// ifstool.c -- portable reimplementation of QNX's mkifs by Pierre-Marie Baty <pm@pmbaty.com>
// TODO: preboot file stripping
// TODO: startup file stripping
// TODO: kernel file stripping
// TODO: boot script compiler
// standard C includes
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include <sys/stat.h>
#include <ctype.h>
#include <time.h>
// platform-specific includes
#ifdef _MSC_VER
#include <io.h>
#include <direct.h>
#include <sys/utime.h>
#else // !_MSC_VER
#include <sys/param.h>
#include <unistd.h>
#include <utime.h>
#endif // _MSC_VER
// own includes
#include "buffer.h"
#include "sha512.h"
#include "elffile.h"
#include "ifsfile.h"
#include "utility.h"
// compiler-specific glue
#ifndef _MSC_VER
#define sscanf_s sscanf // WARNING: TRUE FOR THIS FILE ONLY!
#endif // !_MSC_VER
// libasan (Address Sanitizer) options: this is not a daemon, so I don't care about leaks: they will be recovered by the OS at program exit
const char *__asan_default_options () { return ("detect_leaks=0"); }
// placeholder value
#define WILL_BE_FILLED_LATER 0xbaadf00d // urgh
// miscellaneous macros
#define ROUND_TO_UPPER_MULTIPLE(val,multiple) ((((val) + (size_t) (multiple) - 1) / (multiple)) * (multiple)) // note that val is being evaluated once, so it can be the result of a function call
#ifdef _WIN32
#define IS_DIRSEP(c) (((c) == '/') || ((c) == '\\')) // platform-specific directory separator, Win32 variant
#define PATH_SEP ";" // platform-specific PATH element separator (as string), Win32 variant
#else // !_WIN32, thus POSIX
#define IS_DIRSEP(c) ((c) == '/') // platform-specific directory separator, UNIX variant
#define PATH_SEP ":" // platform-specific PATH element separator (as string), UNIX variant
#endif // _WIN32
#define RECORD_SEP "\x1e" // arbitrarily-chosen ASCII record separator, as a C string suitable for e.g. strtok()
#define INITIAL_STARTUP_SCRIPT \
/* procmgr_symlink /proc/boot/ldqnx-64.so.2 /usr/lib/ldqnx-64.so.2 */ \
"\x34\x00" /*size*/ "\x04" /*type*/ "\x00" /*spare*/ "/proc/boot/ldqnx-64.so.2\0" "/usr/lib/ldqnx-64.so.2\0" \
/* sh /proc/boot/startup.sh */ \
"\x88\x00" /*size*/ "\x00" /*type*/ "\x00" /*spare*/ "\x00" /*CPU mask*/ "\x00" /*flags*/ "\x00\x00" /*reserved*/ "\x00" /*policy*/ "\x00" /*priority*/ "\02" /*argc*/ "\x02" /*envc*/ "sh\0" /*executable*/ "sh\0" "/proc/boot/startup.sh\0" /*argv*/ "PATH=/sbin:/usr/sbin:/bin:/usr/bin:/proc/boot\0" "LD_LIBRARY_PATH=/proc/boot:/lib:/lib/dll:/usr/lib\0" /*envp*/ \
/* display_msg "Startup complete */ \
"\x18\x00" /*size*/ "\x03" /*type*/ "\x00" /*spare*/ "Startup complete\n\0" "\x00\00" /*padding*/ \
/* trailer */ \
"\x00\x00\x00\x00"
// IFS directory entry insertion parameters structure type definition
typedef struct parms_s
{
int dperms; // directory permissions (e.g. 0755)
int perms; // file permissions (e.g. 0644)
int uid; // owner user ID (e.g. 0 = root)
int gid; // owner group ID (e.g. 0 = root)
int st_mode; // entry type (e.g. S_IFREG for files) and permissions
uint32_t mtime; // entry's modification time POSIX timestamp - set to UINT32_MAX to use the concerned files' mtime on the build host
uint32_t mtime_for_inline_files; // same as above but only for files that don't exist on the build host (i.e. files with an explicit content blob)
char prefix[MAXPATHLEN]; // install path (e.g. "proc/boot")
bool should_follow_symlinks; // follow symlinks
bool should_autosymlink_dylib; // dynamic libraries should be written under their official SONAME and a named symlink be created pointing at them
bool should_keep_ld_output; // whether to keep .sym files produced by ld calls, togglable by the [+keeplinked] attribute
bool is_compiled_bootscript; // entry has [+script] attribute
int extra_ino_flags; // bitmap of extra inode flags (IFS_INO_xxx)
char search[10 * MAXPATHLEN]; // binary search path (the default one will be constructed at startup)
buffer_t data; // the resolved file's own data bytes
} parms_t;
// exported globals
int verbose_level = 1; // verbosity level, can be increased with multiple -v[...] flags
// global variables used in this module only
static char line_buffer[4096]; // scrap buffer for the IFS build file parser
static uint32_t image_base = 4 * 1024 * 1024; // default image base, as per QNX docs -- can be changed with the [image=XXXX] attribute in the IFS build file
static uint32_t image_end = UINT32_MAX; // default image end (no limit)
static uint32_t image_maxsize = UINT32_MAX; // default image max size (no limit)
static uint32_t image_totalsize = 0; // image total size, measured once all the blocks have been written to the output IFS file
static uint32_t image_align = 4; // default image alignment, as per QNX docs
static uint32_t image_kernel_ino = 0;
static uint32_t image_bootscript_ino = 0;
#if defined(__x86_64__)
static char image_processor[16] = "x86_64"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
#elif defined(__aarch64__)
static char image_processor[16] = "aarch64le"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
#else // unknown platform
#error Please port ifstool to this platform
#endif
static char *buildfile_pathname = NULL; // pathname of IFS build file
static char *current_line = NULL; // copy of current line in IFS build file
static int lineno = 0; // current line number in IFS build file
static char *QNX_TARGET = NULL; // value of the $QNX_TARGET environment variable
static char *MKIFS_PATH = NULL; // value of the $MKIFS_PATH environment variable (may contain references to $QNX_TARGET). Initialized by this program if empty.
// bootable IFS support
static char *bootfile_pathname = NULL; // HACK: pathname to bootcode binary blob file to put at the start of a bootable IFS
static size_t bootfile_size = 0; // HACK: size of the bootcode binary blob file to put at the start of a bootable IFS
static char *startupfile_pathname = NULL; // HACK: pathname to precompiled startup file blob to put in the startup header of a bootable IFS
static size_t startupfile_ep_from_imagebase = 0; // HACK: startup code entrypoint offset from image base for a bootable IFS
static char *kernelfile_pathname = NULL; // HACK: pathname to precompiled kernel file blob to put in a bootable IFS
static size_t kernelfile_offset = 0; // HACK: kernel file offset in bootable IFS
// exported function prototypes
int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness); // compute an IFS image or startup checksum to store in the trailer
// prototypes of local functions
static long long read_integer (const char *str); // reads an integer number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
static char *resolve_pathname (const char *pathname, const char *search_path); // locates pathname among MKIFS_PATH and returns a pointer to the resolved pathname (static string)
static elf_section_header_t *elf_get_section_header_by_name (const elf_header_t *elf, const char *section_name); // get a pointer to a named section header in an ELF file
static size_t Buffer_WriteIFSDirectoryEntryAt (buffer_t *ifs_data, const size_t write_offset, const fsentry_t *fsentry); // writes the given filesystem entry (without its contents) to the IFS buffer
static size_t Buffer_AppendIFSFileData (buffer_t *ifs_data, fsentry_t *fsentry); // writes the given filesystem entry's file data (i.e. its contents) to the IFS buffer
static int Buffer_StripELFFile (buffer_t *file, const char *indicative_pathname); // strips an ELF file buffer the way mkifs does it and returns whether it succeeded
static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname); // stack up a new filesystem entry
static int fsentry_compare_pathnames_cb (const void *a, const void *b); // qsort() comparison callback that sorts filesystem entries by pathnames
static void update_MKIFS_PATH (const char *processor);
// imported function prototypes
extern int dump_ifs_info (const char *ifs_pathname, bool want_everything); // [implemented in ifsdump.c] dumps detailed info about a particular IFS file on the standard output, returns 0 on success and >0 on error
extern int dump_ifs_contents (const char *ifs_pathname, const char *outdir); // [implemented in ifsdump.c] dumps the IFS filesystem contents in outdir, returns 0 on success and >0 on error
extern int dump_file_hex (const char *pathname); // [implemented in ifsdump.c] dumps the contents of pathname to stdout in mixed hexadecimal + ASCII (hex editor) format
int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness)
{
// computes the checksum of an IFS image or startup section, i.e. from the start of the header to the end of the trailer minus the last 4 bytes where the checksum is stored
uint8_t accumulator[4] = { 0, 0, 0, 0 };
const char *current_char_ptr;
int32_t image_cksum;
size_t i;
image_cksum = 0;
current_char_ptr = data;
for (i = 0; i < data_len; i++)
{
accumulator[i % 4] = *current_char_ptr;
if (i % 4 == 3)
if (is_foreign_endianness)
image_cksum += (accumulator[3] << 0) + (accumulator[2] << 8) + (accumulator[1] << 16) + (accumulator[0] << 24);
else
image_cksum += (accumulator[0] << 0) + (accumulator[1] << 8) + (accumulator[2] << 16) + (accumulator[3] << 24);
current_char_ptr++;
}
return (is_foreign_endianness ? __builtin_bswap32 (-image_cksum) : -image_cksum);
}
static long long read_integer (const char *str)
{
// reads a number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
char *endptr = NULL;
long long ret = strtoll (str, &endptr, 0); // use strtoll() to handle hexadecimal (0x...), octal (0...) and decimal (...) bases
if (endptr != NULL)
{
if ((*endptr == 'k') || (*endptr == 'K')) ret *= (size_t) 1024;
else if ((*endptr == 'm') || (*endptr == 'M')) ret *= (size_t) 1024 * 1024;
else if ((*endptr == 'g') || (*endptr == 'G')) ret *= (size_t) 1024 * 1024 * 1024;
else if ((*endptr == 't') || (*endptr == 'T')) ret *= (size_t) 1024 * 1024 * 1024 * 1024; // future-proof enough, I suppose?
}
return (ret);
}
static char *resolve_pathname (const char *pathname, const char *search_path)
{
// locates pathname among search path and returns resolved pathname (static buffer) or NULL.
static thread_local char *resolved_pathname = NULL;
struct stat stat_buf;
const char *nextsep;
const char *token;
// initial allocation (per thread)
if (resolved_pathname == NULL)
{
resolved_pathname
= malloc (MAXPATHLEN
);
ASSERT_WITH_ERRNO (resolved_pathname);
}
// is it an absolute pathname (POSIX and Windows variants) ?
if (IS_DIRSEP
(pathname
[0]) || (isalpha (pathname
[0]) && (pathname
[1] == ':') && IS_DIRSEP
(pathname
[2])))
strcpy_s (resolved_pathname, MAXPATHLEN, pathname); // in this case, it MUST exist at its designated location (either absolute or relative to the current working directory)
else // the path is relative, search it among the search paths we have
{
// construct a potential final path using each element of the search path
token = (*search_path != 0 ? search_path : NULL);
nextsep
= (token
!= NULL
? &token
[strcspn (token
, PATH_SEP
)] : NULL
);
while (token != NULL)
{
sprintf_s (resolved_pathname, MAXPATHLEN, "%.*s/%s", (int) (nextsep - token), token, pathname);
if ((stat (resolved_pathname, &stat_buf) == 0) && S_ISREG (stat_buf.st_mode))
return (resolved_pathname); // if a file can indeed be found at this location, stop searching
token = (*nextsep != 0 ? nextsep + 1 : NULL);
nextsep
= (token
!= NULL
? &token
[strcspn (token
, PATH_SEP
)] : NULL
);
}
}
errno = ENOENT; // we exhausted all possibilities
return (NULL); // file not found, return with ENOENT
}
static size_t Buffer_WriteIFSDirectoryEntryAt (buffer_t *ifs, const size_t write_offset, const fsentry_t *fsentry)
{
// writes a directory entry in the image filesystem buffer pointed to by ifs at write_offset (or fakes so if ifs is NULL)
// and return the number of bytes written (or that would have been written)
static const uint8_t zeropad_buffer[] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
size_t datalen;
size_t count;
count = 0;
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, &fsentry->header, sizeof (fsentry->header))); // write the entry header (PACKED STRUCT)
count += sizeof (fsentry->header);
if (S_ISREG (fsentry->header.mode))
{
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, &fsentry->u.file.offset, sizeof (uint32_t))); // write offset
count += sizeof (uint32_t);
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, &fsentry->u.file.size, sizeof (uint32_t))); // write size
count += sizeof (uint32_t);
datalen
= strlen (fsentry
->u.
file.
path) + 1;
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, fsentry->u.file.path, datalen)); // write null-terminated path (no leading slash)
count += datalen;
}
else if (S_ISDIR (fsentry->header.mode))
{
datalen
= strlen (fsentry
->u.
dir.
path) + 1;
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, fsentry->u.dir.path, datalen)); // write null-terminated path (no leading slash)
count += datalen;
}
else if (S_ISLNK (fsentry->header.mode))
{
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, &fsentry->u.symlink.sym_offset, sizeof (uint16_t))); // write offset
count += sizeof (uint16_t);
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, &fsentry->u.symlink.sym_size, sizeof (uint16_t))); // write size
count += sizeof (uint16_t);
datalen
= strlen (fsentry
->u.
symlink.
path) + 1;
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, fsentry->u.symlink.path, datalen)); // write null-terminated path (no leading slash)
count += datalen;
datalen
= strlen (fsentry
->u.
symlink.
contents) + 1;
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, fsentry->u.symlink.contents, datalen)); // write null-terminated symlink contents
count += datalen;
}
else
{
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, &fsentry->u.device.dev, sizeof (uint32_t))); // write dev number
count += sizeof (uint32_t);
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, &fsentry->u.device.rdev, sizeof (uint32_t))); // write rdev number
count += sizeof (uint32_t);
datalen
= strlen (fsentry
->u.
device.
path) + 1;
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, fsentry->u.device.path, datalen)); // write null-terminated path (no leading slash)
count += datalen;
}
ASSERT (count <= fsentry->header.size, "attempt to write invalid dirent (claimed size %zd, written size %zd). Aborting.", (size_t) fsentry->header.size, count);
if (count < fsentry->header.size)
{
if (ifs != NULL)
ASSERT_WITH_ERRNO (Buffer_WriteAt (ifs, write_offset + count, zeropad_buffer, fsentry->header.size - count)); // pad as necessary
count += fsentry->header.size - count;
}
return (count);
}
static size_t Buffer_AppendIFSFileData (buffer_t *ifs_data, fsentry_t *fsentry)
{
// writes the given filesystem entry's file data (i.e. its contents) to the IFS buffer
elf_program_header_t *phdr;
elf_header_t *elf;
size_t corrective_offset;
//size_t segment_type;
size_t segment_size;
size_t table_index;
size_t table_count;
size_t data_offset;
ASSERT (S_ISREG (fsentry->header.mode), "function called for invalid dirent"); // consistency check
data_offset = ifs_data->size; // see where we are
// is the file we're storing a preprocessed ELF file ?
if ((fsentry->header.ino & IFS_INO_PROCESSED_ELF)
#ifndef PROCNTO_WIP
&& (strstr (fsentry
->u.
file.
path, "/procnto-smp-instr") == NULL
)
#endif // !PROCNTO_WIP
)
{
elf = (elf_header_t *) fsentry->u.file.UNSAVED_databuf; // quick access to ELF header
table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
for (table_index = 0; table_index < table_count; table_index++)
{
phdr = (elf_program_header_t *) &fsentry->u.file.UNSAVED_databuf[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
//segment_type = ELF_GET_NUMERIC (elf, phdr, segment_type); // get segment type
//if (!((segment_type >= 2) && (segment_type <= 7) || ((segment_type >= 0x6474e550) && (segment_type <= 0x6474e552)) || (segment_type == 0x70000001)))
// continue; // NOTE: only certain segments types must be corrected
corrective_offset = ELF_GET_NUMERIC (elf, phdr, virtual_addr) - ELF_GET_NUMERIC (elf, phdr, file_offset);
segment_size = ELF_GET_NUMERIC (elf, phdr, size_in_memory); // get this ELF segment's occupied size in memory
if (segment_size != 0) // only patch the physical address of segments that have an actual size in memory
ELF_SET_NUMERIC (elf, phdr, physical_addr, ELF_GET_NUMERIC (elf, phdr, physical_addr) + image_base + data_offset - corrective_offset); // patch the physical address member of the program header table (NOTE: data_offset is the location where the file data is about to be written)
}
}
ASSERT_WITH_ERRNO (Buffer_Append (ifs_data, fsentry->u.file.UNSAVED_databuf, fsentry->u.file.size)); // write file data blob
return (ifs_data->size - data_offset); // return the number of bytes written
}
static inline size_t Buffer_LocateOrAppendIfNecessaryAndReturnOffsetOf (buffer_t *buffer, const char *str)
{
// helper function used in add_fsentry(): locates or appends str to buffer and returns its relative offset in the buffer
size_t str_len_including_terminator
= strlen (str
) + 1;
void *occurrence = Buffer_FindFirst (buffer, str, str_len_including_terminator);
if (occurrence == NULL)
{
ASSERT_WITH_ERRNO (Buffer_Append (buffer, str, str_len_including_terminator));
occurrence = Buffer_FindFirst (buffer, str, str_len_including_terminator);
ASSERT_WITH_ERRNO (occurrence);
}
return (Buffer_OffsetOf (buffer, occurrence)); // can't fail
}
static int Buffer_StripELFFile (buffer_t *file, const char *indicative_pathname)
{
// NOTE: for each ELF file, mkifs
// -> alters the program header table and offsets each p_addr (physical address) member by <image_base> plus the current file offset (this cannot be done right now, will need to be done once they are known)
// -> throws away and reconstructs the sections table by keeping only the sections that are in the program header, and writes the section table at the start of the first thrown-away section
// FIXME: what if a thrown away section is located between two program segments ? are they collapsed, moving the segments beyond it one slot down ?
// reconstructed ELF:
// ==== START OF FILE ====
// ELF header
// program header table
// (same sections, just p_addr offset changed)
// section data 5 (named ".note.gnu.build-id")
// "............GNU....ZY.....c.o..l"
// PROGRAM
// sections table
// + section 1: ALL ZEROES
// + section 2: fileoffs 0x21a8 size 0xfd --> "QNX_info" --> QNX binary description: "NAME=pci_debug2.so.3.0\nDESCRIPTION=PCI Server System Debug Module\nDATE=2023/11/19-10:01:13-EST\nSTATE=lookup\nHOST=docker-n1.bts.rim.net\nUSER=builder\nVERSION=QNXOS_main\nTAGID=QNXOS_800-135\nPACKAGE=com.qnx.qnx800.target.pci.debug/3.0.0.00135T202311191043L\n"
// + section 3: fileoffs 0x22a5 size 0x1c --> ".gnu_debuglink" --> indicates the debug file and its checksum: "pci_debug2.so.3.0.sym" "\0\0\0" "VX2p"
// + section 4: fileoffs 0x22c1 size 0x2ad --> "QNX_usage" --> HELP TEXT: "\n-------------------------------------------------------------------------------\n%C\n\nThis module implements debug logging for all PCI server modules. It is\nincluded by setting the environment variable PCI_DEBUG_MODULE and uses\nthe slogger2 APIs.\nNOTE:.On systems which support slogger2, you are encouraged to use this module.instead of pci_debug.so...Release History.---------------..3.0 - This module is functionally equivalent to the previous 2.x version. however it is incompatible with all pre v3.x PCI components..2.1 - fixes a bug whereby if slogger2 is not running and the PCI_DEBUG_MODULE. environment variable is set, the client will SIGSEGV..2.0 - initial release.."
// + section 5: fileoffs 0x190 size 0x32 --> ".note.gnu.build-id" --> GNU build ID
// + section 6: fileoffs 0x256e size 0x40 --> ".shstrtab" --> sections names strings table
// section data 2 (named "QNX_info")
// (QNX binary description)
// section data 3 (named ".gnu_debuglink")
// (debug file)
// section data 4 (named "QNX_usage")
// (help text)
// section data 6 (named ".shstrtab")
// "\0"
// ".shstrtab\0"
// "QNX_info\0"
// ".gnu_debuglink\0"
// "QNX_usage\0"
// ".note.gnu.build-id\0"
// ==== END OF FILE ====
#define ELFHDR ((elf_header_t *) file->bytes) // this convenient definition will make sure the ELF header points at the right location, even after entry_parms.data->byte is reallocated
#define ADD_SECTION(section_name,section_ptr) do { \
void *reallocated_ptr = realloc (elf_sections, (elf_section_count + 1) * sizeof (elf_section_t)); \
ASSERT_WITH_ERRNO (reallocated_ptr); \
elf_sections = reallocated_ptr; \
elf_sections[elf_section_count].name = (section_name); \
Buffer_Initialize (&elf_sections[elf_section_count].data); \
*(section_ptr) = &elf_sections[elf_section_count]; \
elf_section_count++; \
} while (0)
typedef struct elf_section_s
{
const char *name;
elf_section_header_t header;
buffer_t data;
} elf_section_t;
static const char *saved_sections[] = { "QNX_info", ".gnu_debuglink", "QNX_usage", ".note.gnu.build-id" };
const elf_program_header_t *phdr;
const elf_section_header_t *shdr;
elf_section_t *elf_sections = NULL; // mallocated
elf_section_t *elf_section = NULL;
size_t elf_section_count = 0;
size_t new_shdrtable_offset;
size_t sectiondata_start;
size_t sectiondata_size;
size_t array_index;
size_t table_index;
size_t table_count;
size_t page_size;
// find out the platform page size
if (ELF_GET_NUMERIC (ELFHDR, ELFHDR, instruction_set) == ELF_MACHINE_X86_64)
page_size = 4 * 1024; // 4 kb pages on Intel processors
else if (ELF_GET_NUMERIC (ELFHDR, ELFHDR, instruction_set) == ELF_MACHINE_AARCH64)
page_size = 16 * 1024; // 16 kb pages on ARM64
else
{
errno = ENOTSUP; // unsupported architecture: set errno to something meaningful
return (0); // and return an error value
}
// parse the program header table, and measure the farthest offset known by this table where we'll write the reconstructed section headers table
new_shdrtable_offset = 0;
table_count = ELF_GET_NUMERIC (ELFHDR, ELFHDR, program_header_table_len);
for (table_index = 0; table_index < table_count; table_index++)
{
phdr = (elf_program_header_t *) &file->bytes[ELF_GET_NUMERIC (ELFHDR, ELFHDR, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (ELFHDR, ELFHDR, program_header_item_size) * table_index]; // quick access to program header
if (ELF_GET_NUMERIC (ELFHDR, phdr, file_offset) + ELF_GET_NUMERIC (ELFHDR, phdr, size_in_file) > new_shdrtable_offset)
new_shdrtable_offset = ELF_GET_NUMERIC (ELFHDR, phdr, file_offset) + ELF_GET_NUMERIC (ELFHDR, phdr, size_in_file); // keep track of the farthest offset known by the program headers table
}
/*
size_t new_shdrtable_offset_method2 = 0;
for (table_index = 0; table_index < table_count; table_index++)
{
phdr = (elf_program_header_t *) &file->bytes[ELF_GET_NUMERIC (ELFHDR, ELFHDR, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (ELFHDR, ELFHDR, program_header_item_size) * table_index]; // quick access to program header
size_t segment_type = ELF_GET_NUMERIC (ELFHDR, phdr, segment_type); // get segment type
if (!((segment_type >= 2) && (segment_type <= 7)))
continue; // NOTE: only certain segments types must be corrected
if (ELF_GET_NUMERIC (ELFHDR, phdr, file_offset) + ELF_GET_NUMERIC (ELFHDR, phdr, size_in_memory) > new_shdrtable_offset_method2)
new_shdrtable_offset_method2 = ELF_GET_NUMERIC (ELFHDR, phdr, file_offset) + ELF_GET_NUMERIC (ELFHDR, phdr, size_in_memory);
}
if (new_shdrtable_offset_method2 > new_shdrtable_offset)
LOG_DEBUG ("METHOD2: %llx > %llx", new_shdrtable_offset_method2, new_shdrtable_offset);*/
//new_shdrtable_offset = ROUND_TO_UPPER_MULTIPLE (new_shdrtable_offset, page_size); // round to page size
// re-create the section header table
ADD_SECTION (".shstrtab", &elf_section); // the first section will be the section names strings table
ASSERT_WITH_ERRNO (Buffer_InitWithByteArray (&elf_section->data, "\0")); // initialize an empty section headers strings table
ASSERT_WITH_ERRNO (Buffer_AppendByteArray (&elf_section->data, ".shstrtab\0")); // append ".shstrtab" *INCLUDING* its null terminator
// go through the saved sections array and see if such an ELF section is present in the ELF file
for (array_index = 0; array_index < sizeof (saved_sections) / sizeof (saved_sections[0]); array_index++)
if ((shdr = elf_get_section_header_by_name (ELFHDR, saved_sections[array_index])) != NULL) // does this ELF have such a section ?
{
ADD_SECTION (saved_sections[array_index], &elf_section); // yes, so save it
sectiondata_start = ELF_GET_NUMERIC (ELFHDR, shdr, file_offset); // identify section data start offset
sectiondata_size = ELF_GET_NUMERIC (ELFHDR, shdr, size); // identify section data length
if (sectiondata_start + sectiondata_size >= new_shdrtable_offset) // should this section be moved ?
ASSERT_WITH_ERRNO (Buffer_InitWithData (&elf_section->data, &file->bytes[sectiondata_start], sectiondata_size)); // have a copy of this section's data
else
Buffer_Initialize (&elf_section->data); // this section is located before the place where we'll write the new section headers table, thus it doesn't need to be moved
//LOG_DEBUG ("%s: section '%s' start 0x%llx len 0x%llx", indicative_pathname, saved_sections[array_index], (unsigned long long) sectiondata_start, (unsigned long long) sectiondata_size);
// prepare this section's "fixed" header
memcpy (&elf_section
->header
, shdr
, ELF_STRUCT_SIZE
(ELFHDR
, shdr
)); // have a copy of the old section header first
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, name_offset, Buffer_LocateOrAppendIfNecessaryAndReturnOffsetOf (&elf_sections[0].data, elf_section->name)); // make sure this section name is in the ELF sections section header strings table and update the relative offset of the section name
}
// jump over the new section headers table and write the saved sections data after the section headers table
file->size = new_shdrtable_offset + (1 + elf_section_count) * ELF_STRUCT_SIZE (ELFHDR, &elf_sections[0].header); // start by truncating the ELF file: assume there are no sections beyond the section headers table until known otherwise
for (table_index = 1; table_index < elf_section_count; table_index++)
{
elf_section = &elf_sections[table_index]; // quick access to ELF section about to be written
if (elf_section->data.bytes != NULL) // was this section data backed up waiting to be relocated ?
{
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, file_offset, file->size); // fix section offset
Buffer_AppendBuffer (file, &elf_section->data); // append this section's data to the ELF file
}
}
// write the section header strings table as the last section
elf_section = &elf_sections[0]; // quick access to ELF section about to be written
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, name_offset, Buffer_LocateOrAppendIfNecessaryAndReturnOffsetOf (&elf_sections[0].data, elf_section->name)); // update the relative offset of the section name
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, type, ELF_SECTIONTYPE_STRINGTABLE); // section type (SHT_STRTAB)
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, flags, 0); // section flags (we could set SHF_STRINGS i.e. 0x20 here, but mkifs does not, so mimic that)
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, virtual_addr, 0); // this section does not need to be mapped
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, file_offset, file->size); // fix section offset
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, size, elf_sections[0].data.size); // section size
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, linked_index, 0); // this section is not linked to any other
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, info, 0); // this section has no additional info
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, alignment, 1); // this section is byte-aligned
ELF_SET_NUMERIC (ELFHDR, &elf_section->header, entry_size, 0); // this section is not a table, so entry_size is zero
Buffer_AppendBuffer (file, &elf_section->data); // append section headers strings table section data to ELF file
// now write the section headers table
memset (&file
->bytes
[new_shdrtable_offset
], 0, ELF_STRUCT_SIZE
(ELFHDR
, &elf_sections
[0].
header)); // the first section header is always zerofilled
for (table_index = 1; table_index < elf_section_count; table_index++)
Buffer_WriteAt (file, new_shdrtable_offset + table_index * ELF_STRUCT_SIZE (ELFHDR, &elf_sections[table_index].header), &elf_sections[table_index].header, ELF_STRUCT_SIZE (ELFHDR, &elf_sections[table_index].header)); // write each section header
Buffer_WriteAt (file, new_shdrtable_offset + table_index * ELF_STRUCT_SIZE (ELFHDR, &elf_sections[table_index].header), &elf_sections[0].header, ELF_STRUCT_SIZE (ELFHDR, &elf_sections[0].header)); // write the section header names section header last
// and finally fix the ELF master header
ELF_SET_NUMERIC (ELFHDR, ELFHDR, section_header_table_offset, new_shdrtable_offset);
ELF_SET_NUMERIC (ELFHDR, ELFHDR, section_header_table_len, 1 + elf_section_count); // take in account that the first entry in the section headers table is empty
ELF_SET_NUMERIC (ELFHDR, ELFHDR, section_header_names_idx, elf_section_count); // the section headers strings table is the last section
// align size with page size (4096 on x86, 16k on ARM), zerofilling the extra space
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (file, ROUND_TO_UPPER_MULTIPLE (file->size, page_size)));
// cleanup
for (table_index = 0; table_index < elf_section_count; table_index++)
Buffer_Forget (&elf_sections[table_index].data); // free all sections' backing buffers
#undef ELFHDR // undefine the macro that used to always point to the ELF header at the beginning of the file
return (1); // success
}
static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname)
{
static thread_local char *candidate_pathname = NULL;
static int inode_count = 0; // will be preincremented each time this function is called
const char *original_stored_pathname = NULL;
buffer_t *shstrtab = NULL;
const char *canonical_dylib_name;
const char *dynamic_strings; // strings table of the ".dynamic" section
const char *last_dirsep;
char *global_envstring = NULL;
size_t global_envstring_len = 0;
char *startup_name = NULL;
char *procnto_name = NULL;
char *resolved_pathname;
void *reallocated_ptr;
void *old_data;
struct stat stat_buf;
fsentry_t *fsentry;
// initial allocation (per thread)
if (candidate_pathname == NULL)
{
candidate_pathname
= malloc (MAXPATHLEN
);
ASSERT_WITH_ERRNO (candidate_pathname);
}
if (S_ISDIR (entry_parms->st_mode)) // are we storing a directory ?
{
LOG_INFO ("directory: ino 0x%x uid %d gid %d mode 0%o path \"%s\"", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname);
}
else if (S_ISREG (entry_parms->st_mode)) // else are we storing a regular file ?
{
if (strcmp (stored_pathname
, "/proc/boot/boot") == 0) // is it the kernel ?
{
// HACK: for now just consider the kernel as a binary blob
// FIXME: reimplement properly
#ifdef PROCNTO_WIP // FIXME: segment corruption somewhere!
char *linebit_start;
char *content_line;
char *write_ptr;
char *token;
char *value;
char *ctx;
bool is_quoted_context;
bool was_string_split;
// parse each line of contents
ASSERT (entry_parms->data.len > 0, "kernel specification without inline contents");
for (content_line = strtok_r (entry_parms->data.bytes, "\n", &ctx); content_line != NULL; content_line = strtok_r (NULL, "\n", ctx))
{
content_line++; // skip leading spaces
if ((*content_line == '#') || (*content_line == 0))
continue; // skip comments and empty lines
// format of a line: [attributes] [env assignation] [...] [executable] [arg] [...] [comment]
// example: "[uid=0 gid=0 perms=0700] CONFIG_PATH=/proc/boot:/etc procnto-smp-instr -v -mr -d 0777 -u 0777"
//LOG_DEBUG ("parsing line: %s", content_line);
// does this line start with an attribute block ?
if (*content_line == '[')
{
content_line++; // skip the leading square bracket
linebit_start = content_line; // remember where it starts
is_quoted_context = false; // reach the next unescaped closing square bracket that is not between quotes
while ((*content_line != 0) && !((*content_line == ']') && (content_line[-1] != '\\') && !is_quoted_context))
{
if (*content_line == '"')
is_quoted_context ^= true; // remember when we're between quotes
else if (!is_quoted_context && (*content_line == ' '))
*content_line = RECORD_SEP[0]; // turn all spaces outside quoted contexts into an ASCII record separator to ease token splitting
content_line++; // reach the next unescaped closing square bracket
}
if (*content_line != ']')
{
LOG ("warning", 0, "syntax error in \"%s\" line %d: unterminated attributes block (skipping)", buildfile_pathname, lineno);
continue; // invalid attribute block, skip line
}
*content_line = 0; // end the attribute block so that it is a parsable C string
// now parse the attribute tokens (NOTE: THE LIST OF ALLOWED ATTRIBUTES HERE IS NOT DOCUMENTED)
token = strtok_r (linebit_start, RECORD_SEP, &ctx);
while (token != NULL)
{
#define REACH_TOKEN_VALUE() do { value = strchr (token, '=') + 1; if (*value == '"') value++; } while (0)
if (strncmp (token
, "uid=", 4) == 0) { REACH_TOKEN_VALUE
(); entry_parms
->uid
= (int) read_integer
(value
); }
else if (strncmp (token
, "gid=", 4) == 0) { REACH_TOKEN_VALUE
(); entry_parms
->gid
= (int) read_integer
(value
); }
else if (strncmp (token
, "perms=", 6) == 0) { REACH_TOKEN_VALUE
(); entry_parms
->perms
= (int) read_integer
(value
); }
else if (strncmp (token
, "prefix=", 7) == 0) { REACH_TOKEN_VALUE
(); strcpy (entry_parms
->prefix
, (*value
== '/' ? value
+ 1 : value
)); } // skip possible leading slash in prefix
else if (strcmp (token
, "+followlink") == 0) entry_parms
->should_follow_symlinks
= true;
else if (strcmp (token
, "-followlink") == 0) entry_parms
->should_follow_symlinks
= false;
else if (strcmp (token
, "+keeplinked") == 0) entry_parms
->should_keep_ld_output
= true;
else if (strcmp (token
, "-keeplinked") == 0) entry_parms
->should_keep_ld_output
= false;
else LOG_WARNING ("unimplemented bootstrap executable attribute in \"%s\" line %d: '%s'", buildfile_pathname, lineno, token);
#undef REACH_TOKEN_VALUE
token = strtok_r (NULL, RECORD_SEP, &ctx); // proceed to next attribute token
}
content_line++; // reach the next character
while ((*content_line
!= 0) && isspace (*content_line
))
content_line++; // skip leading spaces
} // end of "this line starts with an attributes block"
// there's data in this line. We expect an executable OR a variable name. Read it and unescape escaped characters
while (*content_line != 0)
{
linebit_start = content_line; // remember the name starts here
write_ptr = linebit_start;
is_quoted_context = (*content_line == '"');
if (is_quoted_context)
content_line++; // skip a possible initial quote in the name
while ((*content_line
!= 0) && ((!is_quoted_context
&& (*content_line
!= '=') && !isspace (*content_line
)) || (is_quoted_context
&& (*content_line
== '"'))))
{
if (*content_line == '\\')
{
content_line++;
*write_ptr++ = *content_line; // unescape characters that are escaped with '\'
}
else
*write_ptr++ = *content_line;
content_line++;
}
// we reached a closing quote, a space OR an equal sign
if (*content_line == '=')
{
// it's an environment variable assignation
*write_ptr++ = *content_line++; // skip the equal sign
is_quoted_context = (*content_line == '"');
if (is_quoted_context)
content_line++; // skip a possible initial quote in the value
while ((*content_line
!= 0) && ((!is_quoted_context
&& (*content_line
!= '=') && !isspace (*content_line
)) || (is_quoted_context
&& (*content_line
== '"'))))
{
if (*content_line == '\\')
{
content_line++;
*write_ptr++ = *content_line; // unescape characters that are escaped with '\'
}
else
*write_ptr++ = *content_line;
content_line++;
}
if (*write_ptr != 0)
{
*write_ptr = 0; // terminate the string if necessary
was_string_split = true;
}
else
was_string_split = false;
if (is_quoted_context && (*content_line == '"'))
content_line++; // skip a possible final quote
while ((*content_line
!= 0) && isspace (*content_line
))
content_line++; // skip spaces
// now linebit_start is of the form "NAME=VALUE"
LOG_DEBUG ("assignation: [%s]", linebit_start);
// TODO: grow global_envstring
//reallocated_ptr = realloc (global_envstring, global_envstring_len + strlen ())
if (was_string_split)
*write_ptr = ' '; // restore string continuity for parsing to continue
while ((*content_line
!= 0) && isspace (*content_line
))
content_line++; // skip spaces
}
else // it's either a closing quote or a space
{
*write_ptr = 0; // terminate the string
if (is_quoted_context && (*content_line == '"'))
content_line++; // skip a possible final quote
LOG_DEBUG ("exe name: [%s]", linebit_start);
while ((*content_line
!= 0) && isspace (*content_line
))
content_line++; // skip leading spaces
// it's an executable name. As per QNX docs, the first executable must be startup-*, the last executable must be procnto.
if (startup_name == NULL)
startup_name = strdup (linebit_start);
else
{
if (procnto_name != NULL)
procnto_name = strdup (linebit_start);
}
if ((*content_line == '#') || (*content_line == 0))
break; // if we reach the end of the line, stop parsing
// what comes after now must be optional arguments
while ((*content_line
!= 0) && isspace (*content_line
))
content_line++; // skip leading spaces
// FIXME: parse executable command-line arguments
break; // stop parsing once all the arguments have been read
}
}
} // end of parsing
free (entry_parms
->data.
bytes); // free the inline specification once it's parsed
entry_parms->data.bytes = NULL;
entry_parms->data.len = 0;
ASSERT (startup_name && *startup_name, "the QNX startup executable (startup-*) is missing in this bootstrap inline specification");
ASSERT (procnto_name && *procnto_name, "the QNX kernel (procnto-*) is missing in this bootstrap inline specification");
// now we know which startup and procnto executables to use
LOG_DEBUG ("Startup: %s", startup_name);
LOG_DEBUG ("Kernel: %s", procnto_name);
sprintf (candidate_pathname
, "%s/%s", entry_parms
->prefix
, procnto_name
); // fix the entry name
stored_pathname = candidate_pathname;
entry_parms->extra_ino_flags |= /*IFS_INO_PROCESSED_ELF | */IFS_INO_BOOTSTRAP_EXE; // procnto needs to have these flags stamped on the inode
entry_parms->st_mode = S_IFREG | entry_parms->perms; // apply specified procnto permissions
image_kernel_ino = entry_parms->extra_ino_flags | (inode_count + 1);
static thread_local char linker_pathname[MAXPATHLEN] = "";
static thread_local char linker_sysroot_arg[MAXPATHLEN] = "";
static thread_local char linker_script_pathname_arg[MAXPATHLEN] = "";
static thread_local char procnto_buildhost_pathname[MAXPATHLEN] = "";
static thread_local char procnto_sym_filename[MAXPATHLEN] = "";
// construct the arguments that are based on environment variables (infer QNX_HOST from QNX_TARGET)
#if defined(_WIN32)
sprintf (linker_pathname
, "%s/../../host/win64/x86_64/usr/bin/%s-ld.exe", QNX_TARGET
, (strcmp (image_processor
, "x86_64") == 0 ? "x86_64-pc-nto-qnx8.0.0" : "aarch64-unknown-nto-qnx8.0.0")); // Win32: note the .exe extension
#elif defined(__linux__)
sprintf (linker_pathname
, "%s/../../host/linux/x86_64/usr/bin/%s-ld", QNX_TARGET
, (strcmp (image_processor
, "x86_64") == 0 ? "x86_64-pc-nto-qnx8.0.0" : "aarch64-unknown-nto-qnx8.0.0"));
#elif defined(__QNXNTO__)
sprintf (linker_pathname
, "%s/../../host/qnx8/x86_64/usr/bin/%s-ld", QNX_TARGET
, (strcmp (image_processor
, "x86_64") == 0 ? "x86_64-pc-nto-qnx8.0.0" : "aarch64-unknown-nto-qnx8.0.0"));
#else // wtf are you building this on?
#error Please port the GNU linker x86_64-pc-nto-qnx8.0.0-ld and aarch64-unknown-nto-qnx8.0.0-ld to your host architecture first before compiling ifstool.
#endif
ASSERT (access (linker_pathname, 0) == 0, "host cross-linker for QNX8 \"%s\" not found", linker_pathname);
sprintf (linker_sysroot_arg
, "--sysroot=%s/%s/", QNX_TARGET
, image_processor
);
sprintf (linker_script_pathname_arg
, "-T%s/%s/lib/nto.link", QNX_TARGET
, image_processor
);
resolved_pathname = resolve_pathname (procnto_name, (entry_parms->search[0] != 0 ? entry_parms->search : MKIFS_PATH)); // locate the procnto kernel location
ASSERT (resolved_pathname, "QNX kernel \"%s\" not found in search path", procnto_name);
strcpy (procnto_buildhost_pathname
, resolved_pathname
);
sprintf (procnto_sym_filename
, "%s.sym", procnto_name
);
const char *linker_argv[] = // construct the linker invokation argv
{
strrchr (linker_pathname
, '/') + 1, // "${TARGET_TRIPLE}-ld"
linker_sysroot_arg, // "--sysroot=${QNX_TARGET}/${TARGET_CPU}/"
linker_script_pathname_arg, // "-T${QNX_TARGET}/${TARGET_CPU}/lib/nto.link"
"--section-start",
".text=0xffff800000001000",
"--no-relax",
procnto_buildhost_pathname, // "${QNX_TARGET}/${TARGET_CPU}/boot/sys/procnto-smp-instr"
"-o",
procnto_sym_filename, // "procnto-smp-instr.sym"
NULL
};
if (verbose_level > 2)
{
fprintf (stderr
, "ifstool: calling:");
for (table_index = 0; table_index < sizeof (linker_argv) / sizeof (linker_argv[0]) - 1; table_index++)
fprintf (stderr
, " '%s'", linker_argv
[table_index
]);
}
_spawnv (_P_WAIT, linker_pathname, linker_argv); // spawn the linker and produce a stripped procnto (wait for completion)
if (!Buffer_ReadFromFile (&entry_parms->data, procnto_sym_filename)) // load the output file
DIE_WITH_EXITCODE
(1, "the host cross-linker failed to produce a readable stripped \"%s\" kernel: %s", procnto_sym_filename
, strerror (errno
));
if (!entry_parms->should_keep_ld_output)
unlink (procnto_sym_filename); // remove the linker output file if we want to
#else // !PROCNTO_WIP
/* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK */
/* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK */
/* HACK */
/* HACK */ sprintf_s (candidate_pathname, MAXPATHLEN, "%s/procnto-smp-instr", entry_parms->prefix); // HACK: fix the entry name
/* HACK */ stored_pathname = candidate_pathname;
/* HACK */ entry_parms->extra_ino_flags |= IFS_INO_PROCESSED_ELF | IFS_INO_BOOTSTRAP_EXE; // procnto needs to have these flags stamped on the inode
/* HACK */ entry_parms->st_mode = S_IFREG | 0700; // procnto requires 0700 permissions
/* HACK */ image_kernel_ino = entry_parms->extra_ino_flags | (inode_count + 1);
/* HACK */ free (entry_parms
->data.
bytes); // discard inline contents
/* HACK */ Buffer_Initialize (&entry_parms->data);
/* HACK */ if (!Buffer_ReadFromFile (&entry_parms->data, kernelfile_pathname)) // read kernel file as a precompiled binary blob
/* HACK */ {
/* HACK */ fprintf (stderr
, "fatal error: unable to read precompiled kernel file \"%s\" specified in --kernelfile argument\n", kernelfile_pathname
);
/* HACK */ }
/* HACK */
/* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK */
/* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK *//* HACK */
#endif // PROCNTO_WIP
}
else if (entry_parms->is_compiled_bootscript) // else is it a startup script ?
image_bootscript_ino = inode_count + 1; // save boot script inode number for image header
// do we already know the data for this data blob ?
if (entry_parms->data.bytes != NULL)
{
entry_parms->mtime = entry_parms->mtime_for_inline_files; // if so, set it a mtime equal to the mtime to use for inline files
LOG_INFO ("file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" blob (len %zd)", entry_parms->extra_ino_flags | (inode_count + 1), entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data.size);
}
else if (buildhost_pathname != NULL) // else was a source file pathname supplied ?
{
resolved_pathname = resolve_pathname (buildhost_pathname, (entry_parms->search[0] != 0 ? entry_parms->search : MKIFS_PATH)); // locate the file
if (resolved_pathname == NULL)
DIE_WITH_EXITCODE
(1, "filesystem entry \"%s\" specified in \"%s\" line %d not found on build host: %s", buildhost_pathname
, buildfile_pathname
, lineno
, strerror (errno
));
if (!Buffer_ReadFromFile (&entry_parms->data, resolved_pathname))
DIE_WITH_EXITCODE
(1, "filesystem entry \"%s\" specified in \"%s\" line %d can't be read: %s", buildhost_pathname
, buildfile_pathname
, lineno
, strerror (errno
));
stat (resolved_pathname, &stat_buf); // can't fail, since we could read it
if (entry_parms->mtime == UINT32_MAX)
entry_parms->mtime = (uint32_t) stat_buf.st_mtime;
LOG_INFO ("file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" buildhost_file \"%s\" (len %zd)", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, buildhost_pathname, entry_parms->data.size);
}
// is the file we're storing an ELF file ?
#define ELFHDR ((elf_header_t *) entry_parms->data.bytes) // this convenient definition will make sure the ELF header points at the right location, even after entry_parms.data->byte is reallocated
if ((entry_parms->data.size > 52) // file is big enough to contain an ELF header
&& (memcmp (ELF_GET_STRING
(ELFHDR
, ELFHDR
, magic
), ELF_MAGIC_STR
, 4) == 0)) // file starts with the ELF magic
{
// is the file we're storing a relocatable executable (i.e. a dynamic library) and should we check for its canonical name ?
if ((ELF_GET_NUMERIC (ELFHDR, ELFHDR, type) == ELF_TYPE_DYNAMICLIB) && entry_parms->should_autosymlink_dylib)
{
// locate the sections we need (the dynamic section and its strings table)
const elf_section_header_t *shdr_dynamic = elf_get_section_header_by_name (ELFHDR, ".dynamic");
const elf_section_header_t *shdr_dynstr = elf_get_section_header_by_name (ELFHDR, ".dynstr");
// make sure we have both the dynamic section header and its own strings table header
if ((shdr_dynamic != NULL) && (shdr_dynstr != NULL))
{
dynamic_strings = (char *) &entry_parms->data.bytes[ELF_GET_NUMERIC (ELFHDR, shdr_dynstr, file_offset)]; // quick access to dynamic sections strings table
// walk through the dynamic section, look for the DT_SONAME entry
canonical_dylib_name = NULL; // assume none until told otherwise
for (elf_dynamic_section_entry_t *dynamic_entry = (elf_dynamic_section_entry_t *) &entry_parms->data.bytes[ELF_GET_NUMERIC (ELFHDR, shdr_dynamic, file_offset)];
(ELF_GET_NUMERIC (ELFHDR, dynamic_entry, tag) != ELF_DT_NULL);
dynamic_entry = (elf_dynamic_section_entry_t *) ((uint8_t *) dynamic_entry + ELF_STRUCT_SIZE (ELFHDR, dynamic_entry)))
if (ELF_GET_NUMERIC (ELFHDR, dynamic_entry, tag) == ELF_DT_SONAME)
{
canonical_dylib_name = dynamic_strings + ELF_GET_NUMERIC (ELFHDR, dynamic_entry, value);
break;
}
// do we have it ?
if ((canonical_dylib_name != NULL) && (canonical_dylib_name[0] != 0))
{
sprintf_s (candidate_pathname, MAXPATHLEN, "%s/%s", entry_parms->prefix, canonical_dylib_name);
if (strcmp (candidate_pathname
, stored_pathname
) != 0) // claimed dylib name differs from passed name ?
{
original_stored_pathname = stored_pathname; // if so, remember to create a symlink here
stored_pathname = candidate_pathname;
}
}
}
} // end if the file we're storing is a dylib
// now strip this ELF file if necessary
if (!(entry_parms->extra_ino_flags & IFS_INO_PROCESSED_ELF))
{
Buffer_StripELFFile (&entry_parms->data, stored_pathname); // strip the ELF file à la mkifs
entry_parms->extra_ino_flags |= IFS_INO_PROCESSED_ELF; // mark this inode as a preprocessed ELF file
} // end if the file is not yet a processed ELF
} // end if the file we're storing is an ELF file
#undef ELFHDR // undefine the macro that used to always point to the ELF header at the beginning of the file
}
else if (S_ISLNK (entry_parms->st_mode)) // else are we storing a symbolic link ?
LOG_INFO ("symlink: ino 0x%x uid %d gid %d mode 0%o path \"%s\" -> \"%s\"", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data.bytes);
else // we must be storing a FIFO
{
if (strchr (entry_parms
->data.
bytes, ':') == NULL
)
DIE_WITH_EXITCODE (1, "device entry \"%s\" malformed (no 'dev:rdev' pair)", stored_pathname);
LOG_INFO ("fifo: ino 0x%x uid %d gid %d mode 0%o path \"%s\" dev:rdev %s)", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data.bytes);
}
// grow filesystem entries array to hold one more slot
reallocated_ptr
= realloc (*fsentries
, (*fsentry_count
+ 1) * sizeof (fsentry_t
)); // attempt to reallocate
ASSERT_WITH_ERRNO (reallocated_ptr);
*fsentries = reallocated_ptr; // save reallocated pointer
fsentry = &(*fsentries)[*fsentry_count]; // quick access to fs entry slot
fsentry->header.extattr_offset = 0;
fsentry->header.ino = entry_parms->extra_ino_flags | (++inode_count);
fsentry->header.mode = entry_parms->st_mode;
fsentry->header.gid = entry_parms->gid;
fsentry->header.uid = entry_parms->uid;
fsentry
->header.
mtime = (entry_parms
->mtime
== UINT32_MAX
? (uint32_t) time (NULL
) : entry_parms
->mtime
);
if (S_ISDIR (entry_parms->st_mode))
{
fsentry->u.dir.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE
(sizeof (fsentry
->header
) + strlen (fsentry
->u.
dir.
path) + 1, image_align
); // now we can set the size
fsentry->UNSAVED_was_data_written = true; // no data to save
}
else if (S_ISREG (entry_parms->st_mode))
{
fsentry->u.file.offset = WILL_BE_FILLED_LATER; // will be filled later in main() when the file's data blob will be written to the output file
fsentry->u.file.size = (uint32_t) entry_parms->data.size;
fsentry->u.file.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry
->u.
file.
UNSAVED_databuf = malloc (entry_parms
->data.
size);
ASSERT_WITH_ERRNO (fsentry->u.file.UNSAVED_databuf);
memcpy (fsentry
->u.
file.
UNSAVED_databuf, entry_parms
->data.
bytes, entry_parms
->data.
size);
fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE
(sizeof (fsentry
->header
) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry
->u.
file.
path) + 1, image_align
); // now we can set the size
fsentry->UNSAVED_was_data_written = false; // there *IS* data to save
}
else if (S_ISLNK (entry_parms->st_mode))
{
fsentry
->u.
symlink.
sym_offset = (uint16_t) (strlen (stored_pathname
[0] == '/' ? &stored_pathname
[1] : stored_pathname
) + 1);
fsentry->u.symlink.sym_size = (uint16_t) entry_parms->data.size;
fsentry->u.symlink.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry->u.symlink.contents = strdup (entry_parms->data.bytes);
ASSERT_WITH_ERRNO (fsentry->u.symlink.contents);
fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint16_t) + sizeof (uint16_t) + (size_t) fsentry->u.symlink.sym_offset + fsentry->u.symlink.sym_size + 1, image_align); // now we can set the size
fsentry->UNSAVED_was_data_written = true; // no data to save
}
else // necessarily a device node
{
fsentry
->u.
device.
dev = strtol (entry_parms
->data.
bytes, NULL
, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
fsentry
->u.
device.
rdev = strtol (strchr (entry_parms
->data.
bytes, ':') + 1, NULL
, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
fsentry->u.device.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE
(sizeof (fsentry
->header
) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry
->u.
device.
path), image_align
); // now we can set the size
fsentry->UNSAVED_was_data_written = true; // no data to save
}
(*fsentry_count)++;
// should we also add a symlink to this entry ? (in case we stored a dylib file under its canonical name)
if (original_stored_pathname != NULL)
{
entry_parms->is_compiled_bootscript = false;
entry_parms->should_autosymlink_dylib = false;
entry_parms->should_follow_symlinks = false;
entry_parms->st_mode = S_IFLNK | 0777; // NOTE: mkifs stores symlink permissions as rwxrwxrwx !
entry_parms->extra_ino_flags = (fsentry->header.ino & (IFS_INO_PROCESSED_ELF | IFS_INO_RUNONCE_ELF | IFS_INO_BOOTSTRAP_EXE)); // preserve target's inode flags
last_dirsep
= strrchr (stored_pathname
, '/');
old_data = entry_parms->data.bytes; // backup previous data pointer
entry_parms->data.bytes = (uint8_t *) (last_dirsep == NULL ? stored_pathname : last_dirsep + 1); // store symlink target in dirent data
entry_parms
->data.
size = strlen (entry_parms
->data.
bytes);
add_fsentry (fsentries, fsentry_count, entry_parms, original_stored_pathname, NULL);
entry_parms->data.bytes = old_data; // restore previous data pointer so that it can be freed normally
}
return (*fsentry_count);
}
static int fsentry_compare_pathnames_cb (const void *a, const void *b)
{
// qsort() callback that compares two imagefs filesystem entries and sort them alphabetically by pathname
const fsentry_t *entry_a = (const fsentry_t *) a;
const fsentry_t *entry_b = (const fsentry_t *) b;
const char *pathname_a = (S_ISDIR (entry_a->header.mode) ? entry_a->u.dir.path : (S_ISREG (entry_a->header.mode) ? entry_a->u.file.path : (S_ISLNK (entry_a->header.mode) ? entry_a->u.symlink.path : entry_a->u.device.path)));
const char *pathname_b = (S_ISDIR (entry_b->header.mode) ? entry_b->u.dir.path : (S_ISREG (entry_b->header.mode) ? entry_b->u.file.path : (S_ISLNK (entry_b->header.mode) ? entry_b->u.symlink.path : entry_b->u.device.path)));
return (strcmp (pathname_a
, pathname_b
));
}
static void update_MKIFS_PATH (const char *processor)
{
// updates the value of MKIFS_PATH according to the passed processor name string, unless an environment variable already defines it
char processor_base[16];
size_t data_len;
char *envvar;
char *token;
envvar
= getenv ("MKIFS_PATH"); // look in the environment first, and construct a default one if not supplied
if (envvar != NULL)
MKIFS_PATH = envvar; // if envvar is present, set MKIFS_PATH to point to it
else // envvar not present
{
if (MKIFS_PATH != NULL)
free (MKIFS_PATH
); // free any MKIFS_PATH that we constructed earlier
strcpy_s (processor_base, sizeof (processor_base), processor); // construct PROCESSOR_BASE
token
= strchr (processor_base
, '-');
if (token != NULL)
*token = 0; // split anything from the first dash onwards
data_len
= strlen (processor_base
);
if ((data_len > 2) && ((processor_base[data_len - 2] == 'b') || (processor_base[data_len - 2] == 'l')) && (processor_base[data_len - 1] == 'e'))
processor_base[data_len - 2] = 0; // if it ends with "le" or "be", strip that too
MKIFS_PATH
= malloc (10 * MAXPATHLEN
); // construct a default MKIFS_PATH now
ASSERT_WITH_ERRNO (MKIFS_PATH);
sprintf_s (MKIFS_PATH, 10 * MAXPATHLEN,
"." PATH_SEP "%s/%s/sbin" PATH_SEP "%s/%s/usr/sbin" PATH_SEP "%s/%s/boot/sys" PATH_SEP "%s/%s/boot/sys" PATH_SEP "%s/%s/bin" PATH_SEP "%s/%s/usr/bin" PATH_SEP "%s/%s/lib" PATH_SEP "%s/%s/lib/dll" PATH_SEP "%s/%s/usr/lib", // use a platform-specific character as path separator
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor_base,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor);
}
return;
}
int main (int argc, char **argv)
{
// program entrypoint
typedef struct ifs_offsets_s
{
size_t startupheader;
size_t startuptrailer;
size_t imageheader;
size_t imagedir;
size_t imagetrailer;
} ifs_offsets_t;
typedef struct ifs_s
{
buffer_t data;
ifs_offsets_t offsets;
size_t final_size; // final size: not known (because not set) until everything has been written
} ifs_t;
static startup_header_t startup_header = { 0 }; // output IFS's startup header
static startup_trailer_v2_t startup_trailer = { 0 }; // output IFS's startup trailer (version 2, with SHA-512 checksum and int32 checksum)
static image_header_t image_header = { 0 }; // output IFS's imagefs header
static image_trailer_v2_t image_trailer = { 0 }; // output IFS's imagefs trailer (version 2, with SHA-512 checksum and int32 checksum)
static fsentry_t *fsentries = NULL; // output IFS's filesystem entries
static size_t fsentry_count = 0; // number of entries in the IFS filesystem
static parms_t default_parms = { // default parameters for a filesystem entry
.dperms = 0755,
.perms = 0644,
.uid = 0,
.gid = 0,
.st_mode = S_IFREG,
.mtime = UINT32_MAX,
.mtime_for_inline_files = UINT32_MAX,
.prefix = "/proc/boot",
.should_follow_symlinks = true, // [+|-followlink]
.should_autosymlink_dylib = true, // [+|-autolink]
.is_compiled_bootscript = false, // [+|-script]
.extra_ino_flags = 0,
.search = "",
.data = { NULL, 0 }
};
static parms_t entry_parms = { 0 }; // current parameters for a filesystem entry (will be initialized to default_parms each time a new entry is parsed in the build file)
char path_on_buildhost[MAXPATHLEN] = "";
char path_in_ifs[MAXPATHLEN] = "";
char *ifs_pathname = NULL;
void *reallocated_ptr;
struct tm utc_time;
struct stat stat_buf;
size_t imgdir_size;
size_t available_space;
size_t allocated_size;
size_t fsentry_index;
size_t largest_index;
size_t largest_size;
size_t curr_offset;
ifs_t ifs = { 0 };
int32_t checksum;
char *first_pathname = NULL;
char *second_pathname = NULL;
char *specifiedpathname_start;
char *directiveblock_start;
char *write_ptr;
char *line_ptr;
char *token;
char *value;
char *sep;
char *ctx;
int arg_index;
bool is_quoted_context = false;
bool is_escaped_char = false;
bool should_discard_inline_contents = false;
bool want_info = false;
bool want_everything = false;
bool want_help = false;
bool want_dump = false;
bool want_strip = false;
bool want_hexdump = false;
bool is_foreign_endianness;
int string_len;
int read_char;
FILE *buildfile_fp;
// parse arguments
for (arg_index = 1; arg_index < argc; arg_index++)
{
if ((strcmp (argv
[arg_index
], "--bootfile") == 0) && (arg_index
+ 1 < argc
)) // --bootfile path/to/blob.bin
bootfile_pathname = argv[++arg_index];
else if ((strcmp (argv
[arg_index
], "--startupfile") == 0) && (arg_index
+ 1 < argc
)) // --startupfile path/to/blob.bin@0x1030
{
sep
= strchr (argv
[++arg_index
], '@');
if ((sep == NULL) || (sep[1] == 0))
DIE_WITH_EXITCODE (1, "the --startupfile arguments expects <pathname>@<entrypoint_from_image_base>");
*sep = 0;
startupfile_pathname = argv[arg_index];
startupfile_ep_from_imagebase = (size_t) read_integer (sep + 1);
}
else if ((strcmp (argv
[arg_index
], "--kernelfile") == 0) && (arg_index
+ 1 < argc
)) // --kernelfile path/to/blob.bin@0x32000
{
sep
= strchr (argv
[++arg_index
], '@');
if ((sep == NULL) || (sep[1] == 0))
DIE_WITH_EXITCODE (1, "the --kernelfile arguments expects <pathname>@<fileoffset>");
*sep = 0;
kernelfile_pathname = argv[arg_index];
kernelfile_offset = (size_t) read_integer (sep + 1);
}
else if (strcmp (argv
[arg_index
], "-n") == 0)
default_parms.mtime_for_inline_files = 0; // inline files should have a mtime set to zero
else if (strcmp (argv
[arg_index
], "-nn") == 0)
{
default_parms.mtime = 0; // *all* files should have a mtime set to zero
default_parms.mtime_for_inline_files = 0;
}
else if ((strcmp (argv
[arg_index
], "--outdir") == 0) && (arg_index
+ 1 < argc
)) // --outdir path
second_pathname = argv[++arg_index];
else if ((strcmp (argv
[arg_index
], "--outfile") == 0) && (arg_index
+ 1 < argc
)) // --outfile pathname
second_pathname = argv[++arg_index];
else if (strcmp (argv
[arg_index
], "--info") == 0)
want_info = true;
else if (strcmp (argv
[arg_index
], "--dump") == 0)
want_dump = true;
else if (strcmp (argv
[arg_index
], "--hexdump") == 0) // voluntarily undocumented
want_hexdump = true;
else if (strcmp (argv
[arg_index
], "--strip") == 0)
want_strip = true;
else if (strcmp (argv
[arg_index
], "--everything") == 0)
want_everything = true;
else if (strncmp (argv
[arg_index
], "-v", 2) == 0) // -v[....]
verbose_level
+= (int) strlen (argv
[arg_index
] + 1); // increase verbosity by the number of characters in this flag
else if ((strcmp (argv
[arg_index
], "-?") == 0) || (strcmp (argv
[arg_index
], "--help") == 0))
want_help = true;
else if (first_pathname == NULL)
first_pathname = argv[arg_index];
else if (second_pathname == NULL)
second_pathname = argv[arg_index];
else
DIE_WITH_EXITCODE (1, "unrecognized option: '%s'", argv[arg_index]);
}
// do we not have enough information to run ?
if (want_help || (first_pathname == NULL) || (!want_info && !want_dump && !want_hexdump && !want_strip && (second_pathname == NULL)))
{
FILE *out = (want_help ? stdout : stderr); // select the right output channel
fprintf (out
, "ifstool - QNX in-kernel filesystem creation utility by Pierre-Marie Baty <pm@pmbaty.com>\n");
fprintf (out
, " version " VERSION_FMT_YYYYMMDD
"\n", VERSION_ARG_YYYYMMDD
);
if (!want_help)
fprintf (out
, "error: missing parameters\n");
fprintf (out
, " ifstool [--bootfile <pathname>] [--startupfile <pathname>@<EP_from_imgbase>] [--kernelfile <pathname>@<fileoffs>] [-n[n]] [-v[...]] <buildfile> <outfile>\n");
fprintf (out
, " ifstool --info [--everything] <ifs file>\n");
fprintf (out
, " ifstool --dump [--outdir <path>] <ifs file>\n");
fprintf (out
, " ifstool --strip [--outfile <pathname>] <ELF file>\n");
fprintf (out
, " ifstool --help\n");
fprintf (out
, "NOTE: the compilation feature requires predigested boot, startup and kernel files produced by mkifs.\n");
exit (want_help
? 0 : 1);
}
// do we want info about a particular IFS ? if so, dissecate it
if (want_info)
exit (dump_ifs_info
(first_pathname
, want_everything
));
// else do we want to dump its contents ? if so, do so
else if (want_dump)
exit (dump_ifs_contents
(first_pathname
, (second_pathname
!= NULL
? second_pathname
: ".")));
// else do we want to hex dump a file ? (this is voluntarily undocumented)
else if (want_hexdump)
exit (dump_file_hex
(first_pathname
));
// else do we want to strip an ELF file ? if so, do so
else if (want_strip)
{
buffer_t file;
ASSERT
(Buffer_ReadFromFile
(&file
, first_pathname
), "can't open \"%s\" for reading: %s", first_pathname
, strerror (errno
));
ASSERT
(Buffer_StripELFFile
(&file
, first_pathname
), "error stripping \"%s\": %s", first_pathname
, strerror (errno
));
ASSERT_WITH_ERRNO (Buffer_WriteToFile (&file, (second_pathname != NULL ? second_pathname : "<stdout>")));
}
// we want to CREATE an IFS file
buildfile_pathname = first_pathname; // assign the pathnames properly
ifs_pathname = second_pathname;
// make sure we have ${QNX_TARGET} pointing somewhere
QNX_TARGET
= getenv ("QNX_TARGET");
if (QNX_TARGET == NULL)
DIE_WITH_EXITCODE (1, "the QNX_TARGET environment variable is not set");
else if (access (QNX_TARGET, 0) != 0)
DIE_WITH_EXITCODE (1, "the QNX_TARGET environment variable doesn't point to an existing directory");
// prepare a default MKIFS_PATH assuming the host processor
update_MKIFS_PATH (image_processor);
// open build file
fopen_s (&buildfile_fp, buildfile_pathname, "rb");
if (buildfile_fp == NULL)
DIE_WITH_EXITCODE
(1, "unable to open build file \"%s\" for reading: %s", buildfile_pathname
, strerror (errno
));
// stack up filesystem entries
memcpy (&entry_parms
, &default_parms
, sizeof (default_parms
));
entry_parms.st_mode = S_IFDIR | default_parms.dperms;
add_fsentry (&fsentries, &fsentry_count, &entry_parms, "", NULL); // add the root dir first
// parse the IFS build file line per line
while (fgets (line_buffer
, sizeof (line_buffer
), buildfile_fp
) != NULL
)
{
if (current_line != NULL)
current_line = strdup (line_buffer);
ASSERT_WITH_ERRNO (current_line);
lineno++; // keep track of current line number
line_ptr = line_buffer;
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip leading spaces
if ((*line_ptr == 0) || (*line_ptr == '#'))
continue; // skip empty or comment lines
string_len
= (int) strlen (line_buffer
);
if ((string_len > 0) && (line_buffer[string_len - 1] == '\n'))
line_buffer[string_len - 1] = 0; // chop off newline for easier debug output
// reset entry values
memcpy (&entry_parms
, &default_parms
, sizeof (default_parms
));
path_in_ifs[0] = 0;
path_on_buildhost[0] = 0;
should_discard_inline_contents = false;
// does this line start with an attribute block ?
if (*line_ptr == '[')
{
line_ptr++; // skip the leading square bracket
directiveblock_start = line_ptr; // remember where it starts
is_quoted_context = false;
while ((*line_ptr != 0) && !((*line_ptr == ']') && (line_ptr[-1] != '\\') && !is_quoted_context))
{
if (*line_ptr == '"')
is_quoted_context ^= true; // remember when we're between quotes
else if (!is_quoted_context && (*line_ptr == ' '))
*line_ptr = RECORD_SEP[0]; // turn all spaces outside quoted contexts into an ASCII record separator to ease token splitting
line_ptr++; // reach the next unescaped closing square bracket
}
if (*line_ptr != ']')
{
LOG ("warning", 0, "syntax error in \"%s\" line %d: unterminated attributes block (skipping)", buildfile_pathname, lineno);
continue; // invalid attribute block, skip line
}
*line_ptr = 0; // end the attribute block so that it is a parsable C string
// now parse the attribute tokens
// DOCUMENTATION: https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino.utilities/topic/m/mkifs.html#mkifs__description
token = strtok_r (directiveblock_start, RECORD_SEP, &ctx);
while (token != NULL)
{
// evaluate attribute token
#define REACH_TOKEN_VALUE() do { value = strchr (token, '=') + 1; if (*value == '"') value++; } while (0)
if (strncmp (token
, "uid=", 4) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
uid = (int) read_integer
(value
); }
else if (strncmp (token
, "gid=", 4) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
gid = (int) read_integer
(value
); }
else if (strncmp (token
, "dperms=", 7) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
dperms = (int) read_integer
(value
); }
else if (strncmp (token
, "perms=", 6) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
perms = (int) read_integer
(value
); }
else if (strncmp (token
, "type=", 5) == 0) { REACH_TOKEN_VALUE
();
if (strcmp (value
, "dir") == 0) entry_parms.
st_mode = S_IFDIR
;
else if (strcmp (value
, "file") == 0) entry_parms.
st_mode = S_IFREG
;
else if (strcmp (value
, "link") == 0) entry_parms.
st_mode = S_IFLNK
;
else if (strcmp (value
, "fifo") == 0) entry_parms.
st_mode = S_IFIFO
;
else DIE_WITH_EXITCODE (1, "invalid 'type' attribute in \"%s\" line %d: '%s'", buildfile_pathname, lineno, value);
}
else if (strncmp (token
, "prefix=", 7) == 0) { REACH_TOKEN_VALUE
(); strcpy_s
(entry_parms.
prefix, sizeof (entry_parms.
prefix), (*value
== '/' ? value
+ 1 : value
)); } // skip possible leading slash in prefix
else if (strncmp (token
, "image=", 6) == 0) { REACH_TOKEN_VALUE
();
image_base = (uint32_t) read_integer (value); // read image base address
if ((sep
= strchr (value
, '-')) != NULL
) image_end
= (uint32_t) read_integer
(sep
+ 1); // if we have a dash, read optional image end (TODO: check this value and produce an error in the relevant case. Not important.)
if ((sep
= strchr (value
, ',')) != NULL
) image_maxsize
= (uint32_t) read_integer
(sep
+ 1); // if we have a comma, read optional image max size
if ((sep
= strchr (value
, '=')) != NULL
) image_totalsize
= (uint32_t) read_integer
(sep
+ 1); // if we have an equal sign, read optional image padding size
if ((sep
= strchr (value
, '%')) != NULL
) image_align
= (uint32_t) read_integer
(sep
+ 1); // if we have a modulo sign, read optional image aligmnent
LOG_INFO ("image 0x%x-0x%x maxsize %d totalsize %d align %d", image_base, image_end, image_maxsize, image_totalsize, image_align);
}
else if (strncmp (token
, "virtual=", 8) == 0) { REACH_TOKEN_VALUE
();
if ((bootfile_pathname == NULL) || (startupfile_pathname == NULL) || (kernelfile_pathname == NULL)) // HACK until I figure out how to re-create them
DIE_WITH_EXITCODE (1, "creating bootable images require the --bootfile, --startupfile and --kernelfile command-line options in \"%s\" line %d", buildfile_pathname, lineno);
if ((sep
= strchr (value
, ',')) != NULL
) // do we have a comma separating (optional) processor and boot file name ?
{
*sep = 0;
strcpy_s (image_processor, sizeof (image_processor), value); // save processor
update_MKIFS_PATH (image_processor);
value = sep + 1;
}
//sprintf (image_bootfile, "%s/%s/boot/sys/%s.boot", QNX_TARGET, image_processor, value); // save preboot file name (TODO: we should search in MKIFS_PATH instead of this. Not important.)
//strcpy (image_bootfile, bootfile_pathname); // FIXME: HACK
if (stat (bootfile_pathname, &stat_buf) != 0)
DIE_WITH_EXITCODE
(1, "unable to stat the boot file \"%s\" specified in \"%s\" line %d: %s", bootfile_pathname
, buildfile_pathname
, lineno
, strerror (errno
));
bootfile_size = stat_buf.st_size; // save preboot file size
LOG_INFO ("processor \"%s\" bootfile \"%s\"\n", image_processor, bootfile_pathname);
#if 1
// ######################################################################################################################################################################################################################################
// # FIXME: figure out how to re-create it: linker call involved
// # $ x86_64-pc-nto-qnx8.0.0-ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0xffff800000001000 --no-relax ${QNX_TARGET}/x86_64/boot/sys/procnto-smp-instr -o procnto-smp-instr.sym.UNSTRIPPED
// ######################################################################################################################################################################################################################################
// if (!Buffer_ReadFromFile (&entry_parms.data, kernelfile_pathname))
// DIE_WITH_EXITCODE (1, "unable to read precompiled kernel file \"%s\" specified in --kernelfile argument: %s", kernelfile_pathname, strerror (errno));
#else // nonworking
strcpy (path_on_buildhost
, "procnto-smp-instr");
#endif // nonworking
}
else if (strncmp (token
, "mtime=", 6) == 0) { REACH_TOKEN_VALUE
(); if (strcmp (value
, "*") == 0) entry_parms.
mtime = UINT32_MAX
; else {
// value *must* be "YYYY-MM-DD-HH:MM:SS" by specification
memset (&utc_time
, 0, sizeof (utc_time
));
if (sscanf_s (value, "%u-%u-%u-%u:%u:%u", &utc_time.tm_year, &utc_time.tm_mon, &utc_time.tm_mday, &utc_time.tm_hour, &utc_time.tm_min, &utc_time.tm_sec) != 6)
{
LOG_WARNING ("syntax error in \"%s\" line %d: mtime specification not in YYYY-MM-DD-HH:MM:SS format (skipping)", buildfile_pathname, lineno);
continue; // invalid attribute block, skip line
}
utc_time.tm_mon--; // convert month from [1-12] to [0-11]
entry_parms.
mtime = (uint32_t) mktime (&utc_time
);
}
}
else if (strcmp (token
, "+script") == 0) {
entry_parms.is_compiled_bootscript = true;
ASSERT_WITH_ERRNO (Buffer_InitWithByteArray (&entry_parms.data, INITIAL_STARTUP_SCRIPT)); // FIXME: HACK until the script compiler is implemented
should_discard_inline_contents = true; // remember we already have data (so as to discard the inline block's contents)
}
else if (strcmp (token
, "-script") == 0) entry_parms.
is_compiled_bootscript = false;
else if (strcmp (token
, "+followlink") == 0) entry_parms.
should_follow_symlinks = true;
else if (strcmp (token
, "-followlink") == 0) entry_parms.
should_follow_symlinks = false;
else if (strcmp (token
, "+autolink") == 0) entry_parms.
should_autosymlink_dylib = true;
else if (strcmp (token
, "-autolink") == 0) entry_parms.
should_autosymlink_dylib = false;
else if (strcmp (token
, "+keeplinked") == 0) entry_parms.
should_keep_ld_output = true;
else if (strcmp (token
, "-keeplinked") == 0) entry_parms.
should_keep_ld_output = false;
else LOG_WARNING ("unimplemented attribute in \"%s\" line %d: '%s'", buildfile_pathname, lineno, token);
#undef REACH_TOKEN_VALUE
token = strtok_r (NULL, RECORD_SEP, &ctx); // proceed to next attribute token
}
line_ptr++; // reach the next character
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip leading spaces
// are we at the end of the line ? if so, it means the attribute values that are set should become the default
if ((*line_ptr == 0) || (*line_ptr == '#'))
{
#define APPLY_DEFAULT_ATTR_NUM(attr,descr,fmt) do { if (entry_parms.attr != default_parms.attr) { \
LOG_INFO ("changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
default_parms.attr = entry_parms.attr; \
} } while (0)
#define APPLY_DEFAULT_ATTR_STR(attr,descr,fmt) do { if (strcmp (entry_parms.attr, default_parms.attr) != 0) { \
LOG_INFO ("changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
strcpy_s (default_parms.attr, sizeof (default_parms.attr), entry_parms.attr); \
} } while (0)
APPLY_DEFAULT_ATTR_NUM (dperms, "directory permissions", "0%o");
APPLY_DEFAULT_ATTR_NUM (perms, "file permissions", "0%o");
APPLY_DEFAULT_ATTR_NUM (uid, "owner ID", "%d");
APPLY_DEFAULT_ATTR_NUM (gid, "group ID", "%d");
APPLY_DEFAULT_ATTR_NUM (st_mode, "inode type", "0%o");
APPLY_DEFAULT_ATTR_STR (prefix, "prefix", "\"%s\"");
APPLY_DEFAULT_ATTR_NUM (is_compiled_bootscript, "compiled script state", "%d");
APPLY_DEFAULT_ATTR_NUM (should_follow_symlinks, "symlink resolution", "%d");
APPLY_DEFAULT_ATTR_NUM (should_autosymlink_dylib, "dylib canonical name symlinking", "%d");
APPLY_DEFAULT_ATTR_NUM (should_keep_ld_output, "linker output preservation", "%d");
#undef APPLY_DEFAULT_ATTR_STR
#undef APPLY_DEFAULT_ATTR_NUM
continue; // end of line reached, proceed to the next line
}
// end of attributes parsing
} // end of "this line starts with an attributes block"
// there's data in this line. We expect a filename in the IFS. Read it and unescape escaped characters
string_len = sprintf_s (path_in_ifs, sizeof (path_in_ifs), "%s", entry_parms.prefix);
while ((string_len > 0) && (path_in_ifs[string_len - 1] == '/'))
string_len--; // chop off any trailing slashes from prefix
write_ptr = &path_in_ifs[string_len];
*write_ptr++ = '/'; // add ONE trailing slash
specifiedpathname_start = write_ptr; // remember the specified pathname will start here
is_quoted_context = (*line_ptr == '"');
if (is_quoted_context)
line_ptr++; // skip a possible initial quote
if (*line_ptr == '/')
{
LOG_WARNING ("paths in the IFS file should not begin with a leading '/' in \"%s\" line %d", buildfile_pathname, lineno);
line_ptr++; // consistency check: paths in the IFS should not begin with a '/'
}
while ((*line_ptr
!= 0) && ((!is_quoted_context
&& (*line_ptr
!= '=') && !isspace (*line_ptr
)) || (is_quoted_context
&& (*line_ptr
== '"'))))
{
if (*line_ptr == '\\')
{
line_ptr++;
*write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
}
else
*write_ptr++ = *line_ptr;
line_ptr++;
}
*write_ptr = 0; // terminate the string
if (is_quoted_context && (*line_ptr == '"'))
line_ptr++; // skip a possible final quote
// we reached a space OR an equal sign
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip optional spaces after the filename in the IFS
// do we have an equal sign ?
if (*line_ptr == '=') // we must be creating either a directory or a file, do we have an equal sign ?
{
line_ptr++; // skip the equal sign
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip optional spaces after the equal sign
if (*line_ptr == 0)
{
LOG_WARNING ("syntax error in \"%s\" line %d: missing data specification after equal sign (skipping)", buildfile_pathname, lineno);
continue; // invalid symlink specification, skip line
}
// read the host system's path, it may be either a path or a contents definition. Is it a content definition ?
if (*line_ptr == '{')
{
allocated_size = 0;
line_ptr++; // skip the leading content definition
is_escaped_char = false;
for (;;)
{
read_char
= fgetc (buildfile_fp
);
if (read_char == EOF)
DIE_WITH_EXITCODE (1, "syntax error in \"%s\" line %d: unterminated contents block (end of file reached)", buildfile_pathname, lineno); // invalid contents block
else if ((read_char == '\\') && !is_escaped_char)
is_escaped_char = true; // remember the next char is escaped
else if ((read_char == '}') && !is_escaped_char)
break; // found an unescaped closing bracked, stop parsing
else
{
is_escaped_char = false; // any other char, meaning the next one will not be escaped
if (!should_discard_inline_contents) // only store the contents if we do NOT know the data yet
{
if (entry_parms.data.size == allocated_size) // reallocate in 4 kb blocks
{
reallocated_ptr
= realloc (entry_parms.
data.
bytes, allocated_size
+ 4096);
ASSERT_WITH_ERRNO (reallocated_ptr);
entry_parms.data.bytes = reallocated_ptr;
allocated_size += 4096;
}
entry_parms.data.bytes[entry_parms.data.size++] = read_char;
}
if (read_char == '\n')
lineno++; // update line counter as we parse the inline content
}
} // end for
}
else // not a content definition between { brackets }, must be either a pathname on the build host, or the target of a symlink
{
is_quoted_context = (*line_ptr == '"');
if (is_quoted_context)
line_ptr++; // skip a possible initial quote
specifiedpathname_start = line_ptr; // remember where the specified pathname starts
write_ptr = line_ptr; // now unescape all characters
while ((*line_ptr
!= 0) && ((!is_quoted_context
&& !isspace (*line_ptr
)) || (is_quoted_context
&& (*line_ptr
== '"'))))
{
if (*line_ptr == '\\')
{
line_ptr++;
*write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
}
else
*write_ptr++ = *line_ptr;
line_ptr++;
}
*write_ptr = 0; // terminate the string
if (is_quoted_context && (*line_ptr == '"'))
line_ptr++; // skip a possible final quote
if (S_ISLNK (entry_parms.st_mode)) // are we storing a symlink ?
ASSERT_WITH_ERRNO (Buffer_InitWithCString (&entry_parms.data, specifiedpathname_start)); // if so, store the symlink target as the dirent's blob data
else // it's a build host filesystem path
strcpy_s (path_on_buildhost, sizeof (path_on_buildhost), specifiedpathname_start); // the path on the build host is given after the equal sign
}
}
else // no equal sign, meaning the file will have the same name on the build host filesystem
{
// consistency check: symlinks MUST have an equal sign
if (entry_parms.st_mode == S_IFLNK)
{
LOG_WARNING ("syntax error in \"%s\" line %d: missing equal sign and symlink target (skipping)", buildfile_pathname, lineno);
continue; // invalid symlink specification, skip line
}
strcpy_s (path_on_buildhost, sizeof (path_on_buildhost), specifiedpathname_start); // the path on the build host is the one specified
sep
= strrchr (specifiedpathname_start
, '/');
if (sep != NULL)
memmove (specifiedpathname_start
, sep
+ 1, strlen (sep
+ 1) + 1); // the path in the IFS will be the BASENAME of the path specified (after the prefix)
}
// now add this entry to the image filesystem
if (S_ISDIR (entry_parms.st_mode))
entry_parms.st_mode |= entry_parms.dperms;
else if (S_ISLNK (entry_parms.st_mode))
entry_parms.st_mode |= 0777; // NOTE: mkifs sets symlink permissions to rwxrwxrwx !?
else // file or device node
entry_parms.st_mode |= entry_parms.perms;
add_fsentry (&fsentries, &fsentry_count, &entry_parms, path_in_ifs, path_on_buildhost); // and add filesystem entry
if (entry_parms.data.bytes != NULL)
free (entry_parms.
data.
bytes); // if blob data was allocated, free it
}
fclose (buildfile_fp
); // finished parsing the build file
//////////////////////////////////
// start constructing the IFS file
Buffer_Initialize (&ifs.data);
// do we have a startup file ? if so, this is a bootable image
if (startupfile_pathname != NULL)
{
// write boot prefix
// ######################################################################################################################################################################################################################################
// # FIXME: figure out how to re-create it
// ######################################################################################################################################################################################################################################
buffer_t file;
if (!Buffer_ReadFromFile (&file, bootfile_pathname))
DIE_WITH_EXITCODE
(1, "failed to open \"%s\" for reading: %s", bootfile_pathname
, strerror (errno
));
ASSERT_WITH_ERRNO (Buffer_AppendBuffer (&ifs.data, &file)); // write boot blob
Buffer_Forget (&file);
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, ROUND_TO_UPPER_MULTIPLE (ifs.data.size, image_align))); // pad as necessary
ifs.offsets.startupheader = ifs.data.size; // save startup header offset for future use
memset (&startup_header
, 0, sizeof (startup_header
)); // prepare startup header
memcpy (startup_header.
signature, "\xeb\x7e\xff\x00", 4); // startup header signature, i.e. 0xff7eeb
startup_header.version = 1;
startup_header.flags1 = STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2; // flags, 0x21 (STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2)
startup_header.header_size = sizeof (startup_header); // 256
if (strcmp (image_processor
, "x86_64") == 0)
startup_header.machine = ELF_MACHINE_X86_64; // EM_X86_64
else if (strcmp (image_processor
, "aarch64le") == 0)
startup_header.machine = ELF_MACHINE_AARCH64; // EM_AARCH64
else
DIE_WITH_EXITCODE (1, "unsupported processor type '%s' found in build file \"%s\"", image_processor, buildfile_pathname); // should not happen
startup_header.startup_vaddr = image_base + (uint32_t) startupfile_ep_from_imagebase; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
startup_header.image_paddr = image_base + (uint32_t) bootfile_size; // F[IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
startup_header.ram_paddr = startup_header.image_paddr; // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
startup_header.ram_size = WILL_BE_FILLED_LATER; // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee (40686)
startup_header.startup_size = WILL_BE_FILLED_LATER; // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
startup_header.stored_size = WILL_BE_FILLED_LATER; // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
startup_header.imagefs_size = WILL_BE_FILLED_LATER; // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
startup_header.preboot_size = (uint16_t) bootfile_size; // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
ASSERT_WITH_ERRNO (Buffer_Append (&ifs.data, &startup_header, sizeof (startup_header))); // write startup header
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, ROUND_TO_UPPER_MULTIPLE (ifs.data.size, image_align))); // pad as necessary
// ######################################################################################################################################################################################################################################
// # FIXME: figure out how to re-create it:
// first: open "startup-x86" ELF file,
// lookup section headers table (there is no program headers table in this one)
// FIXME: figure out something in there where the result is 0x1401030 !!!
// then: call the linker: ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0x1401030 --no-relax ${QNX_TARGET}/x86_64/boot/sys/startup-x86 -o startup.bin.UNSTRIPPED
// then: parse resulting ELF file, take all program segments and concatenate them --> this is the blob (FIXME: wrong?)
// ######################################################################################################################################################################################################################################
#if 0 // nonworking
// <deleted>
#else // working
if (!Buffer_ReadFromFile (&file, startupfile_pathname))
DIE_WITH_EXITCODE
(1, "failed to open \"%s\" for reading: %s", startupfile_pathname
, strerror (errno
));
ASSERT_WITH_ERRNO (Buffer_AppendBuffer (&ifs.data, &file)); // write startup blob
Buffer_Forget (&file);
#endif // working
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, ROUND_TO_UPPER_MULTIPLE (ifs.data.size, image_align))); // pad as necessary
ifs.offsets.startuptrailer = ifs.data.size; // save startup trailer offset for future use
ASSERT_WITH_ERRNO (Buffer_Append (&ifs.data, &startup_trailer, sizeof (startup_trailer))); // write startup trailer
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, ROUND_TO_UPPER_MULTIPLE (ifs.data.size, image_align))); // pad as necessary
}
ifs.offsets.imageheader = ifs.data.size; // save image header offset for future use
memset (&image_header
, 0, sizeof (image_header
)); // prepare image header
memcpy (&image_header.
signature, "imagefs", 7); // image filesystem signature, i.e. "imagefs"
image_header.flags = IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS; // endian neutral flags, 0x1c (IMAGE_FLAGS_TRAILER_V2 |Â IMAGE_FLAGS_SORTED |Â IMAGE_FLAGS_INO_BITS)
image_header.image_size = WILL_BE_FILLED_LATER; // size from header to end of trailer (here 0xca6fe0 or 13 266 912)
image_header.hdr_dir_size = WILL_BE_FILLED_LATER; // size from header to last dirent (here 0x12b8 or 4792)
image_header.dir_offset = sizeof (image_header); // offset from header to first dirent (here 0x5c or 92)
image_header.boot_ino[0] = image_kernel_ino; // inode of files for bootstrap p[ro?]g[ra?]ms (here 0xa0000002, 0, 0, 0)
image_header.script_ino = image_bootscript_ino; // inode of file for script (here 3)
image_header.mountpoint[0] = '/'; // default mountpoint for image ("/" + "\0\0\0")
ASSERT_WITH_ERRNO (Buffer_Append (&ifs.data, &image_header, sizeof (image_header))); // write image header
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, ROUND_TO_UPPER_MULTIPLE (ifs.data.size, image_align))); // pad as necessary
// write image directory (with the wrong file offsets)
ifs.offsets.imagedir = ifs.data.size; // save image directory offset for future use
curr_offset = ifs.offsets.imagedir;
for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
{
Buffer_WriteIFSDirectoryEntryAt (&ifs.data, curr_offset, &fsentries[fsentry_index]); // write each dirent (the unknown fields will be fixed later)
curr_offset += fsentries[fsentry_index].header.size; // advance to the next one
}
ASSERT_WITH_ERRNO (Buffer_AppendByteArray (&ifs.data, "\0\0\0\0")); // there seems to be 4 bytes of padding after the image directory
imgdir_size = ifs.data.size - ifs.offsets.imagedir; // measure image dir size and save it for future use
// is it a bootable image with a kernel file ?
if ((startupfile_pathname != NULL) && (kernelfile_pathname != NULL))
{
// start by writing the startup script data blob, if we have one
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
if (fsentries[fsentry_index].header.ino == image_bootscript_ino)
break; // locate the startup script directory entry
if (fsentry_index < fsentry_count) // found it ?
{
if (ifs.data.size + fsentries[fsentry_index].u.file.size >= kernelfile_offset)
DIE_WITH_EXITCODE (1, "the compiled startup script is too big (%zd bytes, max is %zd) to fit at current offset %zd", (size_t) fsentries[fsentry_index].u.file.size, kernelfile_offset - ifs.data.size, ifs.data.size);
fsentries[fsentry_index].u.file.offset = (uint32_t) (ifs.data.size - ifs.offsets.imageheader); // save file data blob offset in file structure
Buffer_AppendIFSFileData (&ifs.data, &fsentries[fsentry_index]); // write file data
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
// now write the filesystem entries that may fit before the kernel
for (;;)
{
available_space = kernelfile_offset - ifs.data.size; // measure the available space until the kernel
// look for the biggest one that can fit
largest_index = 0;
largest_size = 0;
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
{
if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written || (fsentries[fsentry_index].u.file.size > available_space))
continue; // skip all entries that don't have a separate data block, those who were written already and those that wouldn't fit
if (fsentries[fsentry_index].u.file.size > largest_size)
{
largest_size = fsentries[fsentry_index].u.file.size;
largest_index = fsentry_index;
}
}
if (largest_size == 0)
break; // found none ? if so, stop searching
fsentry_index = largest_index;
fsentries[fsentry_index].u.file.offset = (uint32_t) (ifs.data.size - ifs.offsets.imageheader); // save file data blob offset in file structure
Buffer_AppendIFSFileData (&ifs.data, &fsentries[fsentry_index]); // write file data
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
LOG_INFO ("Last written offset: 0x%zx", ifs.data.size);
LOG_INFO ("Kernel file offset: 0x%zx", kernelfile_offset);
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, kernelfile_offset)); // reach the kernel offset
// now write the QNX kernel
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
if (fsentries[fsentry_index].header.ino == image_kernel_ino)
break; // locate the kernel directory entry (can't fail)
fsentries[fsentry_index].u.file.offset = (uint32_t) (ifs.data.size - ifs.offsets.imageheader); // save file data blob offset in file structure
#ifdef PROCNTO_WIP
// is the kernel we're storing a preprocessed ELF kernel ?
if (fsentries[fsentry_index].header.ino & IFS_INO_PROCESSED_ELF)
{
elf = (elf_header_t *) fsentries[fsentry_index].u.file.UNSAVED_databuf; // quick access to ELF header
table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
for (table_index = 0; table_index < table_count; table_index++)
{
phdr = (elf_program_header_t *) &fsentries[fsentry_index].u.file.UNSAVED_databuf[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
corrective_offset = ELF_GET_NUMERIC (elf, phdr, virtual_addr) - ELF_GET_NUMERIC (elf, phdr, file_offset);
if (ELF_GET_NUMERIC (elf, phdr, size_in_memory) != 0) // only patch the physical address of segments that have an actual size in memory
ELF_SET_NUMERIC (elf, phdr, physical_addr, ELF_GET_NUMERIC (elf, phdr, physical_addr) + image_base + ifs.data.size - corrective_offset); // patch the physical address member of the program header table (NOTE: ifs.data.size is the location where the file data is about to be written)
}
}
#endif // PROCNTO_WIP
Buffer_AppendIFSFileData (&ifs.data, &fsentries[fsentry_index]); // write kernel file data
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
// then write all the other files by increasing inode number: ELF files first
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
{
if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written // filter out anything that's not a file, and anything that's been already written
|| (fsentries
[fsentry_index
].
u.
file.
size < 4) || (memcmp (fsentries
[fsentry_index
].
u.
file.
UNSAVED_databuf, ELF_MAGIC_STR
, 4) != 0)) // filter out anything that's not an ELF file
continue; // skip all entries that don't have a separate data block and those who were written already
fsentries[fsentry_index].u.file.offset = (uint32_t) (ifs.data.size - ifs.offsets.imageheader); // save file data blob offset in file structure
Buffer_AppendIFSFileData (&ifs.data, &fsentries[fsentry_index]); // write file data
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++) // other files (non-ELF, e.g. scripts and data files) last
{
if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written) // filter out anything that's not a file, and anything that's been already written
continue; // skip all entries that don't have a separate data block and those who were written already
fsentries[fsentry_index].u.file.offset = (uint32_t) (ifs.data.size - ifs.offsets.imageheader); // save file data blob offset in file structure
Buffer_AppendIFSFileData (&ifs.data, &fsentries[fsentry_index]); // write file data
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, ROUND_TO_UPPER_MULTIPLE (ifs.data.size, image_align))); // pad as necessary
// finally, write trailer (including empty checksum)
ifs.offsets.imagetrailer = ifs.data.size; // save image trailer offset for future use
ASSERT_WITH_ERRNO (Buffer_Append (&ifs.data, &image_trailer, sizeof (image_trailer))); // write image trailer
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, ROUND_TO_UPPER_MULTIPLE (ifs.data.size, image_align))); // pad as necessary
// if we need to pad it to a specific length, do so
ASSERT_WITH_ERRNO (Buffer_PadWithZeroesTo (&ifs.data, image_totalsize));
ifs.final_size = ifs.data.size; // and this is the final size of the IFS
// see if we are past the image max size, in which case it's an error
if (ifs.final_size > image_maxsize)
DIE_WITH_EXITCODE (1, "image file \"%s\" size %zd exceeds max size (%zd)", ifs_pathname, ifs.final_size, (size_t) image_maxsize);
// do we have a startup file ? if so, this is a bootable image
if (startupfile_pathname != NULL)
{
// patch the startup header with its final values
startup_header.startup_size = (uint32_t) (ifs.offsets.imageheader - ifs.offsets.startupheader); // size of startup header up to image header
startup_header.imagefs_size = (uint32_t) (ifs.final_size - ifs.offsets.imageheader); // size of uncompressed imagefs
startup_header.ram_size = (uint32_t) (ifs.final_size - ifs.offsets.startupheader);
startup_header.stored_size = (uint32_t) (ifs.final_size - ifs.offsets.startupheader);
ASSERT_WITH_ERRNO (Buffer_WriteAt (&ifs.data, ifs.offsets.startupheader, &startup_header, sizeof (startup_header))); // write the final startup header at its right offset
}
// rewrite image header with final values
image_header.image_size = (uint32_t) (ifs.final_size - ifs.offsets.imageheader); // size of uncompressed imagefs
image_header.hdr_dir_size = sizeof (image_header) + (uint32_t) imgdir_size; // size from start of image header to last dirent
ASSERT_WITH_ERRNO (Buffer_WriteAt (&ifs.data, ifs.offsets.imageheader, &image_header, sizeof (image_header))); // write image header
// rewrite image directory with final offset values
if (image_header.flags & IMAGE_FLAGS_SORTED)
qsort (&fsentries
[1], fsentry_count
- 1, sizeof (fsentry_t
), fsentry_compare_pathnames_cb
); // sort the filesystem entries by pathname if necessary
curr_offset = ifs.offsets.imagedir; // position ourselves at the beginning of the image directory
for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
{
Buffer_WriteIFSDirectoryEntryAt (&ifs.data, curr_offset, &fsentries[fsentry_index]); // rewrite each dirent
curr_offset += fsentries[fsentry_index].header.size; // advance to the next one
}
// ALL CHECKSUMS AT THE VERY END
// do we have a startup file ? if so, this is a bootable image
if (startupfile_pathname != NULL)
{
// compute SHA-512 checksum and V1 checksum of startup block
if ( ( (startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|| (!(startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
else
is_foreign_endianness = false; // else this header is for the same endianness as us
if (startup_header.flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2) // is it a V2 trailer ?
{
SHA512 (&ifs.data.bytes[ifs.offsets.startupheader], ifs.offsets.startuptrailer - ifs.offsets.startupheader, &ifs.data.bytes[ifs.offsets.startuptrailer]); // compute SHA512 checksum and write it in place
checksum = update_checksum (&ifs.data.bytes[ifs.offsets.startupheader], ifs.offsets.startuptrailer + SHA512_DIGEST_LENGTH - ifs.offsets.startupheader, is_foreign_endianness); // compute old checksum
memcpy (&ifs.
data.
bytes[ifs.
offsets.
startuptrailer + SHA512_DIGEST_LENGTH
], &checksum
, 4); // and write it in place
}
else // old V1 trailer
{
checksum = update_checksum (&ifs.data.bytes[ifs.offsets.startupheader], ifs.offsets.startuptrailer - ifs.offsets.startupheader, is_foreign_endianness); // compute old checksum
memcpy (&ifs.
data.
bytes[ifs.
offsets.
startuptrailer], &checksum
, 4); // and write it in place
}
}
// compute SHA-512 checksum and V1 checksum of image block
if ( ( (image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|| (!(image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
else
is_foreign_endianness = false; // else this header is for the same endianness as us
if (image_header.flags & IMAGE_FLAGS_TRAILER_V2) // is it a V2 trailer ?
{
SHA512 (&ifs.data.bytes[ifs.offsets.imageheader], ifs.offsets.imagetrailer - ifs.offsets.imageheader, &ifs.data.bytes[ifs.offsets.imagetrailer]); // compute SHA512 checksum and write it in place
checksum = update_checksum (&ifs.data.bytes[ifs.offsets.imageheader], ifs.offsets.imagetrailer + SHA512_DIGEST_LENGTH - ifs.offsets.imageheader, is_foreign_endianness); // compute old checksum
memcpy (&ifs.
data.
bytes[ifs.
offsets.
imagetrailer + SHA512_DIGEST_LENGTH
], &checksum
, 4); // and write it in place
}
else // old V1 trailer
{
checksum = update_checksum (&ifs.data.bytes[ifs.offsets.imageheader], ifs.offsets.imagetrailer - ifs.offsets.imageheader, is_foreign_endianness); // compute old checksum
memcpy (&ifs.
data.
bytes[ifs.
offsets.
imagetrailer], &checksum
, 4); // and write it in place
}
// now rewrite IFS with the correct checksums
ASSERT_WITH_ERRNO (Buffer_WriteToFile (&ifs.data, ifs_pathname));
// finished, cleanup
for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
{
}
// and exit with a success code
LOG_INFO ("Success");
}