Returns true if the function has a definition that does not need to be
 
  /// instantiated.
 
  ///
 
  /// The variant that accepts a FunctionDecl pointer will set that function
 
  /// declaration to the declaration that is a definition (if there is one).
 
  ///
 
  /// \param CheckForPendingFriendDefinition If \c true, also check for friend
 
  ///        declarations that were instantiataed from function definitions.
 
  ///        Such a declaration behaves as if it is a definition for the
 
  ///        purpose of redefinition checking, but isn't actually a "real"
 
  ///        definition until its body is instantiated.
 
  bool isDefined(const FunctionDecl *&Definition,
 
                 bool CheckForPendingFriendDefinition = false) const;
 
 
 
  bool isDefined() const {
 
    const FunctionDecl* Definition;
 
    return isDefined(Definition);
 
  }
 
 
 
  /// Get the definition for this declaration.
 
  FunctionDecl *getDefinition() {
 
    const FunctionDecl *Definition;
 
    if (isDefined(Definition))
 
      return const_cast<FunctionDecl *>(Definition);
 
    return nullptr;
 
  }
 
  const FunctionDecl *getDefinition() const {
 
    return const_cast<FunctionDecl *>(this)->getDefinition();
 
  }
 
 
 
  /// Retrieve the body (definition) of the function. The function body might be
 
  /// in any of the (re-)declarations of this function. The variant that accepts
 
  /// a FunctionDecl pointer will set that function declaration to the actual
 
  /// declaration containing the body (if there is one).
 
  /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
 
  /// unnecessary AST de-serialization of the body.
 
  Stmt *getBody(const FunctionDecl *&Definition) const;
 
 
 
  Stmt *getBody() const override {
 
    const FunctionDecl* Definition;
 
    return getBody(Definition);
 
  }
 
 
 
  /// Returns whether this specific declaration of the function is also a
 
  /// definition that does not contain uninstantiated body.
 
  ///
 
  /// This does not determine whether the function has been defined (e.g., in a
 
  /// previous definition); for that information, use isDefined.
 
  ///
 
  /// Note: the function declaration does not become a definition until the
 
  /// parser reaches the definition, if called before, this function will return
 
  /// `false`.
 
  bool isThisDeclarationADefinition() const {
 
    return isDeletedAsWritten() || isDefaulted() ||
 
           doesThisDeclarationHaveABody() || hasSkippedBody() ||
 
           willHaveBody() || hasDefiningAttr();
 
  }
 
 
 
  /// Determine whether this specific declaration of the function is a friend
 
  /// declaration that was instantiated from a function definition. Such
 
  /// declarations behave like definitions in some contexts.
 
  bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
 
 
 
  /// Returns whether this specific declaration of the function has a body.
 
  bool doesThisDeclarationHaveABody() const {
 
    return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
 
           isLateTemplateParsed();
 
  }
 
 
 
  void setBody(Stmt *B);
 
  void setLazyBody(uint64_t Offset) {
 
    FunctionDeclBits.HasDefaultedFunctionInfo = false;
 
    Body = LazyDeclStmtPtr(Offset);
 
  }
 
 
 
  void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
 
  DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
 
 
 
  /// Whether this function is variadic.
 
  bool isVariadic() const;
 
 
 
  /// Whether this function is marked as virtual explicitly.
 
  bool isVirtualAsWritten() const {
 
    return FunctionDeclBits.IsVirtualAsWritten;
 
  }
 
 
 
  /// State that this function is marked as virtual explicitly.
 
  void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
 
 
 
  /// Whether this virtual function is pure, i.e. makes the containing class
 
  /// abstract.
 
  bool isPure() const { return FunctionDeclBits.IsPure; }
 
  void setPure(bool P = true);
 
 
 
  /// Whether this templated function will be late parsed.
 
  bool isLateTemplateParsed() const {
 
    return FunctionDeclBits.IsLateTemplateParsed;
 
  }
 
 
 
  /// State that this templated function will be late parsed.
 
  void setLateTemplateParsed(bool ILT = true) {
 
    FunctionDeclBits.IsLateTemplateParsed = ILT;
 
  }
 
 
 
  /// Whether this function is "trivial" in some specialized C++ senses.
 
  /// Can only be true for default constructors, copy constructors,
 
  /// copy assignment operators, and destructors.  Not meaningful until
 
  /// the class has been fully built by Sema.
 
  bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
 
  void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
 
 
 
  bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
 
  void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
 
 
 
  /// Whether this function is defaulted. Valid for e.g.
 
  /// special member functions, defaulted comparisions (not methods!).
 
  bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
 
  void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
 
 
 
  /// Whether this function is explicitly defaulted.
 
  bool isExplicitlyDefaulted() const {
 
    return FunctionDeclBits.IsExplicitlyDefaulted;
 
  }
 
 
 
  /// State that this function is explicitly defaulted.
 
  void setExplicitlyDefaulted(bool ED = true) {
 
    FunctionDeclBits.IsExplicitlyDefaulted = ED;
 
  }
 
 
 
  SourceLocation getDefaultLoc() const {
 
    return isExplicitlyDefaulted() ? DefaultKWLoc : SourceLocation();
 
  }
 
 
 
  void setDefaultLoc(SourceLocation NewLoc) {
 
    assert((NewLoc.isInvalid() || isExplicitlyDefaulted()) &&
 
           "Can't set default loc is function isn't explicitly defaulted");
 
    DefaultKWLoc = NewLoc;
 
  }
 
 
 
  /// True if this method is user-declared and was not
 
  /// deleted or defaulted on its first declaration.
 
  bool isUserProvided() const {
 
    auto *DeclAsWritten = this;
 
    if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
 
      DeclAsWritten = Pattern;
 
    return !(DeclAsWritten->isDeleted() ||
 
             DeclAsWritten->getCanonicalDecl()->isDefaulted());
 
  }
 
 
 
  bool isIneligibleOrNotSelected() const {
 
    return FunctionDeclBits.IsIneligibleOrNotSelected;
 
  }
 
  void setIneligibleOrNotSelected(bool II) {
 
    FunctionDeclBits.IsIneligibleOrNotSelected = II;
 
  }
 
 
 
  /// Whether falling off this function implicitly returns null/zero.
 
  /// If a more specific implicit return value is required, front-ends
 
  /// should synthesize the appropriate return statements.
 
  bool hasImplicitReturnZero() const {
 
    return FunctionDeclBits.HasImplicitReturnZero;
 
  }
 
 
 
  /// State that falling off this function implicitly returns null/zero.
 
  /// If a more specific implicit return value is required, front-ends
 
  /// should synthesize the appropriate return statements.
 
  void setHasImplicitReturnZero(bool IRZ) {
 
    FunctionDeclBits.HasImplicitReturnZero = IRZ;
 
  }
 
 
 
  /// Whether this function has a prototype, either because one
 
  /// was explicitly written or because it was "inherited" by merging
 
  /// a declaration without a prototype with a declaration that has a
 
  /// prototype.
 
  bool hasPrototype() const {
 
    return hasWrittenPrototype() || hasInheritedPrototype();
 
  }
 
 
 
  /// Whether this function has a written prototype.
 
  bool hasWrittenPrototype() const {
 
    return FunctionDeclBits.HasWrittenPrototype;
 
  }
 
 
 
  /// State that this function has a written prototype.
 
  void setHasWrittenPrototype(bool P = true) {
 
    FunctionDeclBits.HasWrittenPrototype = P;
 
  }
 
 
 
  /// Whether this function inherited its prototype from a
 
  /// previous declaration.
 
  bool hasInheritedPrototype() const {
 
    return FunctionDeclBits.HasInheritedPrototype;
 
  }
 
 
 
  /// State that this function inherited its prototype from a
 
  /// previous declaration.
 
  void setHasInheritedPrototype(bool P = true) {
 
    FunctionDeclBits.HasInheritedPrototype = P;
 
  }
 
 
 
  /// Whether this is a (C++11) constexpr function or constexpr constructor.
 
  bool isConstexpr() const {
 
    return getConstexprKind() != ConstexprSpecKind::Unspecified;
 
  }
 
  void setConstexprKind(ConstexprSpecKind CSK) {
 
    FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
 
  }
 
  ConstexprSpecKind getConstexprKind() const {
 
    return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
 
  }
 
  bool isConstexprSpecified() const {
 
    return getConstexprKind() == ConstexprSpecKind::Constexpr;
 
  }
 
  bool isConsteval() const {
 
    return getConstexprKind() == ConstexprSpecKind::Consteval;
 
  }
 
 
 
  /// Whether the instantiation of this function is pending.
 
  /// This bit is set when the decision to instantiate this function is made
 
  /// and unset if and when the function body is created. That leaves out
 
  /// cases where instantiation did not happen because the template definition
 
  /// was not seen in this TU. This bit remains set in those cases, under the
 
  /// assumption that the instantiation will happen in some other TU.
 
  bool instantiationIsPending() const {
 
    return FunctionDeclBits.InstantiationIsPending;
 
  }
 
 
 
  /// State that the instantiation of this function is pending.
 
  /// (see instantiationIsPending)
 
  void setInstantiationIsPending(bool IC) {
 
    FunctionDeclBits.InstantiationIsPending = IC;
 
  }
 
 
 
  /// Indicates the function uses __try.
 
  bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
 
  void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
 
 
 
  /// Whether this function has been deleted.
 
  ///
 
  /// A function that is "deleted" (via the C++0x "= delete" syntax)
 
  /// acts like a normal function, except that it cannot actually be
 
  /// called or have its address taken. Deleted functions are
 
  /// typically used in C++ overload resolution to attract arguments
 
  /// whose type or lvalue/rvalue-ness would permit the use of a
 
  /// different overload that would behave incorrectly. For example,
 
  /// one might use deleted functions to ban implicit conversion from
 
  /// a floating-point number to an Integer type:
 
  ///
 
  /// @code
 
  /// struct Integer {
 
  ///   Integer(long); // construct from a long
 
  ///   Integer(double) = delete; // no construction from float or double
 
  ///   Integer(long double) = delete; // no construction from long double
 
  /// };
 
  /// @endcode
 
  // If a function is deleted, its first declaration must be.
 
  bool isDeleted() const {
 
    return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
 
  }
 
 
 
  bool isDeletedAsWritten() const {
 
    return FunctionDeclBits.IsDeleted && !isDefaulted();
 
  }
 
 
 
  void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
 
 
 
  /// Determines whether this function is "main", which is the
 
  /// entry point into an executable program.
 
  bool isMain() const;
 
 
 
  /// Determines whether this function is a MSVCRT user defined entry
 
  /// point.
 
  bool isMSVCRTEntryPoint() const;
 
 
 
  /// Determines whether this operator new or delete is one
 
  /// of the reserved global placement operators:
 
  ///    void *operator new(size_t, void *);
 
  ///    void *operator new[](size_t, void *);
 
  ///    void operator delete(void *, void *);
 
  ///    void operator delete[](void *, void *);
 
  /// These functions have special behavior under [new.delete.placement]:
 
  ///    These functions are reserved, a C++ program may not define
 
  ///    functions that displace the versions in the Standard C++ library.
 
  ///    The provisions of [basic.stc.dynamic] do not apply to these
 
  ///    reserved placement forms of operator new and operator delete.
 
  ///
 
  /// This function must be an allocation or deallocation function.
 
  bool isReservedGlobalPlacementOperator() const;
 
 
 
  /// Determines whether this function is one of the replaceable
 
  /// global allocation functions:
 
  ///    void *operator new(size_t);
 
  ///    void *operator new(size_t, const std::nothrow_t &) noexcept;
 
  ///    void *operator new[](size_t);
 
  ///    void *operator new[](size_t, const std::nothrow_t &) noexcept;
 
  ///    void operator delete(void *) noexcept;
 
  ///    void operator delete(void *, std::size_t) noexcept;      [C++1y]
 
  ///    void operator delete(void *, const std::nothrow_t &) noexcept;
 
  ///    void operator delete[](void *) noexcept;
 
  ///    void operator delete[](void *, std::size_t) noexcept;    [C++1y]
 
  ///    void operator delete[](void *, const std::nothrow_t &) noexcept;
 
  /// These functions have special behavior under C++1y [expr.new]:
 
  ///    An implementation is allowed to omit a call to a replaceable global
 
  ///    allocation function. [...]
 
  ///
 
  /// If this function is an aligned allocation/deallocation function, return
 
  /// the parameter number of the requested alignment through AlignmentParam.
 
  ///
 
  /// If this function is an allocation/deallocation function that takes
 
  /// the `std::nothrow_t` tag, return true through IsNothrow,
 
  bool isReplaceableGlobalAllocationFunction(
 
      std::optional<unsigned> *AlignmentParam = nullptr,
 
      bool *IsNothrow = nullptr) const;
 
 
 
  /// Determine if this function provides an inline implementation of a builtin.
 
  bool isInlineBuiltinDeclaration() const;
 
 
 
  /// Determine whether this is a destroying operator delete.
 
  bool isDestroyingOperatorDelete() const;
 
 
 
  /// Compute the language linkage.
 
  LanguageLinkage getLanguageLinkage() const;
 
 
 
  /// Determines whether this function is a function with
 
  /// external, C linkage.
 
  bool isExternC() const;
 
 
 
  /// Determines whether this function's context is, or is nested within,
 
  /// a C++ extern "C" linkage spec.
 
  bool isInExternCContext() const;
 
 
 
  /// Determines whether this function's context is, or is nested within,
 
  /// a C++ extern "C++" linkage spec.
 
  bool isInExternCXXContext() const;
 
 
 
  /// Determines whether this is a global function.
 
  bool isGlobal() const;
 
 
 
  /// Determines whether this function is known to be 'noreturn', through
 
  /// an attribute on its declaration or its type.
 
  bool isNoReturn() const;
 
 
 
  /// True if the function was a definition but its body was skipped.
 
  bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
 
  void setHasSkippedBody(bool Skipped = true) {
 
    FunctionDeclBits.HasSkippedBody = Skipped;
 
  }
 
 
 
  /// True if this function will eventually have a body, once it's fully parsed.
 
  bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
 
  void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
 
 
 
  /// True if this function is considered a multiversioned function.
 
  bool isMultiVersion() const {
 
    return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
 
  }
 
 
 
  /// Sets the multiversion state for this declaration and all of its
 
  /// redeclarations.
 
  void setIsMultiVersion(bool V = true) {
 
    getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
 
  }
 
 
 
  // Sets that this is a constrained friend where the constraint refers to an
 
  // enclosing template.
 
  void setFriendConstraintRefersToEnclosingTemplate(bool V = true) {
 
    getCanonicalDecl()
 
        ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = V;
 
  }
 
  // Indicates this function is a constrained friend, where the constraint
 
  // refers to an enclosing template for hte purposes of [temp.friend]p9.
 
  bool FriendConstraintRefersToEnclosingTemplate() const {
 
    return getCanonicalDecl()
 
        ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate;
 
  }
 
 
 
  /// Gets the kind of multiversioning attribute this declaration has. Note that
 
  /// this can return a value even if the function is not multiversion, such as
 
  /// the case of 'target'.
 
  MultiVersionKind getMultiVersionKind() const;
 
 
 
 
 
  /// True if this function is a multiversioned dispatch function as a part of
 
  /// the cpu_specific/cpu_dispatch functionality.
 
  bool isCPUDispatchMultiVersion() const;
 
  /// True if this function is a multiversioned processor specific function as a
 
  /// part of the cpu_specific/cpu_dispatch functionality.
 
  bool isCPUSpecificMultiVersion() const;
 
 
 
  /// True if this function is a multiversioned dispatch function as a part of
 
  /// the target functionality.
 
  bool isTargetMultiVersion() const;
 
 
 
  /// True if this function is a multiversioned dispatch function as a part of
 
  /// the target-clones functionality.
 
  bool isTargetClonesMultiVersion() const;
 
 
 
  /// \brief Get the associated-constraints of this function declaration.
 
  /// Currently, this will either be a vector of size 1 containing the
 
  /// trailing-requires-clause or an empty vector.
 
  ///
 
  /// Use this instead of getTrailingRequiresClause for concepts APIs that
 
  /// accept an ArrayRef of constraint expressions.
 
  void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
 
    if (auto *TRC = getTrailingRequiresClause())
 
      AC.push_back(TRC);
 
  }
 
 
 
  void setPreviousDeclaration(FunctionDecl * PrevDecl);
 
 
 
  FunctionDecl *getCanonicalDecl() override;
 
  const FunctionDecl *getCanonicalDecl() const {
 
    return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
 
  }
 
 
 
  unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
 
 
 
  // ArrayRef interface to parameters.
 
  ArrayRef<ParmVarDecl *> parameters() const {
 
    return {ParamInfo, getNumParams()};
 
  }
 
  MutableArrayRef<ParmVarDecl *> parameters() {
 
    return {ParamInfo, getNumParams()};
 
  }
 
 
 
  // Iterator access to formal parameters.
 
  using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
 
  using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
 
 
 
  bool param_empty() const { return parameters().empty(); }
 
  param_iterator param_begin() { return parameters().begin(); }
 
  param_iterator param_end() { return parameters().end(); }
 
  param_const_iterator param_begin() const { return parameters().begin(); }
 
  param_const_iterator param_end() const { return parameters().end(); }
 
  size_t param_size() const { return parameters().size(); }
 
 
 
  /// Return the number of parameters this function must have based on its
 
  /// FunctionType.  This is the length of the ParamInfo array after it has been
 
  /// created.
 
  unsigned getNumParams() const;
 
 
 
  const ParmVarDecl *getParamDecl(unsigned i) const {
 
    assert(i < getNumParams() && "Illegal param #");
 
    return ParamInfo[i];
 
  }
 
  ParmVarDecl *getParamDecl(unsigned i) {
 
    assert(i < getNumParams() && "Illegal param #");
 
    return ParamInfo[i];
 
  }
 
  void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
 
    setParams(getASTContext(), NewParamInfo);
 
  }
 
 
 
  /// Returns the minimum number of arguments needed to call this function. This
 
  /// may be fewer than the number of function parameters, if some of the
 
  /// parameters have default arguments (in C++).
 
  unsigned getMinRequiredArguments() const;
 
 
 
  /// Determine whether this function has a single parameter, or multiple
 
  /// parameters where all but the first have default arguments.
 
  ///
 
  /// This notion is used in the definition of copy/move constructors and
 
  /// initializer list constructors. Note that, unlike getMinRequiredArguments,
 
  /// parameter packs are not treated specially here.
 
  bool hasOneParamOrDefaultArgs() const;
 
 
 
  /// Find the source location information for how the type of this function
 
  /// was written. May be absent (for example if the function was declared via
 
  /// a typedef) and may contain a different type from that of the function
 
  /// (for example if the function type was adjusted by an attribute).
 
  FunctionTypeLoc getFunctionTypeLoc() const;
 
 
 
  QualType getReturnType() const {
 
    return getType()->castAs<FunctionType>()->getReturnType();
 
  }
 
 
 
  /// Attempt to compute an informative source range covering the
 
  /// function return type. This may omit qualifiers and other information with
 
  /// limited representation in the AST.
 
  SourceRange getReturnTypeSourceRange() const;
 
 
 
  /// Attempt to compute an informative source range covering the
 
  /// function parameters, including the ellipsis of a variadic function.
 
  /// The source range excludes the parentheses, and is invalid if there are
 
  /// no parameters and no ellipsis.
 
  SourceRange getParametersSourceRange() const;
 
 
 
  /// Get the declared return type, which may differ from the actual return
 
  /// type if the return type is deduced.
 
  QualType getDeclaredReturnType() const {
 
    auto *TSI = getTypeSourceInfo();
 
    QualType T = TSI ? TSI->getType() : getType();
 
    return T->castAs<FunctionType>()->getReturnType();
 
  }
 
 
 
  /// Gets the ExceptionSpecificationType as declared.
 
  ExceptionSpecificationType getExceptionSpecType() const {
 
    auto *TSI = getTypeSourceInfo();
 
    QualType T = TSI ? TSI->getType() : getType();
 
    const auto *FPT = T->getAs<FunctionProtoType>();
 
    return FPT ? FPT->getExceptionSpecType() : EST_None;
 
  }
 
 
 
  /// Attempt to compute an informative source range covering the
 
  /// function exception specification, if any.
 
  SourceRange getExceptionSpecSourceRange() const;
 
 
 
  /// Determine the type of an expression that calls this function.
 
  QualType getCallResultType() const {
 
    return getType()->castAs<FunctionType>()->getCallResultType(
 
        getASTContext());
 
  }
 
 
 
  /// Returns the storage class as written in the source. For the
 
  /// computed linkage of symbol, see getLinkage.
 
  StorageClass getStorageClass() const {
 
    return static_cast<StorageClass>(FunctionDeclBits.SClass);
 
  }
 
 
 
  /// Sets the storage class as written in the source.
 
  void setStorageClass(StorageClass SClass) {
 
    FunctionDeclBits.SClass = SClass;
 
  }
 
 
 
  /// Determine whether the "inline" keyword was specified for this
 
  /// function.
 
  bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
 
 
 
  /// Set whether the "inline" keyword was specified for this function.
 
  void setInlineSpecified(bool I) {
 
    FunctionDeclBits.IsInlineSpecified = I;
 
    FunctionDeclBits.IsInline = I;
 
  }
 
 
 
  /// Determine whether the function was declared in source context
 
  /// that requires constrained FP intrinsics
 
  bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
 
 
 
  /// Set whether the function was declared in source context
 
  /// that requires constrained FP intrinsics
 
  void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
 
 
 
  /// Flag that this function is implicitly inline.
 
  void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
 
 
 
  /// Determine whether this function should be inlined, because it is
 
  /// either marked "inline" or "constexpr" or is a member function of a class
 
  /// that was defined in the class body.
 
  bool isInlined() const { return FunctionDeclBits.IsInline; }
 
 
 
  bool isInlineDefinitionExternallyVisible() const;
 
 
 
  bool isMSExternInline() const;
 
 
 
  bool doesDeclarationForceExternallyVisibleDefinition() const;
 
 
 
  bool isStatic() const { return getStorageClass() == SC_Static; }
 
 
 
  /// Whether this function declaration represents an C++ overloaded
 
  /// operator, e.g., "operator+".
 
  bool isOverloadedOperator() const {
 
    return getOverloadedOperator() != OO_None;
 
  }
 
 
 
  OverloadedOperatorKind getOverloadedOperator() const;
 
 
 
  const IdentifierInfo *getLiteralIdentifier() const;
 
 
 
  /// If this function is an instantiation of a member function
 
  /// of a class template specialization, retrieves the function from
 
  /// which it was instantiated.
 
  ///
 
  /// This routine will return non-NULL for (non-templated) member
 
  /// functions of class templates and for instantiations of function
 
  /// templates. For example, given:
 
  ///
 
  /// \code
 
  /// template<typename T>
 
  /// struct X {
 
  ///   void f(T);
 
  /// };
 
  /// \endcode
 
  ///
 
  /// The declaration for X<int>::f is a (non-templated) FunctionDecl
 
  /// whose parent is the class template specialization X<int>. For
 
  /// this declaration, getInstantiatedFromFunction() will return
 
  /// the FunctionDecl X<T>::A. When a complete definition of
 
  /// X<int>::A is required, it will be instantiated from the
 
  /// declaration returned by getInstantiatedFromMemberFunction().
 
  FunctionDecl *getInstantiatedFromMemberFunction() const;
 
 
 
  /// What kind of templated function this is.
 
  TemplatedKind getTemplatedKind() const;
 
 
 
  /// If this function is an instantiation of a member function of a
 
  /// class template specialization, retrieves the member specialization
 
  /// information.
 
  MemberSpecializationInfo *getMemberSpecializationInfo() const;
 
 
 
  /// Specify that this record is an instantiation of the
 
  /// member function FD.
 
  void setInstantiationOfMemberFunction(FunctionDecl *FD,
 
                                        TemplateSpecializationKind TSK) {
 
    setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
 
  }
 
 
 
  /// Specify that this function declaration was instantiated from a
 
  /// FunctionDecl FD. This is only used if this is a function declaration
 
  /// declared locally inside of a function template.
 
  void setInstantiatedFromDecl(FunctionDecl *FD);
 
 
 
  FunctionDecl *getInstantiatedFromDecl() const;
 
 
 
  /// Retrieves the function template that is described by this
 
  /// function declaration.
 
  ///
 
  /// Every function template is represented as a FunctionTemplateDecl
 
  /// and a FunctionDecl (or something derived from FunctionDecl). The
 
  /// former contains template properties (such as the template
 
  /// parameter lists) while the latter contains the actual
 
  /// description of the template's
 
  /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
 
  /// FunctionDecl that describes the function template,
 
  /// getDescribedFunctionTemplate() retrieves the
 
  /// FunctionTemplateDecl from a FunctionDecl.
 
  FunctionTemplateDecl *getDescribedFunctionTemplate() const;
 
 
 
  void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
 
 
 
  /// Determine whether this function is a function template
 
  /// specialization.
 
  bool isFunctionTemplateSpecialization() const {
 
    return getPrimaryTemplate() != nullptr;
 
  }
 
 
 
  /// If this function is actually a function template specialization,
 
  /// retrieve information about this function template specialization.
 
  /// Otherwise, returns NULL.
 
  FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
 
 
 
  /// Determines whether this function is a function template
 
  /// specialization or a member of a class template specialization that can
 
  /// be implicitly instantiated.
 
  bool isImplicitlyInstantiable() const;
 
 
 
  /// Determines if the given function was instantiated from a
 
  /// function template.
 
  bool isTemplateInstantiation() const;
 
 
 
  /// Retrieve the function declaration from which this function could
 
  /// be instantiated, if it is an instantiation (rather than a non-template
 
  /// or a specialization, for example).
 
  ///
 
  /// If \p ForDefinition is \c false, explicit specializations will be treated
 
  /// as if they were implicit instantiations. This will then find the pattern
 
  /// corresponding to non-definition portions of the declaration, such as
 
  /// default arguments and the exception specification.
 
  FunctionDecl *
 
  getTemplateInstantiationPattern(bool ForDefinition = true) const;
 
 
 
  /// Retrieve the primary template that this function template
 
  /// specialization either specializes or was instantiated from.
 
  ///
 
  /// If this function declaration is not a function template specialization,
 
  /// returns NULL.
 
  FunctionTemplateDecl *getPrimaryTemplate() const;
 
 
 
  /// Retrieve the template arguments used to produce this function
 
  /// template specialization from the primary template.
 
  ///
 
  /// If this function declaration is not a function template specialization,
 
  /// returns NULL.
 
  const TemplateArgumentList *getTemplateSpecializationArgs() const;
 
 
 
  /// Retrieve the template argument list as written in the sources,
 
  /// if any.
 
  ///
 
  /// If this function declaration is not a function template specialization
 
  /// or if it had no explicit template argument list, returns NULL.
 
  /// Note that it an explicit template argument list may be written empty,
 
  /// e.g., template<> void foo<>(char* s);
 
  const ASTTemplateArgumentListInfo*
 
  getTemplateSpecializationArgsAsWritten() const;
 
 
 
  /// Specify that this function declaration is actually a function
 
  /// template specialization.
 
  ///
 
  /// \param Template the function template that this function template
 
  /// specialization specializes.
 
  ///
 
  /// \param TemplateArgs the template arguments that produced this
 
  /// function template specialization from the template.
 
  ///
 
  /// \param InsertPos If non-NULL, the position in the function template
 
  /// specialization set where the function template specialization data will
 
  /// be inserted.
 
  ///
 
  /// \param TSK the kind of template specialization this is.
 
  ///
 
  /// \param TemplateArgsAsWritten location info of template arguments.
 
  ///
 
  /// \param PointOfInstantiation point at which the function template
 
  /// specialization was first instantiated.
 
  void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
 
                const TemplateArgumentList *TemplateArgs,
 
                void *InsertPos,
 
                TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
 
                const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
 
                SourceLocation PointOfInstantiation = SourceLocation()) {
 
    setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
 
                                      InsertPos, TSK, TemplateArgsAsWritten,
 
                                      PointOfInstantiation);
 
  }
 
 
 
  /// Specifies that this function declaration is actually a
 
  /// dependent function template specialization.
 
  void setDependentTemplateSpecialization(ASTContext &Context,
 
                             const UnresolvedSetImpl &Templates,
 
                      const TemplateArgumentListInfo &TemplateArgs);
 
 
 
  DependentFunctionTemplateSpecializationInfo *
 
  getDependentSpecializationInfo() const;
 
 
 
  /// Determine what kind of template instantiation this function
 
  /// represents.
 
  TemplateSpecializationKind getTemplateSpecializationKind() const;
 
 
 
  /// Determine the kind of template specialization this function represents
 
  /// for the purpose of template instantiation.
 
  TemplateSpecializationKind
 
  getTemplateSpecializationKindForInstantiation() const;
 
 
 
  /// Determine what kind of template instantiation this function
 
  /// represents.
 
  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
 
                        SourceLocation PointOfInstantiation = SourceLocation());
 
 
 
  /// Retrieve the (first) point of instantiation of a function template
 
  /// specialization or a member of a class template specialization.
 
  ///
 
  /// \returns the first point of instantiation, if this function was
 
  /// instantiated from a template; otherwise, returns an invalid source
 
  /// location.
 
  SourceLocation getPointOfInstantiation() const;
 
 
 
  /// Determine whether this is or was instantiated from an out-of-line
 
  /// definition of a member function.
 
  bool isOutOfLine() const override;
 
 
 
  /// Identify a memory copying or setting function.
 
  /// If the given function is a memory copy or setting function, returns
 
  /// the corresponding Builtin ID. If the function is not a memory function,
 
  /// returns 0.
 
  unsigned getMemoryFunctionKind() const;
 
 
 
  /// Returns ODRHash of the function.  This value is calculated and
 
  /// stored on first call, then the stored value returned on the other calls.
 
  unsigned getODRHash();
 
 
 
  /// Returns cached ODRHash of the function.  This must have been previously
 
  /// computed and stored.
 
  unsigned getODRHash() const;
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) {
 
    return K >= firstFunction && K <= lastFunction;
 
  }
 
  static DeclContext *castToDeclContext(const FunctionDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
 
  }
 
  static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
 
  }
 
};
 
 
 
/// Represents a member of a struct/union/class.
 
class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
 
  unsigned BitField : 1;
 
  unsigned Mutable : 1;
 
  mutable unsigned CachedFieldIndex : 30;
 
 
 
  /// The kinds of value we can store in InitializerOrBitWidth.
 
  ///
 
  /// Note that this is compatible with InClassInitStyle except for
 
  /// ISK_CapturedVLAType.
 
  enum InitStorageKind {
 
    /// If the pointer is null, there's nothing special.  Otherwise,
 
    /// this is a bitfield and the pointer is the Expr* storing the
 
    /// bit-width.
 
    ISK_NoInit = (unsigned) ICIS_NoInit,
 
 
 
    /// The pointer is an (optional due to delayed parsing) Expr*
 
    /// holding the copy-initializer.
 
    ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
 
 
 
    /// The pointer is an (optional due to delayed parsing) Expr*
 
    /// holding the list-initializer.
 
    ISK_InClassListInit = (unsigned) ICIS_ListInit,
 
 
 
    /// The pointer is a VariableArrayType* that's been captured;
 
    /// the enclosing context is a lambda or captured statement.
 
    ISK_CapturedVLAType,
 
  };
 
 
 
  /// If this is a bitfield with a default member initializer, this
 
  /// structure is used to represent the two expressions.
 
  struct InitAndBitWidth {
 
    Expr *Init;
 
    Expr *BitWidth;
 
  };
 
 
 
  /// Storage for either the bit-width, the in-class initializer, or
 
  /// both (via InitAndBitWidth), or the captured variable length array bound.
 
  ///
 
  /// If the storage kind is ISK_InClassCopyInit or
 
  /// ISK_InClassListInit, but the initializer is null, then this
 
  /// field has an in-class initializer that has not yet been parsed
 
  /// and attached.
 
  // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
 
  // overwhelmingly common case that we have none of these things.
 
  llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
 
 
 
protected:
 
  FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
 
            SourceLocation IdLoc, IdentifierInfo *Id,
 
            QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
 
            InClassInitStyle InitStyle)
 
    : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
 
      BitField(false), Mutable(Mutable), CachedFieldIndex(0),
 
      InitStorage(nullptr, (InitStorageKind) InitStyle) {
 
    if (BW)
 
      setBitWidth(BW);
 
  }
 
 
 
public:
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
 
 
  static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
 
                           SourceLocation StartLoc, SourceLocation IdLoc,
 
                           IdentifierInfo *Id, QualType T,
 
                           TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
 
                           InClassInitStyle InitStyle);
 
 
 
  static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  /// Returns the index of this field within its record,
 
  /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
 
  unsigned getFieldIndex() const;
 
 
 
  /// Determines whether this field is mutable (C++ only).
 
  bool isMutable() const { return Mutable; }
 
 
 
  /// Determines whether this field is a bitfield.
 
  bool isBitField() const { return BitField; }
 
 
 
  /// Determines whether this is an unnamed bitfield.
 
  bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
 
 
 
  /// Determines whether this field is a
 
  /// representative for an anonymous struct or union. Such fields are
 
  /// unnamed and are implicitly generated by the implementation to
 
  /// store the data for the anonymous union or struct.
 
  bool isAnonymousStructOrUnion() const;
 
 
 
  Expr *getBitWidth() const {
 
    if (!BitField)
 
      return nullptr;
 
    void *Ptr = InitStorage.getPointer();
 
    if (getInClassInitStyle())
 
      return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
 
    return static_cast<Expr*>(Ptr);
 
  }
 
 
 
  unsigned getBitWidthValue(const ASTContext &Ctx) const;
 
 
 
  /// Set the bit-field width for this member.
 
  // Note: used by some clients (i.e., do not remove it).
 
  void setBitWidth(Expr *Width) {
 
    assert(!hasCapturedVLAType() && !BitField &&
 
           "bit width or captured type already set");
 
    assert(Width && "no bit width specified");
 
    InitStorage.setPointer(
 
        InitStorage.getInt()
 
            ? new (getASTContext())
 
                  InitAndBitWidth{getInClassInitializer(), Width}
 
            : static_cast<void*>(Width));
 
    BitField = true;
 
  }
 
 
 
  /// Remove the bit-field width from this member.
 
  // Note: used by some clients (i.e., do not remove it).
 
  void removeBitWidth() {
 
    assert(isBitField() && "no bitfield width to remove");
 
    InitStorage.setPointer(getInClassInitializer());
 
    BitField = false;
 
  }
 
 
 
  /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
 
  /// at all and instead act as a separator between contiguous runs of other
 
  /// bit-fields.
 
  bool isZeroLengthBitField(const ASTContext &Ctx) const;
 
 
 
  /// Determine if this field is a subobject of zero size, that is, either a
 
  /// zero-length bit-field or a field of empty class type with the
 
  /// [[no_unique_address]] attribute.
 
  bool isZeroSize(const ASTContext &Ctx) const;
 
 
 
  /// Get the kind of (C++11) default member initializer that this field has.
 
  InClassInitStyle getInClassInitStyle() const {
 
    InitStorageKind storageKind = InitStorage.getInt();
 
    return (storageKind == ISK_CapturedVLAType
 
              ? ICIS_NoInit : (InClassInitStyle) storageKind);
 
  }
 
 
 
  /// Determine whether this member has a C++11 default member initializer.
 
  bool hasInClassInitializer() const {
 
    return getInClassInitStyle() != ICIS_NoInit;
 
  }
 
 
 
  /// Get the C++11 default member initializer for this member, or null if one
 
  /// has not been set. If a valid declaration has a default member initializer,
 
  /// but this returns null, then we have not parsed and attached it yet.
 
  Expr *getInClassInitializer() const {
 
    if (!hasInClassInitializer())
 
      return nullptr;
 
    void *Ptr = InitStorage.getPointer();
 
    if (BitField)
 
      return static_cast<InitAndBitWidth*>(Ptr)->Init;
 
    return static_cast<Expr*>(Ptr);
 
  }
 
 
 
  /// Set the C++11 in-class initializer for this member.
 
  void setInClassInitializer(Expr *Init) {
 
    assert(hasInClassInitializer() && !getInClassInitializer());
 
    if (BitField)
 
      static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
 
    else
 
      InitStorage.setPointer(Init);
 
  }
 
 
 
  /// Remove the C++11 in-class initializer from this member.
 
  void removeInClassInitializer() {
 
    assert(hasInClassInitializer() && "no initializer to remove");
 
    InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
 
  }
 
 
 
  /// Determine whether this member captures the variable length array
 
  /// type.
 
  bool hasCapturedVLAType() const {
 
    return InitStorage.getInt() == ISK_CapturedVLAType;
 
  }
 
 
 
  /// Get the captured variable length array type.
 
  const VariableArrayType *getCapturedVLAType() const {
 
    return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
 
                                      InitStorage.getPointer())
 
                                : nullptr;
 
  }
 
 
 
  /// Set the captured variable length array type for this field.
 
  void setCapturedVLAType(const VariableArrayType *VLAType);
 
 
 
  /// Returns the parent of this field declaration, which
 
  /// is the struct in which this field is defined.
 
  ///
 
  /// Returns null if this is not a normal class/struct field declaration, e.g.
 
  /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
 
  const RecordDecl *getParent() const {
 
    return dyn_cast<RecordDecl>(getDeclContext());
 
  }
 
 
 
  RecordDecl *getParent() {
 
    return dyn_cast<RecordDecl>(getDeclContext());
 
  }
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  /// Retrieves the canonical declaration of this field.
 
  FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
 
  const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
 
};
 
 
 
/// An instance of this object exists for each enum constant
 
/// that is defined.  For example, in "enum X {a,b}", each of a/b are
 
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
 
/// TagType for the X EnumDecl.
 
class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
 
  Stmt *Init; // an integer constant expression
 
  llvm::APSInt Val; // The value.
 
 
 
protected:
 
  EnumConstantDecl(DeclContext *DC, SourceLocation L,
 
                   IdentifierInfo *Id, QualType T, Expr *E,
 
                   const llvm::APSInt &V)
 
    : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
 
 
 
public:
 
  friend class StmtIteratorBase;
 
 
 
  static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
 
                                  SourceLocation L, IdentifierInfo *Id,
 
                                  QualType T, Expr *E,
 
                                  const llvm::APSInt &V);
 
  static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  const Expr *getInitExpr() const { return (const Expr*) Init; }
 
  Expr *getInitExpr() { return (Expr*) Init; }
 
  const llvm::APSInt &getInitVal() const { return Val; }
 
 
 
  void setInitExpr(Expr *E) { Init = (Stmt*) E; }
 
  void setInitVal(const llvm::APSInt &V) { Val = V; }
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  /// Retrieves the canonical declaration of this enumerator.
 
  EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
 
  const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == EnumConstant; }
 
};
 
 
 
/// Represents a field injected from an anonymous union/struct into the parent
 
/// scope. These are always implicit.
 
class IndirectFieldDecl : public ValueDecl,
 
                          public Mergeable<IndirectFieldDecl> {
 
  NamedDecl **Chaining;
 
  unsigned ChainingSize;
 
 
 
  IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
 
                    DeclarationName N, QualType T,
 
                    MutableArrayRef<NamedDecl *> CH);
 
 
 
  void anchor() override;
 
 
 
public:
 
  friend class ASTDeclReader;
 
 
 
  static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
 
                                   SourceLocation L, IdentifierInfo *Id,
 
                                   QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
 
 
 
  static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
 
 
 
  ArrayRef<NamedDecl *> chain() const {
 
    return llvm::ArrayRef(Chaining, ChainingSize);
 
  }
 
  chain_iterator chain_begin() const { return chain().begin(); }
 
  chain_iterator chain_end() const { return chain().end(); }
 
 
 
  unsigned getChainingSize() const { return ChainingSize; }
 
 
 
  FieldDecl *getAnonField() const {
 
    assert(chain().size() >= 2);
 
    return cast<FieldDecl>(chain().back());
 
  }
 
 
 
  VarDecl *getVarDecl() const {
 
    assert(chain().size() >= 2);
 
    return dyn_cast<VarDecl>(chain().front());
 
  }
 
 
 
  IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
 
  const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == IndirectField; }
 
};
 
 
 
/// Represents a declaration of a type.
 
class TypeDecl : public NamedDecl {
 
  friend class ASTContext;
 
 
 
  /// This indicates the Type object that represents
 
  /// this TypeDecl.  It is a cache maintained by
 
  /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
 
  /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
 
  mutable const Type *TypeForDecl = nullptr;
 
 
 
  /// The start of the source range for this declaration.
 
  SourceLocation LocStart;
 
 
 
  void anchor() override;
 
 
 
protected:
 
  TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
 
           SourceLocation StartL = SourceLocation())
 
    : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
 
 
 
public:
 
  // Low-level accessor. If you just want the type defined by this node,
 
  // check out ASTContext::getTypeDeclType or one of
 
  // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
 
  // already know the specific kind of node this is.
 
  const Type *getTypeForDecl() const { return TypeForDecl; }
 
  void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
 
  void setLocStart(SourceLocation L) { LocStart = L; }
 
  SourceRange getSourceRange() const override LLVM_READONLY {
 
    if (LocStart.isValid())
 
      return SourceRange(LocStart, getLocation());
 
    else
 
      return SourceRange(getLocation());
 
  }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
 
};
 
 
 
/// Base class for declarations which introduce a typedef-name.
 
class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
 
  struct alignas(8) ModedTInfo {
 
    TypeSourceInfo *first;
 
    QualType second;
 
  };
 
 
 
  /// If int part is 0, we have not computed IsTransparentTag.
 
  /// Otherwise, IsTransparentTag is (getInt() >> 1).
 
  mutable llvm::PointerIntPair<
 
      llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
 
      MaybeModedTInfo;
 
 
 
  void anchor() override;
 
 
 
protected:
 
  TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
 
                  SourceLocation StartLoc, SourceLocation IdLoc,
 
                  IdentifierInfo *Id, TypeSourceInfo *TInfo)
 
      : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
 
        MaybeModedTInfo(TInfo, 0) {}
 
 
 
  using redeclarable_base = Redeclarable<TypedefNameDecl>;
 
 
 
  TypedefNameDecl *getNextRedeclarationImpl() override {
 
    return getNextRedeclaration();
 
  }
 
 
 
  TypedefNameDecl *getPreviousDeclImpl() override {
 
    return getPreviousDecl();
 
  }
 
 
 
  TypedefNameDecl *getMostRecentDeclImpl() override {
 
    return getMostRecentDecl();
 
  }
 
 
 
public:
 
  using redecl_range = redeclarable_base::redecl_range;
 
  using redecl_iterator = redeclarable_base::redecl_iterator;
 
 
 
  using redeclarable_base::redecls_begin;
 
  using redeclarable_base::redecls_end;
 
  using redeclarable_base::redecls;
 
  using redeclarable_base::getPreviousDecl;
 
  using redeclarable_base::getMostRecentDecl;
 
  using redeclarable_base::isFirstDecl;
 
 
 
  bool isModed() const {
 
    return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
 
  }
 
 
 
  TypeSourceInfo *getTypeSourceInfo() const {
 
    return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
 
                     : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
 
  }
 
 
 
  QualType getUnderlyingType() const {
 
    return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
 
                     : MaybeModedTInfo.getPointer()
 
                           .get<TypeSourceInfo *>()
 
                           ->getType();
 
  }
 
 
 
  void setTypeSourceInfo(TypeSourceInfo *newType) {
 
    MaybeModedTInfo.setPointer(newType);
 
  }
 
 
 
  void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
 
    MaybeModedTInfo.setPointer(new (getASTContext(), 8)
 
                                   ModedTInfo({unmodedTSI, modedTy}));
 
  }
 
 
 
  /// Retrieves the canonical declaration of this typedef-name.
 
  TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
 
  const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
 
 
 
  /// Retrieves the tag declaration for which this is the typedef name for
 
  /// linkage purposes, if any.
 
  ///
 
  /// \param AnyRedecl Look for the tag declaration in any redeclaration of
 
  /// this typedef declaration.
 
  TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
 
 
 
  /// Determines if this typedef shares a name and spelling location with its
 
  /// underlying tag type, as is the case with the NS_ENUM macro.
 
  bool isTransparentTag() const {
 
    if (MaybeModedTInfo.getInt())
 
      return MaybeModedTInfo.getInt() & 0x2;
 
    return isTransparentTagSlow();
 
  }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) {
 
    return K >= firstTypedefName && K <= lastTypedefName;
 
  }
 
 
 
private:
 
  bool isTransparentTagSlow() const;
 
};
 
 
 
/// Represents the declaration of a typedef-name via the 'typedef'
 
/// type specifier.
 
class TypedefDecl : public TypedefNameDecl {
 
  TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
              SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
 
      : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
 
 
 
public:
 
  static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
 
                             SourceLocation StartLoc, SourceLocation IdLoc,
 
                             IdentifierInfo *Id, TypeSourceInfo *TInfo);
 
  static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Typedef; }
 
};
 
 
 
/// Represents the declaration of a typedef-name via a C++11
 
/// alias-declaration.
 
class TypeAliasDecl : public TypedefNameDecl {
 
  /// The template for which this is the pattern, if any.
 
  TypeAliasTemplateDecl *Template;
 
 
 
  TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
                SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
 
      : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
 
        Template(nullptr) {}
 
 
 
public:
 
  static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
 
                               SourceLocation StartLoc, SourceLocation IdLoc,
 
                               IdentifierInfo *Id, TypeSourceInfo *TInfo);
 
  static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
 
  void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == TypeAlias; }
 
};
 
 
 
/// Represents the declaration of a struct/union/class/enum.
 
class TagDecl : public TypeDecl,
 
                public DeclContext,
 
                public Redeclarable<TagDecl> {
 
  // This class stores some data in DeclContext::TagDeclBits
 
  // to save some space. Use the provided accessors to access it.
 
public:
 
  // This is really ugly.
 
  using TagKind = TagTypeKind;
 
 
 
private:
 
  SourceRange BraceRange;
 
 
 
  // A struct representing syntactic qualifier info,
 
  // to be used for the (uncommon) case of out-of-line declarations.
 
  using ExtInfo = QualifierInfo;
 
 
 
  /// If the (out-of-line) tag declaration name
 
  /// is qualified, it points to the qualifier info (nns and range);
 
  /// otherwise, if the tag declaration is anonymous and it is part of
 
  /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
 
  /// otherwise, if the tag declaration is anonymous and it is used as a
 
  /// declaration specifier for variables, it points to the first VarDecl (used
 
  /// for mangling);
 
  /// otherwise, it is a null (TypedefNameDecl) pointer.
 
  llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
 
 
 
  bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
 
  ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
 
  const ExtInfo *getExtInfo() const {
 
    return TypedefNameDeclOrQualifier.get<ExtInfo *>();
 
  }
 
 
 
protected:
 
  TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
 
          SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
 
          SourceLocation StartL);
 
 
 
  using redeclarable_base = Redeclarable<TagDecl>;
 
 
 
  TagDecl *getNextRedeclarationImpl() override {
 
    return getNextRedeclaration();
 
  }
 
 
 
  TagDecl *getPreviousDeclImpl() override {
 
    return getPreviousDecl();
 
  }
 
 
 
  TagDecl *getMostRecentDeclImpl() override {
 
    return getMostRecentDecl();
 
  }
 
 
 
  /// Completes the definition of this tag declaration.
 
  ///
 
  /// This is a helper function for derived classes.
 
  void completeDefinition();
 
 
 
  /// True if this decl is currently being defined.
 
  void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
 
 
 
  /// Indicates whether it is possible for declarations of this kind
 
  /// to have an out-of-date definition.
 
  ///
 
  /// This option is only enabled when modules are enabled.
 
  void setMayHaveOutOfDateDef(bool V = true) {
 
    TagDeclBits.MayHaveOutOfDateDef = V;
 
  }
 
 
 
public:
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
 
 
  using redecl_range = redeclarable_base::redecl_range;
 
  using redecl_iterator = redeclarable_base::redecl_iterator;
 
 
 
  using redeclarable_base::redecls_begin;
 
  using redeclarable_base::redecls_end;
 
  using redeclarable_base::redecls;
 
  using redeclarable_base::getPreviousDecl;
 
  using redeclarable_base::getMostRecentDecl;
 
  using redeclarable_base::isFirstDecl;
 
 
 
  SourceRange getBraceRange() const { return BraceRange; }
 
  void setBraceRange(SourceRange R) { BraceRange = R; }
 
 
 
  /// Return SourceLocation representing start of source
 
  /// range ignoring outer template declarations.
 
  SourceLocation getInnerLocStart() const { return getBeginLoc(); }
 
 
 
  /// Return SourceLocation representing start of source
 
  /// range taking into account any outer template declarations.
 
  SourceLocation getOuterLocStart() const;
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  TagDecl *getCanonicalDecl() override;
 
  const TagDecl *getCanonicalDecl() const {
 
    return const_cast<TagDecl*>(this)->getCanonicalDecl();
 
  }
 
 
 
  /// Return true if this declaration is a completion definition of the type.
 
  /// Provided for consistency.
 
  bool isThisDeclarationADefinition() const {
 
    return isCompleteDefinition();
 
  }
 
 
 
  /// Return true if this decl has its body fully specified.
 
  bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
 
 
 
  /// True if this decl has its body fully specified.
 
  void setCompleteDefinition(bool V = true) {
 
    TagDeclBits.IsCompleteDefinition = V;
 
  }
 
 
 
  /// Return true if this complete decl is
 
  /// required to be complete for some existing use.
 
  bool isCompleteDefinitionRequired() const {
 
    return TagDeclBits.IsCompleteDefinitionRequired;
 
  }
 
 
 
  /// True if this complete decl is
 
  /// required to be complete for some existing use.
 
  void setCompleteDefinitionRequired(bool V = true) {
 
    TagDeclBits.IsCompleteDefinitionRequired = V;
 
  }
 
 
 
  /// Return true if this decl is currently being defined.
 
  bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
 
 
 
  /// True if this tag declaration is "embedded" (i.e., defined or declared
 
  /// for the very first time) in the syntax of a declarator.
 
  bool isEmbeddedInDeclarator() const {
 
    return TagDeclBits.IsEmbeddedInDeclarator;
 
  }
 
 
 
  /// True if this tag declaration is "embedded" (i.e., defined or declared
 
  /// for the very first time) in the syntax of a declarator.
 
  void setEmbeddedInDeclarator(bool isInDeclarator) {
 
    TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
 
  }
 
 
 
  /// True if this tag is free standing, e.g. "struct foo;".
 
  bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
 
 
 
  /// True if this tag is free standing, e.g. "struct foo;".
 
  void setFreeStanding(bool isFreeStanding = true) {
 
    TagDeclBits.IsFreeStanding = isFreeStanding;
 
  }
 
 
 
  /// Indicates whether it is possible for declarations of this kind
 
  /// to have an out-of-date definition.
 
  ///
 
  /// This option is only enabled when modules are enabled.
 
  bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
 
 
 
  /// Whether this declaration declares a type that is
 
  /// dependent, i.e., a type that somehow depends on template
 
  /// parameters.
 
  bool isDependentType() const { return isDependentContext(); }
 
 
 
  /// Whether this declaration was a definition in some module but was forced
 
  /// to be a declaration.
 
  ///
 
  /// Useful for clients checking if a module has a definition of a specific
 
  /// symbol and not interested in the final AST with deduplicated definitions.
 
  bool isThisDeclarationADemotedDefinition() const {
 
    return TagDeclBits.IsThisDeclarationADemotedDefinition;
 
  }
 
 
 
  /// Mark a definition as a declaration and maintain information it _was_
 
  /// a definition.
 
  void demoteThisDefinitionToDeclaration() {
 
    assert(isCompleteDefinition() &&
 
           "Should demote definitions only, not forward declarations");
 
    setCompleteDefinition(false);
 
    TagDeclBits.IsThisDeclarationADemotedDefinition = true;
 
  }
 
 
 
  /// Starts the definition of this tag declaration.
 
  ///
 
  /// This method should be invoked at the beginning of the definition
 
  /// of this tag declaration. It will set the tag type into a state
 
  /// where it is in the process of being defined.
 
  void startDefinition();
 
 
 
  /// Returns the TagDecl that actually defines this
 
  ///  struct/union/class/enum.  When determining whether or not a
 
  ///  struct/union/class/enum has a definition, one should use this
 
  ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
 
  ///  whether or not a specific TagDecl is defining declaration, not
 
  ///  whether or not the struct/union/class/enum type is defined.
 
  ///  This method returns NULL if there is no TagDecl that defines
 
  ///  the struct/union/class/enum.
 
  TagDecl *getDefinition() const;
 
 
 
  StringRef getKindName() const {
 
    return TypeWithKeyword::getTagTypeKindName(getTagKind());
 
  }
 
 
 
  TagKind getTagKind() const {
 
    return static_cast<TagKind>(TagDeclBits.TagDeclKind);
 
  }
 
 
 
  void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
 
 
 
  bool isStruct() const { return getTagKind() == TTK_Struct; }
 
  bool isInterface() const { return getTagKind() == TTK_Interface; }
 
  bool isClass()  const { return getTagKind() == TTK_Class; }
 
  bool isUnion()  const { return getTagKind() == TTK_Union; }
 
  bool isEnum()   const { return getTagKind() == TTK_Enum; }
 
 
 
  /// Is this tag type named, either directly or via being defined in
 
  /// a typedef of this type?
 
  ///
 
  /// C++11 [basic.link]p8:
 
  ///   A type is said to have linkage if and only if:
 
  ///     - it is a class or enumeration type that is named (or has a
 
  ///       name for linkage purposes) and the name has linkage; ...
 
  /// C++11 [dcl.typedef]p9:
 
  ///   If the typedef declaration defines an unnamed class (or enum),
 
  ///   the first typedef-name declared by the declaration to be that
 
  ///   class type (or enum type) is used to denote the class type (or
 
  ///   enum type) for linkage purposes only.
 
  ///
 
  /// C does not have an analogous rule, but the same concept is
 
  /// nonetheless useful in some places.
 
  bool hasNameForLinkage() const {
 
    return (getDeclName() || getTypedefNameForAnonDecl());
 
  }
 
 
 
  TypedefNameDecl *getTypedefNameForAnonDecl() const {
 
    return hasExtInfo() ? nullptr
 
                        : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
 
  }
 
 
 
  void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
 
 
 
  /// Retrieve the nested-name-specifier that qualifies the name of this
 
  /// declaration, if it was present in the source.
 
  NestedNameSpecifier *getQualifier() const {
 
    return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
 
                        : nullptr;
 
  }
 
 
 
  /// Retrieve the nested-name-specifier (with source-location
 
  /// information) that qualifies the name of this declaration, if it was
 
  /// present in the source.
 
  NestedNameSpecifierLoc getQualifierLoc() const {
 
    return hasExtInfo() ? getExtInfo()->QualifierLoc
 
                        : NestedNameSpecifierLoc();
 
  }
 
 
 
  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
 
 
 
  unsigned getNumTemplateParameterLists() const {
 
    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
 
  }
 
 
 
  TemplateParameterList *getTemplateParameterList(unsigned i) const {
 
    assert(i < getNumTemplateParameterLists());
 
    return getExtInfo()->TemplParamLists[i];
 
  }
 
 
 
  void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
 
 
 
  void setTemplateParameterListsInfo(ASTContext &Context,
 
                                     ArrayRef<TemplateParameterList *> TPLists);
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
 
 
 
  static DeclContext *castToDeclContext(const TagDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
 
  }
 
 
 
  static TagDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
 
  }
 
};
 
 
 
/// Represents an enum.  In C++11, enums can be forward-declared
 
/// with a fixed underlying type, and in C we allow them to be forward-declared
 
/// with no underlying type as an extension.
 
class EnumDecl : public TagDecl {
 
  // This class stores some data in DeclContext::EnumDeclBits
 
  // to save some space. Use the provided accessors to access it.
 
 
 
  /// This represent the integer type that the enum corresponds
 
  /// to for code generation purposes.  Note that the enumerator constants may
 
  /// have a different type than this does.
 
  ///
 
  /// If the underlying integer type was explicitly stated in the source
 
  /// code, this is a TypeSourceInfo* for that type. Otherwise this type
 
  /// was automatically deduced somehow, and this is a Type*.
 
  ///
 
  /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
 
  /// some cases it won't.
 
  ///
 
  /// The underlying type of an enumeration never has any qualifiers, so
 
  /// we can get away with just storing a raw Type*, and thus save an
 
  /// extra pointer when TypeSourceInfo is needed.
 
  llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
 
 
 
  /// The integer type that values of this type should
 
  /// promote to.  In C, enumerators are generally of an integer type
 
  /// directly, but gcc-style large enumerators (and all enumerators
 
  /// in C++) are of the enum type instead.
 
  QualType PromotionType;
 
 
 
  /// If this enumeration is an instantiation of a member enumeration
 
  /// of a class template specialization, this is the member specialization
 
  /// information.
 
  MemberSpecializationInfo *SpecializationInfo = nullptr;
 
 
 
  /// Store the ODRHash after first calculation.
 
  /// The corresponding flag HasODRHash is in EnumDeclBits
 
  /// and can be accessed with the provided accessors.
 
  unsigned ODRHash;
 
 
 
  EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
 
           SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
 
           bool Scoped, bool ScopedUsingClassTag, bool Fixed);
 
 
 
  void anchor() override;
 
 
 
  void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
 
                                    TemplateSpecializationKind TSK);
 
 
 
  /// Sets the width in bits required to store all the
 
  /// non-negative enumerators of this enum.
 
  void setNumPositiveBits(unsigned Num) {
 
    EnumDeclBits.NumPositiveBits = Num;
 
    assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
 
  }
 
 
 
  /// Returns the width in bits required to store all the
 
  /// negative enumerators of this enum. (see getNumNegativeBits)
 
  void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
 
 
 
public:
 
  /// True if this tag declaration is a scoped enumeration. Only
 
  /// possible in C++11 mode.
 
  void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
 
 
 
  /// If this tag declaration is a scoped enum,
 
  /// then this is true if the scoped enum was declared using the class
 
  /// tag, false if it was declared with the struct tag. No meaning is
 
  /// associated if this tag declaration is not a scoped enum.
 
  void setScopedUsingClassTag(bool ScopedUCT = true) {
 
    EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
 
  }
 
 
 
  /// True if this is an Objective-C, C++11, or
 
  /// Microsoft-style enumeration with a fixed underlying type.
 
  void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
 
 
 
private:
 
  /// True if a valid hash is stored in ODRHash.
 
  bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
 
  void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
 
 
 
public:
 
  friend class ASTDeclReader;
 
 
 
  EnumDecl *getCanonicalDecl() override {
 
    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
 
  }
 
  const EnumDecl *getCanonicalDecl() const {
 
    return const_cast<EnumDecl*>(this)->getCanonicalDecl();
 
  }
 
 
 
  EnumDecl *getPreviousDecl() {
 
    return cast_or_null<EnumDecl>(
 
            static_cast<TagDecl *>(this)->getPreviousDecl());
 
  }
 
  const EnumDecl *getPreviousDecl() const {
 
    return const_cast<EnumDecl*>(this)->getPreviousDecl();
 
  }
 
 
 
  EnumDecl *getMostRecentDecl() {
 
    return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
 
  }
 
  const EnumDecl *getMostRecentDecl() const {
 
    return const_cast<EnumDecl*>(this)->getMostRecentDecl();
 
  }
 
 
 
  EnumDecl *getDefinition() const {
 
    return cast_or_null<EnumDecl>(TagDecl::getDefinition());
 
  }
 
 
 
  static EnumDecl *Create(ASTContext &C, DeclContext *DC,
 
                          SourceLocation StartLoc, SourceLocation IdLoc,
 
                          IdentifierInfo *Id, EnumDecl *PrevDecl,
 
                          bool IsScoped, bool IsScopedUsingClassTag,
 
                          bool IsFixed);
 
  static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  /// Overrides to provide correct range when there's an enum-base specifier
 
  /// with forward declarations.
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  /// When created, the EnumDecl corresponds to a
 
  /// forward-declared enum. This method is used to mark the
 
  /// declaration as being defined; its enumerators have already been
 
  /// added (via DeclContext::addDecl). NewType is the new underlying
 
  /// type of the enumeration type.
 
  void completeDefinition(QualType NewType,
 
                          QualType PromotionType,
 
                          unsigned NumPositiveBits,
 
                          unsigned NumNegativeBits);
 
 
 
  // Iterates through the enumerators of this enumeration.
 
  using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
 
  using enumerator_range =
 
      llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
 
 
 
  enumerator_range enumerators() const {
 
    return enumerator_range(enumerator_begin(), enumerator_end());
 
  }
 
 
 
  enumerator_iterator enumerator_begin() const {
 
    const EnumDecl *E = getDefinition();
 
    if (!E)
 
      E = this;
 
    return enumerator_iterator(E->decls_begin());
 
  }
 
 
 
  enumerator_iterator enumerator_end() const {
 
    const EnumDecl *E = getDefinition();
 
    if (!E)
 
      E = this;
 
    return enumerator_iterator(E->decls_end());
 
  }
 
 
 
  /// Return the integer type that enumerators should promote to.
 
  QualType getPromotionType() const { return PromotionType; }
 
 
 
  /// Set the promotion type.
 
  void setPromotionType(QualType T) { PromotionType = T; }
 
 
 
  /// Return the integer type this enum decl corresponds to.
 
  /// This returns a null QualType for an enum forward definition with no fixed
 
  /// underlying type.
 
  QualType getIntegerType() const {
 
    if (!IntegerType)
 
      return QualType();
 
    if (const Type *T = IntegerType.dyn_cast<const Type*>())
 
      return QualType(T, 0);
 
    return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
 
  }
 
 
 
  /// Set the underlying integer type.
 
  void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
 
 
 
  /// Set the underlying integer type source info.
 
  void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
 
 
 
  /// Return the type source info for the underlying integer type,
 
  /// if no type source info exists, return 0.
 
  TypeSourceInfo *getIntegerTypeSourceInfo() const {
 
    return IntegerType.dyn_cast<TypeSourceInfo*>();
 
  }
 
 
 
  /// Retrieve the source range that covers the underlying type if
 
  /// specified.
 
  SourceRange getIntegerTypeRange() const LLVM_READONLY;
 
 
 
  /// Returns the width in bits required to store all the
 
  /// non-negative enumerators of this enum.
 
  unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
 
 
 
  /// Returns the width in bits required to store all the
 
  /// negative enumerators of this enum.  These widths include
 
  /// the rightmost leading 1;  that is:
 
  ///
 
  /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
 
  /// ------------------------     -------     -----------------
 
  ///                       -1     1111111                     1
 
  ///                      -10     1110110                     5
 
  ///                     -101     1001011                     8
 
  unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
 
 
 
  /// Calculates the [Min,Max) values the enum can store based on the
 
  /// NumPositiveBits and NumNegativeBits. This matters for enums that do not
 
  /// have a fixed underlying type.
 
  void getValueRange(llvm::APInt &Max, llvm::APInt &Min) const;
 
 
 
  /// Returns true if this is a C++11 scoped enumeration.
 
  bool isScoped() const { return EnumDeclBits.IsScoped; }
 
 
 
  /// Returns true if this is a C++11 scoped enumeration.
 
  bool isScopedUsingClassTag() const {
 
    return EnumDeclBits.IsScopedUsingClassTag;
 
  }
 
 
 
  /// Returns true if this is an Objective-C, C++11, or
 
  /// Microsoft-style enumeration with a fixed underlying type.
 
  bool isFixed() const { return EnumDeclBits.IsFixed; }
 
 
 
  unsigned getODRHash();
 
 
 
  /// Returns true if this can be considered a complete type.
 
  bool isComplete() const {
 
    // IntegerType is set for fixed type enums and non-fixed but implicitly
 
    // int-sized Microsoft enums.
 
    return isCompleteDefinition() || IntegerType;
 
  }
 
 
 
  /// Returns true if this enum is either annotated with
 
  /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
 
  bool isClosed() const;
 
 
 
  /// Returns true if this enum is annotated with flag_enum and isn't annotated
 
  /// with enum_extensibility(open).
 
  bool isClosedFlag() const;
 
 
 
  /// Returns true if this enum is annotated with neither flag_enum nor
 
  /// enum_extensibility(open).
 
  bool isClosedNonFlag() const;
 
 
 
  /// Retrieve the enum definition from which this enumeration could
 
  /// be instantiated, if it is an instantiation (rather than a non-template).
 
  EnumDecl *getTemplateInstantiationPattern() const;
 
 
 
  /// Returns the enumeration (declared within the template)
 
  /// from which this enumeration type was instantiated, or NULL if
 
  /// this enumeration was not instantiated from any template.
 
  EnumDecl *getInstantiatedFromMemberEnum() const;
 
 
 
  /// If this enumeration is a member of a specialization of a
 
  /// templated class, determine what kind of template specialization
 
  /// or instantiation this is.
 
  TemplateSpecializationKind getTemplateSpecializationKind() const;
 
 
 
  /// For an enumeration member that was instantiated from a member
 
  /// enumeration of a templated class, set the template specialiation kind.
 
  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
 
                        SourceLocation PointOfInstantiation = SourceLocation());
 
 
 
  /// If this enumeration is an instantiation of a member enumeration of
 
  /// a class template specialization, retrieves the member specialization
 
  /// information.
 
  MemberSpecializationInfo *getMemberSpecializationInfo() const {
 
    return SpecializationInfo;
 
  }
 
 
 
  /// Specify that this enumeration is an instantiation of the
 
  /// member enumeration ED.
 
  void setInstantiationOfMemberEnum(EnumDecl *ED,
 
                                    TemplateSpecializationKind TSK) {
 
    setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
 
  }
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Enum; }
 
};
 
 
 
/// Represents a struct/union/class.  For example:
 
///   struct X;                  // Forward declaration, no "body".
 
///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
 
/// This decl will be marked invalid if *any* members are invalid.
 
class RecordDecl : public TagDecl {
 
  // This class stores some data in DeclContext::RecordDeclBits
 
  // to save some space. Use the provided accessors to access it.
 
public:
 
  friend class DeclContext;
 
  friend class ASTDeclReader;
 
  /// Enum that represents the different ways arguments are passed to and
 
  /// returned from function calls. This takes into account the target-specific
 
  /// and version-specific rules along with the rules determined by the
 
  /// language.
 
  enum ArgPassingKind : unsigned {
 
    /// The argument of this type can be passed directly in registers.
 
    APK_CanPassInRegs,
 
 
 
    /// The argument of this type cannot be passed directly in registers.
 
    /// Records containing this type as a subobject are not forced to be passed
 
    /// indirectly. This value is used only in C++. This value is required by
 
    /// C++ because, in uncommon situations, it is possible for a class to have
 
    /// only trivial copy/move constructors even when one of its subobjects has
 
    /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
 
    /// constructor in the derived class is deleted).
 
    APK_CannotPassInRegs,
 
 
 
    /// The argument of this type cannot be passed directly in registers.
 
    /// Records containing this type as a subobject are forced to be passed
 
    /// indirectly.
 
    APK_CanNeverPassInRegs
 
  };
 
 
 
protected:
 
  RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
 
             SourceLocation StartLoc, SourceLocation IdLoc,
 
             IdentifierInfo *Id, RecordDecl *PrevDecl);
 
 
 
public:
 
  static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
 
                            SourceLocation StartLoc, SourceLocation IdLoc,
 
                            IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
 
  static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
 
 
 
  RecordDecl *getPreviousDecl() {
 
    return cast_or_null<RecordDecl>(
 
            static_cast<TagDecl *>(this)->getPreviousDecl());
 
  }
 
  const RecordDecl *getPreviousDecl() const {
 
    return const_cast<RecordDecl*>(this)->getPreviousDecl();
 
  }
 
 
 
  RecordDecl *getMostRecentDecl() {
 
    return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
 
  }
 
  const RecordDecl *getMostRecentDecl() const {
 
    return const_cast<RecordDecl*>(this)->getMostRecentDecl();
 
  }
 
 
 
  bool hasFlexibleArrayMember() const {
 
    return RecordDeclBits.HasFlexibleArrayMember;
 
  }
 
 
 
  void setHasFlexibleArrayMember(bool V) {
 
    RecordDeclBits.HasFlexibleArrayMember = V;
 
  }
 
 
 
  /// Whether this is an anonymous struct or union. To be an anonymous
 
  /// struct or union, it must have been declared without a name and
 
  /// there must be no objects of this type declared, e.g.,
 
  /// @code
 
  ///   union { int i; float f; };
 
  /// @endcode
 
  /// is an anonymous union but neither of the following are:
 
  /// @code
 
  ///  union X { int i; float f; };
 
  ///  union { int i; float f; } obj;
 
  /// @endcode
 
  bool isAnonymousStructOrUnion() const {
 
    return RecordDeclBits.AnonymousStructOrUnion;
 
  }
 
 
 
  void setAnonymousStructOrUnion(bool Anon) {
 
    RecordDeclBits.AnonymousStructOrUnion = Anon;
 
  }
 
 
 
  bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
 
  void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
 
 
 
  bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
 
 
 
  void setHasVolatileMember(bool val) {
 
    RecordDeclBits.HasVolatileMember = val;
 
  }
 
 
 
  bool hasLoadedFieldsFromExternalStorage() const {
 
    return RecordDeclBits.LoadedFieldsFromExternalStorage;
 
  }
 
 
 
  void setHasLoadedFieldsFromExternalStorage(bool val) const {
 
    RecordDeclBits.LoadedFieldsFromExternalStorage = val;
 
  }
 
 
 
  /// Functions to query basic properties of non-trivial C structs.
 
  bool isNonTrivialToPrimitiveDefaultInitialize() const {
 
    return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
 
  }
 
 
 
  void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
 
    RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
 
  }
 
 
 
  bool isNonTrivialToPrimitiveCopy() const {
 
    return RecordDeclBits.NonTrivialToPrimitiveCopy;
 
  }
 
 
 
  void setNonTrivialToPrimitiveCopy(bool V) {
 
    RecordDeclBits.NonTrivialToPrimitiveCopy = V;
 
  }
 
 
 
  bool isNonTrivialToPrimitiveDestroy() const {
 
    return RecordDeclBits.NonTrivialToPrimitiveDestroy;
 
  }
 
 
 
  void setNonTrivialToPrimitiveDestroy(bool V) {
 
    RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
 
  }
 
 
 
  bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
 
    return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
 
  }
 
 
 
  void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
 
    RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
 
  }
 
 
 
  bool hasNonTrivialToPrimitiveDestructCUnion() const {
 
    return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
 
  }
 
 
 
  void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
 
    RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
 
  }
 
 
 
  bool hasNonTrivialToPrimitiveCopyCUnion() const {
 
    return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
 
  }
 
 
 
  void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
 
    RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
 
  }
 
 
 
  /// Determine whether this class can be passed in registers. In C++ mode,
 
  /// it must have at least one trivial, non-deleted copy or move constructor.
 
  /// FIXME: This should be set as part of completeDefinition.
 
  bool canPassInRegisters() const {
 
    return getArgPassingRestrictions() == APK_CanPassInRegs;
 
  }
 
 
 
  ArgPassingKind getArgPassingRestrictions() const {
 
    return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
 
  }
 
 
 
  void setArgPassingRestrictions(ArgPassingKind Kind) {
 
    RecordDeclBits.ArgPassingRestrictions = Kind;
 
  }
 
 
 
  bool isParamDestroyedInCallee() const {
 
    return RecordDeclBits.ParamDestroyedInCallee;
 
  }
 
 
 
  void setParamDestroyedInCallee(bool V) {
 
    RecordDeclBits.ParamDestroyedInCallee = V;
 
  }
 
 
 
  bool isRandomized() const { return RecordDeclBits.IsRandomized; }
 
 
 
  void setIsRandomized(bool V) { RecordDeclBits.IsRandomized = V; }
 
 
 
  void reorderDecls(const SmallVectorImpl<Decl *> &Decls);
 
 
 
  /// Determines whether this declaration represents the
 
  /// injected class name.
 
  ///
 
  /// The injected class name in C++ is the name of the class that
 
  /// appears inside the class itself. For example:
 
  ///
 
  /// \code
 
  /// struct C {
 
  ///   // C is implicitly declared here as a synonym for the class name.
 
  /// };
 
  ///
 
  /// C::C c; // same as "C c;"
 
  /// \endcode
 
  bool isInjectedClassName() const;
 
 
 
  /// Determine whether this record is a class describing a lambda
 
  /// function object.
 
  bool isLambda() const;
 
 
 
  /// Determine whether this record is a record for captured variables in
 
  /// CapturedStmt construct.
 
  bool isCapturedRecord() const;
 
 
 
  /// Mark the record as a record for captured variables in CapturedStmt
 
  /// construct.
 
  void setCapturedRecord();
 
 
 
  /// Returns the RecordDecl that actually defines
 
  ///  this struct/union/class.  When determining whether or not a
 
  ///  struct/union/class is completely defined, one should use this
 
  ///  method as opposed to 'isCompleteDefinition'.
 
  ///  'isCompleteDefinition' indicates whether or not a specific
 
  ///  RecordDecl is a completed definition, not whether or not the
 
  ///  record type is defined.  This method returns NULL if there is
 
  ///  no RecordDecl that defines the struct/union/tag.
 
  RecordDecl *getDefinition() const {
 
    return cast_or_null<RecordDecl>(TagDecl::getDefinition());
 
  }
 
 
 
  /// Returns whether this record is a union, or contains (at any nesting level)
 
  /// a union member. This is used by CMSE to warn about possible information
 
  /// leaks.
 
  bool isOrContainsUnion() const;
 
 
 
  // Iterator access to field members. The field iterator only visits
 
  // the non-static data members of this class, ignoring any static
 
  // data members, functions, constructors, destructors, etc.
 
  using field_iterator = specific_decl_iterator<FieldDecl>;
 
  using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
 
 
 
  field_range fields() const { return field_range(field_begin(), field_end()); }
 
  field_iterator field_begin() const;
 
 
 
  field_iterator field_end() const {
 
    return field_iterator(decl_iterator());
 
  }
 
 
 
  // Whether there are any fields (non-static data members) in this record.
 
  bool field_empty() const {
 
    return field_begin() == field_end();
 
  }
 
 
 
  /// Note that the definition of this type is now complete.
 
  virtual void completeDefinition();
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) {
 
    return K >= firstRecord && K <= lastRecord;
 
  }
 
 
 
  /// Get whether or not this is an ms_struct which can
 
  /// be turned on with an attribute, pragma, or -mms-bitfields
 
  /// commandline option.
 
  bool isMsStruct(const ASTContext &C) const;
 
 
 
  /// Whether we are allowed to insert extra padding between fields.
 
  /// These padding are added to help AddressSanitizer detect
 
  /// intra-object-overflow bugs.
 
  bool mayInsertExtraPadding(bool EmitRemark = false) const;
 
 
 
  /// Finds the first data member which has a name.
 
  /// nullptr is returned if no named data member exists.
 
  const FieldDecl *findFirstNamedDataMember() const;
 
 
 
  /// Get precomputed ODRHash or add a new one.
 
  unsigned getODRHash();
 
 
 
private:
 
  /// Deserialize just the fields.
 
  void LoadFieldsFromExternalStorage() const;
 
 
 
  /// True if a valid hash is stored in ODRHash.
 
  bool hasODRHash() const { return RecordDeclBits.ODRHash; }
 
  void setODRHash(unsigned Hash) { RecordDeclBits.ODRHash = Hash; }
 
};
 
 
 
class FileScopeAsmDecl : public Decl {
 
  StringLiteral *AsmString;
 
  SourceLocation RParenLoc;
 
 
 
  FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
 
                   SourceLocation StartL, SourceLocation EndL)
 
    : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
 
 
 
  virtual void anchor();
 
 
 
public:
 
  static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
 
                                  StringLiteral *Str, SourceLocation AsmLoc,
 
                                  SourceLocation RParenLoc);
 
 
 
  static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceLocation getAsmLoc() const { return getLocation(); }
 
  SourceLocation getRParenLoc() const { return RParenLoc; }
 
  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
 
  SourceRange getSourceRange() const override LLVM_READONLY {
 
    return SourceRange(getAsmLoc(), getRParenLoc());
 
  }
 
 
 
  const StringLiteral *getAsmString() const { return AsmString; }
 
  StringLiteral *getAsmString() { return AsmString; }
 
  void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == FileScopeAsm; }
 
};
 
 
 
/// A declaration that models statements at global scope. This declaration
 
/// supports incremental and interactive C/C++.
 
///
 
/// \note This is used in libInterpreter, clang -cc1 -fincremental-extensions
 
/// and in tools such as clang-repl.
 
class TopLevelStmtDecl : public Decl {
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
 
 
  Stmt *Statement = nullptr;
 
 
 
  TopLevelStmtDecl(DeclContext *DC, SourceLocation L, Stmt *S)
 
      : Decl(TopLevelStmt, DC, L), Statement(S) {}
 
 
 
  virtual void anchor();
 
 
 
public:
 
  static TopLevelStmtDecl *Create(ASTContext &C, Stmt *Statement);
 
  static TopLevelStmtDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
  Stmt *getStmt() { return Statement; }
 
  const Stmt *getStmt() const { return Statement; }
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == TopLevelStmt; }
 
};
 
 
 
/// Represents a block literal declaration, which is like an
 
/// unnamed FunctionDecl.  For example:
 
/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
 
class BlockDecl : public Decl, public DeclContext {
 
  // This class stores some data in DeclContext::BlockDeclBits
 
  // to save some space. Use the provided accessors to access it.
 
public:
 
  /// A class which contains all the information about a particular
 
  /// captured value.
 
  class Capture {
 
    enum {
 
      flag_isByRef = 0x1,
 
      flag_isNested = 0x2
 
    };
 
 
 
    /// The variable being captured.
 
    llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
 
 
 
    /// The copy expression, expressed in terms of a DeclRef (or
 
    /// BlockDeclRef) to the captured variable.  Only required if the
 
    /// variable has a C++ class type.
 
    Expr *CopyExpr;
 
 
 
  public:
 
    Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
 
      : VariableAndFlags(variable,
 
                  (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
 
        CopyExpr(copy) {}
 
 
 
    /// The variable being captured.
 
    VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
 
 
 
    /// Whether this is a "by ref" capture, i.e. a capture of a __block
 
    /// variable.
 
    bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
 
 
 
    bool isEscapingByref() const {
 
      return getVariable()->isEscapingByref();
 
    }
 
 
 
    bool isNonEscapingByref() const {
 
      return getVariable()->isNonEscapingByref();
 
    }
 
 
 
    /// Whether this is a nested capture, i.e. the variable captured
 
    /// is not from outside the immediately enclosing function/block.
 
    bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
 
 
 
    bool hasCopyExpr() const { return CopyExpr != nullptr; }
 
    Expr *getCopyExpr() const { return CopyExpr; }
 
    void setCopyExpr(Expr *e) { CopyExpr = e; }
 
  };
 
 
 
private:
 
  /// A new[]'d array of pointers to ParmVarDecls for the formal
 
  /// parameters of this function.  This is null if a prototype or if there are
 
  /// no formals.
 
  ParmVarDecl **ParamInfo = nullptr;
 
  unsigned NumParams = 0;
 
 
 
  Stmt *Body = nullptr;
 
  TypeSourceInfo *SignatureAsWritten = nullptr;
 
 
 
  const Capture *Captures = nullptr;
 
  unsigned NumCaptures = 0;
 
 
 
  unsigned ManglingNumber = 0;
 
  Decl *ManglingContextDecl = nullptr;
 
 
 
protected:
 
  BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
 
 
 
public:
 
  static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
 
  static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceLocation getCaretLocation() const { return getLocation(); }
 
 
 
  bool isVariadic() const { return BlockDeclBits.IsVariadic; }
 
  void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
 
 
 
  CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
 
  Stmt *getBody() const override { return (Stmt*) Body; }
 
  void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
 
 
 
  void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
 
  TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
 
 
 
  // ArrayRef access to formal parameters.
 
  ArrayRef<ParmVarDecl *> parameters() const {
 
    return {ParamInfo, getNumParams()};
 
  }
 
  MutableArrayRef<ParmVarDecl *> parameters() {
 
    return {ParamInfo, getNumParams()};
 
  }
 
 
 
  // Iterator access to formal parameters.
 
  using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
 
  using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
 
 
 
  bool param_empty() const { return parameters().empty(); }
 
  param_iterator param_begin() { return parameters().begin(); }
 
  param_iterator param_end() { return parameters().end(); }
 
  param_const_iterator param_begin() const { return parameters().begin(); }
 
  param_const_iterator param_end() const { return parameters().end(); }
 
  size_t param_size() const { return parameters().size(); }
 
 
 
  unsigned getNumParams() const { return NumParams; }
 
 
 
  const ParmVarDecl *getParamDecl(unsigned i) const {
 
    assert(i < getNumParams() && "Illegal param #");
 
    return ParamInfo[i];
 
  }
 
  ParmVarDecl *getParamDecl(unsigned i) {
 
    assert(i < getNumParams() && "Illegal param #");
 
    return ParamInfo[i];
 
  }
 
 
 
  void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
 
 
 
  /// True if this block (or its nested blocks) captures
 
  /// anything of local storage from its enclosing scopes.
 
  bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
 
 
 
  /// Returns the number of captured variables.
 
  /// Does not include an entry for 'this'.
 
  unsigned getNumCaptures() const { return NumCaptures; }
 
 
 
  using capture_const_iterator = ArrayRef<Capture>::const_iterator;
 
 
 
  ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
 
 
 
  capture_const_iterator capture_begin() const { return captures().begin(); }
 
  capture_const_iterator capture_end() const { return captures().end(); }
 
 
 
  bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
 
  void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
 
 
 
  bool blockMissingReturnType() const {
 
    return BlockDeclBits.BlockMissingReturnType;
 
  }
 
 
 
  void setBlockMissingReturnType(bool val = true) {
 
    BlockDeclBits.BlockMissingReturnType = val;
 
  }
 
 
 
  bool isConversionFromLambda() const {
 
    return BlockDeclBits.IsConversionFromLambda;
 
  }
 
 
 
  void setIsConversionFromLambda(bool val = true) {
 
    BlockDeclBits.IsConversionFromLambda = val;
 
  }
 
 
 
  bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
 
  void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
 
 
 
  bool canAvoidCopyToHeap() const {
 
    return BlockDeclBits.CanAvoidCopyToHeap;
 
  }
 
  void setCanAvoidCopyToHeap(bool B = true) {
 
    BlockDeclBits.CanAvoidCopyToHeap = B;
 
  }
 
 
 
  bool capturesVariable(const VarDecl *var) const;
 
 
 
  void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
 
                   bool CapturesCXXThis);
 
 
 
  unsigned getBlockManglingNumber() const { return ManglingNumber; }
 
 
 
  Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
 
 
 
  void setBlockMangling(unsigned Number, Decl *Ctx) {
 
    ManglingNumber = Number;
 
    ManglingContextDecl = Ctx;
 
  }
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Block; }
 
  static DeclContext *castToDeclContext(const BlockDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
 
  }
 
  static BlockDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
 
  }
 
};
 
 
 
/// Represents the body of a CapturedStmt, and serves as its DeclContext.
 
class CapturedDecl final
 
    : public Decl,
 
      public DeclContext,
 
      private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
 
protected:
 
  size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
 
    return NumParams;
 
  }
 
 
 
private:
 
  /// The number of parameters to the outlined function.
 
  unsigned NumParams;
 
 
 
  /// The position of context parameter in list of parameters.
 
  unsigned ContextParam;
 
 
 
  /// The body of the outlined function.
 
  llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
 
 
 
  explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
 
 
 
  ImplicitParamDecl *const *getParams() const {
 
    return getTrailingObjects<ImplicitParamDecl *>();
 
  }
 
 
 
  ImplicitParamDecl **getParams() {
 
    return getTrailingObjects<ImplicitParamDecl *>();
 
  }
 
 
 
public:
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
  friend TrailingObjects;
 
 
 
  static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
 
                              unsigned NumParams);
 
  static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
 
                                          unsigned NumParams);
 
 
 
  Stmt *getBody() const override;
 
  void setBody(Stmt *B);
 
 
 
  bool isNothrow() const;
 
  void setNothrow(bool Nothrow = true);
 
 
 
  unsigned getNumParams() const { return NumParams; }
 
 
 
  ImplicitParamDecl *getParam(unsigned i) const {
 
    assert(i < NumParams);
 
    return getParams()[i];
 
  }
 
  void setParam(unsigned i, ImplicitParamDecl *P) {
 
    assert(i < NumParams);
 
    getParams()[i] = P;
 
  }
 
 
 
  // ArrayRef interface to parameters.
 
  ArrayRef<ImplicitParamDecl *> parameters() const {
 
    return {getParams(), getNumParams()};
 
  }
 
  MutableArrayRef<ImplicitParamDecl *> parameters() {
 
    return {getParams(), getNumParams()};
 
  }
 
 
 
  /// Retrieve the parameter containing captured variables.
 
  ImplicitParamDecl *getContextParam() const {
 
    assert(ContextParam < NumParams);
 
    return getParam(ContextParam);
 
  }
 
  void setContextParam(unsigned i, ImplicitParamDecl *P) {
 
    assert(i < NumParams);
 
    ContextParam = i;
 
    setParam(i, P);
 
  }
 
  unsigned getContextParamPosition() const { return ContextParam; }
 
 
 
  using param_iterator = ImplicitParamDecl *const *;
 
  using param_range = llvm::iterator_range<param_iterator>;
 
 
 
  /// Retrieve an iterator pointing to the first parameter decl.
 
  param_iterator param_begin() const { return getParams(); }
 
  /// Retrieve an iterator one past the last parameter decl.
 
  param_iterator param_end() const { return getParams() + NumParams; }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Captured; }
 
  static DeclContext *castToDeclContext(const CapturedDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
 
  }
 
  static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
 
  }
 
};
 
 
 
/// Describes a module import declaration, which makes the contents
 
/// of the named module visible in the current translation unit.
 
///
 
/// An import declaration imports the named module (or submodule). For example:
 
/// \code
 
///   @import std.vector;
 
/// \endcode
 
///
 
/// A C++20 module import declaration imports the named module or partition.
 
/// Periods are permitted in C++20 module names, but have no semantic meaning.
 
/// For example:
 
/// \code
 
///   import NamedModule;
 
///   import :SomePartition; // Must be a partition of the current module.
 
///   import Names.Like.this; // Allowed.
 
///   import :and.Also.Partition.names;
 
/// \endcode
 
///
 
/// Import declarations can also be implicitly generated from
 
/// \#include/\#import directives.
 
class ImportDecl final : public Decl,
 
                         llvm::TrailingObjects<ImportDecl, SourceLocation> {
 
  friend class ASTContext;
 
  friend class ASTDeclReader;
 
  friend class ASTReader;
 
  friend TrailingObjects;
 
 
 
  /// The imported module.
 
  Module *ImportedModule = nullptr;
 
 
 
  /// The next import in the list of imports local to the translation
 
  /// unit being parsed (not loaded from an AST file).
 
  ///
 
  /// Includes a bit that indicates whether we have source-location information
 
  /// for each identifier in the module name.
 
  ///
 
  /// When the bit is false, we only have a single source location for the
 
  /// end of the import declaration.
 
  llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
 
 
 
  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
 
             ArrayRef<SourceLocation> IdentifierLocs);
 
 
 
  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
 
             SourceLocation EndLoc);
 
 
 
  ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
 
 
 
  bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
 
 
 
  void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
 
 
 
  /// The next import in the list of imports local to the translation
 
  /// unit being parsed (not loaded from an AST file).
 
  ImportDecl *getNextLocalImport() const {
 
    return NextLocalImportAndComplete.getPointer();
 
  }
 
 
 
  void setNextLocalImport(ImportDecl *Import) {
 
    NextLocalImportAndComplete.setPointer(Import);
 
  }
 
 
 
public:
 
  /// Create a new module import declaration.
 
  static ImportDecl *Create(ASTContext &C, DeclContext *DC,
 
                            SourceLocation StartLoc, Module *Imported,
 
                            ArrayRef<SourceLocation> IdentifierLocs);
 
 
 
  /// Create a new module import declaration for an implicitly-generated
 
  /// import.
 
  static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
 
                                    SourceLocation StartLoc, Module *Imported,
 
                                    SourceLocation EndLoc);
 
 
 
  /// Create a new, deserialized module import declaration.
 
  static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
 
                                        unsigned NumLocations);
 
 
 
  /// Retrieve the module that was imported by the import declaration.
 
  Module *getImportedModule() const { return ImportedModule; }
 
 
 
  /// Retrieves the locations of each of the identifiers that make up
 
  /// the complete module name in the import declaration.
 
  ///
 
  /// This will return an empty array if the locations of the individual
 
  /// identifiers aren't available.
 
  ArrayRef<SourceLocation> getIdentifierLocs() const;
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY;
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Import; }
 
};
 
 
 
/// Represents a C++ Modules TS module export declaration.
 
///
 
/// For example:
 
/// \code
 
///   export void foo();
 
/// \endcode
 
class ExportDecl final : public Decl, public DeclContext {
 
  virtual void anchor();
 
 
 
private:
 
  friend class ASTDeclReader;
 
 
 
  /// The source location for the right brace (if valid).
 
  SourceLocation RBraceLoc;
 
 
 
  ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
 
      : Decl(Export, DC, ExportLoc), DeclContext(Export),
 
        RBraceLoc(SourceLocation()) {}
 
 
 
public:
 
  static ExportDecl *Create(ASTContext &C, DeclContext *DC,
 
                            SourceLocation ExportLoc);
 
  static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceLocation getExportLoc() const { return getLocation(); }
 
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
 
  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
 
 
 
  bool hasBraces() const { return RBraceLoc.isValid(); }
 
 
 
  SourceLocation getEndLoc() const LLVM_READONLY {
 
    if (hasBraces())
 
      return RBraceLoc;
 
    // No braces: get the end location of the (only) declaration in context
 
    // (if present).
 
    return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
 
  }
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY {
 
    return SourceRange(getLocation(), getEndLoc());
 
  }
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Export; }
 
  static DeclContext *castToDeclContext(const ExportDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
 
  }
 
  static ExportDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
 
  }
 
};
 
 
 
/// Represents an empty-declaration.
 
class EmptyDecl : public Decl {
 
  EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
 
 
 
  virtual void anchor();
 
 
 
public:
 
  static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
 
                           SourceLocation L);
 
  static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == Empty; }
 
};
 
 
 
/// HLSLBufferDecl - Represent a cbuffer or tbuffer declaration.
 
class HLSLBufferDecl final : public NamedDecl, public DeclContext {
 
  /// LBraceLoc - The ending location of the source range.
 
  SourceLocation LBraceLoc;
 
  /// RBraceLoc - The ending location of the source range.
 
  SourceLocation RBraceLoc;
 
  /// KwLoc - The location of the cbuffer or tbuffer keyword.
 
  SourceLocation KwLoc;
 
  /// IsCBuffer - Whether the buffer is a cbuffer (and not a tbuffer).
 
  bool IsCBuffer;
 
 
 
  HLSLBufferDecl(DeclContext *DC, bool CBuffer, SourceLocation KwLoc,
 
                 IdentifierInfo *ID, SourceLocation IDLoc,
 
                 SourceLocation LBrace);
 
 
 
public:
 
  static HLSLBufferDecl *Create(ASTContext &C, DeclContext *LexicalParent,
 
                                bool CBuffer, SourceLocation KwLoc,
 
                                IdentifierInfo *ID, SourceLocation IDLoc,
 
                                SourceLocation LBrace);
 
  static HLSLBufferDecl *CreateDeserialized(ASTContext &C, unsigned ID);
 
 
 
  SourceRange getSourceRange() const override LLVM_READONLY {
 
    return SourceRange(getLocStart(), RBraceLoc);
 
  }
 
  SourceLocation getLocStart() const LLVM_READONLY { return KwLoc; }
 
  SourceLocation getLBraceLoc() const { return LBraceLoc; }
 
  SourceLocation getRBraceLoc() const { return RBraceLoc; }
 
  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
 
  bool isCBuffer() const { return IsCBuffer; }
 
 
 
  // Implement isa/cast/dyncast/etc.
 
  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
 
  static bool classofKind(Kind K) { return K == HLSLBuffer; }
 
  static DeclContext *castToDeclContext(const HLSLBufferDecl *D) {
 
    return static_cast<DeclContext *>(const_cast<HLSLBufferDecl *>(D));
 
  }
 
  static HLSLBufferDecl *castFromDeclContext(const DeclContext *DC) {
 
    return static_cast<HLSLBufferDecl *>(const_cast<DeclContext *>(DC));
 
  }
 
 
 
  friend class ASTDeclReader;
 
  friend class ASTDeclWriter;
 
};
 
 
 
/// Insertion operator for diagnostics.  This allows sending NamedDecl's
 
/// into a diagnostic with <<.
 
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
 
                                             const NamedDecl *ND) {
 
  PD.AddTaggedVal(reinterpret_cast<uint64_t>(ND),
 
                  DiagnosticsEngine::ak_nameddecl);
 
  return PD;
 
}
 
 
 
template<typename decl_type>
 
void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
 
  // Note: This routine is implemented here because we need both NamedDecl
 
  // and Redeclarable to be defined.
 
  assert(RedeclLink.isFirst() &&
 
         "setPreviousDecl on a decl already in a redeclaration chain");
 
 
 
  if (PrevDecl) {
 
    // Point to previous. Make sure that this is actually the most recent
 
    // redeclaration, or we can build invalid chains. If the most recent
 
    // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
 
    First = PrevDecl->getFirstDecl();
 
    assert(First->RedeclLink.isFirst() && "Expected first");
 
    decl_type *MostRecent = First->getNextRedeclaration();
 
    RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
 
 
 
    // If the declaration was previously visible, a redeclaration of it remains
 
    // visible even if it wouldn't be visible by itself.
 
    static_cast<decl_type*>(this)->IdentifierNamespace |=
 
      MostRecent->getIdentifierNamespace() &
 
      (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
 
  } else {
 
    // Make this first.
 
    First = static_cast<decl_type*>(this);
 
  }
 
 
 
  // First one will point to this one as latest.
 
  First->RedeclLink.setLatest(static_cast<decl_type*>(this));
 
 
 
  assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
 
         cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
 
}
 
 
 
// Inline function definitions.
 
 
 
/// Check if the given decl is complete.
 
///
 
/// We use this function to break a cycle between the inline definitions in
 
/// Type.h and Decl.h.
 
inline bool IsEnumDeclComplete(EnumDecl *ED) {
 
  return ED->isComplete();
 
}
 
 
 
/// Check if the given decl is scoped.
 
///
 
/// We use this function to break a cycle between the inline definitions in
 
/// Type.h and Decl.h.
 
inline bool IsEnumDeclScoped(EnumDecl *ED) {
 
  return ED->isScoped();
 
}
 
 
 
/// OpenMP variants are mangled early based on their OpenMP context selector.
 
/// The new name looks likes this:
 
///  <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
 
static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
 
  return "$ompvariant";
 
}
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_AST_DECL_H