Subversion Repositories QNX 8.QNX8 IFS tool

Rev

Rev 8 | Rev 10 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. // ifstool.c -- portable reimplementation of QNX's mkifs by Pierre-Marie Baty <pm@pmbaty.com>
  2.  
  3. #include <stdint.h>
  4. #include <stdbool.h>
  5. #include <stdlib.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <errno.h>
  10. #include <sys/stat.h>
  11. #include <ctype.h>
  12. #include <time.h>
  13.  
  14.  
  15. #ifdef _MSC_VER
  16. #include <io.h>
  17. #define __x86_64__ 1
  18. #define __ORDER_BIG_ENDIAN__    4321
  19. #define __ORDER_LITTLE_ENDIAN__ 1234
  20. #define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
  21. #define __attribute__(x)
  22. #define __builtin_bswap16(x) _byteswap_ushort ((unsigned short) (x))
  23. #define __builtin_bswap32(x) _byteswap_ulong ((unsigned long) (x))
  24. #define __builtin_bswap64(x) _byteswap_uint64 ((unsigned long long) (x))
  25. #define S_IFIFO 0x1000
  26. #define S_IFLNK 0xa000
  27. #define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)
  28. #define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)
  29. #define S_ISLNK(m) (((m) & S_IFMT) == S_IFLNK)
  30. #define strdup(s) _strdup ((s))
  31. #define strcasecmp(s1,s2) _stricmp ((s1), (s2))
  32. #define fseek(fp,off,m) _fseeki64 ((fp), (off), (m))
  33. #define access(p,m) _access ((p), (m))
  34. #define MAXPATHLEN 1024
  35. #ifndef thread_local
  36. #define thread_local __declspec(thread) // the thread_local keyword wasn't defined before C++11 and C23
  37. #endif // !thread_local
  38. #else // !_MSC_VER
  39. #include <sys/param.h>
  40. #include <unistd.h>
  41. #ifndef thread_local
  42. #define thread_local __thread // the thread_local keyword wasn't defined before C++11 and C23
  43. #endif // !thread_local
  44. #endif // _MSC_VER
  45.  
  46.  
  47. // handy macros that generate a version number in the format "YYYYMMDD" corresponding to the build date. Usage: printf ("version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
  48. #ifndef VERSION_ARG_YYYYMMDD
  49. #define BUILDDATE_YEAR  (&__DATE__[7]) // compiler will optimize this into a const string, e.g. "2021"
  50. #define BUILDDATE_MONTH (*((uint32_t *) __DATE__) == *((uint32_t *) "Jan ") ? "01" : \
  51.                          (*((uint32_t *) __DATE__) == *((uint32_t *) "Feb ") ? "02" : \
  52.                           (*((uint32_t *) __DATE__) == *((uint32_t *) "Mar ") ? "03" : \
  53.                            (*((uint32_t *) __DATE__) == *((uint32_t *) "Apr ") ? "04" : \
  54.                             (*((uint32_t *) __DATE__) == *((uint32_t *) "May ") ? "05" : \
  55.                              (*((uint32_t *) __DATE__) == *((uint32_t *) "Jun ") ? "06" : \
  56.                               (*((uint32_t *) __DATE__) == *((uint32_t *) "Jul ") ? "07" : \
  57.                                (*((uint32_t *) __DATE__) == *((uint32_t *) "Aug ") ? "08" : \
  58.                                 (*((uint32_t *) __DATE__) == *((uint32_t *) "Sep ") ? "09" : \
  59.                                  (*((uint32_t *) __DATE__) == *((uint32_t *) "Oct ") ? "10" : \
  60.                                   (*((uint32_t *) __DATE__) == *((uint32_t *) "Nov ") ? "11" : \
  61.                                    (*((uint32_t *) __DATE__) == *((uint32_t *) "Dec ") ? "12" : "XX")))))))))))) // compiler will optimize this into a const string, e.g. "11"
  62. #define BUILDDATE_DAY   (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  1 ") ? "01" : \
  63.                          (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  2 ") ? "02" : \
  64.                           (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  3 ") ? "03" : \
  65.                            (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  4 ") ? "04" : \
  66.                             (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  5 ") ? "05" : \
  67.                              (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  6 ") ? "06" : \
  68.                               (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  7 ") ? "07" : \
  69.                                (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  8 ") ? "08" : \
  70.                                 (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  9 ") ? "09" : \
  71.                                  (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 10 ") ? "10" : \
  72.                                   (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 11 ") ? "11" : \
  73.                                    (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 12 ") ? "12" : \
  74.                                     (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 13 ") ? "13" : \
  75.                                      (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 14 ") ? "14" : \
  76.                                       (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 15 ") ? "15" : \
  77.                                        (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 16 ") ? "16" : \
  78.                                         (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 17 ") ? "17" : \
  79.                                          (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 18 ") ? "18" : \
  80.                                           (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 19 ") ? "19" : \
  81.                                            (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 20 ") ? "20" : \
  82.                                             (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 21 ") ? "21" : \
  83.                                              (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 22 ") ? "22" : \
  84.                                               (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 23 ") ? "23" : \
  85.                                                (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 24 ") ? "24" : \
  86.                                                 (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 25 ") ? "25" : \
  87.                                                  (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 26 ") ? "26" : \
  88.                                                   (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 27 ") ? "27" : \
  89.                                                    (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 28 ") ? "28" : \
  90.                                                     (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 29 ") ? "29" : \
  91.                                                      (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 30 ") ? "30" : \
  92.                                                       (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 31 ") ? "31" : "XX"))))))))))))))))))))))))))))))) // compiler will optimize this into a const string, e.g. "14"
  93. #define VERSION_FMT_YYYYMMDD "%04s%02s%02s"
  94. #define VERSION_ARG_YYYYMMDD BUILDDATE_YEAR, BUILDDATE_MONTH, BUILDDATE_DAY
  95. #endif // !VERSION_ARG_YYYYMMDD
  96.  
  97.  
  98. // we don't mind about this macro's efficiency...
  99. #define __FILENAME__ (strrchr (__FILE__, '\\') ? strrchr (__FILE__, '\\') + 1 : (strrchr (__FILE__, '/') ? strrchr (__FILE__, '/') + 1 : __FILE__))
  100.  
  101.  
  102. // exit less brutally than with abort() if something doesn't go the way we'd like to
  103. #define WELLMANNERED_ASSERT(is_is_true,...) do { if (!(is_is_true)) { fprintf (stderr, "ifstool: fatal error: assertion within %s() in %s line %d failed: ", __FUNCTION__, __FILENAME__, __LINE__); fprintf (stderr, __VA_ARGS__); fputc ('\n', stderr); exit (1); } } while (0)
  104.  
  105.  
  106. // checked read/write/seek operations
  107. #define fseek_or_die(fp,pos,mode) do { if (fseek ((fp), (pos), (mode)) != 0) { fprintf (stderr, "ifstool: fatal error: fseek() failure within %s() in %s line %d: errno %d (%s)\n", __FUNCTION__, __FILENAME__, __LINE__, errno, strerror (errno)); exit (1); } } while (0)
  108. #define fread_or_die(buf,sz,len,fp) do { if (fread ((buf), (sz), (len), (fp)) != (len)) { fprintf (stderr, "ifstool: fatal error: fread() failure within %s() in %s line %d: errno %d (%s)\n", __FUNCTION__, __FILENAME__, __LINE__, errno, strerror (errno)); exit (1); } } while (0)
  109. #define fwrite_or_die(buf,sz,len,fp) do { if ((fwrite ((buf), (sz), (len), (fp)) != (len)) || (fflush ((fp)) != 0)) { fprintf (stderr, "ifstool: fatal error: fwrite() failure within %s() in %s line %d: errno %d (%s)\n", __FUNCTION__, __FILENAME__, __LINE__, errno, strerror (errno)); exit (1); } } while (0)
  110.  
  111.  
  112. #define ROUND_TO_UPPER_MULTIPLE(val,multiple) ((((val) + (size_t) (multiple) - 1) / (multiple)) * (multiple)) // note that val is being evaluated once, so it can be the result of a function call
  113. #ifdef _WIN32
  114. #define IS_DIRSEP(c) (((c) == '/') || ((c) == '\\'))
  115. #define PATH_SEP ';'
  116. #define PATH_SEP_STR ";"
  117. #else // !_WIN32, thus POSIX
  118. #define IS_DIRSEP(c) ((c) == '/')
  119. #define PATH_SEP ':'
  120. #define PATH_SEP_STR ":"
  121. #endif // _WIN32
  122. #define RECORD_SEP '\x1e' // ASCII record separator
  123. #define RECORD_SEP_STR "\x1e" // ASCII record separator (as string)
  124.  
  125. // macros for accessing ELF files
  126. #define ELF_MAGIC_STR "\x7f" "ELF"
  127. #define ELF_ENDIAN_LITTLE 1 // ELF file is little endian
  128. #define ELF_ENDIAN_BIG    2 // ELF file is big endian
  129. #define ELF_DT_NULL    0 // marks end of dynamic section
  130. #define ELF_DT_SONAME 14 // canonical name of shared object
  131. #define ELF_STRUCT_MEMBER_NUMERIC(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? /* is it a 64-bit ELF file ? */ \
  132.    ( \
  133.       (sizeof ((elfstruct)->u.elf64.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
  134.          (elfstruct)->u.elf64.member /* same endianness, or single byte required: don't swap */ \
  135.       : /* else */ \
  136.          (sizeof ((elfstruct)->u.elf64.member) == 8 ? __builtin_bswap64 ((elfstruct)->u.elf64.member) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf64.member) : __builtin_bswap16 ((elfstruct)->u.elf64.member))) /* different endianness: swap */ \
  137.    ) \
  138.    : /* else peek at 32-bit ELF */ \
  139.    ( \
  140.       (sizeof ((elfstruct)->u.elf32.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
  141.          (elfstruct)->u.elf32.member /* same endianness, or single byte required: don't swap */ \
  142.       : /* else */ \
  143.          (sizeof ((elfstruct)->u.elf32.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf32.member) : __builtin_bswap16 ((elfstruct)->u.elf32.member)) /* different endianness: swap */ \
  144.    ) \
  145. ) // this macro supports 32- and 64-bit ELF files in low and big endianness transparently
  146. #define ELF_STRUCT_MEMBER_STRING(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? (elfstruct)->u.elf64.member : (elfstruct)->u.elf32.member) // this macro supports 32- and 64-bit ELF files transparently
  147. #define ELF_STRUCT_SIZE(elfhdr,elfstruct) ((elfhdr)->u.elf.platform_size == 2 ? sizeof ((elfstruct)->u.elf64) : sizeof ((elfstruct)->u.elf32)) // this macro supports 32- and 64-bit ELF files transparently
  148.  
  149. #define WILL_BE_FILLED_LATER 0xbaadf00d
  150.  
  151.  
  152. // bitmapped flags used in the flags1 member of the startup header
  153. #define STARTUP_HDR_FLAGS1_VIRTUAL        (1 << 0)
  154. #define STARTUP_HDR_FLAGS1_BIGENDIAN      (1 << 1)
  155. //#define STARTUP_HDR_FLAGS1_COMPRESS_MASK  0x1c
  156. //#define STARTUP_HDR_FLAGS1_COMPRESS_SHIFT 0x02
  157. //#define STARTUP_HDR_FLAGS1_COMPRESS_NONE  0x00
  158. //#define STARTUP_HDR_FLAGS1_COMPRESS_ZLIB  0x04
  159. //#define STARTUP_HDR_FLAGS1_COMPRESS_LZO   0x08
  160. //#define STARTUP_HDR_FLAGS1_COMPRESS_UCL   0x0c
  161. #define STARTUP_HDR_FLAGS1_TRAILER_V2     (1 << 5) // if set, then a struct startup_trailer_v2 follows the startup. If the image is compressed, then the compressed imagefs is followed by a struct image_trailer_v2
  162.  
  163.  
  164. #define STARTUP_HDR_MACHINE_X86_64  0x3e
  165. #define STARTUP_HDR_MACHINE_AARCH64 0xb7
  166.  
  167.  
  168. // bitmapped flags used in the flags member of the image header
  169. #define IMAGE_FLAGS_BIGENDIAN  (1 << 0) // header, trailer, dirents in big-endian format
  170. #define IMAGE_FLAGS_READONLY   (1 << 1) // do not try to write to image (rom/flash)
  171. #define IMAGE_FLAGS_INO_BITS   (1 << 2) // inode bits valid
  172. #define IMAGE_FLAGS_SORTED     (1 << 3) // dirent section is sorted (by pathname)
  173. #define IMAGE_FLAGS_TRAILER_V2 (1 << 4) // image uses struct image_trailer_v2
  174.  
  175.  
  176. // bitmapped flags superposed to a filesystem entry's inode number
  177. #define IFS_INO_PROCESSED_ELF 0x80000000
  178. #define IFS_INO_RUNONCE_ELF   0x40000000
  179. #define IFS_INO_BOOTSTRAP_EXE 0x20000000
  180.  
  181.  
  182. // SHA-512 block and digest sizes
  183. #define SHA512_BLOCK_LENGTH 128 // in bytes
  184. #define SHA512_DIGEST_LENGTH 64 // in bytes
  185.  
  186.  
  187. // SHA-512 computation context structure type definition
  188. typedef struct sha512_ctx_s
  189. {
  190.    uint64_t state[8];
  191.    uint64_t bitcount[2];
  192.    uint8_t buffer[SHA512_BLOCK_LENGTH];
  193. } SHA512_CTX;
  194.  
  195.  
  196. #ifdef _MSC_VER
  197. #pragma pack(push)
  198. #pragma pack(1)
  199. #endif // _MSC_VER
  200.  
  201.  
  202. #if 0 // TODO: startup script compiler. Someday.
  203. #define SCRIPT_FLAGS_EXTSCHED   0x01
  204. #define SCRIPT_FLAGS_SESSION    0x02
  205. #define SCRIPT_FLAGS_SCHED_SET  0x04
  206. #define SCRIPT_FLAGS_CPU_SET    0x08
  207. #define SCRIPT_FLAGS_BACKGROUND 0x20
  208. #define SCRIPT_FLAGS_KDEBUG     0x40
  209.  
  210. #define SCRIPT_POLICY_NOCHANGE 0
  211. #define SCRIPT_POLICY_FIFO     1
  212. #define SCRIPT_POLICY_RR       2
  213. #define SCRIPT_POLICY_OTHER    3
  214.  
  215. #define SCRIPT_TYPE_EXTERNAL        0
  216. #define SCRIPT_TYPE_WAITFOR         1
  217. #define SCRIPT_TYPE_REOPEN          2
  218. #define SCRIPT_TYPE_DISPLAY_MSG     3
  219. #define SCRIPT_TYPE_PROCMGR_SYMLINK 4
  220. #define SCRIPT_TYPE_EXTSCHED_APS    5
  221.  
  222. #define SCRIPT_CHECKS_MS 100
  223.  
  224. #define SCRIPT_SCHED_EXT_NONE 0
  225. #define SCRIPT_SCHED_EXT_APS  1
  226.  
  227. #define SCRIPT_APS_SYSTEM_PARTITION_ID   0
  228. #define SCRIPT_APS_SYSTEM_PARTITION_NAME "System"
  229. #define SCRIPT_APS_PARTITION_NAME_LENGTH 15
  230. #define SCRIPT_APS_MAX_PARTITIONS        8
  231.  
  232.  
  233. typedef struct __attribute__((packed)) bootscriptcmd_header_s
  234. {
  235.    uint16_t size; // size of cmd entry
  236.    uint8_t type;
  237.    uint8_t spare;
  238. } bootscriptcmd_header_t;
  239.  
  240.  
  241. typedef union bootscriptcmd_s
  242. {
  243.    struct __attribute__((packed)) script_external
  244.    {
  245.       bootscriptcmd_header_t hdr;
  246.       uint8_t cpu; // CPU (turn into runmask)
  247.       uint8_t flags;
  248.       union script_external_extsched
  249.       {
  250.          uint8_t reserved[2];
  251.          struct __attribute__((packed))
  252.          {
  253.             uint8_t id;
  254.             uint8_t reserved[1];
  255.          } aps;
  256.       } extsched; // extended scheduler
  257.       uint8_t policy; // POLICY_FIFO, POLICY_RR, ...
  258.       uint8_t priority; // priority to run cmd at
  259.       uint8_t argc; // # of args
  260.       uint8_t envc; // # of environment entries
  261.       char args[0]; // executable, argv, envp (null padded to 32-bit align)
  262.    } external;
  263.    struct __attribute__((packed)) script_waitfor_reopen
  264.    {
  265.       bootscriptcmd_header_t hdr;
  266.       uint16_t checks;
  267.       char fname[0]; // char fname[] (null padded to 32-bit align)
  268.    } waitfor_reopen;
  269.    struct __attribute__((packed)) script_display_msg
  270.    {
  271.       bootscriptcmd_header_t hdr;
  272.       char msg[0]; // char msg[] (null padded to 32-bit align)
  273.    } display_msg;
  274.    struct __attribute__((packed)) script_procmgr_symlink
  275.    {
  276.       bootscriptcmd_header_t hdr;
  277.       char src_dest[0]; // <src_name>, '\0', <dest_name> '\0' (null padded to 32-bit align)
  278.    } procmgr_symlink;
  279.    struct __attribute__((packed)) script_extsched_aps
  280.    {
  281.       bootscriptcmd_header_t hdr;
  282.       uint8_t parent;
  283.       uint8_t budget;
  284.       uint16_t critical;
  285.       uint8_t id;
  286.       char pname[0]; // char pname[] (null padded to 32-bit align)
  287.    } extsched_aps;
  288. } bootscriptcmd_t;
  289. #endif // 0
  290.  
  291.  
  292. #define INITIAL_STARTUP_SCRIPT \
  293.    /* procmgr_symlink /proc/boot/ldqnx-64.so.2 /usr/lib/ldqnx-64.so.2 */ \
  294.    "\x34\x00" /*size*/ "\x04" /*type*/ "\x00" /*spare*/ "/proc/boot/ldqnx-64.so.2\0" "/usr/lib/ldqnx-64.so.2\0" \
  295.    /* sh /proc/boot/startup.sh */ \
  296.    "\x88\x00" /*size*/ "\x00" /*type*/ "\x00" /*spare*/ "\x00" /*CPU mask*/ "\x00" /*flags*/ "\x00\x00" /*reserved*/ "\x00" /*policy*/ "\x00" /*priority*/ "\02" /*argc*/ "\x02" /*envc*/ "sh\0" /*executable*/ "sh\0" "/proc/boot/startup.sh\0" /*argv*/ "PATH=/sbin:/usr/sbin:/bin:/usr/bin:/proc/boot\0" "LD_LIBRARY_PATH=/proc/boot:/lib:/lib/dll:/usr/lib\0" /*envp*/ \
  297.    /* display_msg "Startup complete */ \
  298.    "\x18\x00" /*size*/ "\x03" /*type*/ "\x00" /*spare*/ "Startup complete\n\0" "\x00\00" /*padding*/ \
  299.    /* trailer */ \
  300.    "\x00\x00\x00\x00"
  301.  
  302.  
  303. typedef struct __attribute__((packed)) fsentry_s
  304. {
  305.    struct __attribute__((packed)) fsentry_header_s
  306.    {
  307.       uint16_t size; // size of dirent
  308.       uint16_t extattr_offset; // if zero, no extattr data
  309.       uint32_t ino; // if zero, skip entry
  310.       uint32_t mode; // mode and perms of entry
  311.       uint32_t gid;
  312.       uint32_t uid;
  313.       uint32_t mtime;
  314.    } header;
  315.    union __attribute__((packed)) fsentry_specific_u
  316.    {
  317.       struct __attribute__((packed)) fsentry_file_s // when (mode & S_IFMT) == S_IFREG
  318.       {
  319.          uint32_t offset; // offset from header
  320.          uint32_t size;
  321.          char *path; // null terminated path (no leading slash)
  322.          char *UNSAVED_databuf; // file data blob buffer (NOT SAVED IN THE IFS)
  323.       } file;
  324.       struct __attribute__((packed)) fsentry_dir_s // when (mode & S_IFMT) == S_IFDIR
  325.       {
  326.          char *path; // null terminated path (no leading slash)
  327.       } dir;
  328.       struct __attribute__((packed)) fsentry_symlink_s // when (mode & S_IFMT) == S_IFLNK
  329.       {
  330.          uint16_t sym_offset; // offset to 'contents' from 'path'
  331.          uint16_t sym_size; // strlen (contents)
  332.          char *path; // null terminated path (no leading slash)
  333.          char *contents; // null terminated symlink contents
  334.       } symlink;
  335.       struct __attribute__((packed)) fsentry_device_s // when (mode & S_IFMT) == S_IF<CHR|BLK|FIFO|NAM|SOCK>
  336.       {
  337.          uint32_t dev;
  338.          uint32_t rdev;
  339.          char *path; // null terminated path (no leading slash)
  340.       } device;
  341.    } u;
  342.    bool UNSAVED_was_data_written; // whether this entry's data was written to the image (NOT SAVED IN THE IFS)
  343. } fsentry_t;
  344.  
  345.  
  346. typedef struct __attribute__((packed)) startup_header_s // size 256 bytes
  347. {
  348.                            // I - used by the QNX IPL
  349.                            // S - used by the startup program
  350.    uint8_t signature[4];   // [I ] Header signature, "\xeb\x7e\xff\x00"
  351.    uint16_t version;       // [I ] Header version, i.e. 1
  352.    uint8_t flags1;         // [IS] Misc flags, 0x21 (= 0x20 | STARTUP_HDR_FLAGS1_VIRTUAL)
  353.    uint8_t flags2;         // [  ] No flags defined yet (0)
  354.    uint16_t header_size;   // [ S] sizeof(struct startup_header), i.e. 256
  355.    uint16_t machine;       // [IS] Machine type from elfdefinitions.h, i.e. 0x003E --> _ELF_DEFINE_EM(EM_X86_64, 62, "AMD x86-64 architecture")
  356.    uint32_t startup_vaddr; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
  357.    uint32_t paddr_bias;    // [ S] Value to add to physical address to get a value to put into a pointer and indirected through, here 0 (no indirections)
  358.    uint32_t image_paddr;   // [IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
  359.    uint32_t ram_paddr;     // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
  360.    uint32_t ram_size;      // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee
  361.    uint32_t startup_size;  // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
  362.    uint32_t stored_size;   // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
  363.    uint32_t imagefs_paddr; // [IS] Set by IPL to where the imagefs is when startup runs (0)
  364.    uint32_t imagefs_size;  // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
  365.    uint16_t preboot_size;  // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
  366.    uint16_t zero0;         // [  ] Zeros
  367.    uint32_t zero[1];       // [  ] Zeros
  368.    uint64_t addr_off;      // [ S] Offset to add to startup_vaddr, image_paddr, ram_paddr, and imagefs_paddr members, here zero (0)
  369.    uint32_t info[48];      // [IS] Array of startup_info* structures (zero filled)
  370. } startup_header_t;
  371.  
  372.  
  373. typedef struct __attribute__((packed)) startup_trailer_s
  374. {
  375.    uint32_t cksum; // checksum from start of header to start of trailer
  376. } startup_trailer_v1_t;
  377.  
  378.  
  379. // NOTE: The checksums in this trailer will only be valid prior to entering startup.
  380. // Because the startup binary is executed in-place, its data segment will change once the program is running.
  381. // Hence, any checksum validation would need to be done by the boot loader / IFS.
  382. typedef struct __attribute__((packed)) startup_trailer_v2_s
  383. {
  384.    uint8_t sha512[64]; // SHA512 from start of header to start of trailer
  385.    uint32_t cksum; // checksum from start of header to start of this member
  386. } startup_trailer_v2_t;
  387.  
  388.  
  389. typedef struct __attribute__((packed)) image_header_s
  390. {
  391.    uint8_t signature[7]; // image filesystem signature, i.e. "imagefs"
  392.    uint8_t flags; // endian neutral flags, 0x1c
  393.    uint32_t image_size; // size from start of header to end of trailer (here 0xca6fe0 or 13 266 912)
  394.    uint32_t hdr_dir_size; // size from start of header to last dirent (here 0x12b8 or 4792)
  395.    uint32_t dir_offset; // offset from start of header to start of first dirent (here 0x5c or 92)
  396.    uint32_t boot_ino[4]; // inode of files for bootstrap pgms (here 0xa0000002, 0, 0, 0)
  397.    uint32_t script_ino; // inode of file for script (here 3)
  398.    uint32_t chain_paddr; // offset to next filesystem signature (0)
  399.    uint32_t spare[10]; // zerofill
  400.    uint32_t mountflags; // default _MOUNT_* from sys/iomsg.h (0)
  401.    char mountpoint[4]; // default mountpoint for image ("/" + "\0\0\0")
  402. } image_header_t;
  403.  
  404.  
  405. typedef struct __attribute__((packed)) image_trailer_v1_s
  406. {
  407.    uint32_t cksum; // checksum from start of header to start of trailer
  408. } image_trailer_v1_t; // NOTE: this is the same structure as startup_trailer_v1_t
  409.  
  410.  
  411. // NOTE: the checksums in this trailer will only be valid until the first non-startup bootstrap binary (e.g., startup-verifier, procnto, ...) is invoked.
  412. // Because bootstrap binaries execute in-place, their data segments will change once the programs are running.
  413. // Hence, any checksum validation would need to be done either by the boot loader / IFS or by the startup.
  414. typedef struct __attribute__((packed)) image_trailer_v2_s
  415. {
  416.    uint8_t sha512[64]; // SHA512 from start of image header to start of trailer
  417.    uint32_t cksum; // checksum from start of header to start of this member
  418. } image_trailer_v2_t; // NOTE: this is the same structure as startup_trailer_v2_t
  419.  
  420.  
  421. // Executable and Linkable Format master header structure type definition
  422. typedef struct __attribute__((packed)) elf_header_s
  423. {
  424.    union __attribute__((packed))
  425.    {
  426.       struct __attribute__((packed))
  427.       {
  428.          uint8_t magic[4];                     // offset 0: "\x07" + "ELF"
  429.          uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
  430.          uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
  431.          uint8_t header_version;               // offset 6: typically 1
  432.          uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
  433.          uint8_t spare[8];                     // offset 8: zeroes
  434.          uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
  435.          uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
  436.          uint32_t elf_version;                 // offset 20: typically 1
  437.       } elf;
  438.       struct __attribute__((packed))
  439.       {
  440.          uint8_t magic[4];                     // offset 0: "\x07" + "ELF"
  441.          uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
  442.          uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
  443.          uint8_t header_version;               // offset 6: typically 1
  444.          uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
  445.          uint8_t spare[8];                     // offset 8: zeroes
  446.          uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
  447.          uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
  448.          uint32_t elf_version;                 // offset 20: typically 1
  449.          uint32_t entrypoint_offset;           // offset 24: offset to program entrypoint
  450.          uint32_t program_header_table_offset; // offset 28: offset to program header table
  451.          uint32_t section_header_table_offset; // offset 32: offset to section header table
  452.          uint32_t flags;                       // offset 36: flags (architecture-dependent, none for x86)
  453.          uint16_t header_size;                 // offset 40: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF -- DO NOT USE sizeof() ON THE elf_header_s STRUCT BECAUSE OF THE UNION! WRITE THE CORRECT SIZE YOURSELF!
  454.          uint16_t program_header_item_size;    // offset 42: size of an entry in the program header table
  455.          uint16_t program_header_table_len;    // offset 44: number of entries in the program header table
  456.          uint16_t section_header_item_size;    // offset 46: size of an entry in the section header table
  457.          uint16_t section_header_table_len;    // offset 48: number of entries in the section header table
  458.          uint16_t section_header_names_idx;    // offset 50: index of the entry in the section header table that contains the section names
  459.       } elf32;
  460.       struct __attribute__((packed))
  461.       {
  462.          uint8_t magic[4];                     // offset 0: "\x07" + "ELF"
  463.          uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
  464.          uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
  465.          uint8_t header_version;               // offset 6: typically 1
  466.          uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
  467.          uint8_t spare[8];                     // offset 8: zeroes
  468.          uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
  469.          uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
  470.          uint32_t elf_version;                 // offset 20: typically 1
  471.          uint64_t entrypoint_offset;           // offset 24: program entry offset
  472.          uint64_t program_header_table_offset; // offset 32: offset to program header table
  473.          uint64_t section_header_table_offset; // offset 40: offset to section header table
  474.          uint32_t flags;                       // offset 48: flags (architecture-dependent, none for x86)
  475.          uint16_t header_size;                 // offset 52: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF
  476.          uint16_t program_header_item_size;    // offset 54: size of an entry in the program header table
  477.          uint16_t program_header_table_len;    // offset 56: number of entries in the program header table
  478.          uint16_t section_header_item_size;    // offset 58: size of an entry in the section header table
  479.          uint16_t section_header_table_len;    // offset 60: number of entries in the section header table
  480.          uint16_t section_header_names_idx;    // offset 62: index of the entry in the section header table that contains the section names
  481.       } elf64;
  482.    } u;
  483. } elf_header_t;
  484.  
  485.  
  486. // Executable and Linkable Format section header structure type definition
  487. typedef struct __attribute__((packed)) elf_section_header_s
  488. {
  489.    union __attribute__((packed))
  490.    {
  491.       struct __attribute__((packed))
  492.       {
  493.          uint32_t name_offset;  // offset 0: offset in the string table of the name of this section
  494.          uint32_t type;         // offset 4:
  495.          uint32_t flags;        // offset 8:
  496.          uint32_t virtual_addr; // offset 12: address in virtual memory where this section may be loaded
  497.          uint32_t file_offset;  // offset 16: offset of this section in the ELF file
  498.          uint32_t size;         // offset 20: size of this section
  499.          uint32_t linked_index; // offset 24: optional section index of an associated section
  500.          uint32_t info;         // offset 28: optional extra information
  501.          uint32_t alignment;    // offset 32: required memory alignment (must be a power of 2)
  502.          uint32_t entry_size;   // offset 36: for table-like sections, size of an element in the table
  503.       } elf32;
  504.       struct __attribute__((packed))
  505.       {
  506.          uint32_t name_offset;  // offset 0: offset in the string table of the name of this section
  507.          uint32_t type;         // offset 4:
  508.          uint64_t flags;        // offset 8:
  509.          uint64_t virtual_addr; // offset 16: address in virtual memory where this section may be loaded
  510.          uint64_t file_offset;  // offset 24: offset of this section in the ELF file
  511.          uint64_t size;         // offset 32: size of this section
  512.          uint32_t linked_index; // offset 40: optional section index of an associated section
  513.          uint32_t info;         // offset 44: optional extra information
  514.          uint64_t alignment;    // offset 48: required memory alignment (must be a power of 2)
  515.          uint64_t entry_size;   // offset 56: for table-like sections, size of an element in the table
  516.       } elf64;
  517.    } u;
  518. } elf_section_header_t;
  519.  
  520.  
  521. // Executable and Linkable Format dynamic section entry structure type definition
  522. typedef struct __attribute__((packed)) elf_dynamic_section_entry_s
  523. {
  524.    union __attribute__((packed))
  525.    {
  526.       struct __attribute__((packet))
  527.       {
  528.          int32_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
  529.          union
  530.          {
  531.             uint32_t as_integer; // value as integer
  532.             uint32_t as_pointer; // value as address
  533.          } value;
  534.       } elf32;
  535.       struct __attribute__((packed))
  536.       {
  537.          int64_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
  538.          union
  539.          {
  540.             uint64_t as_integer; // value as intege
  541.             uint64_t as_pointer; // value as address
  542.          } value;
  543.       } elf64;
  544.    } u;
  545. } elf_dynamic_section_entry_t;
  546.  
  547.  
  548. #ifdef _MSC_VER
  549. #pragma pack(pop)
  550. #endif // _MSC_VER
  551.  
  552.  
  553. typedef struct parms_s
  554. {
  555.    int dperms; // directory permissions (e.g. 0755)
  556.    int perms; // file permissions (e.g. 0644)
  557.    int uid; // owner user ID (e.g. 0 = root)
  558.    int gid; // owner group ID (e.g. 0 = root)
  559.    int st_mode; // entry type (e.g. S_IFREG for files) and permissions
  560.    uint32_t mtime; // entry's modification time POSIX timestamp - set to UINT32_MAX to use the concerned files' mtime on the build host
  561.    uint32_t mtime_for_inline_files; // same as above but only for files that don't exist on the build host (i.e. files with an explicit content blob)
  562.    char prefix[MAXPATHLEN]; // install path (e.g. "proc/boot")
  563.    bool should_follow_symlinks; // follow symlinks
  564.    bool should_autosymlink_dylib; // dynamic libraries should be written under their official SONAME and a named symlink be created pointing at them
  565.    bool is_compiled_bootscript; // entry has [+script] attribute
  566.    char search[10 * MAXPATHLEN]; // binary search path (the default one will be constructed at startup)
  567.  
  568.    uint8_t *data;
  569.    size_t datalen;
  570. } parms_t;
  571.  
  572.  
  573. // global variables
  574. static char line_buffer[4096]; // scrap buffer for the IFS build file parser
  575. static uint32_t image_base = 4 * 1024 * 1024; // default image base, as per QNX docs -- can be changed with the [image=XXXX] attribute in the IFS build file
  576. static uint32_t image_end = UINT32_MAX; // default image end (no limit)
  577. static uint32_t image_maxsize = UINT32_MAX; // default image max size (no limit)
  578. static uint32_t image_totalsize = 0; // image total size, measured once all the blocks have been written to the output IFS file
  579. static uint32_t image_align = 4; // default image alignment, as per QNX docs
  580. static uint32_t image_kernel_ino = 0;
  581. static uint32_t image_bootscript_ino = 0;
  582. #if defined(__x86_64__)
  583. static char image_processor[16] = "x86_64"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
  584. #elif defined(__aarch64__)
  585. static char image_processor[16] = "aarch64le"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
  586. #else // unknown platform
  587. #error Please port ifstool to this platform
  588. #endif
  589. static char *buildfile_pathname = NULL; // pathname of IFS build file
  590. static char *current_line = NULL; // copy of current line in IFS build file
  591. static int lineno = 0; // current line number in IFS build file
  592. static char *QNX_TARGET = NULL; // value of the $QNX_TARGET environment variable
  593. static char *MKIFS_PATH = NULL; // value of the $MKIFS_PATH environment variable (may contain references to $QNX_TARGET). Initialized by this program if empty.
  594.  
  595.  
  596. // prototypes of local functions
  597. static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data); // used internally in SHA512_Update() and SHA512_Final()
  598. static void SHA512_Init (SHA512_CTX *context);
  599. static void SHA512_Update (SHA512_CTX *context, void *data, size_t len);
  600. static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context);
  601. static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest); // computes a SHA-512 in one pass (shortcut for SHA512_Init(), SHA512_Update() N times and SHA512_Final())
  602. static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness); // compute an IFS image or startup checksum to store in the trailer
  603. static long long read_integer (const char *str); // reads an integer number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
  604. static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...); // hexdump-style formatted output to a file stream (which may be stdout/stderr)
  605. static char *binary (const uint8_t x, char char_for_zero, char char_for_one); // returns the binary representation of byte 'x' as a string
  606. static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8]); // returns the ORed description of byte 'x' according to the description strings for each bit
  607. static char *read_filecontents (const char *pathname, const char *search_path, uint8_t **databuf, size_t *datalen); // locates pathname among MKIFS_PATH, reads it, places its contents in a buffer (caller frees) and returns a pointer to the resolved pathname (static string)
  608. static int fwrite_filecontents (const char *pathname, FILE *fp); // dumps the contents of pathname into fp
  609. static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp); // writes the given filesystem entry into fp (without its contents)
  610. static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname); // stack up a new filesystem entry
  611. static int fsentry_compare_pathnames_cb (const void *a, const void *b); // qsort() comparison callback that sorts filesystem entries by pathnames
  612. static void update_MKIFS_PATH (const char *processor);
  613. static int dump_ifs_info (const char *ifs_pathname); // dumps detailed info about a particular IFS file on the standard output, returns 0 on success and >0 on error
  614.  
  615.  
  616. static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data)
  617. {
  618.    // logical functions used in SHA-384 and SHA-512
  619.    #define S64(b,x)      (((x) >> (b)) | ((x) << (64 - (b)))) // 64-bit rotate right
  620.    #define Ch(x,y,z)     (((x) & (y)) ^ ((~(x)) & (z)))
  621.    #define Maj(x,y,z)    (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  622.    #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  623.    #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  624.    #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ ((x) >> 7))
  625.    #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ ((x) >> 6))
  626.  
  627.    // hash constant words K for SHA-384 and SHA-512
  628.    static const uint64_t K512[80] = {
  629.       0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  630.       0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  631.       0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  632.       0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  633.       0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  634.       0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  635.       0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  636.       0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  637.       0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  638.       0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  639.    };
  640.  
  641.    uint64_t     a, b, c, d, e, f, g, h, s0, s1;
  642.    uint64_t     T1, T2, *W512 = (uint64_t *) context->buffer;
  643.    int j;
  644.  
  645.    // initialize registers with the prev. intermediate value
  646.    a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7];
  647.  
  648.    for (j = 0; j < 16; j++)
  649.    {
  650. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  651.       W512[j] = __builtin_bswap64 (*data); // convert to host byte order
  652. #elif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  653.       W512[j] = *data;
  654. #else // __BYTE_ORDER__ == ???
  655. #error Please port this SHA-512 code to your exotic endianness platform. What are you compiling this on? PDP? Honeywell?
  656. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  657.  
  658.       // apply the SHA-512 compression function to update a..h
  659.       T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + W512[j];
  660.       T2 = Sigma0_512 (a) + Maj (a, b, c);
  661.  
  662.       // update registers
  663.       h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
  664.  
  665.       data++;
  666.    }
  667.  
  668.    for (; j < 80; j++)
  669.    {
  670.       // part of the message block expansion
  671.       s0 = W512[(j + 1) & 0x0f];
  672.       s0 = sigma0_512 (s0);
  673.       s1 = W512[(j + 14) & 0x0f];
  674.       s1 = sigma1_512 (s1);
  675.  
  676.       // apply the SHA-512 compression function to update a..h
  677.       T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
  678.       T2 = Sigma0_512 (a) + Maj (a, b, c);
  679.  
  680.       // update registers
  681.       h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
  682.    }
  683.  
  684.    // compute the current intermediate hash value
  685.    context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h;
  686.  
  687.    // clean up
  688.    a = b = c = d = e = f = g = h = T1 = T2 = 0;
  689.    #undef sigma1_512
  690.    #undef sigma0_512
  691.    #undef Sigma1_512
  692.    #undef Sigma0_512
  693.    #undef Maj
  694.    #undef Ch
  695.    #undef S64
  696.    return;
  697. }
  698.  
  699.  
  700. static void SHA512_Init (SHA512_CTX *context)
  701. {
  702.    // initial hash value H for SHA-512
  703.    static const uint64_t sha512_initial_hash_value[8] = {
  704.       0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
  705.    };
  706.  
  707.    memcpy (context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  708.    memset (context->buffer, 0, SHA512_BLOCK_LENGTH);
  709.    context->bitcount[0] = context->bitcount[1] = 0;
  710. }
  711.  
  712.  
  713. void SHA512_Update (SHA512_CTX *context, void *datain, size_t len)
  714. {
  715.    #define ADDINC128(w,n) do { \
  716.            (w)[0] += (uint64_t) (n); \
  717.            if ((w)[0] < (n)) \
  718.                    (w)[1]++; \
  719.    } while (0) // macro for incrementally adding the unsigned 64-bit integer n to the unsigned 128-bit integer (represented using a two-element array of 64-bit words
  720.  
  721.    size_t freespace, usedspace;
  722.    const uint8_t *data = (const uint8_t *) datain;
  723.  
  724.    if (len == 0)
  725.       return; // calling with empty data is valid - we do nothing
  726.  
  727.    usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  728.    if (usedspace > 0)
  729.    {
  730.       // calculate how much free space is available in the buffer
  731.       freespace = SHA512_BLOCK_LENGTH - usedspace;
  732.  
  733.       if (len >= freespace)
  734.       {
  735.          // fill the buffer completely and process it
  736.          memcpy (&context->buffer[usedspace], data, freespace);
  737.          ADDINC128 (context->bitcount, freespace << 3);
  738.          len -= freespace;
  739.          data += freespace;
  740.          sha512_private_transform (context, (uint64_t *) context->buffer);
  741.       }
  742.       else
  743.       {
  744.          // the buffer is not full yet
  745.          memcpy (&context->buffer[usedspace], data, len);
  746.          ADDINC128 (context->bitcount, len << 3);
  747.  
  748.          // clean up
  749.          usedspace = freespace = 0;
  750.          return;
  751.       }
  752.    }
  753.  
  754.    while (len >= SHA512_BLOCK_LENGTH)
  755.    {
  756.       // process as many complete blocks as we can
  757.       sha512_private_transform (context, (uint64_t *) data);
  758.       ADDINC128 (context->bitcount, SHA512_BLOCK_LENGTH << 3);
  759.       len -= SHA512_BLOCK_LENGTH;
  760.       data += SHA512_BLOCK_LENGTH;
  761.    }
  762.  
  763.    if (len > 0)
  764.    {
  765.       // save leftovers
  766.       memcpy (context->buffer, data, len);
  767.       ADDINC128 (context->bitcount, len << 3);
  768.    }
  769.  
  770.    // clean up
  771.    usedspace = freespace = 0;
  772.    #undef ADDINC128
  773.    return;
  774. }
  775.  
  776.  
  777. static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
  778. {
  779.    #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
  780.  
  781.    size_t usedspace;
  782.    union { uint8_t *as_bytes; uint64_t *as_uint64s; } cast_var = { NULL };
  783.  
  784.    // if no digest buffer is passed, don't bother finalizing the computation
  785.    if (digest != NULL)
  786.    {
  787.       usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  788.  
  789. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  790.       context->bitcount[0] = __builtin_bswap64 (context->bitcount[0]); // convert from host byte order
  791.       context->bitcount[1] = __builtin_bswap64 (context->bitcount[1]); // convert from host byte order
  792. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  793.  
  794.       if (usedspace > 0)
  795.       {
  796.          // begin padding with a 1 bit
  797.          context->buffer[usedspace++] = 0x80;
  798.  
  799.          if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
  800.             memset (&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); // set-up for the last transform
  801.          else
  802.          {
  803.             if (usedspace < SHA512_BLOCK_LENGTH)
  804.                memset (&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
  805.  
  806.             sha512_private_transform (context, (uint64_t *) context->buffer); // do second-to-last transform
  807.             memset (context->buffer, 0, SHA512_BLOCK_LENGTH - 2); // and set-up for the last transform
  808.          }
  809.       }
  810.       else // usedspace == 0
  811.       {
  812.          memset (context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); // prepare for final transform
  813.          *context->buffer = 0x80; // begin padding with a 1 bit
  814.       }
  815.  
  816.       // store the length of input data (in bits)
  817.       cast_var.as_bytes = context->buffer;
  818.       cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 0] = context->bitcount[1];
  819.       cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
  820.  
  821.       // final transform
  822.       sha512_private_transform (context, (uint64_t *) context->buffer);
  823.  
  824.       // save the hash data for output
  825. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  826.       for (int j = 0; j < 8; j++)
  827.          context->state[j] = __builtin_bswap64 (context->state[j]); // convert to host byte order
  828. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  829.       memcpy (digest, context->state, SHA512_DIGEST_LENGTH);
  830.    }
  831.  
  832.    // zero out state data
  833.    memset (context, 0, sizeof (SHA512_CTX));
  834.    #undef SHA512_SHORT_BLOCK_LENGTH
  835.    return;
  836. }
  837.  
  838.  
  839. static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest_or_NULL)
  840. {
  841.    // computes the SHA-512 hash of a block of data in one pass and write it to digest, or to a static buffer if NULL
  842.    // returns the STRING REPRESENTATION of digest in a statically-allocated string
  843.  
  844.    static thread_local uint8_t static_digest[SHA512_DIGEST_LENGTH] = "";
  845.    static thread_local char digest_as_string[2 * SHA512_DIGEST_LENGTH + 1] = "";
  846.  
  847.    SHA512_CTX ctx;
  848.    size_t byte_index;
  849.  
  850.    SHA512_Init (&ctx);
  851.    SHA512_Update (&ctx, data, data_len);
  852.    if (digest_or_NULL == NULL)
  853.       digest_or_NULL = static_digest;
  854.    SHA512_Final (digest_or_NULL, &ctx);
  855.  
  856.    for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
  857.       sprintf (&digest_as_string[2 * byte_index], "%02x", digest_or_NULL[byte_index]);
  858.    return (digest_as_string);
  859. }
  860.  
  861.  
  862. static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness)
  863. {
  864.    // computes the checksum of an IFS image or startup section, i.e. from the start of the header to the end of the trailer minus the last 4 bytes where the checksum is stored
  865.  
  866.    uint8_t accumulator[4] = { 0, 0, 0, 0 };
  867.    const char *current_char_ptr;
  868.    int32_t image_cksum;
  869.    size_t i;
  870.  
  871.    image_cksum = 0;
  872.    current_char_ptr = data;
  873.    for (i = 0; i < data_len; i++)
  874.    {
  875.       accumulator[i % 4] = *current_char_ptr;
  876.       if (i % 4 == 3)
  877.          if (is_foreign_endianness)
  878.             image_cksum += (accumulator[3] << 0) + (accumulator[2] << 8) + (accumulator[1] << 16) + (accumulator[0] << 24);
  879.          else
  880.             image_cksum += (accumulator[0] << 0) + (accumulator[1] << 8) + (accumulator[2] << 16) + (accumulator[3] << 24);
  881.       current_char_ptr++;
  882.    }
  883.  
  884.    return (is_foreign_endianness ? __builtin_bswap32 (-image_cksum) : -image_cksum);
  885. }
  886.  
  887.  
  888. static long long read_integer (const char *str)
  889. {
  890.    // reads a number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
  891.  
  892.    char *endptr = NULL;
  893.    long long ret = strtoll (str, &endptr, 0); // use strtoll() to handle hexadecimal (0x...), octal (0...) and decimal (...) bases
  894.    if (endptr != NULL)
  895.    {
  896.       if ((*endptr == 'k') || (*endptr == 'K')) ret *= (size_t) 1024;
  897.       else if ((*endptr == 'm') || (*endptr == 'M')) ret *= (size_t) 1024 * 1024;
  898.       else if ((*endptr == 'g') || (*endptr == 'G')) ret *= (size_t) 1024 * 1024 * 1024;
  899.       else if ((*endptr == 't') || (*endptr == 'T')) ret *= (size_t) 1024 * 1024 * 1024 * 1024; // future-proof enough, I suppose?
  900.    }
  901.    return (ret);
  902. }
  903.  
  904.  
  905. static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...)
  906. {
  907.    // this function logs hexadecimal data to an opened file pointer (or to stdout/stderr)
  908.  
  909.    va_list argptr;
  910.    size_t index;
  911.    int i;
  912.  
  913.    // concatenate all the arguments in one string and write it to the file
  914.    va_start (argptr, fmt);
  915.    vfprintf (fp, fmt, argptr);
  916.    va_end (argptr);
  917.  
  918.    // for each row of howmany_columns bytes of data...
  919.    for (index = 0; index < data_size; index += howmany_columns)
  920.    {
  921.       fprintf (fp, "    %05zu  ", index); // print array address of row
  922.       for (i = 0; i < howmany_columns; i++)
  923.          if (index + i < data_size)
  924.             fprintf (fp, " %02X", data[index + i]); // if row contains data, print data as hex bytes
  925.          else
  926.             fprintf (fp, "   "); // else fill the space with blanks
  927.       fprintf (fp, "   ");
  928.       for (i = 0; i < howmany_columns; i++)
  929.          if (index + i < data_size)
  930.             fputc ((data[index + i] >= 32) && (data[index + i] < 127) ? data[index + i] : '.', fp); // now if row contains data, print data as ASCII
  931.          else
  932.             fputc (' ', fp); // else fill the space with blanks
  933.       fputc ('\n', fp);
  934.    }
  935.  
  936.    return; // and return
  937. }
  938.  
  939.  
  940. static char *binary (const uint8_t x, char char_for_zero, char char_for_one)
  941. {
  942.    // returns the binary representation of x as a string
  943.  
  944.    static thread_local char outstr[9] = "00000000";
  945.    for (int i = 0; i < 8; i++)
  946.       outstr[i] = (x & (0x80 >> i) ? char_for_one : char_for_zero);
  947.    return (outstr);
  948. }
  949.  
  950.  
  951. static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8])
  952. {
  953.    // returns the ORed description of byte 'x' according to the description strings for each bit
  954.  
  955.    static thread_local char *default_bitstrings[8] = { "bit0", "bit1", "bit2", "bit3", "bit4", "bit5", "bit6", "bit7" };
  956.    static thread_local char outstr[8 * 64] = "";
  957.  
  958.    outstr[0] = 0;
  959.    for (int i = 0; i < 8; i++)
  960.       if (x & (1 << i))
  961.       {
  962.          if (outstr[0] != 0)
  963.             strcat (outstr, "|");
  964.          strcat (outstr, ((bitwise_stringdescs != NULL) && (*bitwise_stringdescs[i] != 0) ? bitwise_stringdescs[i] : default_bitstrings[i]));
  965.       }
  966.    return (outstr);
  967. }
  968.  
  969.  
  970. static char *read_filecontents (const char *pathname, const char *search_path, uint8_t **databuf, size_t *datalen)
  971. {
  972.    // locates pathname among MKIFS_PATH, and places its contents in a buffer (caller frees). Returns resolved pathname (static buffer) or NULL.
  973.  
  974.    static thread_local char final_pathname[MAXPATHLEN];
  975.  
  976.    const char *nextsep;
  977.    const char *token;
  978.    FILE *fp;
  979.  
  980.    // is it an absolute pathname (POSIX and Windows variants) ?
  981.    if (IS_DIRSEP (pathname[0]) || (isalpha (pathname[0]) && (pathname[1] == ':') && IS_DIRSEP (pathname[2])))
  982.       strcpy (final_pathname, pathname); // in this case, it MUST exist at its designated location (either absolute or relative to the current working directory)
  983.    else // the path is relative, search it among the search paths we have
  984.    {
  985.       // construct a potential final path using each element of the search path
  986.       token = (*search_path != 0 ? search_path : NULL);
  987.       nextsep = (token != NULL ? &token[strcspn (token, PATH_SEP_STR)] : NULL);
  988.       while (token != NULL)
  989.       {
  990.          sprintf (final_pathname, "%.*s/%s", (int) (nextsep - token), token, pathname);
  991.          if (access (final_pathname, 0) == 0)
  992.             break; // if a file can indeed be found at this location, stop searching
  993.  
  994.          token = (*nextsep != 0 ? nextsep + 1 : NULL);
  995.          nextsep = (token != NULL ? &token[strcspn (token, PATH_SEP_STR)] : NULL);
  996.       }
  997.  
  998.       // have we exhausted all possibilities ?
  999.       if (token == NULL)
  1000.       {
  1001.          errno = ENOENT;
  1002.          return (NULL); // file not found, return with ENOENT
  1003.       }
  1004.    }
  1005.  
  1006.    // now open and read the file
  1007.    fp = fopen (final_pathname, "rb");
  1008.    if (fp == NULL)
  1009.       return (NULL); // unexistent file (errno is set to ENOENT)
  1010.  
  1011.    fseek (fp, 0, SEEK_END);
  1012.    *datalen = ftell (fp); // measure file length
  1013.    fseek (fp, 0, SEEK_SET);
  1014.    *databuf = malloc (*datalen);
  1015.    if (*databuf == NULL)
  1016.    {
  1017.       fclose (fp);
  1018.       *datalen = 0;
  1019.       return (NULL); // out of memory (errno is set to ENOMEM)
  1020.    }
  1021.    if (fread (*databuf, 1, *datalen, fp) != *datalen) // read the file in whole
  1022.    {
  1023.       fclose (fp);
  1024.       *datalen = 0;
  1025.       return (NULL); // short read (errno is set)
  1026.    }
  1027.    fclose (fp); // close the file
  1028.  
  1029.    return (final_pathname); // file was read successfully and its content put in databuf with size datalen
  1030. }
  1031.  
  1032.  
  1033. static int fwrite_filecontents (const char *pathname, FILE *fp)
  1034. {
  1035.    // dumps the binary contents of pathname to fp
  1036.  
  1037.    uint8_t *blob_buffer;
  1038.    size_t blob_size;
  1039.    FILE *blob_fp;
  1040.    int ret;
  1041.  
  1042.    blob_fp = fopen (pathname, "rb");
  1043.    if (blob_fp == NULL)
  1044.       return (-1); // errno is set
  1045.  
  1046.    fseek (blob_fp, 0, SEEK_END);
  1047.    blob_size = ftell (blob_fp);
  1048.    blob_buffer = malloc (blob_size);
  1049.    if (blob_buffer == NULL)
  1050.    {
  1051.       fclose (blob_fp);
  1052.       return (-1); // errno is set to ENOMEM
  1053.    }
  1054.    fseek (blob_fp, 0, SEEK_SET);
  1055.    fread (blob_buffer, 1, blob_size, blob_fp);
  1056.    fclose (blob_fp);
  1057.  
  1058.    ret = (int) fwrite (blob_buffer, 1, blob_size, fp);
  1059.    fflush (fp); // force flush to disk, because the C stream API is *buffered*
  1060.    free (blob_buffer);
  1061.    return (ret);
  1062. }
  1063.  
  1064.  
  1065. static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp)
  1066. {
  1067.    // writes a directory entry in the image filesystem file pointed to by fp (or fakes so if fp is NULL)
  1068.    // and return the number of bytes written (or that would have been written)
  1069.  
  1070.    static const uint8_t zeropad_buffer[] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
  1071.  
  1072.    size_t datalen;
  1073.    size_t count;
  1074.  
  1075.    count = 0;
  1076.    if (fp != NULL)
  1077.       fwrite_or_die (&fsentry->header, 1, sizeof (fsentry->header), fp); // write the entry header (PACKED STRUCT)
  1078.    count += sizeof (fsentry->header);
  1079.    if (S_ISREG (fsentry->header.mode))
  1080.    {
  1081.       if (fp != NULL)
  1082.       {
  1083.          fwrite_or_die (&fsentry->u.file.offset, 1, sizeof (uint32_t), fp); // write offset
  1084.          fwrite_or_die (&fsentry->u.file.size,   1, sizeof (uint32_t), fp); // write size
  1085.       }
  1086.       count += 2 * sizeof (uint32_t);
  1087.       datalen = strlen (fsentry->u.file.path) + 1;
  1088.       if (fp != NULL)
  1089.          fwrite_or_die (fsentry->u.file.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1090.       count += datalen;
  1091.    }
  1092.    else if (S_ISDIR (fsentry->header.mode))
  1093.    {
  1094.       datalen = strlen (fsentry->u.dir.path) + 1;
  1095.       if (fp != NULL)
  1096.          fwrite_or_die (fsentry->u.dir.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1097.       count += datalen;
  1098.    }
  1099.    else if (S_ISLNK (fsentry->header.mode))
  1100.    {
  1101.       if (fp != NULL)
  1102.       {
  1103.          fwrite_or_die (&fsentry->u.symlink.sym_offset, 1, sizeof (uint16_t), fp); // write offset
  1104.          fwrite_or_die (&fsentry->u.symlink.sym_size,   1, sizeof (uint16_t), fp); // write size
  1105.       }
  1106.       count += 2 * sizeof (uint16_t);
  1107.       datalen = strlen (fsentry->u.symlink.path) + 1;
  1108.       if (fp != NULL)
  1109.          fwrite_or_die (fsentry->u.symlink.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1110.       count += datalen;
  1111.       datalen = strlen (fsentry->u.symlink.contents) + 1;
  1112.       if (fp != NULL)
  1113.          fwrite_or_die (fsentry->u.symlink.contents, 1, (size_t) datalen, fp); // write null-terminated symlink contents
  1114.       count += datalen;
  1115.    }
  1116.    else
  1117.    {
  1118.       if (fp != NULL)
  1119.       {
  1120.          fwrite_or_die (&fsentry->u.device.dev,  1, sizeof (uint32_t), fp); // write dev number
  1121.          fwrite_or_die (&fsentry->u.device.rdev, 1, sizeof (uint32_t), fp); // write rdev number
  1122.       }
  1123.       count += 2 * sizeof (uint32_t);
  1124.       datalen = strlen (fsentry->u.device.path) + 1;
  1125.       if (fp != NULL)
  1126.          fwrite_or_die (fsentry->u.device.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1127.       count += datalen;
  1128.    }
  1129.  
  1130.    if (count < fsentry->header.size)
  1131.    {
  1132.       if (fp != NULL)
  1133.          fwrite_or_die (zeropad_buffer, 1, fsentry->header.size - count, fp); // pad as necessary
  1134.       count += fsentry->header.size - count;
  1135.    }
  1136.    else if (count > fsentry->header.size)
  1137.    {
  1138.       fprintf (stderr, "ERROR: attempt to write invalid dirent (claimed size %zd, written size %zd). Aborting.\n", (size_t) fsentry->header.size, count);
  1139.       exit (1);
  1140.    }
  1141.  
  1142.    return (count);
  1143. }
  1144.  
  1145.  
  1146. static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname)
  1147. {
  1148.    static thread_local char candidate_pathname[1024];
  1149.    static int inode_count = 0; // will be preincremented each time this function is called
  1150.  
  1151.    const char *original_stored_pathname = NULL;
  1152.    const elf_dynamic_section_entry_t *dynamic_entry; // dynamic section entry
  1153.    const elf_section_header_t *shdr_shstr; // section headers strings (containing ELF sections names)
  1154.    const elf_section_header_t *shdr_dynstr; // dynamic strings
  1155.    const elf_section_header_t *shdr_dynamic; // dynamic section
  1156.    const elf_section_header_t *shdr;
  1157.    const char *canonical_dylib_name;
  1158.    const char *elf_section_name;
  1159.    const char *dynamic_strings; // strings table of the ".dynamic" section
  1160.    const char *shtable_strings; // strings table of the section headers table
  1161.    const char *last_dirsep;
  1162.    const elf_header_t *elf;
  1163.    char *resolved_pathname;
  1164.    void *reallocated_ptr;
  1165.    void *old_data;
  1166.    struct stat stat_buf;
  1167.    size_t table_index;
  1168.    size_t table_count;
  1169.    //uint32_t mtime = (entry_parms->m(uint32_t) time (NULL);
  1170.    uint32_t extra_ino_flags = 0;
  1171.    fsentry_t *fsentry;
  1172.  
  1173.    if (S_ISDIR (entry_parms->st_mode)) // are we storing a directory ?
  1174.    {
  1175.       fprintf (stderr, "directory: ino 0x%x uid %d gid %d mode 0%o path \"%s\"\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname);
  1176.    }
  1177.    else if (S_ISREG (entry_parms->st_mode)) // else are we storing a regular file ?
  1178.    {
  1179.       if (strcmp (stored_pathname, "/proc/boot/boot") == 0) // is it the kernel ?
  1180.       {
  1181.          // HACK: for now just consider the kernel as a binary blob
  1182.          // FIXME: reimplement properly
  1183.          sprintf (candidate_pathname, "%s/procnto-smp-instr", entry_parms->prefix); // fix the entry name
  1184.          stored_pathname = candidate_pathname;
  1185.          extra_ino_flags = IFS_INO_PROCESSED_ELF | IFS_INO_BOOTSTRAP_EXE; // procnto needs to have these flags stamped on the inode
  1186.          entry_parms->st_mode = S_IFREG | 0700; // procnto requires 0700 permissions
  1187.          image_kernel_ino = extra_ino_flags | (inode_count + 1);
  1188.       }
  1189.       else if (entry_parms->is_compiled_bootscript) // else is it a startup script ?
  1190.          image_bootscript_ino = inode_count + 1; // save boot script inode number for image header
  1191.  
  1192.       // do we already know the data for this data blob ?
  1193.       if (entry_parms->data != NULL)
  1194.       {
  1195.          entry_parms->mtime = entry_parms->mtime_for_inline_files;
  1196.          fprintf (stderr, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" blob (len %zd)\n", extra_ino_flags | (inode_count + 1), entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->datalen);
  1197.       }
  1198.       else if (buildhost_pathname != NULL) // else was a source file pathname supplied ?
  1199.       {
  1200.          resolved_pathname = read_filecontents (buildhost_pathname, (entry_parms->search[0] != 0 ? entry_parms->search : MKIFS_PATH), &entry_parms->data, &entry_parms->datalen); // locate the file
  1201.          if (resolved_pathname == NULL)
  1202.          {
  1203.             fprintf (stderr, "fatal error: filesystem entry \"%s\" specified in \"%s\" line %d not found on build host: %s\n", buildhost_pathname, buildfile_pathname, lineno, strerror (errno));
  1204.             exit (1);
  1205.          }
  1206.          stat (resolved_pathname, &stat_buf); // can't fail
  1207.          if (entry_parms->mtime == UINT32_MAX)
  1208.             entry_parms->mtime = (uint32_t) stat_buf.st_mtime;
  1209.          fprintf (stderr, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" buildhost_file \"%s\" (len %zd)\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, buildhost_pathname, entry_parms->datalen);
  1210.       }
  1211.  
  1212.       // is the file we're storing an ELF file ?
  1213.       if ((entry_parms->datalen > 52) // file is big enough to contain an ELF header
  1214.           && ((elf = (elf_header_t *) entry_parms->data) != NULL) // cast (necessary true)
  1215.           && (memcmp (ELF_STRUCT_MEMBER_STRING (elf, elf, magic), ELF_MAGIC_STR, 4) == 0)) // file starts with the ELF magic
  1216.       {
  1217.          shdr_shstr = (elf_section_header_t *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_item_size) * ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_names_idx)]; // quick access to section header for the section that contains the section names
  1218.          shtable_strings = &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr_shstr, file_offset)]; // locate the start of the strings table that contains the section names
  1219.  
  1220.          // strip this ELF file
  1221.  
  1222.          // is the file we're storing a relocatable executable (i.e. a dynamic library) and should we check for its canonical name ?
  1223.          if ((ELF_STRUCT_MEMBER_NUMERIC (elf, elf, type) == 3) && entry_parms->should_autosymlink_dylib)
  1224.          {
  1225.             // we need to find the SONAME of this library
  1226.             canonical_dylib_name = NULL;
  1227.  
  1228.             // locate the sections we need (the dynamic section and its strings table)
  1229.             table_count = ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_table_len);
  1230.             shdr_dynamic = NULL;
  1231.             shdr_dynstr = NULL;
  1232.             for (table_index = 0; table_index < table_count; table_index++)
  1233.             {
  1234.                shdr = (elf_section_header_t *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_item_size) * table_index]; // quick access to section header
  1235.                elf_section_name = &shtable_strings[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr, name_offset)];
  1236.                if (strcmp (elf_section_name, ".dynamic") == 0)
  1237.                   shdr_dynamic = shdr;
  1238.                else if (strcmp (elf_section_name, ".dynstr") == 0)
  1239.                   shdr_dynstr = shdr;
  1240.             }
  1241.  
  1242.             // make sure we have both the dynamic section header and its own strings table header
  1243.             if ((shdr_dynamic != NULL) && (shdr_dynstr != NULL))
  1244.             {
  1245.                dynamic_strings = (char *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr_dynstr, file_offset)]; // quick access to dynamic sections strings table
  1246.  
  1247.                // walk through the dynamic section, look for the DT_SONAME entry
  1248.                for (dynamic_entry = (elf_dynamic_section_entry_t *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr_dynamic, file_offset)];
  1249.                     (ELF_STRUCT_MEMBER_NUMERIC (elf, dynamic_entry, tag) != ELF_DT_NULL);
  1250.                     dynamic_entry = (elf_dynamic_section_entry_t *) ((uint8_t *) dynamic_entry + ELF_STRUCT_SIZE (elf, dynamic_entry)))
  1251.                   if (ELF_STRUCT_MEMBER_NUMERIC (elf, dynamic_entry, tag) == ELF_DT_SONAME)
  1252.                   {
  1253.                      canonical_dylib_name = dynamic_strings + ELF_STRUCT_MEMBER_NUMERIC (elf, dynamic_entry, value.as_integer);
  1254.                      break;
  1255.                   }
  1256.  
  1257.                // do we have it ?
  1258.                if ((canonical_dylib_name != NULL) && (canonical_dylib_name[0] != 0))
  1259.                {
  1260.                   sprintf (candidate_pathname, "%s/%s", entry_parms->prefix, canonical_dylib_name);
  1261.                   if (strcmp (candidate_pathname, stored_pathname) != 0) // claimed dylib name differs from passed name ?
  1262.                   {
  1263.                      original_stored_pathname = stored_pathname; // if so, remember to create a symlink here
  1264.                      stored_pathname = candidate_pathname;
  1265.                   }
  1266.                }
  1267.             }
  1268.          } // end if the file we're storing is a dylib
  1269.       } // end if the file we're storing is an ELF file
  1270.    }
  1271.    else if (S_ISLNK (entry_parms->st_mode)) // else are we storing a symbolic link ?
  1272.       fprintf (stderr, "symlink: ino 0x%x uid %d gid %d mode 0%o path \"%s\" -> \"%s\"\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data);
  1273.    else // we must be storing a FIFO
  1274.    {
  1275.       if (strchr (entry_parms->data, ':') == NULL)
  1276.       {
  1277.          fprintf (stderr, "fatal error: device entry \"%s\" malformed (no 'dev:rdev' pair)\n", stored_pathname);
  1278.          exit (1);
  1279.       }
  1280.       fprintf (stderr, "fifo: ino 0x%x uid %d gid %d mode 0%o path \"%s\" dev rdev %s)\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data);
  1281.    }
  1282.  
  1283.    // grow filesystem entries array to hold one more slot
  1284.    reallocated_ptr = realloc (*fsentries, (*fsentry_count + 1) * sizeof (fsentry_t)); // attempt to reallocate
  1285.    if (reallocated_ptr == NULL)
  1286.    {
  1287.       fprintf (stderr, "fatal error: out of memory\n");
  1288.       exit (1);
  1289.    }
  1290.    *fsentries = reallocated_ptr; // save reallocated pointer
  1291.    fsentry = &(*fsentries)[*fsentry_count]; // quick access to fs entry slot
  1292.    //fsentry->header.size = 0; // will be filled once we know it
  1293.    fsentry->header.extattr_offset = 0;
  1294.    fsentry->header.ino = extra_ino_flags | (++inode_count);
  1295.    fsentry->header.mode = entry_parms->st_mode;
  1296.    fsentry->header.gid = entry_parms->gid;
  1297.    fsentry->header.uid = entry_parms->uid;
  1298.    fsentry->header.mtime = (entry_parms->mtime == UINT32_MAX ? (uint32_t) time (NULL) : entry_parms->mtime);
  1299.    if (S_ISDIR (entry_parms->st_mode))
  1300.    {
  1301.       fsentry->u.dir.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1302.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + strlen (fsentry->u.dir.path) + 1, image_align); // now we can set the size
  1303.       fsentry->UNSAVED_was_data_written = true; // no data to save
  1304.    }
  1305.    else if (S_ISREG (entry_parms->st_mode))
  1306.    {
  1307.       fsentry->u.file.offset = WILL_BE_FILLED_LATER; // will be filled later in main() when the file's data blob will be written to the output file
  1308.       fsentry->u.file.size = (uint32_t) entry_parms->datalen;
  1309.       fsentry->u.file.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1310.       fsentry->u.file.UNSAVED_databuf = malloc (entry_parms->datalen);
  1311.       WELLMANNERED_ASSERT (fsentry->u.file.UNSAVED_databuf, "out of memory");
  1312.       memcpy (fsentry->u.file.UNSAVED_databuf, entry_parms->data, entry_parms->datalen);
  1313.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry->u.file.path) + 1, image_align); // now we can set the size
  1314.       fsentry->UNSAVED_was_data_written = false; // there *IS* data to save
  1315.    }
  1316.    else if (S_ISLNK (entry_parms->st_mode))
  1317.    {
  1318.       fsentry->u.symlink.sym_offset = (uint16_t) (strlen (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname) + 1);
  1319.       fsentry->u.symlink.sym_size = (uint16_t) entry_parms->datalen;
  1320.       fsentry->u.symlink.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1321.       fsentry->u.symlink.contents = strdup (entry_parms->data);
  1322.       WELLMANNERED_ASSERT (fsentry->u.symlink.contents, "out of memory");
  1323.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint16_t) + sizeof (uint16_t) + (size_t) fsentry->u.symlink.sym_offset + fsentry->u.symlink.sym_size + 1, image_align); // now we can set the size
  1324.       fsentry->UNSAVED_was_data_written = true; // no data to save
  1325.    }
  1326.    else // necessarily a device node
  1327.    {
  1328.       fsentry->u.device.dev  = strtol (entry_parms->data, NULL, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
  1329.       fsentry->u.device.rdev = strtol (strchr (entry_parms->data, ':') + 1, NULL, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
  1330.       fsentry->u.device.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1331.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry->u.device.path), image_align); // now we can set the size
  1332.       fsentry->UNSAVED_was_data_written = true; // no data to save
  1333.    }
  1334.    (*fsentry_count)++;
  1335.  
  1336.    // should we also add a symlink to this entry ? (in case we stored a dylib file under its canonical name)
  1337.    if (original_stored_pathname != NULL)
  1338.    {
  1339.       entry_parms->is_compiled_bootscript = false;
  1340.       entry_parms->should_autosymlink_dylib = false;
  1341.       entry_parms->should_follow_symlinks = false;
  1342.       entry_parms->st_mode = S_IFLNK | 0777; // NOTE: mkifs stores symlink permissions as rwxrwxrwx !
  1343.       last_dirsep = strrchr (stored_pathname, '/');
  1344.       old_data = entry_parms->data; // backup previous data pointer
  1345.       entry_parms->data = (uint8_t *) (last_dirsep == NULL ? stored_pathname : last_dirsep + 1); // store symlink target in dirent data
  1346.       entry_parms->datalen = strlen (entry_parms->data);
  1347.       add_fsentry (fsentries, fsentry_count, entry_parms, original_stored_pathname, NULL);
  1348.       entry_parms->data = old_data; // restore previous data pointer so that it can be freed normally
  1349.    }
  1350.  
  1351.    return (*fsentry_count);
  1352. }
  1353.  
  1354.  
  1355. static int fsentry_compare_pathnames_cb (const void *a, const void *b)
  1356. {
  1357.    // qsort() callback that compares two imagefs filesystem entries and sort them alphabetically by pathname
  1358.  
  1359.    const fsentry_t *entry_a = (const fsentry_t *) a;
  1360.    const fsentry_t *entry_b = (const fsentry_t *) b;
  1361.    const char *pathname_a = (S_ISDIR (entry_a->header.mode) ? entry_a->u.dir.path : (S_ISREG (entry_a->header.mode) ? entry_a->u.file.path : (S_ISLNK (entry_a->header.mode) ? entry_a->u.symlink.path : entry_a->u.device.path)));
  1362.    const char *pathname_b = (S_ISDIR (entry_b->header.mode) ? entry_b->u.dir.path : (S_ISREG (entry_b->header.mode) ? entry_b->u.file.path : (S_ISLNK (entry_b->header.mode) ? entry_b->u.symlink.path : entry_b->u.device.path)));
  1363.    return (strcmp (pathname_a, pathname_b));
  1364. }
  1365.  
  1366.  
  1367. static void update_MKIFS_PATH (const char *processor)
  1368. {
  1369.    // updates the value of MKIFS_PATH according to the passed processor name string, unless an environment variable already defines it
  1370.  
  1371.    char processor_base[16];
  1372.    size_t data_len;
  1373.    char *envvar;
  1374.    char *token;
  1375.    
  1376.    envvar = getenv ("MKIFS_PATH"); // look in the environment first, and construct a default one if not supplied
  1377.    if (envvar != NULL)
  1378.       MKIFS_PATH = envvar; // if envvar is present, set MKIFS_PATH to point to it
  1379.    else // envvar not present
  1380.    {
  1381.       if (MKIFS_PATH != NULL)
  1382.          free (MKIFS_PATH); // free any MKIFS_PATH that we constructed earlier
  1383.  
  1384.       strcpy (processor_base, processor); // construct PROCESSOR_BASE
  1385.       token = strchr (processor_base, '-');
  1386.       if (token != NULL)
  1387.          *token = 0; // split anything from the first dash onwards
  1388.       data_len = strlen (processor_base);
  1389.       if ((data_len > 2) && ((processor_base[data_len - 2] == 'b') || (processor_base[data_len - 2] == 'l')) && (processor_base[data_len - 1] == 'e'))
  1390.          processor_base[data_len - 2] = 0; // if it ends with "le" or "be", strip that too
  1391.  
  1392.       MKIFS_PATH = malloc (10 * MAXPATHLEN); // construct a default MKIFS_PATH now
  1393.       WELLMANNERED_ASSERT (MKIFS_PATH, "out of memory");
  1394.       sprintf (MKIFS_PATH, "." PATH_SEP_STR "%s/%s/sbin" PATH_SEP_STR "%s/%s/usr/sbin" PATH_SEP_STR "%s/%s/boot/sys" PATH_SEP_STR "%s/%s/boot/sys" PATH_SEP_STR "%s/%s/bin" PATH_SEP_STR "%s/%s/usr/bin" PATH_SEP_STR "%s/%s/lib" PATH_SEP_STR "%s/%s/lib/dll" PATH_SEP_STR "%s/%s/usr/lib", // use a platform-specific character as path separator
  1395.                QNX_TARGET, processor,
  1396.                QNX_TARGET, processor,
  1397.                QNX_TARGET, processor,
  1398.                QNX_TARGET, processor_base,
  1399.                QNX_TARGET, processor,
  1400.                QNX_TARGET, processor,
  1401.                QNX_TARGET, processor,
  1402.                QNX_TARGET, processor,
  1403.                QNX_TARGET, processor);
  1404.    }
  1405.  
  1406.    return;
  1407. }
  1408.  
  1409.  
  1410. int main (int argc, char **argv)
  1411. {
  1412.    // program entrypoint
  1413.  
  1414.    #define PAD_OUTFILE_TO(val) do { curr_offset = ftell (fp); while (curr_offset < (val)) { putc (0, fp); curr_offset++; } } while (0)
  1415.  
  1416.    static startup_header_t startup_header = { 0 }; // output IFS's startup header
  1417.    static startup_trailer_v2_t startup_trailer = { 0 }; // output IFS's startup trailer (version 2, with SHA-512 checksum and int32 checksum)
  1418.    static image_header_t image_header = { 0 }; // output IFS's imagefs header
  1419.    static image_trailer_v2_t image_trailer = { 0 }; // output IFS's imagefs trailer (version 2, with SHA-512 checksum and int32 checksum)
  1420.    static fsentry_t *fsentries = NULL; // output IFS's filesystem entries
  1421.    static size_t fsentry_count = 0; // number of entries in the IFS filesystem
  1422.    static parms_t default_parms = { // default parameters for a filesystem entry
  1423.       .dperms = 0755,
  1424.       .perms = 0644,
  1425.       .uid = 0,
  1426.       .gid = 0,
  1427.       .st_mode = S_IFREG,
  1428.       .mtime = UINT32_MAX,
  1429.       .mtime_for_inline_files = UINT32_MAX,
  1430.       .prefix = "/proc/boot",
  1431.       .should_follow_symlinks = true, // [+|-followlink]
  1432.       .should_autosymlink_dylib = true, // [+|-autolink]
  1433.       .is_compiled_bootscript = false, // [+|-script]
  1434.       .search = "",
  1435.       .data = NULL,
  1436.       .datalen = 0
  1437.    };
  1438.    static parms_t entry_parms = { 0 }; // current parameters for a filesystem entry (will be initialized to default_parms each time a new entry is parsed in the build file)
  1439.  
  1440.    // bootable IFS support
  1441.    char *bootfile_pathname = NULL;           // HACK: pathname to bootcode binary blob file to put at the start of a bootable IFS
  1442.    size_t bootfile_size = 0;                 // HACK: size of the bootcode binary blob file to put at the start of a bootable IFS
  1443.    char *startupfile_pathname = NULL;        // HACK: pathname to precompiled startup file blob to put in the startup header of a bootable IFS
  1444.    size_t startupfile_ep_from_imagebase = 0; // HACK: startup code entrypoint offset from image base for a bootable IFS
  1445.    char *kernelfile_pathname = NULL;         // HACK: pathname to precompiled kernel file blob to put in a bootable IFS
  1446.    size_t kernelfile_offset = 0;             // HACK: kernel file offset in bootable IFS
  1447.  
  1448.    char path_on_buildhost[MAXPATHLEN] = "";
  1449.    char path_in_ifs[MAXPATHLEN] = "";
  1450.    char *ifs_pathname = NULL;
  1451.    void *reallocated_ptr;
  1452.    struct tm utc_time;
  1453.    struct stat stat_buf;
  1454.    size_t startuptrailer_offset;
  1455.    size_t startupheader_offset;
  1456.    size_t imagetrailer_offset;
  1457.    size_t imageheader_offset;
  1458.    size_t imgdir_offset;
  1459.    size_t imgdir_size;
  1460.    size_t final_size;
  1461.    size_t blob_size;
  1462.    size_t available_space;
  1463.    size_t allocated_size;
  1464.    size_t fsentry_index;
  1465.    size_t largest_index;
  1466.    size_t largest_size;
  1467.    size_t curr_offset;
  1468.    uint8_t *blob_data;
  1469.    int32_t checksum;
  1470.    char *specifiedpathname_start;
  1471.    char *directiveblock_start;
  1472.    char *write_ptr;
  1473.    char *line_ptr;
  1474.    char *token;
  1475.    char *value;
  1476.    char *sep;
  1477.    //char *ctx;
  1478.    int arg_index;
  1479.    bool is_quoted_context = false;
  1480.    bool is_escaped_char = false;
  1481.    bool has_data_already = false;
  1482.    bool want_info = false;
  1483.    bool want_help = false;
  1484.    bool is_foreign_endianness;
  1485.    int string_len;
  1486.    int read_char;
  1487.    FILE *buildfile_fp;
  1488.    FILE *fp;
  1489.  
  1490.    // parse arguments
  1491.    for (arg_index = 1; arg_index < argc; arg_index++)
  1492.    {
  1493.       if ((strcmp (argv[arg_index], "--bootfile") == 0) && (arg_index + 1 < argc)) // --bootfile path/to/blob.bin
  1494.          bootfile_pathname = argv[++arg_index];
  1495.       else if ((strcmp (argv[arg_index], "--startupfile") == 0) && (arg_index + 1 < argc)) // --startupfile path/to/blob.bin@0x1030
  1496.       {
  1497.          sep = strchr (argv[++arg_index], '@');
  1498.          if ((sep == NULL) || (sep[1] == 0))
  1499.          {
  1500.             fprintf (stderr, "error: the --startupfile arguments expects <pathname>@<entrypoint_from_image_base>\n");
  1501.             exit (1);
  1502.          }
  1503.          *sep = 0;
  1504.          startupfile_pathname = argv[arg_index];
  1505.          startupfile_ep_from_imagebase = (size_t) read_integer (sep + 1);
  1506.       }
  1507.       else if ((strcmp (argv[arg_index], "--kernelfile") == 0) && (arg_index + 1 < argc)) // --kernelfile path/to/blob.bin@0x32000
  1508.       {
  1509.          sep = strchr (argv[++arg_index], '@');
  1510.          if ((sep == NULL) || (sep[1] == 0))
  1511.          {
  1512.             fprintf (stderr, "error: the --kernelfile arguments expects <pathname>@<fileoffset>\n");
  1513.             exit (1);
  1514.          }
  1515.          *sep = 0;
  1516.          kernelfile_pathname = argv[arg_index];
  1517.          kernelfile_offset = (size_t) read_integer (sep + 1);
  1518.       }
  1519.       else if (strcmp (argv[arg_index], "-n") == 0)
  1520.          default_parms.mtime_for_inline_files = 0; // inline files should have a mtime set to zero
  1521.       else if (strcmp (argv[arg_index], "-nn") == 0)
  1522.       {
  1523.          default_parms.mtime = 0; // all files should have a mtime set to zero
  1524.          default_parms.mtime_for_inline_files = 0;
  1525.       }
  1526.       else if (strcmp (argv[arg_index], "--info") == 0)
  1527.          want_info = true;
  1528.       else if ((strcmp (argv[arg_index], "-?") == 0) || (strcmp (argv[arg_index], "--help") == 0))
  1529.          want_help = true;
  1530.       else if (buildfile_pathname == NULL)
  1531.          buildfile_pathname = argv[arg_index];
  1532.       else if (ifs_pathname == NULL)
  1533.          ifs_pathname = argv[arg_index];
  1534.    }
  1535.  
  1536.    // do we not have enough information to run ?
  1537.    if (want_help || (buildfile_pathname == NULL) || (!want_info && (ifs_pathname == NULL)))
  1538.    {
  1539.       fprintf ((want_help ? stdout : stderr), "ifstool - QNX in-kernel filesystem creation utility by Pierre-Marie Baty <pm@pmbaty.com>\n");
  1540.       fprintf ((want_help ? stdout : stderr), "          version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
  1541.       if (!want_help)
  1542.          fprintf (stderr, "error: missing parameters\n");
  1543.       fprintf ((want_help ? stdout : stderr), "usage:\n");
  1544.       fprintf ((want_help ? stdout : stderr), "    ifstool [--bootfile <pathname>] [--startupfile <pathname>@<EP_from_imgbase>] [--kernelfile <pathname>@<fileoffs>] [-n[n]] <buildfile> <outfile>\n");
  1545.       fprintf ((want_help ? stdout : stderr), "    ifstool --info <ifs file>\n");
  1546.       fprintf ((want_help ? stdout : stderr), "    ifstool --help\n");
  1547.       fprintf ((want_help ? stdout : stderr), "WARNING: the compilation feature is currently a work in progress (broken). Only the --info mode is usable at the moment.\n");
  1548.       exit (want_help ? 0 : 1);
  1549.    }
  1550.  
  1551.    // do we want info about a particular IFS ? if so, dump it
  1552.    if (want_info)
  1553.       exit (dump_ifs_info (buildfile_pathname)); // NOTE: the first argument after --info is actually the IFS file, not a build file, but the arguments are collected in this order
  1554.  
  1555.    // make sure we have ${QNX_TARGET} pointing somewhere
  1556.    QNX_TARGET = getenv ("QNX_TARGET");
  1557.    if (QNX_TARGET == NULL)
  1558.    {
  1559.       fprintf (stderr, "error: the QNX_TARGET environment variable is not set\n");
  1560.       exit (1);
  1561.    }
  1562.    else if (access (QNX_TARGET, 0) != 0)
  1563.    {
  1564.       fprintf (stderr, "error: the QNX_TARGET environment variable doesn't point to an existing directory\n");
  1565.       exit (1);
  1566.    }
  1567.  
  1568.    // prepare a default MKIFS_PATH assuming the host processor
  1569.    update_MKIFS_PATH (image_processor);
  1570.  
  1571.    // open build file
  1572.    buildfile_fp = fopen (buildfile_pathname, "rb");
  1573.    if (buildfile_fp == NULL)
  1574.    {
  1575.       fprintf (stderr, "error: unable to open build file \"%s\" for reading (%s)\n", buildfile_pathname, strerror (errno));
  1576.       exit (1);
  1577.    }
  1578.  
  1579.    // stack up filesystem entries
  1580.    memcpy (&entry_parms, &default_parms, sizeof (default_parms));
  1581.    entry_parms.st_mode = S_IFDIR | default_parms.dperms;
  1582.    add_fsentry (&fsentries, &fsentry_count, &entry_parms, "", NULL); // add the root dir first
  1583.  
  1584.    while (fgets (line_buffer, sizeof (line_buffer), buildfile_fp) != NULL)
  1585.    {
  1586.       if (current_line != NULL)
  1587.          free (current_line);
  1588.       current_line = strdup (line_buffer);
  1589.       WELLMANNERED_ASSERT (current_line, "out of memory");
  1590.       lineno++; // keep track of current line number
  1591.       //fprintf (stderr, "read buildfile line %d: {%s}\n", lineno, line_buffer);
  1592.  
  1593.       line_ptr = line_buffer;
  1594.       while ((*line_ptr != 0) && isspace (*line_ptr))
  1595.          line_ptr++; // skip leading spaces
  1596.  
  1597.       if ((*line_ptr == 0) || (*line_ptr == '#'))
  1598.          continue; // skip empty or comment lines
  1599.  
  1600.       string_len = (int) strlen (line_buffer);
  1601.       if ((string_len > 0) && (line_buffer[string_len - 1] == '\n'))
  1602.          line_buffer[string_len - 1] = 0; // chop off newline for easier debug output
  1603.  
  1604.       // reset entry values
  1605.       memcpy (&entry_parms, &default_parms, sizeof (default_parms));
  1606.       path_in_ifs[0] = 0;
  1607.       path_on_buildhost[0] = 0;
  1608.       has_data_already = false;
  1609.  
  1610.       //fprintf (stderr, "parsing buildfile line %d: [%s]\n", lineno, line_ptr);
  1611.  
  1612.       // does this line start with an attribute block ?
  1613.       if (*line_ptr == '[')
  1614.       {
  1615.          line_ptr++; // skip the leading square bracket
  1616.          directiveblock_start = line_ptr; // remember where it starts
  1617.          is_quoted_context = false;
  1618.          while ((*line_ptr != 0) && !((*line_ptr == ']') && (line_ptr[-1] != '\\')))
  1619.          {
  1620.             if (*line_ptr == '"')
  1621.                is_quoted_context ^= true; // remember when we're between quotes
  1622.             else if (!is_quoted_context && (*line_ptr == ' '))
  1623.                *line_ptr = RECORD_SEP; // turn all spaces outside quoted contexts into an ASCII record separator to ease token splitting
  1624.             line_ptr++; // reach the next unescaped closing square bracket
  1625.          }
  1626.          if (*line_ptr != ']')
  1627.          {
  1628.             fprintf (stderr, "warning: syntax error in \"%s\" line %d: unterminated attributes block (skipping)\n", buildfile_pathname, lineno);
  1629.             continue; // invalid attribute block, skip line
  1630.          }
  1631.          *line_ptr = 0; // end the attribute block so that it is a parsable C string
  1632.  
  1633.          // now parse the attribute tokens
  1634.          // DOCUMENTATION: https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino.utilities/topic/m/mkifs.html#mkifs__description
  1635.          token = strtok (directiveblock_start, RECORD_SEP_STR);
  1636.          while (token != NULL)
  1637.          {
  1638.             // evaluate attribute token
  1639.             #define REACH_TOKEN_VALUE() do { value = strchr (token, '=') + 1; if (*value == '"') value++; } while (0)
  1640.             if      (strncmp (token, "uid=",     4) == 0) { REACH_TOKEN_VALUE (); entry_parms.uid     = (int) read_integer (value); }
  1641.             else if (strncmp (token, "gid=",     4) == 0) { REACH_TOKEN_VALUE (); entry_parms.gid     = (int) read_integer (value); }
  1642.             else if (strncmp (token, "dperms=",  7) == 0) { REACH_TOKEN_VALUE (); entry_parms.dperms  = (int) read_integer (value); }
  1643.             else if (strncmp (token, "perms=",   6) == 0) { REACH_TOKEN_VALUE (); entry_parms.perms   = (int) read_integer (value); }
  1644.             else if (strncmp (token, "type=",    5) == 0) { REACH_TOKEN_VALUE (); entry_parms.st_mode = (strcmp (value, "dir") == 0 ? S_IFDIR : (strcmp (value, "file") == 0 ? S_IFREG : (strcmp (value, "link") == 0 ? S_IFLNK : (strcmp (value, "fifo") == 0 ? S_IFIFO : (fprintf (stderr, "warning: invalid 'type' attribute in \"%s\" line %d: '%s', defaulting to 'file'\n", buildfile_pathname, lineno, value), S_IFREG))))); }
  1645.             else if (strncmp (token, "prefix=",  7) == 0) { REACH_TOKEN_VALUE (); strcpy (entry_parms.prefix, (*value == '/' ? value + 1 : value)); } // skip possible leading slash in prefix
  1646.             else if (strncmp (token, "image=",   6) == 0) { REACH_TOKEN_VALUE ();
  1647.                image_base = (uint32_t) read_integer (value); // read image base address
  1648.                if ((sep = strchr (value, '-')) != NULL) image_end       = (uint32_t) read_integer (sep + 1); // if we have a dash, read optional image end (FIXME: check this value and produce an error in the relevant case. Not important.)
  1649.                if ((sep = strchr (value, ',')) != NULL) image_maxsize   = (uint32_t) read_integer (sep + 1); // if we have a comma, read optional image max size
  1650.                if ((sep = strchr (value, '=')) != NULL) image_totalsize = (uint32_t) read_integer (sep + 1); // if we have an equal sign, read optional image padding size
  1651.                if ((sep = strchr (value, '%')) != NULL) image_align     = (uint32_t) read_integer (sep + 1); // if we have a modulo sign, read optional image aligmnent
  1652.                fprintf (stderr, "info: image 0x%x-0x%x maxsize %d totalsize %d align %d\n", image_base, image_end, image_maxsize, image_totalsize, image_align);
  1653.             }
  1654.             else if (strncmp (token, "virtual=", 8) == 0) { REACH_TOKEN_VALUE ();
  1655.                if ((bootfile_pathname == NULL) || (startupfile_pathname == NULL) || (kernelfile_pathname == NULL)) // HACK until I figure out how to re-create them
  1656.                {
  1657.                   fprintf (stderr, "error: creating bootable images require the --bootfile, --startupfile and --kernelfile command-line options in \"%s\" line %d\n", buildfile_pathname, lineno);
  1658.                   exit (1);
  1659.                }
  1660.                if ((sep = strchr (value, ',')) != NULL) // do we have a comma separating (optional) processor and boot file name ?
  1661.                {
  1662.                   *sep = 0;
  1663.                   strcpy (image_processor, value); // save processor
  1664.                   update_MKIFS_PATH (image_processor);
  1665.                   value = sep + 1;
  1666.                }
  1667.                //sprintf (image_bootfile, "%s/%s/boot/sys/%s.boot", QNX_TARGET, image_processor, value); // save preboot file name (FIXME: we should search in MKIFS_PATH instead of this. Not important.)
  1668.                //strcpy (image_bootfile, bootfile_pathname); // FIXME: HACK
  1669.                if (stat (bootfile_pathname, &stat_buf) != 0)
  1670.                {
  1671.                   fprintf (stderr, "error: unable to stat the boot file \"%s\" specified in \"%s\" line %d: %s\n", bootfile_pathname, buildfile_pathname, lineno, strerror (errno));
  1672.                   exit (1);
  1673.                }
  1674.                bootfile_size = stat_buf.st_size; // save preboot file size
  1675.                fprintf (stderr, "info: processor \"%s\" bootfile \"%s\"\n", image_processor, bootfile_pathname);
  1676.                if (read_filecontents (kernelfile_pathname, ".", &entry_parms.data, &entry_parms.datalen) == NULL)
  1677.                {
  1678.                   fprintf (stderr, "fatal error: unable to read precompiled kernel file \"%s\" specified in --kernelfile argument\n", kernelfile_pathname);
  1679.                   exit (1);
  1680.                }
  1681.                has_data_already = true; // remember we already have data
  1682.             }
  1683.             else if (strncmp (token, "mtime=", 6) == 0) { REACH_TOKEN_VALUE (); if (strcmp (value, "*") == 0) entry_parms.mtime = UINT32_MAX; else {
  1684.                   // value *must* be "YYYY-MM-DD-HH:MM:SS" by specification
  1685.                   memset (&utc_time, 0, sizeof (utc_time));
  1686.                   if (sscanf (value, "%u-%u-%u-%u:%u:%u", &utc_time.tm_year, &utc_time.tm_mon, &utc_time.tm_mday, &utc_time.tm_hour, &utc_time.tm_min, &utc_time.tm_sec) != 6)
  1687.                   {
  1688.                      fprintf (stderr, "warning: syntax error in \"%s\" line %d: mtime specification not in YYYY-MM-DD-HH:MM:SS format (skipping)\n", buildfile_pathname, lineno);
  1689.                      continue; // invalid attribute block, skip line
  1690.                   }
  1691.                   utc_time.tm_mon--; // convert month from [1-12] to [0-11]
  1692.                   entry_parms.mtime = (uint32_t) mktime (&utc_time);
  1693.                }
  1694.             }
  1695.             else if (strcmp (token, "+script")     == 0) {
  1696.                entry_parms.is_compiled_bootscript = true;
  1697.                entry_parms.data = malloc (sizeof (INITIAL_STARTUP_SCRIPT) - 1);
  1698.                WELLMANNERED_ASSERT (entry_parms.data, "out of memory");
  1699.                memcpy (entry_parms.data, INITIAL_STARTUP_SCRIPT, sizeof (INITIAL_STARTUP_SCRIPT) - 1); // FIXME: HACK until the script compiler is implemented
  1700.                entry_parms.datalen = sizeof (INITIAL_STARTUP_SCRIPT) - 1;
  1701.                has_data_already = true; // remember we already have data
  1702.             }
  1703.             else if (strcmp (token, "-script")     == 0) entry_parms.is_compiled_bootscript = false;
  1704.             else if (strcmp (token, "+followlink") == 0) entry_parms.should_follow_symlinks = true;
  1705.             else if (strcmp (token, "-followlink") == 0) entry_parms.should_follow_symlinks = false;
  1706.             else if (strcmp (token, "+autolink")   == 0) entry_parms.should_autosymlink_dylib = true;
  1707.             else if (strcmp (token, "-autolink")   == 0) entry_parms.should_autosymlink_dylib = false;
  1708.             else fprintf (stderr, "warning: unimplemented attribute in \"%s\" line %d: '%s'\n", buildfile_pathname, lineno, token);
  1709.             #undef REACH_TOKEN_VALUE
  1710.  
  1711.             token = strtok (NULL, RECORD_SEP_STR); // proceed to next attribute token
  1712.          }
  1713.  
  1714.          line_ptr++; // reach the next character
  1715.          while ((*line_ptr != 0) && isspace (*line_ptr))
  1716.             line_ptr++; // skip leading spaces
  1717.  
  1718.          // are we at the end of the line ? if so, it means the attribute values that are set should become the default
  1719.          if ((*line_ptr == 0) || (*line_ptr == '#'))
  1720.          {
  1721.             #define APPLY_DEFAULT_ATTR_NUM(attr,descr,fmt) do { if (entry_parms.attr != default_parms.attr) { \
  1722.                   fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
  1723.                   default_parms.attr = entry_parms.attr; \
  1724.                } } while (0)
  1725.             #define APPLY_DEFAULT_ATTR_STR(attr,descr,fmt) do { if (strcmp (entry_parms.attr, default_parms.attr) != 0) { \
  1726.                   fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
  1727.                   strcpy (default_parms.attr, entry_parms.attr); \
  1728.                } } while (0)
  1729.             APPLY_DEFAULT_ATTR_NUM (dperms,                   "directory permissions",           "0%o");
  1730.             APPLY_DEFAULT_ATTR_NUM (perms,                    "file permissions",                "0%o");
  1731.             APPLY_DEFAULT_ATTR_NUM (uid,                      "owner ID",                        "%d");
  1732.             APPLY_DEFAULT_ATTR_NUM (gid,                      "group ID",                        "%d");
  1733.             APPLY_DEFAULT_ATTR_NUM (st_mode,                  "inode type",                      "0%o");
  1734.             APPLY_DEFAULT_ATTR_STR (prefix,                   "prefix",                          "\"%s\"");
  1735.             APPLY_DEFAULT_ATTR_NUM (is_compiled_bootscript,   "compiled script state",           "%d");
  1736.             APPLY_DEFAULT_ATTR_NUM (should_follow_symlinks,   "symlink resolution",              "%d");
  1737.             APPLY_DEFAULT_ATTR_NUM (should_autosymlink_dylib, "dylib canonical name symlinking", "%d");
  1738.             #undef APPLY_DEFAULT_ATTR_STR
  1739.             #undef APPLY_DEFAULT_ATTR_NUM
  1740.             continue; // end of line reached, proceed to the next line
  1741.          }
  1742.          // end of attributes parsing
  1743.       } // end of "this line starts with an attributes block"
  1744.  
  1745.       // there's data in this line. We expect a filename in the IFS. Read it and unescape escaped characters
  1746.       string_len = sprintf (path_in_ifs, "%s", entry_parms.prefix);
  1747.       while ((string_len > 0) && (path_in_ifs[string_len - 1] == '/'))
  1748.          string_len--; // chop off any trailing slashes from prefix
  1749.       write_ptr = &path_in_ifs[string_len];
  1750.       *write_ptr++ = '/'; // add ONE trailing slash
  1751.       specifiedpathname_start = write_ptr; // remember the specified pathname will start here
  1752.       is_quoted_context = (*line_ptr == '"');
  1753.       if (is_quoted_context)
  1754.          line_ptr++; // skip a possible initial quote
  1755.       if (*line_ptr == '/')
  1756.       {
  1757.          fprintf (stderr, "warning: paths in the IFS file should not begin with a leading '/' in \"%s\" line %d\n", buildfile_pathname, lineno);
  1758.          line_ptr++; // consistency check: paths in the IFS should not begin with a '/'
  1759.       }
  1760.       while ((*line_ptr != 0) && ((!is_quoted_context && (*line_ptr != '=') && !isspace (*line_ptr)) || (is_quoted_context && (*line_ptr == '"'))))
  1761.       {
  1762.          if (*line_ptr == '\\')
  1763.          {
  1764.             line_ptr++;
  1765.             *write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
  1766.          }
  1767.          else
  1768.             *write_ptr++ = *line_ptr;
  1769.          line_ptr++;
  1770.       }
  1771.       *write_ptr = 0; // terminate the string
  1772.       if (is_quoted_context && (*line_ptr == '"'))
  1773.          line_ptr++; // skip a possible final quote
  1774.  
  1775.       // we reached a space OR an equal sign
  1776.       while ((*line_ptr != 0) && isspace (*line_ptr))
  1777.          line_ptr++; // skip optional spaces after the filename in the IFS
  1778.  
  1779.       // do we have an equal sign ?
  1780.       if (*line_ptr == '=') // we must be creating either a directory or a file, do we have an equal sign ?
  1781.       {
  1782.          line_ptr++; // skip the equal sign
  1783.          while ((*line_ptr != 0) && isspace (*line_ptr))
  1784.             line_ptr++; // skip optional spaces after the equal sign
  1785.  
  1786.          if (*line_ptr == 0)
  1787.          {
  1788.             fprintf (stderr, "warning: syntax error in \"%s\" line %d: missing data specification after equal sign (skipping)\n", buildfile_pathname, lineno);
  1789.             continue; // invalid symlink specification, skip line
  1790.          }
  1791.  
  1792.          // read the host system's path, it may be either a path or a contents definition. Is it a content definition ?
  1793.          if (*line_ptr == '{')
  1794.          {
  1795.             path_on_buildhost[0] = 0; // this is an inline fine, which means it doesn't exist on the build host
  1796.             allocated_size = 0;
  1797.  
  1798.             line_ptr++; // skip the leading content definition
  1799.             is_escaped_char = false;
  1800.             for (;;)
  1801.             {
  1802.                read_char = fgetc (buildfile_fp);
  1803.                if (read_char == EOF)
  1804.                {
  1805.                   fprintf (stderr, "fatal error: syntax error in \"%s\" line %d: unterminated contents block (end of file reached)\n", buildfile_pathname, lineno);
  1806.                   exit (1); // invalid contents block
  1807.                }
  1808.                else if ((read_char == '\\') && !is_escaped_char)
  1809.                   is_escaped_char = true; // remember the next char is escaped
  1810.                else if ((read_char == '}') && !is_escaped_char)
  1811.                   break; // found an unescaped closing bracked, stop parsing
  1812.                else
  1813.                {
  1814.                   is_escaped_char = false; // any other char, meaning the next one will not be escaped
  1815.                   if (!has_data_already) // only store the contents if we do NOT know the data yet
  1816.                   {
  1817.                      if (entry_parms.datalen == allocated_size) // reallocate in 4 kb blocks
  1818.                      {
  1819.                         reallocated_ptr = realloc (entry_parms.data, allocated_size + 4096);
  1820.                         WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  1821.                         entry_parms.data = reallocated_ptr;
  1822.                         allocated_size += 4096;
  1823.                      }
  1824.                      entry_parms.data[entry_parms.datalen++] = read_char;
  1825.                   }
  1826.                   if (read_char == '\n')
  1827.                      lineno++; // update line counter as we parse the inline content
  1828.                }
  1829.             } // end for
  1830.             has_data_already = true; // remember we have data now
  1831.          }
  1832.          else // not a content definition between { brackets }, must be either a pathname on the build host, or the target of a symlink
  1833.          {
  1834.             is_quoted_context = (*line_ptr == '"');
  1835.             if (is_quoted_context)
  1836.                line_ptr++; // skip a possible initial quote
  1837.             specifiedpathname_start = line_ptr; // remember where the specified pathname starts
  1838.             write_ptr = line_ptr; // now unescape all characters
  1839.             while ((*line_ptr != 0) && ((!is_quoted_context && !isspace (*line_ptr)) || (is_quoted_context && (*line_ptr == '"'))))
  1840.             {
  1841.                if (*line_ptr == '\\')
  1842.                {
  1843.                   line_ptr++;
  1844.                   *write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
  1845.                }
  1846.                else
  1847.                   *write_ptr++ = *line_ptr;
  1848.                line_ptr++;
  1849.             }
  1850.             *write_ptr = 0; // terminate the string
  1851.             if (is_quoted_context && (*line_ptr == '"'))
  1852.                line_ptr++; // skip a possible final quote
  1853.  
  1854.             if (S_ISLNK (entry_parms.st_mode)) // are we storing a symlink ?
  1855.             {
  1856.                entry_parms.data = strdup (specifiedpathname_start); // if so, store the symlink target as the dirent's blob data
  1857.                WELLMANNERED_ASSERT (entry_parms.data, "out of memory");
  1858.                entry_parms.datalen = strlen (specifiedpathname_start);
  1859.                has_data_already = true; // remember we have data now
  1860.             }
  1861.             else // it's a build host filesystem path
  1862.                strcpy (path_on_buildhost, line_ptr); // the path on the build host is given after the equal sign
  1863.          }
  1864.       }
  1865.       else // no equal sign, meaning the file will have the same name on the build host filesystem
  1866.       {
  1867.          // consistency check: symlinks MUST have an equal sign
  1868.          if (entry_parms.st_mode == S_IFLNK)
  1869.          {
  1870.             fprintf (stderr, "warning: syntax error in \"%s\" line %d: missing equal sign and symlink target (skipping)\n", buildfile_pathname, lineno);
  1871.             continue; // invalid symlink specification, skip line
  1872.          }
  1873.  
  1874.          strcpy (path_on_buildhost, specifiedpathname_start); // the path on the build host is the one specified
  1875.          sep = strrchr (specifiedpathname_start, '/');
  1876.          if (sep != NULL)
  1877.             memmove (specifiedpathname_start, sep + 1, strlen (sep + 1) + 1); // the path in the IFS will be the BASENAME of the path specified (after the prefix)
  1878.       }
  1879.  
  1880.       // now add this entry to the image filesystem
  1881.       if (S_ISDIR (entry_parms.st_mode))
  1882.          entry_parms.st_mode |= entry_parms.dperms;
  1883.       else if (S_ISLNK (entry_parms.st_mode))
  1884.          entry_parms.st_mode |= 0777; // NOTE: mkifs sets symlink permissions to rwxrwxrwx !?
  1885.       else // file or device node
  1886.          entry_parms.st_mode |= entry_parms.perms;
  1887.  
  1888.       add_fsentry (&fsentries, &fsentry_count, &entry_parms, path_in_ifs, path_on_buildhost); // and add filesystem entry
  1889.  
  1890.       if (entry_parms.data != NULL)
  1891.          free (entry_parms.data); // if blob data was allocated, free it
  1892.    }
  1893.  
  1894.    // write IFS file
  1895.    fp = fopen (ifs_pathname, "w+b");
  1896.    if (fp == NULL)
  1897.    {
  1898.       fprintf (stderr, "error: failed to open \"%s\" for writing (%s)\n", ifs_pathname, strerror (errno));
  1899.       exit (1);
  1900.    }
  1901.  
  1902.    // do we have a startup file ? if so, this is a bootable image
  1903.    if (startupfile_pathname != NULL)
  1904.    {
  1905.       // write boot prefix
  1906.       fwrite_filecontents (bootfile_pathname, fp);
  1907.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  1908.  
  1909.       startupheader_offset = ftell (fp); // save startup header offset
  1910.       memset (&startup_header, 0, sizeof (startup_header)); // prepare startup header
  1911.       memcpy (startup_header.signature, "\xeb\x7e\xff\x00", 4); // startup header signature, i.e. 0xff7eeb
  1912.       startup_header.version       = 1;
  1913.       startup_header.flags1        = STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2; // flags, 0x21 (STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2)
  1914.       startup_header.header_size   = sizeof (startup_header); // 256
  1915.       if (strcmp (image_processor, "x86_64") == 0)
  1916.          startup_header.machine = STARTUP_HDR_MACHINE_X86_64; // EM_X86_64
  1917.       else if (strcmp (image_processor, "aarch64le") == 0)
  1918.          startup_header.machine = STARTUP_HDR_MACHINE_AARCH64; // EM_AARCH64
  1919.       else
  1920.       {
  1921.          fprintf (stderr, "fatal error: unsupported processor type '%s' found in build file \"%s\"\n", image_processor, buildfile_pathname);
  1922.          exit (1);
  1923.       }
  1924.       startup_header.startup_vaddr = image_base + (uint32_t) startupfile_ep_from_imagebase; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
  1925.       startup_header.image_paddr   = image_base + (uint32_t) bootfile_size;                 // F[IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
  1926.       startup_header.ram_paddr     = startup_header.image_paddr;                            // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
  1927.       startup_header.ram_size      = WILL_BE_FILLED_LATER;                                  // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee (40686)
  1928.       startup_header.startup_size  = WILL_BE_FILLED_LATER;                                  // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
  1929.       startup_header.stored_size   = WILL_BE_FILLED_LATER;                                  // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
  1930.       startup_header.imagefs_size  = WILL_BE_FILLED_LATER;                                  // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
  1931.       startup_header.preboot_size  = (uint16_t) bootfile_size;                              // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
  1932.       fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
  1933.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  1934.  
  1935.       // ######################################################################################################################################################################################################################################
  1936.       // # FIXME: figure out how to re-create it: linker call involved
  1937.       // # $ x86_64-pc-nto-qnx8.0.0-ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0x1401030 --no-relax ${QNX_TARGET}/x86_64/boot/sys/startup-x86 -o startup.bin.UNSTRIPPED
  1938.       // ######################################################################################################################################################################################################################################
  1939.       fwrite_filecontents (startupfile_pathname, fp); // write startup code from blob file
  1940.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  1941.  
  1942.       startuptrailer_offset = ftell (fp); // save startup trailer offset
  1943.       fwrite_or_die (&startup_trailer, 1, sizeof (startup_trailer), fp); // write startup trailer
  1944.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  1945.    }
  1946.  
  1947.    imageheader_offset = ftell (fp); // save image header offset
  1948.    memset (&image_header, 0, sizeof (image_header)); // prepare image header
  1949.    memcpy (&image_header.signature, "imagefs", 7); // image filesystem signature, i.e. "imagefs"
  1950.    image_header.flags         = IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS; // endian neutral flags, 0x1c (IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS)
  1951.    image_header.image_size    = WILL_BE_FILLED_LATER; // size from header to end of trailer (here 0xca6fe0 or 13 266 912)
  1952.    image_header.hdr_dir_size  = WILL_BE_FILLED_LATER; // size from header to last dirent (here 0x12b8 or 4792)
  1953.    image_header.dir_offset    = sizeof (image_header); // offset from header to first dirent (here 0x5c or 92)
  1954.    image_header.boot_ino[0]   = image_kernel_ino; // inode of files for bootstrap p[ro?]g[ra?]ms (here 0xa0000002, 0, 0, 0)
  1955.    image_header.script_ino    = image_bootscript_ino; // inode of file for script (here 3)
  1956.    image_header.mountpoint[0] = '/'; // default mountpoint for image ("/" + "\0\0\0")
  1957.    fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
  1958.    PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  1959.  
  1960.    // write image directory (with the wrong file offsets)
  1961.    imgdir_offset = ftell (fp);
  1962.    imgdir_size = 0; // measure image dir size on the fly
  1963.    for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
  1964.       imgdir_size += fwrite_fsentry (&fsentries[fsentry_index], fp); // NOTE: padding is handled in this function
  1965.  
  1966.    fwrite_or_die ("\0\0\0\0", 1, 4, fp); // there seems to be 4 bytes of padding after the image directory
  1967.    imgdir_size += 4;
  1968.  
  1969.    // is it a bootable image with a kernel file ?
  1970.    if ((startupfile_pathname != NULL) && (kernelfile_pathname != NULL))
  1971.    {
  1972.       // start by writing the startup script data blob, if we have one
  1973.       for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  1974.          if (fsentries[fsentry_index].header.ino == image_bootscript_ino)
  1975.             break; // locate the startup script directory entry
  1976.       if (fsentry_index < fsentry_count) // found it ?
  1977.       {
  1978.          curr_offset = ftell (fp);
  1979.          if (curr_offset + fsentries[fsentry_index].u.file.size >= kernelfile_offset)
  1980.          {
  1981.             fprintf (stderr, "error: the compiled startup script is too big (%zd bytes, max is %zd) to fit at current offset %zd\n", (size_t) fsentries[fsentry_index].u.file.size, kernelfile_offset - curr_offset, curr_offset);
  1982.             exit (1);
  1983.          }
  1984.          fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  1985.          fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
  1986.          fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  1987.       }
  1988.  
  1989.       // now write the filesystem entries that may fit before the kernel
  1990.       for (;;)
  1991.       {
  1992.          curr_offset = ftell (fp); // see where we are
  1993.          available_space = kernelfile_offset - curr_offset; // measure the available space
  1994.  
  1995.          // look for the biggest one that can fit
  1996.          largest_index = 0;
  1997.          largest_size = 0;
  1998.          for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  1999.          {
  2000.             if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written || (fsentries[fsentry_index].u.file.size > available_space))
  2001.                continue; // skip all entries that don't have a separate data block, those who were written already and those that wouldn't fit
  2002.             if (fsentries[fsentry_index].u.file.size > largest_size)
  2003.             {
  2004.                largest_size = fsentries[fsentry_index].u.file.size;
  2005.                largest_index = fsentry_index;
  2006.             }
  2007.          }
  2008.          if (largest_size == 0)
  2009.             break; // found none ? if so, stop searching
  2010.  
  2011.          fsentries[largest_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2012.          fwrite_or_die (fsentries[largest_index].u.file.UNSAVED_databuf, 1, fsentries[largest_index].u.file.size, fp); // write file data blob
  2013.          fsentries[largest_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2014.       }
  2015.       PAD_OUTFILE_TO (kernelfile_offset); // reach the kernel offset
  2016.  
  2017.       // now write the QNX kernel
  2018.       for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  2019.          if (fsentries[fsentry_index].header.ino == image_kernel_ino)
  2020.             break; // locate the kernel directory entry (can't fail)
  2021.       curr_offset = ftell (fp); // see where we are
  2022.       fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2023.       // ######################################################################################################################################################################################################################################
  2024.       // # FIXME: figure out how to re-create it: linker call involved
  2025.       // # $ x86_64-pc-nto-qnx8.0.0-ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0xffff800000001000 --no-relax ${QNX_TARGET}/x86_64/boot/sys/procnto-smp-instr -o procnto-smp-instr.sym.UNSTRIPPED
  2026.       // ######################################################################################################################################################################################################################################
  2027.       fwrite_filecontents (kernelfile_pathname, fp); // write kernel from blob file
  2028.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2029.       fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2030.    }
  2031.  
  2032.    // then write all the other files by increasing inode number: ELF files first
  2033.    for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  2034.    {
  2035.       if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written // filter out anything that's not a file, and anything that's been already written
  2036.           || (fsentries[fsentry_index].u.file.size < 4) || (memcmp (fsentries[fsentry_index].u.file.UNSAVED_databuf, ELF_MAGIC_STR, 4) != 0)) // filter out anything that's not an ELF file
  2037.          continue; // skip all entries that don't have a separate data block and those who were written already
  2038.       curr_offset = ftell (fp);
  2039.       fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2040.       fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
  2041.       fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2042.    }
  2043.    for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++) // other files (non-ELF, e.g. scripts and data files) last
  2044.    {
  2045.       if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written) // filter out anything that's not a file, and anything that's been already written
  2046.          continue; // skip all entries that don't have a separate data block and those who were written already
  2047.       curr_offset = ftell (fp);
  2048.       fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2049.       fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
  2050.       fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2051.    }
  2052.    PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2053.  
  2054.    // finally, write trailer (including empty checksum)
  2055.    imagetrailer_offset = ftell (fp); // save image trailer offset
  2056.    fwrite_or_die (&image_trailer, 1, sizeof (image_trailer), fp); // write image trailer
  2057.    PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2058.  
  2059.    // if we need to pad it to a specific length, do so
  2060.    PAD_OUTFILE_TO (image_totalsize);
  2061.    final_size = ftell (fp);
  2062.  
  2063.    // see if we are past the image max size, in which case it's an error
  2064.    if (final_size > image_maxsize)
  2065.    {
  2066.       fprintf (stderr, "error: image file \"%s\" size %zd exceeds max size (%zd)\n", ifs_pathname, final_size, (size_t) image_maxsize);
  2067.       exit (1);
  2068.    }
  2069.  
  2070.    // do we have a startup file ? if so, this is a bootable image
  2071.    if (startupfile_pathname != NULL)
  2072.    {
  2073.       // rewrite startup header with final values
  2074.       fseek_or_die (fp, startupheader_offset, SEEK_SET);
  2075.       startup_header.startup_size = (uint32_t) (imageheader_offset - startupheader_offset); // size of startup header up to image header
  2076.       startup_header.imagefs_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
  2077.       startup_header.ram_size = (uint32_t) final_size; // FIXME: this is necessarily less, but should we really bother calculating the right size ?
  2078.       startup_header.stored_size = (uint32_t) final_size;
  2079.       fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
  2080.    }
  2081.  
  2082.    // rewrite image header with final values
  2083.    fseek_or_die (fp, imageheader_offset, SEEK_SET);
  2084.    image_header.image_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
  2085.    image_header.hdr_dir_size = sizeof (image_header) + (uint32_t) imgdir_size; // size from start of image header to last dirent
  2086.    fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
  2087.  
  2088.    // rewrite image directory with final offset values
  2089.    fseek_or_die (fp, imgdir_offset, SEEK_SET);
  2090.    if (image_header.flags & IMAGE_FLAGS_SORTED)
  2091.       qsort (&fsentries[1], fsentry_count - 1, sizeof (fsentry_t), fsentry_compare_pathnames_cb); // sort the filesystem entries by pathname
  2092.    for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
  2093.       fwrite_fsentry (&fsentries[fsentry_index], fp);
  2094.  
  2095.    fclose (fp); // ensure everything is flushed
  2096.  
  2097.    // ALL CHECKSUMS AT THE VERY END
  2098.  
  2099.    blob_data = NULL;
  2100.    read_filecontents (ifs_pathname, ".", &blob_data, &blob_size);
  2101.    WELLMANNERED_ASSERT (blob_data, "failed to open IFS file for checksumming: %s", strerror (errno));
  2102.  
  2103.    // do we have a startup file ? if so, this is a bootable image
  2104.    if (startupfile_pathname != NULL)
  2105.    {
  2106.       // compute SHA-512 checksum and V1 checksum of startup block
  2107.       if (   ( (startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2108.           || (!(startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2109.          is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2110.       else
  2111.          is_foreign_endianness = false; // else this header is for the same endianness as us
  2112.  
  2113.       SHA512 (&blob_data[startupheader_offset], startuptrailer_offset - startupheader_offset, &blob_data[startuptrailer_offset]); // compute SHA512 checksum and write it in place in blob data
  2114.       checksum = update_checksum (&blob_data[startupheader_offset], startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness); // compute old checksum
  2115.       memcpy (&blob_data[startuptrailer_offset + SHA512_DIGEST_LENGTH], &checksum, 4); // and write it in place
  2116.    }
  2117.  
  2118.    // compute SHA-512 checksum and V1 checksum of image block
  2119.    if (   ( (image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2120.        || (!(image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2121.       is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2122.    else
  2123.       is_foreign_endianness = false; // else this header is for the same endianness as us
  2124.  
  2125.    SHA512 (&blob_data[imageheader_offset], imagetrailer_offset - imageheader_offset, &blob_data[imagetrailer_offset]); // compute SHA512 checksum and write it in place in blob data
  2126.    checksum = update_checksum (&blob_data[imageheader_offset], imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness); // compute old checksum
  2127.    memcpy (&blob_data[imagetrailer_offset + SHA512_DIGEST_LENGTH], &checksum, 4); // and write it in place
  2128.  
  2129.    // now rewrite IFS with the correct checksums
  2130.    fp = fopen (ifs_pathname, "wb");
  2131.    WELLMANNERED_ASSERT (fp, "failed to reopen IFS file for checksumming: %s", strerror (errno));
  2132.    fwrite_or_die (blob_data, 1, blob_size, fp);
  2133.    fclose (fp);
  2134.    free (blob_data);
  2135.  
  2136.    // finished, exit with a success code
  2137.    fprintf (stdout, "Success\n");
  2138.    exit (0);
  2139. }
  2140.  
  2141.  
  2142. static int dump_ifs_info (const char *ifs_pathname)
  2143. {
  2144.    #define hex_printf(buf,size,...) do { \
  2145.       if ((size) <= 16 * 1024) /* only print when it's not too big (up to 16 kb) */\
  2146.          hex_fprintf (stdout, (buf), (size), 16, __VA_ARGS__); /* use 16 columns in hex output to stdout */ \
  2147.       else { \
  2148.          printf (__VA_ARGS__); \
  2149.          printf ("   size %zd > 16kb, not printed\n", (size_t) (size)); \
  2150.       } \
  2151.    } while (0)
  2152.    #define BINARY(x) binary ((x), '-', 'x')
  2153.  
  2154.    static const char *startupheader_flags1_strings[8] = {
  2155.       "VIRTUAL", // bit 0
  2156.       "BIGENDIAN", // bit 1
  2157.       "COMPRESS_BIT1", // bit 2
  2158.       "COMPRESS_BIT2", // bit 3
  2159.       "COMPRESS_BIT3", // bit 4
  2160.       "TRAILER_V2", // bit 5
  2161.       "", // bit 6
  2162.       "", // bit 7
  2163.    };
  2164.    static const char *imageheader_flags_strings[8] = {
  2165.       "BIGENDIAN", // bit 0
  2166.       "READONLY", // bit 1
  2167.       "INO_BITS", // bit 2
  2168.       "SORTED", // bit 3
  2169.       "TRAILER_V2", // bit 4
  2170.       "", // bit 5
  2171.       "", // bit 6
  2172.       "", // bit 7
  2173.    };
  2174.  
  2175.    startup_header_t *startup_header = NULL;
  2176.    size_t startupheader_offset = 0;
  2177.    startup_trailer_v1_t *startup_trailer_v1 = NULL;
  2178.    startup_trailer_v2_t *startup_trailer_v2 = NULL;
  2179.    size_t startuptrailer_offset = 0;
  2180.    image_header_t *image_header = NULL;
  2181.    size_t imageheader_offset = 0;
  2182.    image_trailer_v1_t *image_trailer_v1 = NULL;
  2183.    image_trailer_v2_t *image_trailer_v2 = NULL;
  2184.    size_t imagetrailer_offset = 0;
  2185.    fsentry_t **fsentries = NULL; // mallocated
  2186.    size_t fsentry_count = 0;
  2187.    fsentry_t *current_fsentry = NULL;
  2188.    char recorded_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
  2189.    char computed_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
  2190.    size_t startupfile_blobsize = 0;
  2191.    void *reallocated_ptr;
  2192.    bool is_foreign_endianness;
  2193.    size_t bootfile_blobsize = 0;
  2194.    size_t current_offset;
  2195.    size_t fsentry_index;
  2196.    size_t nearest_distance;
  2197.    size_t nearest_index;
  2198.    size_t byte_index;
  2199.    uint32_t recorded_checksum;
  2200.    uint32_t computed_checksum;
  2201.    uint8_t *filedata;
  2202.    size_t filesize;
  2203.    time_t mtime;
  2204.  
  2205.    // open and read IFS file
  2206.    if (read_filecontents (ifs_pathname, ".", &filedata, &filesize) == NULL)
  2207.    {
  2208.       fprintf (stderr, "error: can't open \"%s\" for reading: %s\n", ifs_pathname, strerror (errno));
  2209.       return (1);
  2210.    }
  2211.  
  2212.    printf ("QNX In-kernel Filesystem analysis produced by ifstool version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
  2213.    printf ("IFS file \"%s\" - size 0x%zx (%zd) bytes\n", ifs_pathname, filesize, filesize);
  2214.  
  2215.    // parse file from start to end
  2216.    current_offset = 0;
  2217.    for (;;)
  2218.    {
  2219.       // does a startup header start here ?
  2220.       if ((current_offset + sizeof (startup_header_t) < filesize) && (memcmp (&filedata[current_offset], "\xeb\x7e\xff\x00", 4) == 0))
  2221.       {
  2222.          startupheader_offset = current_offset;
  2223.          startup_header = (startup_header_t *) &filedata[startupheader_offset];
  2224.  
  2225.          // layout:
  2226.          // [STARTUP HEADER]
  2227.          // (startup file blob)
  2228.          // [STARTUP TRAILER v1 or v2]
  2229.  
  2230.          printf ("\n");
  2231.          printf ("Startup header at offset 0x%zx (%zd):\n", current_offset, current_offset);
  2232.          printf ("   signature     = %02x %02x %02x %02x - good\n", startup_header->signature[0], startup_header->signature[1], startup_header->signature[2], startup_header->signature[3]);
  2233.          printf ("   version       = 0x%04x (%d) - %s\n", startup_header->version, startup_header->version, (startup_header->version == 1 ? "looks good" : "???"));
  2234.          printf ("   flags1        = 0x%02x (%s)\n", startup_header->flags1, describe_uint8 (startup_header->flags1, startupheader_flags1_strings));
  2235.          printf ("   flags2        = 0x%02x (%s) - %s\n", startup_header->flags2, BINARY (startup_header->flags2), (startup_header->flags2 == 0 ? "looks good" : "???"));
  2236.          printf ("   header_size   = 0x%04x (%d) - %s\n", startup_header->header_size, startup_header->header_size, (startup_header->header_size == sizeof (startup_header_t) ? "looks good" : "BAD"));
  2237.          printf ("   machine       = 0x%04x (%d) - %s\n", startup_header->machine, startup_header->machine, (startup_header->machine == STARTUP_HDR_MACHINE_X86_64 ? "x86_64" : (startup_header->machine == STARTUP_HDR_MACHINE_AARCH64 ? "aarch64" : "unknown")));
  2238.          printf ("   startup_vaddr = 0x%08x (%d) - virtual address to transfer to after IPL is done\n", startup_header->startup_vaddr, startup_header->startup_vaddr);
  2239.          printf ("   paddr_bias    = 0x%08x (%d) - value to add to physical addresses to get an indirectable pointer value\n", startup_header->paddr_bias, startup_header->paddr_bias);
  2240.          printf ("   image_paddr   = 0x%08x (%d) - physical address of image\n", startup_header->image_paddr, startup_header->image_paddr);
  2241.          printf ("   ram_paddr     = 0x%08x (%d) - physical address of RAM to copy image to (startup_size bytes copied)\n", startup_header->ram_paddr, startup_header->ram_paddr);
  2242.          printf ("   ram_size      = 0x%08x (%d) - amount of RAM used by the startup program and executables in the fs\n", startup_header->ram_size, startup_header->ram_size);
  2243.          printf ("   startup_size  = 0x%08x (%d) - size of startup (never compressed) - %s\n", startup_header->startup_size, startup_header->startup_size, (current_offset + sizeof (image_header_t) + startup_header->startup_size + (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? sizeof (image_trailer_v2_t) : sizeof (image_trailer_v1_t)) < filesize ? "looks good" : "BAD (IFS file too short)"));
  2244.          printf ("   stored_size   = 0x%08x (%d) - size of entire image - %s\n", startup_header->stored_size, startup_header->stored_size, (startup_header->stored_size == startup_header->ram_size ? "looks good" : "???"));
  2245.          printf ("   imagefs_paddr = 0x%08x (%d) - set by IPL when startup runs - %s\n", startup_header->imagefs_paddr, startup_header->imagefs_paddr, (startup_header->imagefs_paddr == 0 ? "looks good" : "??? should be zero"));
  2246.          printf ("   imagefs_size  = 0x%08x (%d) - size of uncompressed imagefs\n", startup_header->imagefs_size, startup_header->imagefs_size);
  2247.          printf ("   preboot_size  = 0x%04x (%d) - size of loaded before header - %s\n", startup_header->preboot_size, startup_header->preboot_size, (startup_header->preboot_size == current_offset ? "looks good" : "???"));
  2248.          printf ("   zero0         = 0x%04x (%d) - zeros - %s\n", startup_header->zero0, startup_header->zero0, (startup_header->zero0 == 0 ? "looks good" : "??? should be zero"));
  2249.          printf ("   zero[0]       = 0x%08x (%d) - zeros - %s\n", startup_header->zero[0], startup_header->zero[0], (startup_header->zero[0] == 0 ? "looks good" : "??? should be zero"));
  2250.          printf ("   addr_off      = 0x%016llx (%lld) - offset for startup_vaddr and [image|ram|imagefs]_paddr - %s\n", startup_header->addr_off, startup_header->addr_off, (startup_header->addr_off == 0 ? "looks good" : "??? should be zero"));
  2251.          hex_printf ((uint8_t *) &startup_header->info[0], sizeof (startup_header->info), "   info[48] =\n");
  2252.  
  2253.          // validate that the file can contain up to the startup trailer
  2254.          if (current_offset + startup_header->startup_size > filesize)
  2255.          {
  2256.             printf ("WARNING: this IFS file is corrupted (startup trailer extends past end of file)\n");
  2257.             goto endofdata;
  2258.          }
  2259.  
  2260.          // check if this endianness is ours
  2261.          if (   ( (startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2262.              || (!(startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2263.             is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2264.          else
  2265.             is_foreign_endianness = false; // else this header is for the same endianness as us
  2266.  
  2267.          // locate the right startup trailer at the right offset
  2268.          if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
  2269.          {
  2270.             startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v2_t);
  2271.             startup_trailer_v2 = (startup_trailer_v2_t *) &filedata[startuptrailer_offset];
  2272.             startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v2_t);
  2273.          }
  2274.          else // old V1 trailer
  2275.          {
  2276.             startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v1_t);
  2277.             startup_trailer_v1 = (startup_trailer_v1_t *) &filedata[startuptrailer_offset];
  2278.             startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v1_t);
  2279.          }
  2280.  
  2281.          current_offset += sizeof (startup_header_t); // jump over the startup header and reach the startup blob
  2282.          printf ("\n");
  2283.          printf ("Startup blob at offset 0x%zx (%zd):\n", current_offset, current_offset);
  2284.          printf ("   size 0x%zx (%zd) bytes\n", startupfile_blobsize, startupfile_blobsize);
  2285.          printf ("   checksum %d\n", update_checksum (&filedata[current_offset], startupfile_blobsize, is_foreign_endianness));
  2286.  
  2287.          current_offset += startupfile_blobsize; // jump over the startup blob and reach the startup trailer
  2288.          printf ("\n");
  2289.          printf ("Startup trailer at offset 0x%zx (%zd) - version %d:\n", current_offset, current_offset, (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? 2 : 1));
  2290.          if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
  2291.          {
  2292.             for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
  2293.                sprintf (&recorded_sha512[2 * byte_index], "%02x", startup_trailer_v2->sha512[byte_index]);
  2294.             strcpy (computed_sha512, SHA512 (startup_header, startuptrailer_offset - startupheader_offset, NULL));
  2295.             recorded_checksum = startup_trailer_v2->cksum;
  2296.             computed_checksum = update_checksum (startup_header, startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness);
  2297.             printf ("    sha512([0x%zx-0x%zx[) = %s - %s\n", startupheader_offset, startuptrailer_offset, recorded_sha512, (strcasecmp (computed_sha512, recorded_sha512) == 0 ? "GOOD" : "BAD"));
  2298.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset, startuptrailer_offset + SHA512_DIGEST_LENGTH, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2299.             if (strcasecmp (computed_sha512, recorded_sha512) != 0)
  2300.                printf ("Computed SHA-512: %s\n", computed_sha512);
  2301.             if (computed_checksum != recorded_checksum)
  2302.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2303.          }
  2304.          else // old v1 trailer
  2305.          {
  2306.             recorded_checksum = startup_trailer_v1->cksum;
  2307.             computed_checksum = update_checksum (startup_header, sizeof (startup_header) + startupfile_blobsize, is_foreign_endianness);
  2308.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset, startuptrailer_offset, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2309.             if (computed_checksum != recorded_checksum)
  2310.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2311.          }
  2312.  
  2313.          current_offset += (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? sizeof (startup_trailer_v2_t) : sizeof (startup_trailer_v1_t)); // now reach the next segment
  2314.       }
  2315.  
  2316.       // else does an image header start here ?
  2317.       else if ((current_offset + sizeof (image_header_t) < filesize) && (memcmp (&filedata[current_offset], "imagefs", 7) == 0))
  2318.       {
  2319.          imageheader_offset = current_offset;
  2320.          image_header = (image_header_t *) &filedata[imageheader_offset];
  2321.  
  2322.          // layout:
  2323.          // [IMAGE HEADER]
  2324.          // [image directory entries]
  2325.          // [smallest file blobs up to KERNEL]
  2326.          // [padding]
  2327.          // [KERNEL]
  2328.          // [rest of file blobs]
  2329.          // [IMAGE FOOTER]
  2330.  
  2331.          printf ("\n");
  2332.          printf ("Image header at offset %zx (%zd):\n", current_offset, current_offset);
  2333.          printf ("   signature    = %02x %02x %02x %02x %02x %02x %02x (\"%.7s\") - good\n", image_header->signature[0], image_header->signature[1], image_header->signature[2], image_header->signature[3], image_header->signature[4], image_header->signature[5], image_header->signature[6], image_header->signature);
  2334.          printf ("   flags        = 0x%02x (%s)\n", image_header->flags, describe_uint8 (image_header->flags, imageheader_flags_strings));
  2335.          printf ("   image_size   = 0x%08x (%d) - size from header to end of trailer - %s\n", image_header->image_size, image_header->image_size, (current_offset + image_header->image_size <= filesize ? "looks good" : "BAD (IFS file too short)"));
  2336.          printf ("   hdr_dir_size = 0x%08x (%d) - size from header to last dirent - %s\n", image_header->hdr_dir_size, image_header->hdr_dir_size, (current_offset + image_header->hdr_dir_size < filesize ? "looks good" : "BAD (IFS file too short)"));
  2337.          printf ("   dir_offset   = 0x%08x (%d) - offset from header to first dirent - %s\n", image_header->dir_offset, image_header->dir_offset, (current_offset + image_header->dir_offset >= filesize ? "BAD (IFS file too short)" : (image_header->dir_offset > image_header->hdr_dir_size ? "BAD" : "looks good")));
  2338.          printf ("   boot_ino[4]  = { 0x%08x, 0x%08x, 0x%08x, 0x%08x }\n", image_header->boot_ino[0], image_header->boot_ino[1], image_header->boot_ino[2], image_header->boot_ino[3]);
  2339.          printf ("   script_ino   = 0x%08x (%d) - inode of compiled bootscript\n", image_header->script_ino, image_header->script_ino);
  2340.          printf ("   chain_paddr  = 0x%08x (%d) - offset to next fs signature\n", image_header->chain_paddr, image_header->chain_paddr);
  2341.          hex_printf ((uint8_t *) &image_header->spare[0], sizeof (image_header->spare), "   spare[10] =\n");
  2342.          printf ("   mountflags   = 0x%08x (%s %s %s %s)\n", image_header->mountflags, BINARY (((uint8_t *) &image_header->mountflags)[0]), BINARY (((uint8_t *) &image_header->mountflags)[1]), BINARY (((uint8_t *) &image_header->mountflags)[2]), BINARY (((uint8_t *) &image_header->mountflags)[3]));
  2343.          printf ("   mountpoint   = \"%s\"\n", image_header->mountpoint);
  2344.  
  2345.          // validate that the file can contain up to the image trailer
  2346.          if (current_offset + image_header->image_size > filesize)
  2347.          {
  2348.             printf ("WARNING: this IFS file is corrupted (image trailer extends past end of file)\n");
  2349.             goto endofdata;
  2350.          }
  2351.  
  2352.          // check if this endianness is ours
  2353.          if (   ( (image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2354.              || (!(image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2355.             is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2356.          else
  2357.             is_foreign_endianness = false; // else this header is for the same endianness as us
  2358.  
  2359.          // locate the image trailer at the right offset
  2360.          if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
  2361.          {
  2362.             imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v2_t);
  2363.             image_trailer_v2 = (image_trailer_v2_t *) &filedata[imagetrailer_offset];
  2364.          }
  2365.          else // old V1 trailer
  2366.          {
  2367.             imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v1_t);
  2368.             image_trailer_v1 = (image_trailer_v1_t *) &filedata[imagetrailer_offset];
  2369.          }
  2370.  
  2371.          current_offset += sizeof (image_header_t); // jump over the image header and reach the first directory entry
  2372.  
  2373.          // there may be padding before the first directory entry
  2374.          if (image_header->dir_offset - sizeof (image_header_t) > 0)
  2375.             hex_printf (&filedata[current_offset], image_header->dir_offset - sizeof (image_header_t), "\n" "%zd padding bytes at offset 0x%zd (%zd):\n", image_header->dir_offset - sizeof (image_header_t), current_offset, current_offset);
  2376.          current_offset += image_header->dir_offset - sizeof (image_header_t); // padding was processed, jump over it
  2377.  
  2378.          // dump all directory entries until the last one included
  2379.          fsentries = NULL;
  2380.          fsentry_count = 0;
  2381.          while (current_offset < imageheader_offset + image_header->hdr_dir_size)
  2382.          {
  2383.             current_fsentry = (fsentry_t *) &filedata[current_offset];
  2384.  
  2385.             if (imageheader_offset + image_header->hdr_dir_size - current_offset < sizeof (current_fsentry->header))
  2386.                break; // end padding reached
  2387.  
  2388.             // stack up the filesystem entry pointers in an array while we read them
  2389.             reallocated_ptr = realloc (fsentries, (fsentry_count + 1) * sizeof (fsentry_t *));
  2390.             WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  2391.             fsentries = reallocated_ptr;
  2392.             fsentries[fsentry_count] = current_fsentry;
  2393.             fsentry_count++;
  2394.  
  2395.             printf ("\n");
  2396.             printf ("Filesystem entry at offset 0x%zx (%zd) - last one at 0x%zd (%zd):\n", current_offset, current_offset, imageheader_offset + image_header->hdr_dir_size, imageheader_offset + image_header->hdr_dir_size);
  2397.             printf ("   size           = 0x%04x (%d) - size of dirent - %s\n", current_fsentry->header.size, current_fsentry->header.size, ((current_fsentry->header.size > 0) && (current_offset + current_fsentry->header.size < filesize) ? "looks good" : "BAD"));
  2398.             printf ("   extattr_offset = 0x%04x (%d) - %s\n", current_fsentry->header.extattr_offset, current_fsentry->header.extattr_offset, (current_fsentry->header.extattr_offset == 0 ? "no extattr" : "has extattr"));
  2399.             printf ("   ino            = 0x%08x (%d) - inode number (%s%s%s%s)\n", current_fsentry->header.ino, current_fsentry->header.ino, (current_fsentry->header.ino & 0xE0000000 ? "is" : "nothing special"), (current_fsentry->header.ino & IFS_INO_PROCESSED_ELF ? " PROCESSED_ELF" : ""), (current_fsentry->header.ino & IFS_INO_RUNONCE_ELF ? " RUNONCE_ELF" : ""), (current_fsentry->header.ino & IFS_INO_BOOTSTRAP_EXE ? " BOOTSTRAP_EXE" : ""));
  2400.             printf ("   mode           = 0x%08x (%d) - %s (0%o), POSIX permissions 0%o\n", current_fsentry->header.mode, current_fsentry->header.mode, (S_ISDIR (current_fsentry->header.mode) ? "directory" : (S_ISREG (current_fsentry->header.mode) ? "file" : (S_ISLNK (current_fsentry->header.mode) ? "symlink" : "device"))), (current_fsentry->header.mode & 0xF000) >> 12, current_fsentry->header.mode & 0xFFF);
  2401.             printf ("   gid            = 0x%08x (%d) - owner group ID%s\n", current_fsentry->header.gid, current_fsentry->header.gid, (current_fsentry->header.gid == 0 ? " (root)" : ""));
  2402.             printf ("   uid            = 0x%08x (%d) - owner user ID%s\n", current_fsentry->header.uid, current_fsentry->header.uid, (current_fsentry->header.uid == 0 ? " (root)" : ""));
  2403.             mtime = (time_t) current_fsentry->header.mtime;
  2404.             printf ("   mtime          = 0x%08x (%d) - POSIX timestamp: %s", current_fsentry->header.mtime, current_fsentry->header.mtime, asctime (localtime (&mtime))); // NOTE: asctime() provides the newline
  2405.             if (S_ISDIR (current_fsentry->header.mode))
  2406.                printf ("   [DIRECTORY] path = \"%s\"\n", (char *) &current_fsentry->u.dir.path); // convert from pointer to char array
  2407.             else if (S_ISREG (current_fsentry->header.mode))
  2408.             {
  2409.                printf ("   [FILE] offset = 0x%08x (%d) - %s\n", current_fsentry->u.file.offset, current_fsentry->u.file.offset, (imageheader_offset + current_fsentry->u.file.offset < filesize ? "looks good" : "BAD (IFS file too short)"));
  2410.                printf ("   [FILE] size   = 0x%08x (%d) - %s\n", current_fsentry->u.file.size, current_fsentry->u.file.size, (imageheader_offset + current_fsentry->u.file.offset + current_fsentry->u.file.size < filesize ? "looks good" : "BAD (IFS file too short)"));
  2411.                printf ("   [FILE] path   = \"%s\"\n", (char *) &current_fsentry->u.file.path); // convert from pointer to char array
  2412.             }
  2413.             else if (S_ISLNK (current_fsentry->header.mode))
  2414.             {
  2415.                printf ("   [SYMLINK] sym_offset = 0x%04x (%d) - %s\n", current_fsentry->u.symlink.sym_offset, current_fsentry->u.symlink.sym_offset, (sizeof (current_fsentry->header) + 2 * sizeof (uint16_t) + current_fsentry->u.symlink.sym_offset <= current_fsentry->header.size ? "looks good" : "BAD (dirent too short)"));
  2416.                printf ("   [SYMLINK] sym_size   = 0x%04x (%d) - %s\n", current_fsentry->u.symlink.sym_size, current_fsentry->u.symlink.sym_size, (sizeof (current_fsentry->header) + 2 * sizeof (uint16_t) + current_fsentry->u.symlink.sym_offset + current_fsentry->u.symlink.sym_size <= current_fsentry->header.size ? "looks good" : "BAD (dirent too short)"));
  2417.                printf ("   [SYMLINK] path       = \"%s\"\n", (char *) &current_fsentry->u.symlink.path); // convert from pointer to char array
  2418.                printf ("   [SYMLINK] contents   = \"%s\"\n", ((char *) &current_fsentry->u.symlink.path) + current_fsentry->u.symlink.sym_offset); // convert from pointer to char array
  2419.             }
  2420.             else // can only be a device
  2421.             {
  2422.                printf ("   [DEVICE] dev  = 0x%08x (%d)\n", current_fsentry->u.device.dev, current_fsentry->u.device.dev);
  2423.                printf ("   [DEVICE] rdev = 0x%08x (%d)\n", current_fsentry->u.device.rdev, current_fsentry->u.device.rdev);
  2424.                printf ("   [DEVICE] path = \"%s\"\n", (char *) &current_fsentry->u.device.path); // convert from pointer to char array
  2425.             }
  2426.  
  2427.             if ((current_fsentry->header.size == 0) || (current_offset + current_fsentry->header.size >= filesize))
  2428.             {
  2429.                printf ("WARNING: this IFS file is corrupted (the size of this directory entry is invalid)\n");
  2430.                goto endofdata;
  2431.             }
  2432.  
  2433.             current_offset += current_fsentry->header.size;
  2434.          }
  2435.          if (imageheader_offset + image_header->hdr_dir_size < current_offset + sizeof (current_fsentry->header))
  2436.             hex_printf (&filedata[current_offset], imageheader_offset + image_header->hdr_dir_size - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + image_header->hdr_dir_size - current_offset, current_offset, current_offset);
  2437.          current_offset += imageheader_offset + image_header->hdr_dir_size - current_offset; // padding was processed, jump over it
  2438.  
  2439.          // at this point we are past the directory entries; what is stored now, up to and until the image trailer, is the files' data
  2440.          if (fsentry_count > 0)
  2441.          {
  2442.             while (current_offset < imagetrailer_offset) // and parse data up to the trailer
  2443.             {
  2444.                nearest_distance = SIZE_MAX;
  2445.                nearest_index = SIZE_MAX;
  2446.                for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
  2447.                   if (S_ISREG (fsentries[fsentry_index]->header.mode) // if this directory entry a file (i.e. it has a data blob)...
  2448.                       && (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset >= current_offset) // ... AND its data blob is still ahead of our current pointer ...
  2449.                       && (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset < nearest_distance)) // ... AND it's the closest to us we've found so far
  2450.                   {
  2451.                      nearest_distance = imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset; // then remember it
  2452.                      nearest_index = fsentry_index;
  2453.                   }
  2454.                if (nearest_index == SIZE_MAX)
  2455.                   break; // found no file ahead, which means we've parsed the whole file data area, so stop the loop so as to proceed to the image trailer
  2456.  
  2457.                fsentry_index = nearest_index;
  2458.                current_fsentry = fsentries[fsentry_index]; // quick access to closest fsentry
  2459.  
  2460.                // there may be padding before the file data
  2461.                if (imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset > 0)
  2462.                   hex_printf (&filedata[current_offset], imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, current_offset, current_offset);
  2463.                current_offset += imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset; // padding was processed, jump over it
  2464.  
  2465.                printf ("\n");
  2466.                printf ("File data blob at offset 0x%zx (%zd):\n", current_offset, current_offset);
  2467.                printf ("   corresponding dirent index: %zd/%zd\n", fsentry_index, fsentry_count);
  2468.                printf ("   corresponding inode 0x%08x (%d) -%s%s%s%s\n", current_fsentry->header.ino, current_fsentry->header.ino, (current_fsentry->header.ino & 0xE0000000 ? "" : " nothing special"), (current_fsentry->header.ino & IFS_INO_PROCESSED_ELF ? " PROCESSED_ELF" : ""), (current_fsentry->header.ino & IFS_INO_RUNONCE_ELF ? " RUNONCE_ELF" : ""), (current_fsentry->header.ino & IFS_INO_BOOTSTRAP_EXE ? " BOOTSTRAP_EXE" : ""));
  2469.                printf ("   corresponding path: \"%s\"\n", (char *) &current_fsentry->u.file.path); // convert from pointer to char array
  2470.                printf ("   size 0x%zx (%zd) bytes\n", (size_t) current_fsentry->u.file.size, (size_t) current_fsentry->u.file.size);
  2471.                if (current_offset + 4 < filesize)
  2472.                {
  2473.                   if ((current_fsentry->u.file.size < 16 * 1024) && (current_offset + current_fsentry->u.file.size < filesize))
  2474.                      hex_printf (&filedata[current_offset], current_fsentry->u.file.size, "   data:\n");
  2475.                   else
  2476.                      printf ("   first 4 bytes: %02x%02x%02x%02x \"%c%c%c%c\" (%s)\n", (uint8_t) filedata[current_offset + 0], (uint8_t) filedata[current_offset + 1], (uint8_t) filedata[current_offset + 2], (uint8_t) filedata[current_offset + 3], (isprint (filedata[current_offset + 0]) ? filedata[current_offset + 0] : '.'), (isprint (filedata[current_offset + 1]) ? filedata[current_offset + 1] : '.'), (isprint (filedata[current_offset + 2]) ? filedata[current_offset + 2] : '.'), (isprint (filedata[current_offset + 3]) ? filedata[current_offset + 3] : '.'), (memcmp (&filedata[current_offset], ELF_MAGIC_STR, 4) == 0 ? "ELF binary" : (memcmp (&filedata[current_offset], "#!", 2) == 0 ? "shell script" : "data file")));
  2477.                }
  2478.                if (current_offset + current_fsentry->u.file.size < filesize)
  2479.                   printf ("   checksum %d\n", update_checksum (&filedata[current_offset], current_fsentry->u.file.size, is_foreign_endianness));
  2480.                else
  2481.                {
  2482.                   printf ("WARNING: this IFS file is corrupted (the size of this file data extends past the IFS size)\n");
  2483.                   goto endofdata;
  2484.                }
  2485.  
  2486.                current_offset += current_fsentry->u.file.size; // now jump over this file's data
  2487.             }
  2488.          }
  2489.  
  2490.          // ad this point we're past the last file data, there may be padding before the image trailer
  2491.          if (imagetrailer_offset - current_offset > 0)
  2492.             hex_printf (&filedata[current_offset], imagetrailer_offset - current_offset, "\n" "%zd padding bytes at offset %zx (%zd):\n", imagetrailer_offset - current_offset, current_offset, current_offset);
  2493.          current_offset += imagetrailer_offset - current_offset; // padding was processed, jump over it
  2494.  
  2495.          printf ("\n");
  2496.          printf ("Image trailer at offset 0x%zx (%zd) - version %d:\n", current_offset, current_offset, (image_header->flags & IMAGE_FLAGS_TRAILER_V2 ? 2 : 1));
  2497.          if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
  2498.          {
  2499.             for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
  2500.                sprintf (&recorded_sha512[2 * byte_index], "%02x", image_trailer_v2->sha512[byte_index]);
  2501.             strcpy (computed_sha512, SHA512 (image_header, imagetrailer_offset - imageheader_offset, NULL));
  2502.             recorded_checksum = image_trailer_v2->cksum;
  2503.             computed_checksum = update_checksum (image_header, imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness);
  2504.             printf ("    sha512([0x%zx-0x%zx[) = %s - %s\n", imageheader_offset, imagetrailer_offset, recorded_sha512, (strcasecmp (computed_sha512, recorded_sha512) == 0 ? "GOOD" : "BAD"));
  2505.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset, imagetrailer_offset + SHA512_DIGEST_LENGTH, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2506.             if (strcasecmp (computed_sha512, recorded_sha512) != 0)
  2507.                printf ("Computed SHA-512: %s\n", computed_sha512);
  2508.             if (computed_checksum != recorded_checksum)
  2509.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2510.          }
  2511.          else // old v1 trailer
  2512.          {
  2513.             recorded_checksum = image_trailer_v1->cksum;
  2514.             computed_checksum = update_checksum (image_header, image_header->image_size - sizeof (image_trailer_v1_t), is_foreign_endianness);
  2515.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset, imagetrailer_offset, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2516.             if (computed_checksum != recorded_checksum)
  2517.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2518.          }
  2519.  
  2520.          current_offset += (image_header->flags & IMAGE_FLAGS_TRAILER_V2 ? sizeof (image_trailer_v2_t) : sizeof (image_trailer_v1_t)); // now reach the next segment (typically end of file)
  2521.       }
  2522.  
  2523.       // else it has to be a boot blob, of which we don't know the size, except that it has to fit in 0xffff bytes and be immediately followed by a startup header
  2524.       else
  2525.       {
  2526.          // so scan for the first startup header magic and version (which makes us 6 bytes to scan for, i.e. "\xeb\x7e\xff\x00" for the magic and "\x01\x00" (LSB) for the version 1)
  2527.          for (byte_index = current_offset; byte_index < filesize - 6; byte_index++)
  2528.             if (memcmp (&filedata[byte_index], "\xeb\x7e\xff\x00" "\x01\x00", 4 + 2) == 0)
  2529.                break; // stop as soon as we find it
  2530.  
  2531.          if (byte_index >= filesize - 6)
  2532.             break; // if not found, stop scanning
  2533.  
  2534.          bootfile_blobsize = byte_index - current_offset;
  2535.          printf ("Boot blob at offset 0x%zx (%zd):\n", current_offset, current_offset);
  2536.          printf ("   size 0x%zx (%zd) bytes\n", bootfile_blobsize, bootfile_blobsize);
  2537.          printf ("   checksum 0x%08x\n", update_checksum (&filedata[current_offset], bootfile_blobsize, false)); // NOTE: endianness is not known yet -- assume same
  2538.  
  2539.          current_offset = byte_index; // now reach the next segment
  2540.       }
  2541.    }
  2542.  
  2543. endofdata:
  2544.    // at this point there's nothing left we're able to parse
  2545.    if (current_offset < filesize)
  2546.    {
  2547.       printf ("End of identifiable data reached.\n");
  2548.       hex_printf (&filedata[current_offset], filesize - current_offset, "\n" "%zd extra bytes at offset %zx (%zd):\n", filesize - current_offset, current_offset, current_offset);
  2549.    }
  2550.  
  2551.    printf ("End of file reached at offset 0x%zx (%zd)\n", filesize, filesize);
  2552.    printf ("IFS dissecation complete.\n");
  2553.    return (0);
  2554. }
  2555.