//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the clang::ASTContext interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
#define LLVM_CLANG_AST_ASTCONTEXT_H
#include "clang/AST/ASTFwd.h"
#include "clang/AST/CanonicalType.h"
#include "clang/AST/CommentCommandTraits.h"
#include "clang/AST/ComparisonCategories.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/TemplateName.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/NoSanitizeList.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/ProfileList.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/XRayLists.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/TypeSize.h"
#include <optional>
namespace llvm {
class APFixedPoint;
class FixedPointSemantics;
struct fltSemantics;
template <typename T, unsigned N> class SmallPtrSet;
} // namespace llvm
namespace clang {
class APValue;
class ASTMutationListener;
class ASTRecordLayout;
class AtomicExpr;
class BlockExpr;
class BuiltinTemplateDecl;
class CharUnits;
class ConceptDecl;
class CXXABI;
class CXXConstructorDecl;
class CXXMethodDecl;
class CXXRecordDecl;
class DiagnosticsEngine;
class ParentMapContext;
class DynTypedNodeList;
class Expr;
enum class FloatModeKind;
class GlobalDecl;
class MangleContext;
class MangleNumberingContext;
class MemberSpecializationInfo;
class Module;
struct MSGuidDeclParts;
class ObjCCategoryDecl;
class ObjCCategoryImplDecl;
class ObjCContainerDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ObjCPropertyImplDecl;
class ObjCProtocolDecl;
class ObjCTypeParamDecl;
class OMPTraitInfo;
struct ParsedTargetAttr;
class Preprocessor;
class StoredDeclsMap;
class TargetAttr;
class TargetInfo;
class TemplateDecl;
class TemplateParameterList;
class TemplateTemplateParmDecl;
class TemplateTypeParmDecl;
class TypeConstraint;
class UnresolvedSetIterator;
class UsingShadowDecl;
class VarTemplateDecl;
class VTableContextBase;
struct BlockVarCopyInit;
namespace Builtin {
class Context;
} // namespace Builtin
enum BuiltinTemplateKind : int;
enum OpenCLTypeKind : uint8_t;
namespace comments {
class FullComment;
} // namespace comments
namespace interp {
class Context;
} // namespace interp
namespace serialization {
template <class> class AbstractTypeReader;
} // namespace serialization
enum class AlignRequirementKind {
/// The alignment was not explicit in code.
None,
/// The alignment comes from an alignment attribute on a typedef.
RequiredByTypedef,
/// The alignment comes from an alignment attribute on a record type.
RequiredByRecord,
/// The alignment comes from an alignment attribute on a enum type.
RequiredByEnum,
};
struct TypeInfo {
uint64_t Width = 0;
unsigned Align = 0;
AlignRequirementKind AlignRequirement;
TypeInfo() : AlignRequirement(AlignRequirementKind::None) {}
TypeInfo(uint64_t Width, unsigned Align,
AlignRequirementKind AlignRequirement)
: Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
bool isAlignRequired() {
return AlignRequirement != AlignRequirementKind::None;
}
};
struct TypeInfoChars {
CharUnits Width;
CharUnits Align;
AlignRequirementKind AlignRequirement;
TypeInfoChars() : AlignRequirement(AlignRequirementKind::None) {}
TypeInfoChars(CharUnits Width, CharUnits Align,
AlignRequirementKind AlignRequirement)
: Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
bool isAlignRequired() {
return AlignRequirement != AlignRequirementKind::None;
}
};
/// Holds long-lived AST nodes (such as types and decls) that can be
/// referred to throughout the semantic analysis of a file.
class ASTContext : public RefCountedBase<ASTContext> {
friend class NestedNameSpecifier;
mutable SmallVector<Type *, 0> Types;
mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
mutable llvm::FoldingSet<ComplexType> ComplexTypes;
mutable llvm::FoldingSet<PointerType> PointerTypes{GeneralTypesLog2InitSize};
mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
ConstantArrayTypes;
mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
mutable std::vector<VariableArrayType*> VariableArrayTypes;
mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
mutable llvm::FoldingSet<DependentSizedExtVectorType>
DependentSizedExtVectorTypes;
mutable llvm::FoldingSet<DependentAddressSpaceType>
DependentAddressSpaceTypes;
mutable llvm::FoldingSet<VectorType> VectorTypes;
mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
FunctionProtoTypes;
mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
mutable llvm::FoldingSet<SubstTemplateTypeParmType>
SubstTemplateTypeParmTypes;
mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
SubstTemplateTypeParmPackTypes;
mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
TemplateSpecializationTypes;
mutable llvm::FoldingSet<ParenType> ParenTypes{GeneralTypesLog2InitSize};
mutable llvm::FoldingSet<UsingType> UsingTypes;
mutable llvm::FoldingSet<TypedefType> TypedefTypes;
mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes{
GeneralTypesLog2InitSize};
mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
ASTContext&>
DependentTemplateSpecializationTypes;
llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
mutable llvm::FoldingSet<DependentUnaryTransformType>
DependentUnaryTransformTypes;
mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
DeducedTemplateSpecializationTypes;
mutable llvm::FoldingSet<AtomicType> AtomicTypes;
mutable llvm::FoldingSet<AttributedType> AttributedTypes;
mutable llvm::FoldingSet<PipeType> PipeTypes;
mutable llvm::FoldingSet<BitIntType> BitIntTypes;
mutable llvm::FoldingSet<DependentBitIntType> DependentBitIntTypes;
llvm::FoldingSet<BTFTagAttributedType> BTFTagAttributedTypes;
mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
SubstTemplateTemplateParms;
mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
ASTContext&>
SubstTemplateTemplateParmPacks;
/// The set of nested name specifiers.
///
/// This set is managed by the NestedNameSpecifier class.
mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
/// A cache mapping from RecordDecls to ASTRecordLayouts.
///
/// This is lazily created. This is intentionally not serialized.
mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
ASTRecordLayouts;
mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
ObjCLayouts;
/// A cache from types to size and alignment information.
using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
mutable TypeInfoMap MemoizedTypeInfo;
/// A cache from types to unadjusted alignment information. Only ARM and
/// AArch64 targets need this information, keeping it separate prevents
/// imposing overhead on TypeInfo size.
using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
/// A cache mapping from CXXRecordDecls to key functions.
llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
/// Mapping from ObjCContainers to their ObjCImplementations.
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
/// Mapping from ObjCMethod to its duplicate declaration in the same
/// interface.
llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
/// Mapping from __block VarDecls to BlockVarCopyInit.
llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
/// Mapping from GUIDs to the corresponding MSGuidDecl.
mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
/// Mapping from APValues to the corresponding UnnamedGlobalConstantDecl.
mutable llvm::FoldingSet<UnnamedGlobalConstantDecl>
UnnamedGlobalConstantDecls;
/// Mapping from APValues to the corresponding TemplateParamObjects.
mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
/// A cache mapping a string value to a StringLiteral object with the same
/// value.
///
/// This is lazily created. This is intentionally not serialized.
mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
/// MD5 hash of CUID. It is calculated when first used and cached by this
/// data member.
mutable std::string CUIDHash;
/// Representation of a "canonical" template template parameter that
/// is used in canonical template names.
class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
TemplateTemplateParmDecl *Parm;
public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
: Parm(Parm) {}
TemplateTemplateParmDecl *getParam() const { return Parm; }
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
Profile(ID, C, Parm);
}
static void Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &C,
TemplateTemplateParmDecl *Parm);
};
mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
const ASTContext&>
CanonTemplateTemplateParms;
TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
/// The typedef for the __int128_t type.
mutable TypedefDecl *Int128Decl = nullptr;
/// The typedef for the __uint128_t type.
mutable TypedefDecl *UInt128Decl = nullptr;
/// The typedef for the target specific predefined
/// __builtin_va_list type.
mutable TypedefDecl *BuiltinVaListDecl = nullptr;
/// The typedef for the predefined \c __builtin_ms_va_list type.
mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
/// The typedef for the predefined \c id type.
mutable TypedefDecl *ObjCIdDecl = nullptr;
/// The typedef for the predefined \c SEL type.
mutable TypedefDecl *ObjCSelDecl = nullptr;
/// The typedef for the predefined \c Class type.
mutable TypedefDecl *ObjCClassDecl = nullptr;
/// The typedef for the predefined \c Protocol class in Objective-C.
mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
/// The typedef for the predefined 'BOOL' type.
mutable TypedefDecl *BOOLDecl = nullptr;
// Typedefs which may be provided defining the structure of Objective-C
// pseudo-builtins
QualType ObjCIdRedefinitionType;
QualType ObjCClassRedefinitionType;
QualType ObjCSelRedefinitionType;
/// The identifier 'bool'.
mutable IdentifierInfo *BoolName = nullptr;
/// The identifier 'NSObject'.
mutable IdentifierInfo *NSObjectName = nullptr;
/// The identifier 'NSCopying'.
IdentifierInfo *NSCopyingName = nullptr;
/// The identifier '__make_integer_seq'.
mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
/// The identifier '__type_pack_element'.
mutable IdentifierInfo *TypePackElementName = nullptr;
QualType ObjCConstantStringType;
mutable RecordDecl *CFConstantStringTagDecl = nullptr;
mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
mutable QualType ObjCSuperType;
QualType ObjCNSStringType;
/// The typedef declaration for the Objective-C "instancetype" type.
TypedefDecl *ObjCInstanceTypeDecl = nullptr;
/// The type for the C FILE type.
TypeDecl *FILEDecl = nullptr;
/// The type for the C jmp_buf type.
TypeDecl *jmp_bufDecl = nullptr;
/// The type for the C sigjmp_buf type.
TypeDecl *sigjmp_bufDecl = nullptr;
/// The type for the C ucontext_t type.
TypeDecl *ucontext_tDecl = nullptr;
/// Type for the Block descriptor for Blocks CodeGen.
///
/// Since this is only used for generation of debug info, it is not
/// serialized.
mutable RecordDecl *BlockDescriptorType = nullptr;
/// Type for the Block descriptor for Blocks CodeGen.
///
/// Since this is only used for generation of debug info, it is not
/// serialized.
mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
/// Declaration for the CUDA cudaConfigureCall function.
FunctionDecl *cudaConfigureCallDecl = nullptr;
/// Keeps track of all declaration attributes.
///
/// Since so few decls have attrs, we keep them in a hash map instead of
/// wasting space in the Decl class.
llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
/// A mapping from non-redeclarable declarations in modules that were
/// merged with other declarations to the canonical declaration that they were
/// merged into.
llvm::DenseMap<Decl*, Decl*> MergedDecls;
/// A mapping from a defining declaration to a list of modules (other
/// than the owning module of the declaration) that contain merged
/// definitions of that entity.
llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
/// Initializers for a module, in order. Each Decl will be either
/// something that has a semantic effect on startup (such as a variable with
/// a non-constant initializer), or an ImportDecl (which recursively triggers
/// initialization of another module).
struct PerModuleInitializers {
llvm::SmallVector<Decl*, 4> Initializers;
llvm::SmallVector<uint32_t, 4> LazyInitializers;
void resolve(ASTContext &Ctx);
};
llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
/// For module code-gen cases, this is the top-level module we are building.
Module *TopLevelModule = nullptr;
static constexpr unsigned ConstantArrayTypesLog2InitSize = 8;
static constexpr unsigned GeneralTypesLog2InitSize = 9;
static constexpr unsigned FunctionProtoTypesLog2InitSize = 12;
ASTContext &this_() { return *this; }
public:
/// A type synonym for the TemplateOrInstantiation mapping.
using TemplateOrSpecializationInfo =
llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
private:
friend class ASTDeclReader;
friend class ASTReader;
friend class ASTWriter;
template <class> friend class serialization::AbstractTypeReader;
friend class CXXRecordDecl;
friend class IncrementalParser;
/// A mapping to contain the template or declaration that
/// a variable declaration describes or was instantiated from,
/// respectively.
///
/// For non-templates, this value will be NULL. For variable
/// declarations that describe a variable template, this will be a
/// pointer to a VarTemplateDecl. For static data members
/// of class template specializations, this will be the
/// MemberSpecializationInfo referring to the member variable that was
/// instantiated or specialized. Thus, the mapping will keep track of
/// the static data member templates from which static data members of
/// class template specializations were instantiated.
///
/// Given the following example:
///
/// \code
/// template<typename T>
/// struct X {
/// static T value;
/// };
///
/// template<typename T>
/// T X<T>::value = T(17);
///
/// int *x = &X<int>::value;
/// \endcode
///
/// This mapping will contain an entry that maps from the VarDecl for
/// X<int>::value to the corresponding VarDecl for X<T>::value (within the
/// class template X) and will be marked TSK_ImplicitInstantiation.
llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
TemplateOrInstantiation;
/// Keeps track of the declaration from which a using declaration was
/// created during instantiation.
///
/// The source and target declarations are always a UsingDecl, an
/// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
///
/// For example:
/// \code
/// template<typename T>
/// struct A {
/// void f();
/// };
///
/// template<typename T>
/// struct B : A<T> {
/// using A<T>::f;
/// };
///
/// template struct B<int>;
/// \endcode
///
/// This mapping will contain an entry that maps from the UsingDecl in
/// B<int> to the UnresolvedUsingDecl in B<T>.
llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
/// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
/// from the instantiated using-enum to the templated decl from whence it
/// came.
/// Note that using-enum-declarations cannot be dependent and
/// thus will never be instantiated from an "unresolved"
/// version thereof (as with using-declarations), so each mapping is from
/// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
InstantiatedFromUsingEnumDecl;
/// Simlarly maps instantiated UsingShadowDecls to their origin.
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
InstantiatedFromUsingShadowDecl;
llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
/// Mapping that stores the methods overridden by a given C++
/// member function.
///
/// Since most C++ member functions aren't virtual and therefore
/// don't override anything, we store the overridden functions in
/// this map on the side rather than within the CXXMethodDecl structure.
using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
/// Mapping from each declaration context to its corresponding
/// mangling numbering context (used for constructs like lambdas which
/// need to be consistently numbered for the mangler).
llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
MangleNumberingContexts;
llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
ExtraMangleNumberingContexts;
/// Side-table of mangling numbers for declarations which rarely
/// need them (like static local vars).
llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
/// Mapping the associated device lambda mangling number if present.
mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
DeviceLambdaManglingNumbers;
/// Mapping that stores parameterIndex values for ParmVarDecls when
/// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
ParameterIndexTable ParamIndices;
ImportDecl *FirstLocalImport = nullptr;
ImportDecl *LastLocalImport = nullptr;
TranslationUnitDecl *TUDecl = nullptr;
mutable ExternCContextDecl *ExternCContext = nullptr;
mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
/// The associated SourceManager object.
SourceManager &SourceMgr;
/// The language options used to create the AST associated with
/// this ASTContext object.
LangOptions &LangOpts;
/// NoSanitizeList object that is used by sanitizers to decide which
/// entities should not be instrumented.
std::unique_ptr<NoSanitizeList> NoSanitizeL;
/// Function filtering mechanism to determine whether a given function
/// should be imbued with the XRay "always" or "never" attributes.
std::unique_ptr<XRayFunctionFilter> XRayFilter;
/// ProfileList object that is used by the profile instrumentation
/// to decide which entities should be instrumented.
std::unique_ptr<ProfileList> ProfList;
/// The allocator used to create AST objects.
///
/// AST objects are never destructed; rather, all memory associated with the
/// AST objects will be released when the ASTContext itself is destroyed.
mutable llvm::BumpPtrAllocator BumpAlloc;
/// Allocator for partial diagnostics.
PartialDiagnostic::DiagStorageAllocator DiagAllocator;
/// The current C++ ABI.
std::unique_ptr<CXXABI> ABI;
CXXABI *createCXXABI(const TargetInfo &T);
/// Address space map mangling must be used with language specific
/// address spaces (e.g. OpenCL/CUDA)
bool AddrSpaceMapMangling;
const TargetInfo *Target = nullptr;
const TargetInfo *AuxTarget = nullptr;
clang::PrintingPolicy PrintingPolicy;
std::unique_ptr<interp::Context> InterpContext;
std::unique_ptr<ParentMapContext> ParentMapCtx;
/// Keeps track of the deallocated DeclListNodes for future reuse.
DeclListNode *ListNodeFreeList = nullptr;
public:
IdentifierTable &Idents;
SelectorTable &Selectors;
Builtin::Context &BuiltinInfo;
const TranslationUnitKind TUKind;
mutable DeclarationNameTable DeclarationNames;
IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
ASTMutationListener *Listener = nullptr;
/// Returns the clang bytecode interpreter context.
interp::Context &getInterpContext();
struct CUDAConstantEvalContext {
/// Do not allow wrong-sided variables in constant expressions.
bool NoWrongSidedVars = false;
} CUDAConstantEvalCtx;
struct CUDAConstantEvalContextRAII {
ASTContext &Ctx;
CUDAConstantEvalContext SavedCtx;
CUDAConstantEvalContextRAII(ASTContext &Ctx_, bool NoWrongSidedVars)
: Ctx(Ctx_), SavedCtx(Ctx_.CUDAConstantEvalCtx) {
Ctx_.CUDAConstantEvalCtx.NoWrongSidedVars = NoWrongSidedVars;
}
~CUDAConstantEvalContextRAII() { Ctx.CUDAConstantEvalCtx = SavedCtx; }
};
/// Returns the dynamic AST node parent map context.
ParentMapContext &getParentMapContext();
// A traversal scope limits the parts of the AST visible to certain analyses.
// RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
// getParents() will only observe reachable parent edges.
//
// The scope is defined by a set of "top-level" declarations which will be
// visible under the TranslationUnitDecl.
// Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
//
// After setTraversalScope({foo, bar}), the exposed AST looks like:
// TranslationUnitDecl
// - foo
// - ...
// - bar
// - ...
// All other siblings of foo and bar are pruned from the tree.
// (However they are still accessible via TranslationUnitDecl->decls())
//
// Changing the scope clears the parent cache, which is expensive to rebuild.
std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
void setTraversalScope(const std::vector<Decl *> &);
/// Forwards to get node parents from the ParentMapContext. New callers should
/// use ParentMapContext::getParents() directly.
template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
const clang::PrintingPolicy &getPrintingPolicy() const {
return PrintingPolicy;
}
void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
PrintingPolicy = Policy;
}
SourceManager& getSourceManager() { return SourceMgr; }
const SourceManager& getSourceManager() const { return SourceMgr; }
// Cleans up some of the data structures. This allows us to do cleanup
// normally done in the destructor earlier. Renders much of the ASTContext
// unusable, mostly the actual AST nodes, so should be called when we no
// longer need access to the AST.
void cleanup();
llvm::BumpPtrAllocator &getAllocator() const {
return BumpAlloc;
}
void *Allocate(size_t Size, unsigned Align = 8) const {
return BumpAlloc.Allocate(Size, Align);
}
template <typename T> T *Allocate(size_t Num = 1) const {
return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
}
void Deallocate(void *Ptr) const {}
/// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
/// pool.
DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
if (DeclListNode *Alloc = ListNodeFreeList) {
ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
Alloc->D = ND;
Alloc->Rest = nullptr;
return Alloc;
}
return new (*this) DeclListNode(ND);
}
/// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
/// pool.
void DeallocateDeclListNode(DeclListNode *N) {
N->Rest = ListNodeFreeList;
ListNodeFreeList = N;
}
/// Return the total amount of physical memory allocated for representing
/// AST nodes and type information.
size_t getASTAllocatedMemory() const {
return BumpAlloc.getTotalMemory();
}
/// Return the total memory used for various side tables.
size_t getSideTableAllocatedMemory() const;
PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
return DiagAllocator;
}
const TargetInfo &getTargetInfo() const { return *Target; }
const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
/// getIntTypeForBitwidth -
/// sets integer QualTy according to specified details:
/// bitwidth, signed/unsigned.
/// Returns empty type if there is no appropriate target types.
QualType getIntTypeForBitwidth(unsigned DestWidth,
unsigned Signed) const;
/// getRealTypeForBitwidth -
/// sets floating point QualTy according to specified bitwidth.
/// Returns empty type if there is no appropriate target types.
QualType getRealTypeForBitwidth(unsigned DestWidth,
FloatModeKind ExplicitType) const;
bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
const LangOptions& getLangOpts() const { return LangOpts; }
// If this condition is false, typo correction must be performed eagerly
// rather than delayed in many places, as it makes use of dependent types.
// the condition is false for clang's C-only codepath, as it doesn't support
// dependent types yet.
bool isDependenceAllowed() const {
return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
}
const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
const XRayFunctionFilter &getXRayFilter() const {
return *XRayFilter;
}
const ProfileList &getProfileList() const { return *ProfList; }
DiagnosticsEngine &getDiagnostics() const;
FullSourceLoc getFullLoc(SourceLocation Loc) const {
return FullSourceLoc(Loc,SourceMgr);
}
/// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
/// at compile time with `-fc++-abi=`. If this is not provided, we instead use
/// the default ABI set by the target.
TargetCXXABI::Kind getCXXABIKind() const;
/// All comments in this translation unit.
RawCommentList Comments;
/// True if comments are already loaded from ExternalASTSource.
mutable bool CommentsLoaded = false;
/// Mapping from declaration to directly attached comment.
///
/// Raw comments are owned by Comments list. This mapping is populated
/// lazily.
mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
/// Mapping from canonical declaration to the first redeclaration in chain
/// that has a comment attached.
///
/// Raw comments are owned by Comments list. This mapping is populated
/// lazily.
mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
/// Keeps track of redeclaration chains that don't have any comment attached.
/// Mapping from canonical declaration to redeclaration chain that has no
/// comments attached to any redeclaration. Specifically it's mapping to
/// the last redeclaration we've checked.
///
/// Shall not contain declarations that have comments attached to any
/// redeclaration in their chain.
mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
/// Mapping from declarations to parsed comments attached to any
/// redeclaration.
mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
/// Attaches \p Comment to \p OriginalD and to its redeclaration chain
/// and removes the redeclaration chain from the set of commentless chains.
///
/// Don't do anything if a comment has already been attached to \p OriginalD
/// or its redeclaration chain.
void cacheRawCommentForDecl(const Decl &OriginalD,
const RawComment &Comment) const;
/// \returns searches \p CommentsInFile for doc comment for \p D.
///
/// \p RepresentativeLocForDecl is used as a location for searching doc
/// comments. \p CommentsInFile is a mapping offset -> comment of files in the
/// same file where \p RepresentativeLocForDecl is.
RawComment *getRawCommentForDeclNoCacheImpl(
const Decl *D, const SourceLocation RepresentativeLocForDecl,
const std::map<unsigned, RawComment *> &CommentsInFile) const;
/// Return the documentation comment attached to a given declaration,
/// without looking into cache.
RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
public:
void addComment(const RawComment &RC);
/// Return the documentation comment attached to a given declaration.
/// Returns nullptr if no comment is attached.
///
/// \param OriginalDecl if not nullptr, is set to declaration AST node that
/// had the comment, if the comment we found comes from a redeclaration.
const RawComment *
getRawCommentForAnyRedecl(const Decl *D,
const Decl **OriginalDecl = nullptr) const;
/// Searches existing comments for doc comments that should be attached to \p
/// Decls. If any doc comment is found, it is parsed.
///
/// Requirement: All \p Decls are in the same file.
///
/// If the last comment in the file is already attached we assume
/// there are not comments left to be attached to \p Decls.
void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
const Preprocessor *PP);
/// Return parsed documentation comment attached to a given declaration.
/// Returns nullptr if no comment is attached.
///
/// \param PP the Preprocessor used with this TU. Could be nullptr if
/// preprocessor is not available.
comments::FullComment *getCommentForDecl(const Decl *D,
const Preprocessor *PP) const;
/// Return parsed documentation comment attached to a given declaration.
/// Returns nullptr if no comment is attached. Does not look at any
/// redeclarations of the declaration.
comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
comments::FullComment *cloneFullComment(comments::FullComment *FC,
const Decl *D) const;
private:
mutable comments::CommandTraits CommentCommandTraits;
/// Iterator that visits import declarations.
class import_iterator {
ImportDecl *Import = nullptr;
public:
using value_type = ImportDecl *;
using reference = ImportDecl *;
using pointer = ImportDecl *;
using difference_type = int;
using iterator_category = std::forward_iterator_tag;
import_iterator() = default;
explicit import_iterator(ImportDecl *Import) : Import(Import) {}
reference operator*() const { return Import; }
pointer operator->() const { return Import; }
import_iterator &operator++() {
Import = ASTContext::getNextLocalImport(Import);
return *this;
}
import_iterator operator++(int) {
import_iterator Other(*this);
++(*this);
return Other;
}
friend bool operator==(import_iterator X, import_iterator Y) {
return X.Import == Y.Import;
}
friend bool operator!=(import_iterator X, import_iterator Y) {
return X.Import != Y.Import;
}
};
public:
comments::CommandTraits &getCommentCommandTraits() const {
return CommentCommandTraits;
}
/// Retrieve the attributes for the given declaration.
AttrVec& getDeclAttrs(const Decl *D);
/// Erase the attributes corresponding to the given declaration.
void eraseDeclAttrs(const Decl *D);
/// If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
// FIXME: Remove ?
MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
const VarDecl *Var);
/// Note that the static data member \p Inst is an instantiation of
/// the static data member template \p Tmpl of a class template.
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl *Var);
void setTemplateOrSpecializationInfo(VarDecl *Inst,
TemplateOrSpecializationInfo TSI);
/// If the given using decl \p Inst is an instantiation of
/// another (possibly unresolved) using decl, return it.
NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
/// Remember that the using decl \p Inst is an instantiation
/// of the using decl \p Pattern of a class template.
void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
/// If the given using-enum decl \p Inst is an instantiation of
/// another using-enum decl, return it.
UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
/// Remember that the using enum decl \p Inst is an instantiation
/// of the using enum decl \p Pattern of a class template.
void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
UsingEnumDecl *Pattern);
UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
UsingShadowDecl *Pattern);
FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
// Access to the set of methods overridden by the given C++ method.
using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl *Method) const;
overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl *Method) const;
unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
using overridden_method_range =
llvm::iterator_range<overridden_cxx_method_iterator>;
overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
/// Note that the given C++ \p Method overrides the given \p
/// Overridden method.
void addOverriddenMethod(const CXXMethodDecl *Method,
const CXXMethodDecl *Overridden);
/// Return C++ or ObjC overridden methods for the given \p Method.
///
/// An ObjC method is considered to override any method in the class's
/// base classes, its protocols, or its categories' protocols, that has
/// the same selector and is of the same kind (class or instance).
/// A method in an implementation is not considered as overriding the same
/// method in the interface or its categories.
void getOverriddenMethods(
const NamedDecl *Method,
SmallVectorImpl<const NamedDecl *> &Overridden) const;
/// Notify the AST context that a new import declaration has been
/// parsed or implicitly created within this translation unit.
void addedLocalImportDecl(ImportDecl *Import);
static ImportDecl *getNextLocalImport(ImportDecl *Import) {
return Import->getNextLocalImport();
}
using import_range = llvm::iterator_range<import_iterator>;
import_range local_imports() const {
return import_range(import_iterator(FirstLocalImport), import_iterator());
}
Decl *getPrimaryMergedDecl(Decl *D) {
Decl *Result = MergedDecls.lookup(D);
return Result ? Result : D;
}
void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
MergedDecls[D] = Primary;
}
/// Note that the definition \p ND has been merged into module \p M,
/// and should be visible whenever \p M is visible.
void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
bool NotifyListeners = true);
/// Clean up the merged definition list. Call this if you might have
/// added duplicates into the list.
void deduplicateMergedDefinitonsFor(NamedDecl *ND);
/// Get the additional modules in which the definition \p Def has
/// been merged.
ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
/// Add a declaration to the list of declarations that are initialized
/// for a module. This will typically be a global variable (with internal
/// linkage) that runs module initializers, such as the iostream initializer,
/// or an ImportDecl nominating another module that has initializers.
void addModuleInitializer(Module *M, Decl *Init);
void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
/// Get the initializations to perform when importing a module, if any.
ArrayRef<Decl*> getModuleInitializers(Module *M);
/// Set the (C++20) module we are building.
void setModuleForCodeGen(Module *M) { TopLevelModule = M; }
/// Get module under construction, nullptr if this is not a C++20 module.
Module *getModuleForCodeGen() const { return TopLevelModule; }
TranslationUnitDecl *getTranslationUnitDecl() const {
return TUDecl->getMostRecentDecl();
}
void addTranslationUnitDecl() {
assert(!TUDecl || TUKind == TU_Incremental);
TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
TraversalScope = {NewTUDecl};
if (TUDecl)
NewTUDecl->setPreviousDecl(TUDecl);
TUDecl = NewTUDecl;
}
ExternCContextDecl *getExternCContextDecl() const;
BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
BuiltinTemplateDecl *getTypePackElementDecl() const;
// Builtin Types.
CanQualType VoidTy;
CanQualType BoolTy;
CanQualType CharTy;
CanQualType WCharTy; // [C++ 3.9.1p5].
CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
CanQualType Char8Ty; // [C++20 proposal]
CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty, Ibm128Ty;
CanQualType ShortAccumTy, AccumTy,
LongAccumTy; // ISO/IEC JTC1 SC22 WG14 N1169 Extension
CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
CanQualType ShortFractTy, FractTy, LongFractTy;
CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
SatUnsignedLongAccumTy;
CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
SatUnsignedLongFractTy;
CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
CanQualType BFloat16Ty;
CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
CanQualType VoidPtrTy, NullPtrTy;
CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
CanQualType BuiltinFnTy;
CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
CanQualType ObjCBuiltinBoolTy;
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
CanQualType SingletonId;
#include "clang/Basic/OpenCLImageTypes.def"
CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
CanQualType OCLQueueTy, OCLReserveIDTy;
CanQualType IncompleteMatrixIdxTy;
CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
CanQualType Id##Ty;
#include "clang/Basic/OpenCLExtensionTypes.def"
#define SVE_TYPE(Name, Id, SingletonId) \
CanQualType SingletonId;
#include "clang/Basic/AArch64SVEACLETypes.def"
#define PPC_VECTOR_TYPE(Name, Id, Size) \
CanQualType Id##Ty;
#include "clang/Basic/PPCTypes.def"
#define RVV_TYPE(Name, Id, SingletonId) \
CanQualType SingletonId;
#include "clang/Basic/RISCVVTypes.def"
// Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
mutable QualType AutoDeductTy; // Deduction against 'auto'.
mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
// Decl used to help define __builtin_va_list for some targets.
// The decl is built when constructing 'BuiltinVaListDecl'.
mutable Decl *VaListTagDecl = nullptr;
// Implicitly-declared type 'struct _GUID'.
mutable TagDecl *MSGuidTagDecl = nullptr;
/// Keep track of CUDA/HIP device-side variables ODR-used by host code.
llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
/// Keep track of CUDA/HIP external kernels or device variables ODR-used by
/// host code.
llvm::DenseSet<const ValueDecl *> CUDAExternalDeviceDeclODRUsedByHost;
ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
SelectorTable &sels, Builtin::Context &builtins,
TranslationUnitKind TUKind);
ASTContext(const ASTContext &) = delete;
ASTContext &operator=(const ASTContext &) = delete;
~ASTContext();
/// Attach an external AST source to the AST context.
///
/// The external AST source provides the ability to load parts of
/// the abstract syntax tree as needed from some external storage,
/// e.g., a precompiled header.
void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
/// Retrieve a pointer to the external AST source associated
/// with this AST context, if any.
ExternalASTSource *getExternalSource() const {
return ExternalSource.get();
}
/// Attach an AST mutation listener to the AST context.
///
/// The AST mutation listener provides the ability to track modifications to
/// the abstract syntax tree entities committed after they were initially
/// created.
void setASTMutationListener(ASTMutationListener *Listener) {
this->Listener = Listener;
}
/// Retrieve a pointer to the AST mutation listener associated
/// with this AST context, if any.
ASTMutationListener *getASTMutationListener() const { return Listener; }
void PrintStats() const;
const SmallVectorImpl<Type *>& getTypes() const { return Types; }
BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
const IdentifierInfo *II) const;
/// Create a new implicit TU-level CXXRecordDecl or RecordDecl
/// declaration.
RecordDecl *buildImplicitRecord(StringRef Name,
RecordDecl::TagKind TK = TTK_Struct) const;
/// Create a new implicit TU-level typedef declaration.
TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
/// Retrieve the declaration for the 128-bit signed integer type.
TypedefDecl *getInt128Decl() const;
/// Retrieve the declaration for the 128-bit unsigned integer type.
TypedefDecl *getUInt128Decl() const;
//===--------------------------------------------------------------------===//
// Type Constructors
//===--------------------------------------------------------------------===//
private:
/// Return a type with extended qualifiers.
QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
QualType getPipeType(QualType T, bool ReadOnly) const;
public:
/// Return the uniqued reference to the type for an address space
/// qualified type with the specified type and address space.
///
/// The resulting type has a union of the qualifiers from T and the address
/// space. If T already has an address space specifier, it is silently
/// replaced.
QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
/// Remove any existing address space on the type and returns the type
/// with qualifiers intact (or that's the idea anyway)
///
/// The return type should be T with all prior qualifiers minus the address
/// space.
QualType removeAddrSpaceQualType(QualType T) const;
/// Apply Objective-C protocol qualifiers to the given type.
/// \param allowOnPointerType specifies if we can apply protocol
/// qualifiers on ObjCObjectPointerType. It can be set to true when
/// constructing the canonical type of a Objective-C type parameter.
QualType applyObjCProtocolQualifiers(QualType type,
ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
bool allowOnPointerType = false) const;
/// Return the uniqued reference to the type for an Objective-C
/// gc-qualified type.
///
/// The resulting type has a union of the qualifiers from T and the gc
/// attribute.
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
/// Remove the existing address space on the type if it is a pointer size
/// address space and return the type with qualifiers intact.
QualType removePtrSizeAddrSpace(QualType T) const;
/// Return the uniqued reference to the type for a \c restrict
/// qualified type.
///
/// The resulting type has a union of the qualifiers from \p T and
/// \c restrict.
QualType getRestrictType(QualType T) const {
return T.withFastQualifiers(Qualifiers::Restrict);
}
/// Return the uniqued reference to the type for a \c volatile
/// qualified type.
///
/// The resulting type has a union of the qualifiers from \p T and
/// \c volatile.
QualType getVolatileType(QualType T) const {
return T.withFastQualifiers(Qualifiers::Volatile);
}
/// Return the uniqued reference to the type for a \c const
/// qualified type.
///
/// The resulting type has a union of the qualifiers from \p T and \c const.
///
/// It can be reasonably expected that this will always be equivalent to
/// calling T.withConst().
QualType getConstType(QualType T) const { return T.withConst(); }
/// Change the ExtInfo on a function type.
const FunctionType *adjustFunctionType(const FunctionType *Fn,
FunctionType::ExtInfo EInfo);
/// Adjust the given function result type.
CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
/// Change the result type of a function type once it is deduced.
void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
/// Get a function type and produce the equivalent function type with the
/// specified exception specification. Type sugar that can be present on a
/// declaration of a function with an exception specification is permitted
/// and preserved. Other type sugar (for instance, typedefs) is not.
QualType getFunctionTypeWithExceptionSpec(
QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const;
/// Determine whether two function types are the same, ignoring
/// exception specifications in cases where they're part of the type.
bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U) const;
/// Change the exception specification on a function once it is
/// delay-parsed, instantiated, or computed.
void adjustExceptionSpec(FunctionDecl *FD,
const FunctionProtoType::ExceptionSpecInfo &ESI,
bool AsWritten = false);
/// Get a function type and produce the equivalent function type where
/// pointer size address spaces in the return type and parameter tyeps are
/// replaced with the default address space.
QualType getFunctionTypeWithoutPtrSizes(QualType T);
/// Determine whether two function types are the same, ignoring pointer sizes
/// in the return type and parameter types.
bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
/// Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType getComplexType(QualType T) const;
CanQualType getComplexType(CanQualType T) const {
return CanQualType::CreateUnsafe(getComplexType((QualType) T));
}
/// Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType getPointerType(QualType T) const;
CanQualType getPointerType(CanQualType T) const {
return CanQualType::CreateUnsafe(getPointerType((QualType) T));
}
/// Return the uniqued reference to a type adjusted from the original
/// type to a new type.
QualType getAdjustedType(QualType Orig, QualType New) const;
CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
return CanQualType::CreateUnsafe(
getAdjustedType((QualType)Orig, (QualType)New));
}
/// Return the uniqued reference to the decayed version of the given
/// type. Can only be called on array and function types which decay to
/// pointer types.
QualType getDecayedType(QualType T) const;
CanQualType getDecayedType(CanQualType T) const {
return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
}
/// Return the uniqued reference to a specified decay from the original
/// type to the decayed type.
QualType getDecayedType(QualType Orig, QualType Decayed) const;
/// Return the uniqued reference to the atomic type for the specified
/// type.
QualType getAtomicType(QualType T) const;
/// Return the uniqued reference to the type for a block of the
/// specified type.
QualType getBlockPointerType(QualType T) const;
/// Gets the struct used to keep track of the descriptor for pointer to
/// blocks.
QualType getBlockDescriptorType() const;
/// Return a read_only pipe type for the specified type.
QualType getReadPipeType(QualType T) const;
/// Return a write_only pipe type for the specified type.
QualType getWritePipeType(QualType T) const;
/// Return a bit-precise integer type with the specified signedness and bit
/// count.
QualType getBitIntType(bool Unsigned, unsigned NumBits) const;
/// Return a dependent bit-precise integer type with the specified signedness
/// and bit count.
QualType getDependentBitIntType(bool Unsigned, Expr *BitsExpr) const;
/// Gets the struct used to keep track of the extended descriptor for
/// pointer to blocks.
QualType getBlockDescriptorExtendedType() const;
/// Map an AST Type to an OpenCLTypeKind enum value.
OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
/// Get address space for OpenCL type.
LangAS getOpenCLTypeAddrSpace(const Type *T) const;
/// Returns default address space based on OpenCL version and enabled features
inline LangAS getDefaultOpenCLPointeeAddrSpace() {
return LangOpts.OpenCLGenericAddressSpace ? LangAS::opencl_generic
: LangAS::opencl_private;
}
void setcudaConfigureCallDecl(FunctionDecl *FD) {
cudaConfigureCallDecl = FD;
}
FunctionDecl *getcudaConfigureCallDecl() {
return cudaConfigureCallDecl;
}
/// Returns true iff we need copy/dispose helpers for the given type.
bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
/// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
/// is set to false in this case. If HasByrefExtendedLayout returns true,
/// byref variable has extended lifetime.
bool getByrefLifetime(QualType Ty,
Qualifiers::ObjCLifetime &Lifetime,
bool &HasByrefExtendedLayout) const;
/// Return the uniqued reference to the type for an lvalue reference
/// to the specified type.
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
const;
/// Return the uniqued reference to the type for an rvalue reference
/// to the specified type.
QualType getRValueReferenceType(QualType T) const;
/// Return the uniqued reference to the type for a member pointer to
/// the specified type in the specified class.
///
/// The class \p Cls is a \c Type because it could be a dependent name.
QualType getMemberPointerType(QualType T, const Type *Cls) const;
/// Return a non-unique reference to the type for a variable array of
/// the specified element type.
QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals,
SourceRange Brackets) const;
/// Return a non-unique reference to the type for a dependently-sized
/// array of the specified element type.
///
/// FIXME: We will need these to be uniqued, or at least comparable, at some
/// point.
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals,
SourceRange Brackets) const;
/// Return a unique reference to the type for an incomplete array of
/// the specified element type.
QualType getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals) const;
/// Return the unique reference to the type for a constant array of
/// the specified element type.
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
const Expr *SizeExpr,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals) const;
/// Return a type for a constant array for a string literal of the
/// specified element type and length.
QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
/// Returns a vla type where known sizes are replaced with [*].
QualType getVariableArrayDecayedType(QualType Ty) const;
// Convenience struct to return information about a builtin vector type.
struct BuiltinVectorTypeInfo {
QualType ElementType;
llvm::ElementCount EC;
unsigned NumVectors;
BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
unsigned NumVectors)
: ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
};
/// Returns the element type, element count and number of vectors
/// (in case of tuple) for a builtin vector type.
BuiltinVectorTypeInfo
getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
/// Return the unique reference to a scalable vector type of the specified
/// element type and scalable number of elements.
///
/// \pre \p EltTy must be a built-in type.
QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
/// Return the unique reference to a vector type of the specified
/// element type and size.
///
/// \pre \p VectorType must be a built-in type.
QualType getVectorType(QualType VectorType, unsigned NumElts,
VectorType::VectorKind VecKind) const;
/// Return the unique reference to the type for a dependently sized vector of
/// the specified element type.
QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
SourceLocation AttrLoc,
VectorType::VectorKind VecKind) const;
/// Return the unique reference to an extended vector type
/// of the specified element type and size.
///
/// \pre \p VectorType must be a built-in type.
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
/// \pre Return a non-unique reference to the type for a dependently-sized
/// vector of the specified element type.
///
/// FIXME: We will need these to be uniqued, or at least comparable, at some
/// point.
QualType getDependentSizedExtVectorType(QualType VectorType,
Expr *SizeExpr,
SourceLocation AttrLoc) const;
/// Return the unique reference to the matrix type of the specified element
/// type and size
///
/// \pre \p ElementType must be a valid matrix element type (see
/// MatrixType::isValidElementType).
QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
unsigned NumColumns) const;
/// Return the unique reference to the matrix type of the specified element
/// type and size
QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
Expr *ColumnExpr,
SourceLocation AttrLoc) const;
QualType getDependentAddressSpaceType(QualType PointeeType,
Expr *AddrSpaceExpr,
SourceLocation AttrLoc) const;
/// Return a K&R style C function type like 'int()'.
QualType getFunctionNoProtoType(QualType ResultTy,
const FunctionType::ExtInfo &Info) const;
QualType getFunctionNoProtoType(QualType ResultTy) const {
return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
}
/// Return a normal function type with a typed argument list.
QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
const FunctionProtoType::ExtProtoInfo &EPI) const {
return getFunctionTypeInternal(ResultTy, Args, EPI, false);
}
QualType adjustStringLiteralBaseType(QualType StrLTy) const;
private:
/// Return a normal function type with a typed argument list.
QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
const FunctionProtoType::ExtProtoInfo &EPI,
bool OnlyWantCanonical) const;
QualType
getAutoTypeInternal(QualType DeducedType, AutoTypeKeyword Keyword,
bool IsDependent, bool IsPack = false,
ConceptDecl *TypeConstraintConcept = nullptr,
ArrayRef<TemplateArgument> TypeConstraintArgs = {},
bool IsCanon = false) const;
public:
/// Return the unique reference to the type for the specified type
/// declaration.
QualType getTypeDeclType(const TypeDecl *Decl,
const TypeDecl *PrevDecl = nullptr) const {
assert(Decl && "Passed null for Decl param");
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (PrevDecl) {
assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
Decl->TypeForDecl = PrevDecl->TypeForDecl;
return QualType(PrevDecl->TypeForDecl, 0);
}
return getTypeDeclTypeSlow(Decl);
}
QualType getUsingType(const UsingShadowDecl *Found,
QualType Underlying) const;
/// Return the unique reference to the type for the specified
/// typedef-name decl.
QualType getTypedefType(const TypedefNameDecl *Decl,
QualType Underlying = QualType()) const;
QualType getRecordType(const RecordDecl *Decl) const;
QualType getEnumType(const EnumDecl *Decl) const;
QualType
getUnresolvedUsingType(const UnresolvedUsingTypenameDecl *Decl) const;
QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
QualType getAttributedType(attr::Kind attrKind, QualType modifiedType,
QualType equivalentType) const;
QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
QualType Wrapped);
QualType
getSubstTemplateTypeParmType(QualType Replacement, Decl *AssociatedDecl,
unsigned Index,
std::optional<unsigned> PackIndex) const;
QualType getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
unsigned Index, bool Final,
const TemplateArgument &ArgPack);
QualType
getTemplateTypeParmType(unsigned Depth, unsigned Index,
bool ParameterPack,
TemplateTypeParmDecl *ParmDecl = nullptr) const;
QualType getTemplateSpecializationType(TemplateName T,
ArrayRef<TemplateArgument> Args,
QualType Canon = QualType()) const;
QualType
getCanonicalTemplateSpecializationType(TemplateName T,
ArrayRef<TemplateArgument> Args) const;
QualType getTemplateSpecializationType(TemplateName T,
ArrayRef<TemplateArgumentLoc> Args,
QualType Canon = QualType()) const;
TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
const TemplateArgumentListInfo &Args,
QualType Canon = QualType()) const;
QualType getParenType(QualType NamedType) const;
QualType getMacroQualifiedType(QualType UnderlyingTy,
const IdentifierInfo *MacroII) const;
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, QualType NamedType,
TagDecl *OwnedTagDecl = nullptr) const;
QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
QualType Canon = QualType()) const;
QualType getDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const;
QualType getDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
/// Get a template argument list with one argument per template parameter
/// in a template parameter list, such as for the injected class name of
/// a class template.
void getInjectedTemplateArgs(const TemplateParameterList *Params,
SmallVectorImpl<TemplateArgument> &Args);
/// Form a pack expansion type with the given pattern.
/// \param NumExpansions The number of expansions for the pack, if known.
/// \param ExpectPackInType If \c false, we should not expect \p Pattern to
/// contain an unexpanded pack. This only makes sense if the pack
/// expansion is used in a context where the arity is inferred from
/// elsewhere, such as if the pattern contains a placeholder type or
/// if this is the canonical type of another pack expansion type.
QualType getPackExpansionType(QualType Pattern,
std::optional<unsigned> NumExpansions,
bool ExpectPackInType = true);
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
ObjCInterfaceDecl *PrevDecl = nullptr) const;
/// Legacy interface: cannot provide type arguments or __kindof.
QualType getObjCObjectType(QualType Base,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) const;
QualType getObjCObjectType(QualType Base,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf) const;
QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
ArrayRef<ObjCProtocolDecl *> protocols) const;
void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
ObjCTypeParamDecl *New) const;
bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
/// QT's qualified-id protocol list adopt all protocols in IDecl's list
/// of protocols.
bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
ObjCInterfaceDecl *IDecl);
/// Return a ObjCObjectPointerType type for the given ObjCObjectType.
QualType getObjCObjectPointerType(QualType OIT) const;
/// C2x feature and GCC extension.
QualType getTypeOfExprType(Expr *E, TypeOfKind Kind) const;
QualType getTypeOfType(QualType QT, TypeOfKind Kind) const;
QualType getReferenceQualifiedType(const Expr *e) const;
/// C++11 decltype.
QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
/// Unary type transforms
QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
UnaryTransformType::UTTKind UKind) const;
/// C++11 deduced auto type.
QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
bool IsDependent, bool IsPack = false,
ConceptDecl *TypeConstraintConcept = nullptr,
ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
/// C++11 deduction pattern for 'auto' type.
QualType getAutoDeductType() const;
/// C++11 deduction pattern for 'auto &&' type.
QualType getAutoRRefDeductType() const;
/// C++17 deduced class template specialization type.
QualType getDeducedTemplateSpecializationType(TemplateName Template,
QualType DeducedType,
bool IsDependent) const;
/// Return the unique reference to the type for the specified TagDecl
/// (struct/union/class/enum) decl.
QualType getTagDeclType(const TagDecl *Decl) const;
/// Return the unique type for "size_t" (C99 7.17), defined in
/// <stddef.h>.
///
/// The sizeof operator requires this (C99 6.5.3.4p4).
CanQualType getSizeType() const;
/// Return the unique signed counterpart of
/// the integer type corresponding to size_t.
CanQualType getSignedSizeType() const;
/// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
/// <stdint.h>.
CanQualType getIntMaxType() const;
/// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
/// <stdint.h>.
CanQualType getUIntMaxType() const;
/// Return the unique wchar_t type available in C++ (and available as
/// __wchar_t as a Microsoft extension).
QualType getWCharType() const { return WCharTy; }
/// Return the type of wide characters. In C++, this returns the
/// unique wchar_t type. In C99, this returns a type compatible with the type
/// defined in <stddef.h> as defined by the target.
QualType getWideCharType() const { return WideCharTy; }
/// Return the type of "signed wchar_t".
///
/// Used when in C++, as a GCC extension.
QualType getSignedWCharType() const;
/// Return the type of "unsigned wchar_t".
///
/// Used when in C++, as a GCC extension.
QualType getUnsignedWCharType() const;
/// In C99, this returns a type compatible with the type
/// defined in <stddef.h> as defined by the target.
QualType getWIntType() const { return WIntTy; }
/// Return a type compatible with "intptr_t" (C99 7.18.1.4),
/// as defined by the target.
QualType getIntPtrType() const;
/// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
/// as defined by the target.
QualType getUIntPtrType() const;
/// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
/// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType getPointerDiffType() const;
/// Return the unique unsigned counterpart of "ptrdiff_t"
/// integer type. The standard (C11 7.21.6.1p7) refers to this type
/// in the definition of %tu format specifier.
QualType getUnsignedPointerDiffType() const;
/// Return the unique type for "pid_t" defined in
/// <sys/types.h>. We need this to compute the correct type for vfork().
QualType getProcessIDType() const;
/// Return the C structure type used to represent constant CFStrings.
QualType getCFConstantStringType() const;
/// Returns the C struct type for objc_super
QualType getObjCSuperType() const;
void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
/// Get the structure type used to representation CFStrings, or NULL
/// if it hasn't yet been built.
QualType getRawCFConstantStringType() const {
if (CFConstantStringTypeDecl)
return getTypedefType(CFConstantStringTypeDecl);
return QualType();
}
void setCFConstantStringType(QualType T);
TypedefDecl *getCFConstantStringDecl() const;
RecordDecl *getCFConstantStringTagDecl() const;
// This setter/getter represents the ObjC type for an NSConstantString.
void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
QualType getObjCConstantStringInterface() const {
return ObjCConstantStringType;
}
QualType getObjCNSStringType() const {
return ObjCNSStringType;
}
void setObjCNSStringType(QualType T) {
ObjCNSStringType = T;
}
/// Retrieve the type that \c id has been defined to, which may be
/// different from the built-in \c id if \c id has been typedef'd.
QualType getObjCIdRedefinitionType() const {
if (ObjCIdRedefinitionType.isNull())
return getObjCIdType();
return ObjCIdRedefinitionType;
}
/// Set the user-written type that redefines \c id.
void setObjCIdRedefinitionType(QualType RedefType) {
ObjCIdRedefinitionType = RedefType;
}
/// Retrieve the type that \c Class has been defined to, which may be
/// different from the built-in \c Class if \c Class has been typedef'd.
QualType getObjCClassRedefinitionType() const {
if (ObjCClassRedefinitionType.isNull())
return getObjCClassType();
return ObjCClassRedefinitionType;
}
/// Set the user-written type that redefines 'SEL'.
void setObjCClassRedefinitionType(QualType RedefType) {
ObjCClassRedefinitionType = RedefType;
}
/// Retrieve the type that 'SEL' has been defined to, which may be
/// different from the built-in 'SEL' if 'SEL' has been typedef'd.
QualType getObjCSelRedefinitionType() const {
if (ObjCSelRedefinitionType.isNull())
return getObjCSelType();
return ObjCSelRedefinitionType;
}
/// Set the user-written type that redefines 'SEL'.
void setObjCSelRedefinitionType(QualType RedefType) {
ObjCSelRedefinitionType = RedefType;
}
/// Retrieve the identifier 'NSObject'.
IdentifierInfo *getNSObjectName() const {
if (!NSObjectName) {
NSObjectName = &Idents.get("NSObject");
}
return NSObjectName;
}
/// Retrieve the identifier 'NSCopying'.
IdentifierInfo *getNSCopyingName() {
if (!NSCopyingName) {
NSCopyingName = &Idents.get("NSCopying");
}
return NSCopyingName;
}
CanQualType getNSUIntegerType() const;
CanQualType getNSIntegerType() const;
/// Retrieve the identifier 'bool'.
IdentifierInfo *getBoolName() const {
if (!BoolName)
BoolName = &Idents.get("bool");
return BoolName;
}
IdentifierInfo *getMakeIntegerSeqName() const {
if (!MakeIntegerSeqName)
MakeIntegerSeqName = &Idents.get("__make_integer_seq");
return MakeIntegerSeqName;
}
IdentifierInfo *getTypePackElementName() const {
if (!TypePackElementName)
TypePackElementName = &Idents.get("__type_pack_element");
return TypePackElementName;
}
/// Retrieve the Objective-C "instancetype" type, if already known;
/// otherwise, returns a NULL type;
QualType getObjCInstanceType() {
return getTypeDeclType(getObjCInstanceTypeDecl());
}
/// Retrieve the typedef declaration corresponding to the Objective-C
/// "instancetype" type.
TypedefDecl *getObjCInstanceTypeDecl();
/// Set the type for the C FILE type.
void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
/// Retrieve the C FILE type.
QualType getFILEType() const {
if (FILEDecl)
return getTypeDeclType(FILEDecl);
return QualType();
}
/// Set the type for the C jmp_buf type.
void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
this->jmp_bufDecl = jmp_bufDecl;
}
/// Retrieve the C jmp_buf type.
QualType getjmp_bufType() const {
if (jmp_bufDecl)
return getTypeDeclType(jmp_bufDecl);
return QualType();
}
/// Set the type for the C sigjmp_buf type.
void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
this->sigjmp_bufDecl = sigjmp_bufDecl;
}
/// Retrieve the C sigjmp_buf type.
QualType getsigjmp_bufType() const {
if (sigjmp_bufDecl)
return getTypeDeclType(sigjmp_bufDecl);
return QualType();
}
/// Set the type for the C ucontext_t type.
void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
this->ucontext_tDecl = ucontext_tDecl;
}
/// Retrieve the C ucontext_t type.
QualType getucontext_tType() const {
if (ucontext_tDecl)
return getTypeDeclType(ucontext_tDecl);
return QualType();
}
/// The result type of logical operations, '<', '>', '!=', etc.
QualType getLogicalOperationType() const {
return getLangOpts().CPlusPlus ? BoolTy : IntTy;
}
/// Emit the Objective-CC type encoding for the given type \p T into
/// \p S.
///
/// If \p Field is specified then record field names are also encoded.
void getObjCEncodingForType(QualType T, std::string &S,
const FieldDecl *Field=nullptr,
QualType *NotEncodedT=nullptr) const;
/// Emit the Objective-C property type encoding for the given
/// type \p T into \p S.
void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
void getLegacyIntegralTypeEncoding(QualType &t) const;
/// Put the string version of the type qualifiers \p QT into \p S.
void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string &S) const;
/// Emit the encoded type for the function \p Decl into \p S.
///
/// This is in the same format as Objective-C method encodings.
///
/// \returns true if an error occurred (e.g., because one of the parameter
/// types is incomplete), false otherwise.
std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
/// Emit the encoded type for the method declaration \p Decl into
/// \p S.
std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
bool Extended = false) const;
/// Return the encoded type for this block declaration.
std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
/// getObjCEncodingForPropertyDecl - Return the encoded type for
/// this method declaration. If non-NULL, Container must be either
/// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
/// only be NULL when getting encodings for protocol properties.
std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container) const;
bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto) const;
ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
const ObjCPropertyDecl *PD,
const Decl *Container) const;
/// Return the size of type \p T for Objective-C encoding purpose,
/// in characters.
CharUnits getObjCEncodingTypeSize(QualType T) const;
/// Retrieve the typedef corresponding to the predefined \c id type
/// in Objective-C.
TypedefDecl *getObjCIdDecl() const;
/// Represents the Objective-CC \c id type.
///
/// This is set up lazily, by Sema. \c id is always a (typedef for a)
/// pointer type, a pointer to a struct.
QualType getObjCIdType() const {
return getTypeDeclType(getObjCIdDecl());
}
/// Retrieve the typedef corresponding to the predefined 'SEL' type
/// in Objective-C.
TypedefDecl *getObjCSelDecl() const;
/// Retrieve the type that corresponds to the predefined Objective-C
/// 'SEL' type.
QualType getObjCSelType() const {
return getTypeDeclType(getObjCSelDecl());
}
/// Retrieve the typedef declaration corresponding to the predefined
/// Objective-C 'Class' type.
TypedefDecl *getObjCClassDecl() const;
/// Represents the Objective-C \c Class type.
///
/// This is set up lazily, by Sema. \c Class is always a (typedef for a)
/// pointer type, a pointer to a struct.
QualType getObjCClassType() const {
return getTypeDeclType(getObjCClassDecl());
}
/// Retrieve the Objective-C class declaration corresponding to
/// the predefined \c Protocol class.
ObjCInterfaceDecl *getObjCProtocolDecl() const;
/// Retrieve declaration of 'BOOL' typedef
TypedefDecl *getBOOLDecl() const {
return BOOLDecl;
}
/// Save declaration of 'BOOL' typedef
void setBOOLDecl(TypedefDecl *TD) {
BOOLDecl = TD;
}
/// type of 'BOOL' type.
QualType getBOOLType() const {
return getTypeDeclType(getBOOLDecl());
}
/// Retrieve the type of the Objective-C \c Protocol class.
QualType getObjCProtoType() const {
return getObjCInterfaceType(getObjCProtocolDecl());
}
/// Retrieve the C type declaration corresponding to the predefined
/// \c __builtin_va_list type.
TypedefDecl *getBuiltinVaListDecl() const;
/// Retrieve the type of the \c __builtin_va_list type.
QualType getBuiltinVaListType() const {
return getTypeDeclType(getBuiltinVaListDecl());
}
/// Retrieve the C type declaration corresponding to the predefined
/// \c __va_list_tag type used to help define the \c __builtin_va_list type
/// for some targets.
Decl *getVaListTagDecl() const;
/// Retrieve the C type declaration corresponding to the predefined
/// \c __builtin_ms_va_list type.
TypedefDecl *getBuiltinMSVaListDecl() const;
/// Retrieve the type of the \c __builtin_ms_va_list type.
QualType getBuiltinMSVaListType() const {
return getTypeDeclType(getBuiltinMSVaListDecl());
}
/// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
/// Retrieve the implicitly-predeclared 'struct _GUID' type.
QualType getMSGuidType() const {
assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
return getTagDeclType(MSGuidTagDecl);
}
/// Return whether a declaration to a builtin is allowed to be
/// overloaded/redeclared.
bool canBuiltinBeRedeclared(const FunctionDecl *) const;
/// Return a type with additional \c const, \c volatile, or
/// \c restrict qualifiers.
QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
}
/// Un-split a SplitQualType.
QualType getQualifiedType(SplitQualType split) const {
return getQualifiedType(split.Ty, split.Quals);
}
/// Return a type with additional qualifiers.
QualType getQualifiedType(QualType T, Qualifiers Qs) const {
if (!Qs.hasNonFastQualifiers())
return T.withFastQualifiers(Qs.getFastQualifiers());
QualifierCollector Qc(Qs);
const Type *Ptr = Qc.strip(T);
return getExtQualType(Ptr, Qc);
}
/// Return a type with additional qualifiers.
QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
if (!Qs.hasNonFastQualifiers())
return QualType(T, Qs.getFastQualifiers());
return getExtQualType(T, Qs);
}
/// Return a type with the given lifetime qualifier.
///
/// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
QualType getLifetimeQualifiedType(QualType type,
Qualifiers::ObjCLifetime lifetime) {
assert(type.getObjCLifetime() == Qualifiers::OCL_None);
assert(lifetime != Qualifiers::OCL_None);
Qualifiers qs;
qs.addObjCLifetime(lifetime);
return getQualifiedType(type, qs);
}
/// getUnqualifiedObjCPointerType - Returns version of
/// Objective-C pointer type with lifetime qualifier removed.
QualType getUnqualifiedObjCPointerType(QualType type) const {
if (!type.getTypePtr()->isObjCObjectPointerType() ||
!type.getQualifiers().hasObjCLifetime())
return type;
Qualifiers Qs = type.getQualifiers();
Qs.removeObjCLifetime();
return getQualifiedType(type.getUnqualifiedType(), Qs);
}
unsigned char getFixedPointScale(QualType Ty) const;
unsigned char getFixedPointIBits(QualType Ty) const;
llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
DeclarationNameInfo getNameForTemplate(TemplateName Name,
SourceLocation NameLoc) const;
TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
UnresolvedSetIterator End) const;
TemplateName getAssumedTemplateName(DeclarationName Name) const;
TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
bool TemplateKeyword,
TemplateName Template) const;
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
const IdentifierInfo *Name) const;
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
OverloadedOperatorKind Operator) const;
TemplateName
getSubstTemplateTemplateParm(TemplateName replacement, Decl *AssociatedDecl,
unsigned Index,
std::optional<unsigned> PackIndex) const;
TemplateName getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
Decl *AssociatedDecl,
unsigned Index,
bool Final) const;
enum GetBuiltinTypeError {
/// No error
GE_None,
/// Missing a type
GE_Missing_type,
/// Missing a type from <stdio.h>
GE_Missing_stdio,
/// Missing a type from <setjmp.h>
GE_Missing_setjmp,
/// Missing a type from <ucontext.h>
GE_Missing_ucontext
};
QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
ASTContext::GetBuiltinTypeError &Error,
bool &RequireICE, bool AllowTypeModifiers) const;
/// Return the type for the specified builtin.
///
/// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
/// arguments to the builtin that are required to be integer constant
/// expressions.
QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
unsigned *IntegerConstantArgs = nullptr) const;
/// Types and expressions required to build C++2a three-way comparisons
/// using operator<=>, including the values return by builtin <=> operators.
ComparisonCategories CompCategories;
private:
CanQualType getFromTargetType(unsigned Type) const;
TypeInfo getTypeInfoImpl(const Type *T) const;
//===--------------------------------------------------------------------===//
// Type Predicates.
//===--------------------------------------------------------------------===//
public:
/// Return one of the GCNone, Weak or Strong Objective-C garbage
/// collection attributes.
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
/// Return true if the given vector types are of the same unqualified
/// type or if they are equivalent to the same GCC vector type.
///
/// \note This ignores whether they are target-specific (AltiVec or Neon)
/// types.
bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
/// Return true if the given types are an SVE builtin and a VectorType that
/// is a fixed-length representation of the SVE builtin for a specific
/// vector-length.
bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
/// Return true if the given vector types are lax-compatible SVE vector types,
/// false otherwise.
bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
/// Return true if the type has been explicitly qualified with ObjC ownership.
/// A type may be implicitly qualified with ownership under ObjC ARC, and in
/// some cases the compiler treats these differently.
bool hasDirectOwnershipQualifier(QualType Ty) const;
/// Return true if this is an \c NSObject object with its \c NSObject
/// attribute set.
static bool isObjCNSObjectType(QualType Ty) {
return Ty->isObjCNSObjectType();
}
//===--------------------------------------------------------------------===//
// Type Sizing and Analysis
//===--------------------------------------------------------------------===//
/// Return the APFloat 'semantics' for the specified scalar floating
/// point type.
const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
/// Get the size and alignment of the specified complete type in bits.
TypeInfo getTypeInfo(const Type *T) const;
TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
/// Get default simd alignment of the specified complete type in bits.
unsigned getOpenMPDefaultSimdAlign(QualType T) const;
/// Return the size of the specified (complete) type \p T, in bits.
uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
/// Return the size of the character type, in bits.
uint64_t getCharWidth() const {
return getTypeSize(CharTy);
}
/// Convert a size in bits to a size in characters.
CharUnits toCharUnitsFromBits(int64_t BitSize) const;
/// Convert a size in characters to a size in bits.
int64_t toBits(CharUnits CharSize) const;
/// Return the size of the specified (complete) type \p T, in
/// characters.
CharUnits getTypeSizeInChars(QualType T) const;
CharUnits getTypeSizeInChars(const Type *T) const;
std::optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
if (Ty->isIncompleteType() || Ty->isDependentType())
return std::nullopt;
return getTypeSizeInChars(Ty);
}
std::optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
}
/// Return the ABI-specified alignment of a (complete) type \p T, in
/// bits.
unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
/// Return the ABI-specified natural alignment of a (complete) type \p T,
/// before alignment adjustments, in bits.
///
/// This alignment is curently used only by ARM and AArch64 when passing
/// arguments of a composite type.
unsigned getTypeUnadjustedAlign(QualType T) const {
return getTypeUnadjustedAlign(T.getTypePtr());
}
unsigned getTypeUnadjustedAlign(const Type *T) const;
/// Return the alignment of a type, in bits, or 0 if
/// the type is incomplete and we cannot determine the alignment (for
/// example, from alignment attributes). The returned alignment is the
/// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
/// ABI alignment.
unsigned getTypeAlignIfKnown(QualType T,
bool NeedsPreferredAlignment = false) const;
/// Return the ABI-specified alignment of a (complete) type \p T, in
/// characters.
CharUnits getTypeAlignInChars(QualType T) const;
CharUnits getTypeAlignInChars(const Type *T) const;
/// Return the PreferredAlignment of a (complete) type \p T, in
/// characters.
CharUnits getPreferredTypeAlignInChars(QualType T) const {
return toCharUnitsFromBits(getPreferredTypeAlign(T));
}
/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
/// in characters, before alignment adjustments. This method does not work on
/// incomplete types.
CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
// getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
// type is a record, its data size is returned.
TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
TypeInfoChars getTypeInfoInChars(const Type *T) const;
TypeInfoChars getTypeInfoInChars(QualType T) const;
/// Determine if the alignment the type has was required using an
/// alignment attribute.
bool isAlignmentRequired(const Type *T) const;
bool isAlignmentRequired(QualType T) const;
/// More type predicates useful for type checking/promotion
bool isPromotableIntegerType(QualType T) const; // C99 6.3.1.1p2
/// Return the "preferred" alignment of the specified type \p T for
/// the current target, in bits.
///
/// This can be different than the ABI alignment in cases where it is
/// beneficial for performance or backwards compatibility preserving to
/// overalign a data type. (Note: despite the name, the preferred alignment
/// is ABI-impacting, and not an optimization.)
unsigned getPreferredTypeAlign(QualType T) const {
return getPreferredTypeAlign(T.getTypePtr());
}
unsigned getPreferredTypeAlign(const Type *T) const;
/// Return the default alignment for __attribute__((aligned)) on
/// this target, to be used if no alignment value is specified.
unsigned getTargetDefaultAlignForAttributeAligned() const;
/// Return the alignment in bits that should be given to a
/// global variable with type \p T.
unsigned getAlignOfGlobalVar(QualType T) const;
/// Return the alignment in characters that should be given to a
/// global variable with type \p T.
CharUnits getAlignOfGlobalVarInChars(QualType T) const;
/// Return a conservative estimate of the alignment of the specified
/// decl \p D.
///
/// \pre \p D must not be a bitfield type, as bitfields do not have a valid
/// alignment.
///
/// If \p ForAlignof, references are treated like their underlying type
/// and large arrays don't get any special treatment. If not \p ForAlignof
/// it computes the value expected by CodeGen: references are treated like
/// pointers and large arrays get extra alignment.
CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
/// Return the alignment (in bytes) of the thrown exception object. This is
/// only meaningful for targets that allocate C++ exceptions in a system
/// runtime, such as those using the Itanium C++ ABI.
CharUnits getExnObjectAlignment() const;
/// Get or compute information about the layout of the specified
/// record (struct/union/class) \p D, which indicates its size and field
/// position information.
const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
/// Get or compute information about the layout of the specified
/// Objective-C interface.
const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
const;
void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
bool Simple = false) const;
/// Get or compute information about the layout of the specified
/// Objective-C implementation.
///
/// This may differ from the interface if synthesized ivars are present.
const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
/// Get our current best idea for the key function of the
/// given record decl, or nullptr if there isn't one.
///
/// The key function is, according to the Itanium C++ ABI section 5.2.3:
/// ...the first non-pure virtual function that is not inline at the
/// point of class definition.
///
/// Other ABIs use the same idea. However, the ARM C++ ABI ignores
/// virtual functions that are defined 'inline', which means that
/// the result of this computation can change.
const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
/// Observe that the given method cannot be a key function.
/// Checks the key-function cache for the method's class and clears it
/// if matches the given declaration.
///
/// This is used in ABIs where out-of-line definitions marked
/// inline are not considered to be key functions.
///
/// \param method should be the declaration from the class definition
void setNonKeyFunction(const CXXMethodDecl *method);
/// Loading virtual member pointers using the virtual inheritance model
/// always results in an adjustment using the vbtable even if the index is
/// zero.
///
/// This is usually OK because the first slot in the vbtable points
/// backwards to the top of the MDC. However, the MDC might be reusing a
/// vbptr from an nv-base. In this case, the first slot in the vbtable
/// points to the start of the nv-base which introduced the vbptr and *not*
/// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
/// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
uint64_t getFieldOffset(const ValueDecl *FD) const;
/// Get the offset of an ObjCIvarDecl in bits.
uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
const ObjCImplementationDecl *ID,
const ObjCIvarDecl *Ivar) const;
/// Find the 'this' offset for the member path in a pointer-to-member
/// APValue.
CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
bool isNearlyEmpty(const CXXRecordDecl *RD) const;
VTableContextBase *getVTableContext();
/// If \p T is null pointer, assume the target in ASTContext.
MangleContext *createMangleContext(const TargetInfo *T = nullptr);
/// Creates a device mangle context to correctly mangle lambdas in a mixed
/// architecture compile by setting the lambda mangling number source to the
/// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
/// (from the AuxTargetInfo) is a an itanium target.
MangleContext *createDeviceMangleContext(const TargetInfo &T);
void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
void CollectInheritedProtocols(const Decl *CDecl,
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
/// Return true if the specified type has unique object representations
/// according to (C++17 [meta.unary.prop]p9)
bool hasUniqueObjectRepresentations(QualType Ty) const;
//===--------------------------------------------------------------------===//
// Type Operators
//===--------------------------------------------------------------------===//
/// Return the canonical (structural) type corresponding to the
/// specified potentially non-canonical type \p T.
///
/// The non-canonical version of a type may have many "decorated" versions of
/// types. Decorators can include typedefs, 'typeof' operators, etc. The
/// returned type is guaranteed to be free of any of these, allowing two
/// canonical types to be compared for exact equality with a simple pointer
/// comparison.
CanQualType getCanonicalType(QualType T) const {
return CanQualType::CreateUnsafe(T.getCanonicalType());
}
const Type *getCanonicalType(const Type *T) const {
return T->getCanonicalTypeInternal().getTypePtr();
}
/// Return the canonical parameter type corresponding to the specific
/// potentially non-canonical one.
///
/// Qualifiers are stripped off, functions are turned into function
/// pointers, and arrays decay one level into pointers.
CanQualType getCanonicalParamType(QualType T) const;
/// Determine whether the given types \p T1 and \p T2 are equivalent.
bool hasSameType(QualType T1, QualType T2) const {
return getCanonicalType(T1) == getCanonicalType(T2);
}
bool hasSameType(const Type *T1, const Type *T2) const {
return getCanonicalType(T1) == getCanonicalType(T2);
}
/// Determine whether the given expressions \p X and \p Y are equivalent.
bool hasSameExpr(const Expr *X, const Expr *Y) const;
/// Return this type as a completely-unqualified array type,
/// capturing the qualifiers in \p Quals.
///
/// This will remove the minimal amount of sugaring from the types, similar
/// to the behavior of QualType::getUnqualifiedType().
///
/// \param T is the qualified type, which may be an ArrayType
///
/// \param Quals will receive the full set of qualifiers that were
/// applied to the array.
///
/// \returns if this is an array type, the completely unqualified array type
/// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
/// Determine whether the given types are equivalent after
/// cvr-qualifiers have been removed.
bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
return getCanonicalType(T1).getTypePtr() ==
getCanonicalType(T2).getTypePtr();
}
bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
bool IsParam) const {
auto SubTnullability = SubT->getNullability();
auto SuperTnullability = SuperT->getNullability();
if (SubTnullability.has_value() == SuperTnullability.has_value()) {
// Neither has nullability; return true
if (!SubTnullability)
return true;
// Both have nullability qualifier.
if (*SubTnullability == *SuperTnullability ||
*SubTnullability == NullabilityKind::Unspecified ||
*SuperTnullability == NullabilityKind::Unspecified)
return true;
if (IsParam) {
// Ok for the superclass method parameter to be "nonnull" and the subclass
// method parameter to be "nullable"
return (*SuperTnullability == NullabilityKind::NonNull &&
*SubTnullability == NullabilityKind::Nullable);
}
// For the return type, it's okay for the superclass method to specify
// "nullable" and the subclass method specify "nonnull"
return (*SuperTnullability == NullabilityKind::Nullable &&
*SubTnullability == NullabilityKind::NonNull);
}
return true;
}
bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
const ObjCMethodDecl *MethodImp);
bool UnwrapSimilarTypes(QualType &T1, QualType &T2,
bool AllowPiMismatch = true);
void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
bool AllowPiMismatch = true);
/// Determine if two types are similar, according to the C++ rules. That is,
/// determine if they are the same other than qualifiers on the initial
/// sequence of pointer / pointer-to-member / array (and in Clang, object
/// pointer) types and their element types.
///
/// Clang offers a number of qualifiers in addition to the C++ qualifiers;
/// those qualifiers are also ignored in the 'similarity' check.
bool hasSimilarType(QualType T1, QualType T2);
/// Determine if two types are similar, ignoring only CVR qualifiers.
bool hasCvrSimilarType(QualType T1, QualType T2);
/// Retrieves the "canonical" nested name specifier for a
/// given nested name specifier.
///
/// The canonical nested name specifier is a nested name specifier
/// that uniquely identifies a type or namespace within the type
/// system. For example, given:
///
/// \code
/// namespace N {
/// struct S {
/// template<typename T> struct X { typename T* type; };
/// };
/// }
///
/// template<typename T> struct Y {
/// typename N::S::X<T>::type member;
/// };
/// \endcode
///
/// Here, the nested-name-specifier for N::S::X<T>:: will be
/// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
/// by declarations in the type system and the canonical type for
/// the template type parameter 'T' is template-param-0-0.
NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
/// Retrieves the default calling convention for the current target.
CallingConv getDefaultCallingConvention(bool IsVariadic,
bool IsCXXMethod,
bool IsBuiltin = false) const;
/// Retrieves the "canonical" template name that refers to a
/// given template.
///
/// The canonical template name is the simplest expression that can
/// be used to refer to a given template. For most templates, this
/// expression is just the template declaration itself. For example,
/// the template std::vector can be referred to via a variety of
/// names---std::vector, \::std::vector, vector (if vector is in
/// scope), etc.---but all of these names map down to the same
/// TemplateDecl, which is used to form the canonical template name.
///
/// Dependent template names are more interesting. Here, the
/// template name could be something like T::template apply or
/// std::allocator<T>::template rebind, where the nested name
/// specifier itself is dependent. In this case, the canonical
/// template name uses the shortest form of the dependent
/// nested-name-specifier, which itself contains all canonical
/// types, values, and templates.
TemplateName getCanonicalTemplateName(const TemplateName &Name) const;
/// Determine whether the given template names refer to the same
/// template.
bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y) const;
/// Determine whether two Friend functions are different because constraints
/// that refer to an enclosing template, according to [temp.friend] p9.
bool FriendsDifferByConstraints(const FunctionDecl *X,
const FunctionDecl *Y) const;
/// Determine whether the two declarations refer to the same entity.
bool isSameEntity(const NamedDecl *X, const NamedDecl *Y) const;
/// Determine whether two template parameter lists are similar enough
/// that they may be used in declarations of the same template.
bool isSameTemplateParameterList(const TemplateParameterList *X,
const TemplateParameterList *Y) const;
/// Determine whether two template parameters are similar enough
/// that they may be used in declarations of the same template.
bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) const;
/// Determine whether two 'requires' expressions are similar enough that they
/// may be used in re-declarations.
///
/// Use of 'requires' isn't mandatory, works with constraints expressed in
/// other ways too.
bool isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const;
/// Determine whether two type contraint are similar enough that they could
/// used in declarations of the same template.
bool isSameTypeConstraint(const TypeConstraint *XTC,
const TypeConstraint *YTC) const;
/// Determine whether two default template arguments are similar enough
/// that they may be used in declarations of the same template.
bool isSameDefaultTemplateArgument(const NamedDecl *X,
const NamedDecl *Y) const;
/// Retrieve the "canonical" template argument.
///
/// The canonical template argument is the simplest template argument
/// (which may be a type, value, expression, or declaration) that
/// expresses the value of the argument.
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
const;
/// Type Query functions. If the type is an instance of the specified class,
/// return the Type pointer for the underlying maximally pretty type. This
/// is a member of ASTContext because this may need to do some amount of
/// canonicalization, e.g. to move type qualifiers into the element type.
const ArrayType *getAsArrayType(QualType T) const;
const ConstantArrayType *getAsConstantArrayType(QualType T) const {
return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
}
const VariableArrayType *getAsVariableArrayType(QualType T) const {
return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
}
const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
}
const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
const {
return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
}
/// Return the innermost element type of an array type.
///
/// For example, will return "int" for int[m][n]
QualType getBaseElementType(const ArrayType *VAT) const;
/// Return the innermost element type of a type (which needn't
/// actually be an array type).
QualType getBaseElementType(QualType QT) const;
/// Return number of constant array elements.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
/// Return number of elements initialized in an ArrayInitLoopExpr.
uint64_t
getArrayInitLoopExprElementCount(const ArrayInitLoopExpr *AILE) const;
/// Perform adjustment on the parameter type of a function.
///
/// This routine adjusts the given parameter type @p T to the actual
/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
QualType getAdjustedParameterType(QualType T) const;
/// Retrieve the parameter type as adjusted for use in the signature
/// of a function, decaying array and function types and removing top-level
/// cv-qualifiers.
QualType getSignatureParameterType(QualType T) const;
QualType getExceptionObjectType(QualType T) const;
/// Return the properly qualified result of decaying the specified
/// array type to a pointer.
///
/// This operation is non-trivial when handling typedefs etc. The canonical
/// type of \p T must be an array type, this returns a pointer to a properly
/// qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType getArrayDecayedType(QualType T) const;
/// Return the type that \p PromotableType will promote to: C99
/// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
QualType getPromotedIntegerType(QualType PromotableType) const;
/// Recurses in pointer/array types until it finds an Objective-C
/// retainable type and returns its ownership.
Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
/// Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
QualType isPromotableBitField(Expr *E) const;
/// Return the highest ranked integer type, see C99 6.3.1.8p1.
///
/// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
/// \p LHS < \p RHS, return -1.
int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
/// Compare the rank of the two specified floating point types,
/// ignoring the domain of the type (i.e. 'double' == '_Complex double').
///
/// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
/// \p LHS < \p RHS, return -1.
int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
/// Compare the rank of two floating point types as above, but compare equal
/// if both types have the same floating-point semantics on the target (i.e.
/// long double and double on AArch64 will return 0).
int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
unsigned getTargetAddressSpace(LangAS AS) const;
LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
/// Get target-dependent integer value for null pointer which is used for
/// constant folding.
uint64_t getTargetNullPointerValue(QualType QT) const;
bool addressSpaceMapManglingFor(LangAS AS) const {
return AddrSpaceMapMangling || isTargetAddressSpace(AS);
}
// Merges two exception specifications, such that the resulting
// exception spec is the union of both. For example, if either
// of them can throw something, the result can throw it as well.
FunctionProtoType::ExceptionSpecInfo
mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
FunctionProtoType::ExceptionSpecInfo ESI2,
SmallVectorImpl<QualType> &ExceptionTypeStorage,
bool AcceptDependent);
// For two "same" types, return a type which has
// the common sugar between them. If Unqualified is true,
// both types need only be the same unqualified type.
// The result will drop the qualifiers which do not occur
// in both types.
QualType getCommonSugaredType(QualType X, QualType Y,
bool Unqualified = false);
private:
// Helper for integer ordering
unsigned getIntegerRank(const Type *T) const;
public:
//===--------------------------------------------------------------------===//
// Type Compatibility Predicates
//===--------------------------------------------------------------------===//
/// Compatibility predicates used to check assignment expressions.
bool typesAreCompatible(QualType T1, QualType T2,
bool CompareUnqualified = false); // C99 6.2.7p1
bool propertyTypesAreCompatible(QualType, QualType);
bool typesAreBlockPointerCompatible(QualType, QualType);
bool isObjCIdType(QualType T) const {
if (const auto *ET = dyn_cast<ElaboratedType>(T))
T = ET->getNamedType();
return T == getObjCIdType();
}
bool isObjCClassType(QualType T) const {
if (const auto *ET = dyn_cast<ElaboratedType>(T))
T = ET->getNamedType();
return T == getObjCClassType();
}
bool isObjCSelType(QualType T) const {
if (const auto *ET = dyn_cast<ElaboratedType>(T))
T = ET->getNamedType();
return T == getObjCSelType();
}
bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
const ObjCObjectPointerType *RHS,
bool ForCompare);
bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
const ObjCObjectPointerType *RHS);
// Check the safety of assignment from LHS to RHS
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
const ObjCObjectType *RHS);
bool canAssignObjCInterfacesInBlockPointer(
const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT,
bool BlockReturnType);
bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
bool canBindObjCObjectType(QualType To, QualType From);
// Functions for calculating composite types
QualType mergeTypes(QualType, QualType, bool OfBlockPointer = false,
bool Unqualified = false, bool BlockReturnType = false,
bool IsConditionalOperator = false);
QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer = false,
bool Unqualified = false, bool AllowCXX = false,
bool IsConditionalOperator = false);
QualType mergeFunctionParameterTypes(QualType, QualType,
bool OfBlockPointer = false,
bool Unqualified = false);
QualType mergeTransparentUnionType(QualType, QualType,
bool OfBlockPointer=false,
bool Unqualified = false);
QualType mergeObjCGCQualifiers(QualType, QualType);
/// This function merges the ExtParameterInfo lists of two functions. It
/// returns true if the lists are compatible. The merged list is returned in
/// NewParamInfos.
///
/// \param FirstFnType The type of the first function.
///
/// \param SecondFnType The type of the second function.
///
/// \param CanUseFirst This flag is set to true if the first function's
/// ExtParameterInfo list can be used as the composite list of
/// ExtParameterInfo.
///
/// \param CanUseSecond This flag is set to true if the second function's
/// ExtParameterInfo list can be used as the composite list of
/// ExtParameterInfo.
///
/// \param NewParamInfos The composite list of ExtParameterInfo. The list is
/// empty if none of the flags are set.
///
bool mergeExtParameterInfo(
const FunctionProtoType *FirstFnType,
const FunctionProtoType *SecondFnType,
bool &CanUseFirst, bool &CanUseSecond,
SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
void ResetObjCLayout(const ObjCContainerDecl *CD);
//===--------------------------------------------------------------------===//
// Integer Predicates
//===--------------------------------------------------------------------===//
// The width of an integer, as defined in C99 6.2.6.2. This is the number
// of bits in an integer type excluding any padding bits.
unsigned getIntWidth(QualType T) const;
// Per C99 6.2.5p6, for every signed integer type, there is a corresponding
// unsigned integer type. This method takes a signed type, and returns the
// corresponding unsigned integer type.
// With the introduction of fixed point types in ISO N1169, this method also
// accepts fixed point types and returns the corresponding unsigned type for
// a given fixed point type.
QualType getCorrespondingUnsignedType(QualType T) const;
// Per C99 6.2.5p6, for every signed integer type, there is a corresponding
// unsigned integer type. This method takes an unsigned type, and returns the
// corresponding signed integer type.
// With the introduction of fixed point types in ISO N1169, this method also
// accepts fixed point types and returns the corresponding signed type for
// a given fixed point type.
QualType getCorrespondingSignedType(QualType T) const;
// Per ISO N1169, this method accepts fixed point types and returns the
// corresponding saturated type for a given fixed point type.
QualType getCorrespondingSaturatedType(QualType Ty) const;
// This method accepts fixed point types and returns the corresponding signed
// type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
// fixed point types because there are unsigned integer types like bool and
// char8_t that don't have signed equivalents.
QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
//===--------------------------------------------------------------------===//
// Integer Values
//===--------------------------------------------------------------------===//
/// Make an APSInt of the appropriate width and signedness for the
/// given \p Value and integer \p Type.
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
// If Type is a signed integer type larger than 64 bits, we need to be sure
// to sign extend Res appropriately.
llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
Res = Value;
unsigned Width = getIntWidth(Type);
if (Width != Res.getBitWidth())
return Res.extOrTrunc(Width);
return Res;
}
bool isSentinelNullExpr(const Expr *E);
/// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
/// none exists.
ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
/// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
/// none exists.
ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
/// Return true if there is at least one \@implementation in the TU.
bool AnyObjCImplementation() {
return !ObjCImpls.empty();
}
/// Set the implementation of ObjCInterfaceDecl.
void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
ObjCImplementationDecl *ImplD);
/// Set the implementation of ObjCCategoryDecl.
void setObjCImplementation(ObjCCategoryDecl *CatD,
ObjCCategoryImplDecl *ImplD);
/// Get the duplicate declaration of a ObjCMethod in the same
/// interface, or null if none exists.
const ObjCMethodDecl *
getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
const ObjCMethodDecl *Redecl);
/// Returns the Objective-C interface that \p ND belongs to if it is
/// an Objective-C method/property/ivar etc. that is part of an interface,
/// otherwise returns null.
const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
/// Set the copy initialization expression of a block var decl. \p CanThrow
/// indicates whether the copy expression can throw or not.
void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
/// Get the copy initialization expression of the VarDecl \p VD, or
/// nullptr if none exists.
BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
/// Allocate an uninitialized TypeSourceInfo.
///
/// The caller should initialize the memory held by TypeSourceInfo using
/// the TypeLoc wrappers.
///
/// \param T the type that will be the basis for type source info. This type
/// should refer to how the declarator was written in source code, not to
/// what type semantic analysis resolved the declarator to.
///
/// \param Size the size of the type info to create, or 0 if the size
/// should be calculated based on the type.
TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
/// Allocate a TypeSourceInfo where all locations have been
/// initialized to a given location, which defaults to the empty
/// location.
TypeSourceInfo *
getTrivialTypeSourceInfo(QualType T,
SourceLocation Loc = SourceLocation()) const;
/// Add a deallocation callback that will be invoked when the
/// ASTContext is destroyed.
///
/// \param Callback A callback function that will be invoked on destruction.
///
/// \param Data Pointer data that will be provided to the callback function
/// when it is called.
void AddDeallocation(void (*Callback)(void *), void *Data) const;
/// If T isn't trivially destructible, calls AddDeallocation to register it
/// for destruction.
template <typename T> void addDestruction(T *Ptr) const {
if (!std::is_trivially_destructible<T>::value) {
auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
AddDeallocation(DestroyPtr, Ptr);
}
}
GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
/// Determines if the decl can be CodeGen'ed or deserialized from PCH
/// lazily, only when used; this is only relevant for function or file scoped
/// var definitions.
///
/// \returns true if the function/var must be CodeGen'ed/deserialized even if
/// it is not used.
bool DeclMustBeEmitted(const Decl *D);
/// Visits all versions of a multiversioned function with the passed
/// predicate.
void forEachMultiversionedFunctionVersion(
const FunctionDecl *FD,
llvm::function_ref<void(FunctionDecl *)> Pred) const;
const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
CXXConstructorDecl *CD);
void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
void setManglingNumber(const NamedDecl *ND, unsigned Number);
unsigned getManglingNumber(const NamedDecl *ND,
bool ForAuxTarget = false) const;
void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
unsigned getStaticLocalNumber(const VarDecl *VD) const;
/// Retrieve the context for computing mangling numbers in the given
/// DeclContext.
MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
const Decl *D);
std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
/// Used by ParmVarDecl to store on the side the
/// index of the parameter when it exceeds the size of the normal bitfield.
void setParameterIndex(const ParmVarDecl *D, unsigned index);
/// Used by ParmVarDecl to retrieve on the side the
/// index of the parameter when it exceeds the size of the normal bitfield.
unsigned getParameterIndex(const ParmVarDecl *D) const;
/// Return a string representing the human readable name for the specified
/// function declaration or file name. Used by SourceLocExpr and
/// PredefinedExpr to cache evaluated results.
StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
/// Return a declaration for the global GUID object representing the given
/// GUID value.
MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
/// Return a declaration for a uniquified anonymous global constant
/// corresponding to a given APValue.
UnnamedGlobalConstantDecl *
getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const;
/// Return the template parameter object of the given type with the given
/// value.
TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
const APValue &V) const;
/// Parses the target attributes passed in, and returns only the ones that are
/// valid feature names.
ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
std::vector<std::string>
filterFunctionTargetVersionAttrs(const TargetVersionAttr *TV) const;
void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
const FunctionDecl *) const;
void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
GlobalDecl GD) const;
//===--------------------------------------------------------------------===//
// Statistics
//===--------------------------------------------------------------------===//
/// The number of implicitly-declared default constructors.
unsigned NumImplicitDefaultConstructors = 0;
/// The number of implicitly-declared default constructors for
/// which declarations were built.
unsigned NumImplicitDefaultConstructorsDeclared = 0;
/// The number of implicitly-declared copy constructors.
unsigned NumImplicitCopyConstructors = 0;
/// The number of implicitly-declared copy constructors for
/// which declarations were built.
unsigned NumImplicitCopyConstructorsDeclared = 0;
/// The number of implicitly-declared move constructors.
unsigned NumImplicitMoveConstructors = 0;
/// The number of implicitly-declared move constructors for
/// which declarations were built.
unsigned NumImplicitMoveConstructorsDeclared = 0;
/// The number of implicitly-declared copy assignment operators.
unsigned NumImplicitCopyAssignmentOperators = 0;
/// The number of implicitly-declared copy assignment operators for
/// which declarations were built.
unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
/// The number of implicitly-declared move assignment operators.
unsigned NumImplicitMoveAssignmentOperators = 0;
/// The number of implicitly-declared move assignment operators for
/// which declarations were built.
unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
/// The number of implicitly-declared destructors.
unsigned NumImplicitDestructors = 0;
/// The number of implicitly-declared destructors for which
/// declarations were built.
unsigned NumImplicitDestructorsDeclared = 0;
public:
/// Initialize built-in types.
///
/// This routine may only be invoked once for a given ASTContext object.
/// It is normally invoked after ASTContext construction.
///
/// \param Target The target
void InitBuiltinTypes(const TargetInfo &Target,
const TargetInfo *AuxTarget = nullptr);
private:
void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
class ObjCEncOptions {
unsigned Bits;
ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
public:
ObjCEncOptions() : Bits(0) {}
ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
#define OPT_LIST(V) \
V(ExpandPointedToStructures, 0) \
V(ExpandStructures, 1) \
V(IsOutermostType, 2) \
V(EncodingProperty, 3) \
V(IsStructField, 4) \
V(EncodeBlockParameters, 5) \
V(EncodeClassNames, 6) \
#define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
OPT_LIST(V)
#undef V
#define V(N,I) bool N() const { return Bits & 1 << I; }
OPT_LIST(V)
#undef V
#undef OPT_LIST
[[nodiscard]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
return Bits & Mask.Bits;
}
[[nodiscard]] ObjCEncOptions forComponentType() const {
ObjCEncOptions Mask = ObjCEncOptions()
.setIsOutermostType()
.setIsStructField();
return Bits & ~Mask.Bits;
}
};
// Return the Objective-C type encoding for a given type.
void getObjCEncodingForTypeImpl(QualType t, std::string &S,
ObjCEncOptions Options,
const FieldDecl *Field,
QualType *NotEncodedT = nullptr) const;
// Adds the encoding of the structure's members.
void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
const FieldDecl *Field,
bool includeVBases = true,
QualType *NotEncodedT=nullptr) const;
public:
// Adds the encoding of a method parameter or return type.
void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
QualType T, std::string& S,
bool Extended) const;
/// Returns true if this is an inline-initialized static data member
/// which is treated as a definition for MSVC compatibility.
bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
enum class InlineVariableDefinitionKind {
/// Not an inline variable.
None,
/// Weak definition of inline variable.
Weak,
/// Weak for now, might become strong later in this TU.
WeakUnknown,
/// Strong definition.
Strong
};
/// Determine whether a definition of this inline variable should
/// be treated as a weak or strong definition. For compatibility with
/// C++14 and before, for a constexpr static data member, if there is an
/// out-of-line declaration of the member, we may promote it from weak to
/// strong.
InlineVariableDefinitionKind
getInlineVariableDefinitionKind(const VarDecl *VD) const;
private:
friend class DeclarationNameTable;
friend class DeclContext;
const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) const;
/// A set of deallocations that should be performed when the
/// ASTContext is destroyed.
// FIXME: We really should have a better mechanism in the ASTContext to
// manage running destructors for types which do variable sized allocation
// within the AST. In some places we thread the AST bump pointer allocator
// into the datastructures which avoids this mess during deallocation but is
// wasteful of memory, and here we require a lot of error prone book keeping
// in order to track and run destructors while we're tearing things down.
using DeallocationFunctionsAndArguments =
llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
mutable DeallocationFunctionsAndArguments Deallocations;
// FIXME: This currently contains the set of StoredDeclMaps used
// by DeclContext objects. This probably should not be in ASTContext,
// but we include it here so that ASTContext can quickly deallocate them.
llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
std::vector<Decl *> TraversalScope;
std::unique_ptr<VTableContextBase> VTContext;
void ReleaseDeclContextMaps();
public:
enum PragmaSectionFlag : unsigned {
PSF_None = 0,
PSF_Read = 0x1,
PSF_Write = 0x2,
PSF_Execute = 0x4,
PSF_Implicit = 0x8,
PSF_ZeroInit = 0x10,
PSF_Invalid = 0x80000000U,
};
struct SectionInfo {
NamedDecl *Decl;
SourceLocation PragmaSectionLocation;
int SectionFlags;
SectionInfo() = default;
SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
int SectionFlags)
: Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
SectionFlags(SectionFlags) {}
};
llvm::StringMap<SectionInfo> SectionInfos;
/// Return a new OMPTraitInfo object owned by this context.
OMPTraitInfo &getNewOMPTraitInfo();
/// Whether a C++ static variable or CUDA/HIP kernel may be externalized.
bool mayExternalize(const Decl *D) const;
/// Whether a C++ static variable or CUDA/HIP kernel should be externalized.
bool shouldExternalize(const Decl *D) const;
StringRef getCUIDHash() const;
private:
/// All OMPTraitInfo objects live in this collection, one per
/// `pragma omp [begin] declare variant` directive.
SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
};
/// Insertion operator for diagnostics.
const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
const ASTContext::SectionInfo &Section);
/// Utility function for constructing a nullary selector.
inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(0, &II);
}
/// Utility function for constructing an unary selector.
inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(1, &II);
}
} // namespace clang
// operator new and delete aren't allowed inside namespaces.
/// Placement new for using the ASTContext's allocator.
///
/// This placement form of operator new uses the ASTContext's allocator for
/// obtaining memory.
///
/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
/// Any changes here need to also be made there.
///
/// We intentionally avoid using a nothrow specification here so that the calls
/// to this operator will not perform a null check on the result -- the
/// underlying allocator never returns null pointers.
///
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
/// // Specific alignment
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
/// @endcode
/// Memory allocated through this placement new operator does not need to be
/// explicitly freed, as ASTContext will free all of this memory when it gets
/// destroyed. Please note that you cannot use delete on the pointer.
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be nullptr.
inline void *operator new(size_t Bytes, const clang::ASTContext &C,
size_t Alignment /* = 8 */) {
return C.Allocate(Bytes, Alignment);
}
/// Placement delete companion to the new above.
///
/// This operator is just a companion to the new above. There is no way of
/// invoking it directly; see the new operator for more details. This operator
/// is called implicitly by the compiler if a placement new expression using
/// the ASTContext throws in the object constructor.
inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
C.Deallocate(Ptr);
}
/// This placement form of operator new[] uses the ASTContext's allocator for
/// obtaining memory.
///
/// We intentionally avoid using a nothrow specification here so that the calls
/// to this operator will not perform a null check on the result -- the
/// underlying allocator never returns null pointers.
///
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// char *data = new (Context) char[10];
/// // Specific alignment
/// char *data = new (Context, 4) char[10];
/// @endcode
/// Memory allocated through this placement new[] operator does not need to be
/// explicitly freed, as ASTContext will free all of this memory when it gets
/// destroyed. Please note that you cannot use delete on the pointer.
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be nullptr.
inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
size_t Alignment /* = 8 */) {
return C.Allocate(Bytes, Alignment);
}
/// Placement delete[] companion to the new[] above.
///
/// This operator is just a companion to the new[] above. There is no way of
/// invoking it directly; see the new[] operator for more details. This operator
/// is called implicitly by the compiler if a placement new[] expression using
/// the ASTContext throws in the object constructor.
inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
C.Deallocate(Ptr);
}
/// Create the representation of a LazyGenerationalUpdatePtr.
template <typename Owner, typename T,
void (clang::ExternalASTSource::*Update)(Owner)>
typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
const clang::ASTContext &Ctx, T Value) {
// Note, this is implemented here so that ExternalASTSource.h doesn't need to
// include ASTContext.h. We explicitly instantiate it for all relevant types
// in ASTContext.cpp.
if (auto *Source = Ctx.getExternalSource())
return new (Ctx) LazyData(Source, Value);
return Value;
}
#endif // LLVM_CLANG_AST_ASTCONTEXT_H