// ifstool.c -- portable reimplementation of QNX's mkifs by Pierre-Marie Baty <pm@pmbaty.com>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <ctype.h>
#include <time.h>
// compiler-specific glue
#ifdef _MSC_VER
#include <io.h>
#define __x86_64__ 1
#define __ORDER_BIG_ENDIAN__ 4321
#define __ORDER_LITTLE_ENDIAN__ 1234
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
#define __attribute__(x)
#define __builtin_bswap16(x) _byteswap_ushort ((unsigned short) (x))
#define __builtin_bswap32(x) _byteswap_ulong ((unsigned long) (x))
#define __builtin_bswap64(x) _byteswap_uint64 ((unsigned long long) (x))
#define S_IFIFO 0x1000
#define S_IFLNK 0xa000
#define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)
#define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)
#define S_ISLNK(m) (((m) & S_IFMT) == S_IFLNK)
#define strdup(s) _strdup ((s))
#define strcasecmp(s1,s2) _stricmp ((s1), (s2))
#define fseek(fp,off,m) _fseeki64 ((fp), (off), (m))
#define access(p,m) _access ((p), (m))
#define MAXPATHLEN 1024
#ifndef thread_local
#define thread_local __declspec(thread) // the thread_local keyword wasn't defined before C++11 and C23
#endif // !thread_local
#define START_OF_PACKED_STRUCT() __pragma(pack(push)) __pragma(pack(1))
#define END_OF_PACKED_STRUCT() __pragma(pack(pop))
#define PACKED(thing) thing
#else // !_MSC_VER
#include <sys/param.h>
#include <unistd.h>
#ifndef thread_local
#define thread_local __thread // the thread_local keyword wasn't defined before C++11 and C23
#endif // !thread_local
#define START_OF_PACKED_STRUCT()
#define END_OF_PACKED_STRUCT()
#define PACKED(thing) thing __attribute__((packed))
#endif // _MSC_VER
// handy macros that generate a version number in the format "YYYYMMDD" corresponding to the build date. Usage: printf ("version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
#ifndef VERSION_ARG_YYYYMMDD
#define BUILDDATE_YEAR (&__DATE__[7]) // compiler will optimize this into a const string, e.g. "2021"
#define BUILDDATE_MONTH ( \
*((uint32_t *) __DATE__) == *((uint32_t *) "Jan ") ? "01" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Feb ") ? "02" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Mar ") ? "03" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Apr ") ? "04" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "May ") ? "05" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Jun ") ? "06" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Jul ") ? "07" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Aug ") ? "08" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Sep ") ? "09" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Oct ") ? "10" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Nov ") ? "11" : \
*((uint32_t *) __DATE__) == *((uint32_t *) "Dec ") ? "12" : \
"XX" \
) // compiler will optimize this into a const string, e.g. "11"
#define BUILDDATE_DAY ( \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 1 ") ? "01" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 2 ") ? "02" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 3 ") ? "03" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 4 ") ? "04" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 5 ") ? "05" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 6 ") ? "06" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 7 ") ? "07" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 8 ") ? "08" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 9 ") ? "09" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 10 ") ? "10" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 11 ") ? "11" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 12 ") ? "12" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 13 ") ? "13" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 14 ") ? "14" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 15 ") ? "15" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 16 ") ? "16" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 17 ") ? "17" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 18 ") ? "18" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 19 ") ? "19" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 20 ") ? "20" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 21 ") ? "21" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 22 ") ? "22" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 23 ") ? "23" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 24 ") ? "24" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 25 ") ? "25" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 26 ") ? "26" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 27 ") ? "27" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 28 ") ? "28" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 29 ") ? "29" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 30 ") ? "30" : \
*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 31 ") ? "31" : \
"XX" \
) // compiler will optimize this into a const string, e.g. "14"
#define VERSION_FMT_YYYYMMDD "%04s%02s%02s"
#define VERSION_ARG_YYYYMMDD BUILDDATE_YEAR, BUILDDATE_MONTH, BUILDDATE_DAY
#endif // !VERSION_ARG_YYYYMMDD
// macro to bring __FILE_NAME__ support to moronic compilers
#ifndef __FILE_NAME__ // Clang 9+ has the macro, GCC 12+ added it too in 2021, MSVC obviously won't do it. Heh.
#define __FILE_NAME__ ( \
(sizeof (__FILE__) > 2) && (__FILE__[sizeof (__FILE__) - 2] == '/') ? &__FILE__[sizeof (__FILE__) - 1] : \
(sizeof (__FILE__) > 3) && (__FILE__[sizeof (__FILE__) - 3] == '/') ? &__FILE__[sizeof (__FILE__) - 2] : \
(sizeof (__FILE__) > 4) && (__FILE__[sizeof (__FILE__) - 4] == '/') ? &__FILE__[sizeof (__FILE__) - 3] : \
(sizeof (__FILE__) > 5) && (__FILE__[sizeof (__FILE__) - 5] == '/') ? &__FILE__[sizeof (__FILE__) - 4] : \
(sizeof (__FILE__) > 6) && (__FILE__[sizeof (__FILE__) - 6] == '/') ? &__FILE__[sizeof (__FILE__) - 5] : \
(sizeof (__FILE__) > 7) && (__FILE__[sizeof (__FILE__) - 7] == '/') ? &__FILE__[sizeof (__FILE__) - 6] : \
(sizeof (__FILE__) > 8) && (__FILE__[sizeof (__FILE__) - 8] == '/') ? &__FILE__[sizeof (__FILE__) - 7] : \
(sizeof (__FILE__) > 9) && (__FILE__[sizeof (__FILE__) - 9] == '/') ? &__FILE__[sizeof (__FILE__) - 8] : \
(sizeof (__FILE__) > 10) && (__FILE__[sizeof (__FILE__) - 10] == '/') ? &__FILE__[sizeof (__FILE__) - 9] : \
(sizeof (__FILE__) > 11) && (__FILE__[sizeof (__FILE__) - 11] == '/') ? &__FILE__[sizeof (__FILE__) - 10] : \
(sizeof (__FILE__) > 12) && (__FILE__[sizeof (__FILE__) - 12] == '/') ? &__FILE__[sizeof (__FILE__) - 11] : \
(sizeof (__FILE__) > 13) && (__FILE__[sizeof (__FILE__) - 13] == '/') ? &__FILE__[sizeof (__FILE__) - 12] : \
(sizeof (__FILE__) > 14) && (__FILE__[sizeof (__FILE__) - 14] == '/') ? &__FILE__[sizeof (__FILE__) - 13] : \
(sizeof (__FILE__) > 15) && (__FILE__[sizeof (__FILE__) - 15] == '/') ? &__FILE__[sizeof (__FILE__) - 14] : \
(sizeof (__FILE__) > 16) && (__FILE__[sizeof (__FILE__) - 16] == '/') ? &__FILE__[sizeof (__FILE__) - 15] : \
(sizeof (__FILE__) > 17) && (__FILE__[sizeof (__FILE__) - 17] == '/') ? &__FILE__[sizeof (__FILE__) - 16] : \
(sizeof (__FILE__) > 18) && (__FILE__[sizeof (__FILE__) - 18] == '/') ? &__FILE__[sizeof (__FILE__) - 17] : \
(sizeof (__FILE__) > 19) && (__FILE__[sizeof (__FILE__) - 19] == '/') ? &__FILE__[sizeof (__FILE__) - 18] : \
(sizeof (__FILE__) > 20) && (__FILE__[sizeof (__FILE__) - 20] == '/') ? &__FILE__[sizeof (__FILE__) - 19] : \
(sizeof (__FILE__) > 21) && (__FILE__[sizeof (__FILE__) - 21] == '/') ? &__FILE__[sizeof (__FILE__) - 20] : \
(sizeof (__FILE__) > 22) && (__FILE__[sizeof (__FILE__) - 22] == '/') ? &__FILE__[sizeof (__FILE__) - 21] : \
(sizeof (__FILE__) > 23) && (__FILE__[sizeof (__FILE__) - 23] == '/') ? &__FILE__[sizeof (__FILE__) - 22] : \
(sizeof (__FILE__) > 24) && (__FILE__[sizeof (__FILE__) - 24] == '/') ? &__FILE__[sizeof (__FILE__) - 23] : \
(sizeof (__FILE__) > 25) && (__FILE__[sizeof (__FILE__) - 25] == '/') ? &__FILE__[sizeof (__FILE__) - 24] : \
(sizeof (__FILE__) > 26) && (__FILE__[sizeof (__FILE__) - 26] == '/') ? &__FILE__[sizeof (__FILE__) - 25] : \
(sizeof (__FILE__) > 27) && (__FILE__[sizeof (__FILE__) - 27] == '/') ? &__FILE__[sizeof (__FILE__) - 26] : \
(sizeof (__FILE__) > 28) && (__FILE__[sizeof (__FILE__) - 28] == '/') ? &__FILE__[sizeof (__FILE__) - 27] : \
(sizeof (__FILE__) > 29) && (__FILE__[sizeof (__FILE__) - 29] == '/') ? &__FILE__[sizeof (__FILE__) - 28] : \
(sizeof (__FILE__) > 30) && (__FILE__[sizeof (__FILE__) - 30] == '/') ? &__FILE__[sizeof (__FILE__) - 29] : \
(sizeof (__FILE__) > 31) && (__FILE__[sizeof (__FILE__) - 31] == '/') ? &__FILE__[sizeof (__FILE__) - 30] : \
(sizeof (__FILE__) > 32) && (__FILE__[sizeof (__FILE__) - 32] == '/') ? &__FILE__[sizeof (__FILE__) - 31] : \
(sizeof (__FILE__) > 33) && (__FILE__[sizeof (__FILE__) - 33] == '/') ? &__FILE__[sizeof (__FILE__) - 32] : \
__FILE__) // this *COMPILE-TIME* macro complements the __FILE__ macro defined by the C standard by returning just the filename portion of the full path. Supports filenames up to 32 chars. Expand as necessary.
#endif // !__FILE_NAME__
// macro to exit less brutally than with abort() if something doesn't go the way we'd like to
#define WELLMANNERED_ASSERT(is_is_true,...) do { if (!(is_is_true)) { fprintf (stderr, "ifstool: fatal error: consistency check in %s() at %s line %d failed: ", __FUNCTION__, __FILE_NAME__, __LINE__); fprintf (stderr, __VA_ARGS__); fputc ('\n', stderr); exit (1); } } while (0)
// macros for checked read/write/seek operations
#define fseek_or_die(fp,pos,mode) WELLMANNERED_ASSERT (fseek ((fp), (pos), (mode)) == 0, "fseek() failed with errno %d (%s)", errno, strerror (errno))
#define fread_or_die(buf,sz,len,fp) WELLMANNERED_ASSERT (fread ((buf), (sz), (len), (fp)) == (len), "fread() failed with errno %d (%s)", errno, strerror (errno))
#define fwrite_or_die(buf,sz,len,fp) WELLMANNERED_ASSERT ((fwrite ((buf), (sz), (len), (fp)) == (len)) && (fflush ((fp)) == 0), "flushed fwrite() failed with errno %d (%s)", errno, strerror (errno))
// macros for accessing ELF files
#define ELF_MAGIC_STR "\x7f" "ELF"
#define ELF_ENDIAN_LITTLE 1 // 'endianness' member of an ELF header: ELF file is little endian
#define ELF_ENDIAN_BIG 2 // 'endianness' member of an ELF header: ELF file is big endian
#define ELF_MACHINE_X86_64 0x3e // 'instruction_set' member of an ELF header, also used in the IFS startup header: ELF file is for x86_64 processors (62 decimal)
#define ELF_MACHINE_AARCH64 0xb7 // 'instruction_set' member of an ELF header, also used in the IFS startup header: ELF file is for ARM64 processors (183 decimal)
#define ELF_SECTIONTYPE_STRINGTABLE 3
#define ELF_DT_NULL 0 // marks end of dynamic section
#define ELF_DT_SONAME 14 // canonical name of shared object
#define ELF_GET_NUMERIC(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? /* is it a 64-bit ELF file ? */ \
( \
(sizeof ((elfstruct)->u.elf64.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
(elfstruct)->u.elf64.member /* same endianness, or single byte required: don't swap */ \
: /* else */ \
(sizeof ((elfstruct)->u.elf64.member) == 8 ? __builtin_bswap64 ((elfstruct)->u.elf64.member) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf64.member) : __builtin_bswap16 ((elfstruct)->u.elf64.member))) /* different endianness: swap */ \
) \
: /* else peek at 32-bit ELF */ \
( \
(sizeof ((elfstruct)->u.elf32.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
(elfstruct)->u.elf32.member /* same endianness, or single byte required: don't swap */ \
: /* else */ \
(sizeof ((elfstruct)->u.elf32.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf32.member) : __builtin_bswap16 ((elfstruct)->u.elf32.member)) /* different endianness: swap */ \
) \
) // this macro supports 32- and 64-bit ELF files in low and big endianness transparently
#define ELF_SET_NUMERIC(elfhdr,elfstruct,member,data) ((elfhdr)->u.elf.platform_size == 2 ? /* is it a 64-bit ELF file ? */ \
((elfstruct)->u.elf64.member = ( \
(sizeof ((elfstruct)->u.elf64.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
(sizeof ((elfstruct)->u.elf64.member) == 8 ? (uint64_t) ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? (uint32_t) ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 2 ? (uint16_t) ((data)) : (uint8_t) ((data))))) /* same endianness, or single byte required: don't swap */ \
: /* else */ \
(sizeof ((elfstruct)->u.elf64.member) == 8 ? __builtin_bswap64 ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? __builtin_bswap32 ((data)) : __builtin_bswap16 ((data)))) /* different endianness: swap */ \
)) \
: /* else poke at 32-bit ELF */ \
((elfstruct)->u.elf32.member = ( \
(sizeof ((elfstruct)->u.elf32.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
(sizeof ((elfstruct)->u.elf64.member) == 4 ? (uint32_t) ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 2 ? (uint16_t) ((data)) : (uint8_t) ((data)))) /* same endianness, or single byte required: don't swap */ \
: /* else */ \
(sizeof ((elfstruct)->u.elf32.member) == 4 ? __builtin_bswap32 ((data)) : __builtin_bswap16 ((data))) /* different endianness: swap */ \
)) \
) // this macro supports 32- and 64-bit ELF files in low and big endianness transparently
#define ELF_GET_STRING(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? (elfstruct)->u.elf64.member : (elfstruct)->u.elf32.member) // this macro supports 32- and 64-bit ELF files transparently
#define ELF_SET_STRING(elfhdr,elfstruct,member,data,len) memcpy (((elfhdr)->u.elf.platform_size == 2 ? (elfstruct)->u.elf64.member : (elfstruct)->u.elf32.member), (data), (len)) // this macro supports 32- and 64-bit ELF files transparently
#define ELF_STRUCT_SIZE(elfhdr,elfstruct) ((elfhdr)->u.elf.platform_size == 2 ? sizeof ((elfstruct)->u.elf64) : sizeof ((elfstruct)->u.elf32)) // this macro supports 32- and 64-bit ELF files transparently
// placeholder value
#define WILL_BE_FILLED_LATER 0xbaadf00d // urgh
// bitmapped flags used in the flags1 member of the startup header
#define STARTUP_HDR_FLAGS1_VIRTUAL (1 << 0)
#define STARTUP_HDR_FLAGS1_BIGENDIAN (1 << 1)
//#define STARTUP_HDR_FLAGS1_COMPRESS_MASK 0x1c
//#define STARTUP_HDR_FLAGS1_COMPRESS_SHIFT 0x02
//#define STARTUP_HDR_FLAGS1_COMPRESS_NONE 0x00
//#define STARTUP_HDR_FLAGS1_COMPRESS_ZLIB 0x04
//#define STARTUP_HDR_FLAGS1_COMPRESS_LZO 0x08
//#define STARTUP_HDR_FLAGS1_COMPRESS_UCL 0x0c
#define STARTUP_HDR_FLAGS1_TRAILER_V2 (1 << 5) // if set, then a struct startup_trailer_v2 follows the startup. If the image is compressed, then the compressed imagefs is followed by a struct image_trailer_v2
// bitmapped flags used in the flags member of the image header
#define IMAGE_FLAGS_BIGENDIAN (1 << 0) // header, trailer, dirents in big-endian format
#define IMAGE_FLAGS_READONLY (1 << 1) // do not try to write to image (rom/flash)
#define IMAGE_FLAGS_INO_BITS (1 << 2) // inode bits valid
#define IMAGE_FLAGS_SORTED (1 << 3) // dirent section is sorted (by pathname)
#define IMAGE_FLAGS_TRAILER_V2 (1 << 4) // image uses struct image_trailer_v2
// bitmapped flags superposed to a filesystem entry's inode number
#define IFS_INO_PROCESSED_ELF 0x80000000
#define IFS_INO_RUNONCE_ELF 0x40000000
#define IFS_INO_BOOTSTRAP_EXE 0x20000000
// miscellaneous macros
#define ROUND_TO_UPPER_MULTIPLE(val,multiple) ((((val) + (size_t) (multiple) - 1) / (multiple)) * (multiple)) // note that val is being evaluated once, so it can be the result of a function call
#ifdef _WIN32
#define IS_DIRSEP(c) (((c) == '/') || ((c) == '\\')) // platform-specific directory separator, Win32 variant
#define PATH_SEP ';' // platform-specific PATH element separator, Win32 variant
#define PATH_SEP_STR ";" // platform-specific PATH element separator (as string), Win32 variant
#else // !_WIN32, thus POSIX
#define IS_DIRSEP(c) ((c) == '/') // platform-specific directory separator, UNIX variant
#define PATH_SEP ':' // platform-specific PATH element separator, UNIX variant
#define PATH_SEP_STR ":" // platform-specific PATH element separator (as string), UNIX variant
#endif // _WIN32
#define RECORD_SEP '\x1e' // arbitrarily-chosen ASCII record separator
#define RECORD_SEP_STR "\x1e" // arbitrarily-chosen ASCII record separator (as string)
// SHA-512 block and digest sizes
#define SHA512_BLOCK_LENGTH 128 // in bytes
#define SHA512_DIGEST_LENGTH 64 // in bytes
// SHA-512 computation context structure type definition
typedef struct sha512_ctx_s
{
uint64_t state[8];
uint64_t bitcount[2];
uint8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
#if 0 // TODO: startup script compiler. Someday.
#define SCRIPT_FLAGS_EXTSCHED 0x01
#define SCRIPT_FLAGS_SESSION 0x02
#define SCRIPT_FLAGS_SCHED_SET 0x04
#define SCRIPT_FLAGS_CPU_SET 0x08
#define SCRIPT_FLAGS_BACKGROUND 0x20
#define SCRIPT_FLAGS_KDEBUG 0x40
#define SCRIPT_POLICY_NOCHANGE 0
#define SCRIPT_POLICY_FIFO 1
#define SCRIPT_POLICY_RR 2
#define SCRIPT_POLICY_OTHER 3
#define SCRIPT_TYPE_EXTERNAL 0
#define SCRIPT_TYPE_WAITFOR 1
#define SCRIPT_TYPE_REOPEN 2
#define SCRIPT_TYPE_DISPLAY_MSG 3
#define SCRIPT_TYPE_PROCMGR_SYMLINK 4
#define SCRIPT_TYPE_EXTSCHED_APS 5
#define SCRIPT_CHECKS_MS 100
#define SCRIPT_SCHED_EXT_NONE 0
#define SCRIPT_SCHED_EXT_APS 1
#define SCRIPT_APS_SYSTEM_PARTITION_ID 0
#define SCRIPT_APS_SYSTEM_PARTITION_NAME "System"
#define SCRIPT_APS_PARTITION_NAME_LENGTH 15
#define SCRIPT_APS_MAX_PARTITIONS 8
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) bootscriptcmd_header_s
{
uint16_t size; // size of cmd entry
uint8_t type;
uint8_t spare;
} bootscriptcmd_header_t;
END_OF_PACKED_STRUCT () // restore default alignment
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef union bootscriptcmd_s
{
PACKED (struct) script_external
{
bootscriptcmd_header_t hdr;
uint8_t cpu; // CPU (turn into runmask)
uint8_t flags;
union script_external_extsched
{
uint8_t reserved[2];
PACKED (struct)
{
uint8_t id;
uint8_t reserved[1];
} aps;
} extsched; // extended scheduler
uint8_t policy; // POLICY_FIFO, POLICY_RR, ...
uint8_t priority; // priority to run cmd at
uint8_t argc; // # of args
uint8_t envc; // # of environment entries
char args[0]; // executable, argv, envp (null padded to 32-bit align)
} external;
PACKED (struct) script_waitfor_reopen
{
bootscriptcmd_header_t hdr;
uint16_t checks;
char fname[0]; // char fname[] (null padded to 32-bit align)
} waitfor_reopen;
PACKED (struct) script_display_msg
{
bootscriptcmd_header_t hdr;
char msg[0]; // char msg[] (null padded to 32-bit align)
} display_msg;
PACKED (struct) script_procmgr_symlink
{
bootscriptcmd_header_t hdr;
char src_dest[0]; // <src_name>, '\0', <dest_name> '\0' (null padded to 32-bit align)
} procmgr_symlink;
PACKED (struct) script_extsched_aps
{
bootscriptcmd_header_t hdr;
uint8_t parent;
uint8_t budget;
uint16_t critical;
uint8_t id;
char pname[0]; // char pname[] (null padded to 32-bit align)
} extsched_aps;
} bootscriptcmd_t;
END_OF_PACKED_STRUCT () // restore default alignment
#endif // 0
#define INITIAL_STARTUP_SCRIPT \
/* procmgr_symlink /proc/boot/ldqnx-64.so.2 /usr/lib/ldqnx-64.so.2 */ \
"\x34\x00" /*size*/ "\x04" /*type*/ "\x00" /*spare*/ "/proc/boot/ldqnx-64.so.2\0" "/usr/lib/ldqnx-64.so.2\0" \
/* sh /proc/boot/startup.sh */ \
"\x88\x00" /*size*/ "\x00" /*type*/ "\x00" /*spare*/ "\x00" /*CPU mask*/ "\x00" /*flags*/ "\x00\x00" /*reserved*/ "\x00" /*policy*/ "\x00" /*priority*/ "\02" /*argc*/ "\x02" /*envc*/ "sh\0" /*executable*/ "sh\0" "/proc/boot/startup.sh\0" /*argv*/ "PATH=/sbin:/usr/sbin:/bin:/usr/bin:/proc/boot\0" "LD_LIBRARY_PATH=/proc/boot:/lib:/lib/dll:/usr/lib\0" /*envp*/ \
/* display_msg "Startup complete */ \
"\x18\x00" /*size*/ "\x03" /*type*/ "\x00" /*spare*/ "Startup complete\n\0" "\x00\00" /*padding*/ \
/* trailer */ \
"\x00\x00\x00\x00"
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) fsentry_s
{
PACKED (struct) fsentry_header_s
{
uint16_t size; // size of dirent
uint16_t extattr_offset; // if zero, no extattr data
uint32_t ino; // if zero, skip entry
uint32_t mode; // mode and perms of entry
uint32_t gid;
uint32_t uid;
uint32_t mtime;
} header;
PACKED (union) fsentry_specific_u
{
PACKED (struct) fsentry_file_s // when (mode & S_IFMT) == S_IFREG
{
uint32_t offset; // offset from header
uint32_t size;
char *path; // null terminated path (no leading slash)
char *UNSAVED_databuf; // file data blob buffer (NOT SAVED IN THE IFS)
} file;
PACKED (struct) fsentry_dir_s // when (mode & S_IFMT) == S_IFDIR
{
char *path; // null terminated path (no leading slash)
} dir;
PACKED (struct) fsentry_symlink_s // when (mode & S_IFMT) == S_IFLNK
{
uint16_t sym_offset; // offset to 'contents' from 'path'
uint16_t sym_size; // strlen (contents)
char *path; // null terminated path (no leading slash)
char *contents; // null terminated symlink contents
} symlink;
PACKED (struct) fsentry_device_s // when (mode & S_IFMT) == S_IF<CHR|BLK|FIFO|NAM|SOCK>
{
uint32_t dev;
uint32_t rdev;
char *path; // null terminated path (no leading slash)
} device;
} u;
bool UNSAVED_was_data_written; // whether this entry's data was written to the image (NOT SAVED IN THE IFS)
} fsentry_t;
END_OF_PACKED_STRUCT () // restore default alignment
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) startup_header_s // size 256 bytes
{
// I - used by the QNX IPL
// S - used by the startup program
uint8_t signature[4]; // [I ] Header signature, "\xeb\x7e\xff\x00"
uint16_t version; // [I ] Header version, i.e. 1
uint8_t flags1; // [IS] Misc flags, 0x21 (= 0x20 | STARTUP_HDR_FLAGS1_VIRTUAL)
uint8_t flags2; // [ ] No flags defined yet (0)
uint16_t header_size; // [ S] sizeof(struct startup_header), i.e. 256
uint16_t machine; // [IS] Machine type from elfdefinitions.h, i.e. 0x003E --> _ELF_DEFINE_EM(EM_X86_64, 62, "AMD x86-64 architecture")
uint32_t startup_vaddr; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
uint32_t paddr_bias; // [ S] Value to add to physical address to get a value to put into a pointer and indirected through, here 0 (no indirections)
uint32_t image_paddr; // [IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
uint32_t ram_paddr; // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
uint32_t ram_size; // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee
uint32_t startup_size; // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
uint32_t stored_size; // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
uint32_t imagefs_paddr; // [IS] Set by IPL to where the imagefs is when startup runs (0)
uint32_t imagefs_size; // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
uint16_t preboot_size; // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
uint16_t zero0; // [ ] Zeros
uint32_t zero[1]; // [ ] Zeros
uint64_t addr_off; // [ S] Offset to add to startup_vaddr, image_paddr, ram_paddr, and imagefs_paddr members, here zero (0)
uint32_t info[48]; // [IS] Array of startup_info* structures (zero filled)
} startup_header_t;
END_OF_PACKED_STRUCT () // restore default alignment
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) startup_trailer_s
{
uint32_t cksum; // checksum from start of header to start of trailer
} startup_trailer_v1_t;
END_OF_PACKED_STRUCT () // restore default alignment
// NOTE: The checksums in this trailer will only be valid prior to entering startup.
// Because the startup binary is executed in-place, its data segment will change once the program is running.
// Hence, any checksum validation would need to be done by the boot loader / IFS.
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) startup_trailer_v2_s
{
uint8_t sha512[64]; // SHA512 from start of header to start of trailer
uint32_t cksum; // checksum from start of header to start of this member
} startup_trailer_v2_t;
END_OF_PACKED_STRUCT () // restore default alignment
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) image_header_s
{
uint8_t signature[7]; // image filesystem signature, i.e. "imagefs"
uint8_t flags; // endian neutral flags, 0x1c
uint32_t image_size; // size from start of header to end of trailer (here 0xca6fe0 or 13 266 912)
uint32_t hdr_dir_size; // size from start of header to last dirent (here 0x12b8 or 4792)
uint32_t dir_offset; // offset from start of header to start of first dirent (here 0x5c or 92)
uint32_t boot_ino[4]; // inode of files for bootstrap pgms (here 0xa0000002, 0, 0, 0)
uint32_t script_ino; // inode of file for script (here 3)
uint32_t chain_paddr; // offset to next filesystem signature (0)
uint32_t spare[10]; // zerofill
uint32_t mountflags; // default _MOUNT_* from sys/iomsg.h (0)
char mountpoint[4]; // default mountpoint for image ("/" + "\0\0\0")
} image_header_t;
END_OF_PACKED_STRUCT () // restore default alignment
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) image_trailer_v1_s
{
uint32_t cksum; // checksum from start of header to start of trailer
} image_trailer_v1_t; // NOTE: this is the same structure as startup_trailer_v1_t
END_OF_PACKED_STRUCT () // restore default alignment
// NOTE: the checksums in this trailer will only be valid until the first non-startup bootstrap binary (e.g., startup-verifier, procnto, ...) is invoked.
// Because bootstrap binaries execute in-place, their data segments will change once the programs are running.
// Hence, any checksum validation would need to be done either by the boot loader / IFS or by the startup.
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) image_trailer_v2_s
{
uint8_t sha512[64]; // SHA512 from start of image header to start of trailer
uint32_t cksum; // checksum from start of header to start of this member
} image_trailer_v2_t; // NOTE: this is the same structure as startup_trailer_v2_t
END_OF_PACKED_STRUCT () // restore default alignment
// Executable and Linkable Format master header structure type definition
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) elf_header_s
{
PACKED (union)
{
PACKED (struct)
{
uint8_t magic[4]; // offset 0: "\x7f" + "ELF"
uint8_t platform_size; // offset 4: 1 = 32-bit, 2 = 64-bit
uint8_t endianness; // offset 5: 1 = little endian, 2 = big endian
uint8_t header_version; // offset 6: typically 1
uint8_t os_abi; // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
uint8_t spare[8]; // offset 8: zeroes
uint16_t type; // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
uint16_t instruction_set; // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
uint32_t elf_version; // offset 20: typically 1
} elf;
PACKED (struct) // size == 52
{
uint8_t magic[4]; // offset 0: "\x7f" + "ELF"
uint8_t platform_size; // offset 4: 1 = 32-bit, 2 = 64-bit
uint8_t endianness; // offset 5: 1 = little endian, 2 = big endian
uint8_t header_version; // offset 6: typically 1
uint8_t os_abi; // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
uint8_t spare[8]; // offset 8: zeroes
uint16_t type; // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
uint16_t instruction_set; // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
uint32_t elf_version; // offset 20: typically 1
uint32_t entrypoint_offset; // offset 24: offset to program entrypoint
uint32_t program_header_table_offset; // offset 28: offset to program header table
uint32_t section_header_table_offset; // offset 32: offset to section header table
uint32_t flags; // offset 36: flags (architecture-dependent, none for x86)
uint16_t header_size; // offset 40: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF -- DO NOT USE sizeof() ON THE elf_header_s STRUCT BECAUSE OF THE UNION! WRITE THE CORRECT SIZE YOURSELF!
uint16_t program_header_item_size; // offset 42: size of an entry in the program header table
uint16_t program_header_table_len; // offset 44: number of entries in the program header table
uint16_t section_header_item_size; // offset 46: size of an entry in the section header table
uint16_t section_header_table_len; // offset 48: number of entries in the section header table
uint16_t section_header_names_idx; // offset 50: index of the entry in the section header table that contains the section names
} elf32; // size == 52
PACKED (struct) // size == 64
{
uint8_t magic[4]; // offset 0: "\x7f" + "ELF"
uint8_t platform_size; // offset 4: 1 = 32-bit, 2 = 64-bit
uint8_t endianness; // offset 5: 1 = little endian, 2 = big endian
uint8_t header_version; // offset 6: typically 1
uint8_t os_abi; // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
uint8_t spare[8]; // offset 8: zeroes
uint16_t type; // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
uint16_t instruction_set; // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
uint32_t elf_version; // offset 20: typically 1
uint64_t entrypoint_offset; // offset 24: program entry offset
uint64_t program_header_table_offset; // offset 32: offset to program header table
uint64_t section_header_table_offset; // offset 40: offset to section header table
uint32_t flags; // offset 48: flags (architecture-dependent, none for x86)
uint16_t header_size; // offset 52: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF
uint16_t program_header_item_size; // offset 54: size of an entry in the program header table
uint16_t program_header_table_len; // offset 56: number of entries in the program header table
uint16_t section_header_item_size; // offset 58: size of an entry in the section header table
uint16_t section_header_table_len; // offset 60: number of entries in the section header table
uint16_t section_header_names_idx; // offset 62: index of the entry in the section header table that contains the section names
} elf64; // size == 64
} u;
} elf_header_t;
END_OF_PACKED_STRUCT () // restore default alignment
// Executable and Linkable Format program header structure type definition
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) elf_program_header_s
{
PACKED (union)
{
PACKED (struct)
{
uint32_t segment_type; // offset 0: type of segment (0: unused table entry, 1: loadable, 2: dynamic linking information, 3: interpreter information, 4: auxiliary information, 5: reserved, 6: this very segment, 7: TLS template)
} elf;
PACKED (struct) // size == 32
{
uint32_t segment_type; // offset 0: type of segment (0: unused table entry, 1: loadable, 2: dynamic linking information, 3: interpreter information, 4: auxiliary information, 5: reserved, 6: this very segment, 7: TLS template)
uint32_t file_offset; // offset 4: file offset of this segment
uint32_t virtual_addr; // offset 8: virtual address where this segment should be mapped in memory
uint32_t physical_addr; // offset 12: on systems where this is relevant, PHYSICAL address where this segment should be mapped in memory
uint32_t size_in_file; // offset 16: size of this segment in the ELF file (may be zero)
uint32_t size_in_memory; // offset 20: size of this segment in memory (may be zero)
uint32_t segment_flags; // offset 24: bitmap of segment flags (1: executable, 2: writable, 4: readable)
uint32_t alignment; // offset 28: memory alignment (0 or 1 mean non alignment, else must be a power of 2 where virtual_addr == file_offset % alignment)
} elf32; // size == 32
PACKED (struct) // size == 56
{
uint32_t segment_type; // offset 0: type of segment (0: unused table entry, 1: loadable, 2: dynamic linking information, 3: interpreter information, 4: auxiliary information, 5: reserved, 6: this very segment, 7: TLS template)
uint32_t segment_flags; // offset 4: bitmap of segment flags (1: executable, 2: writable, 4: readable)
uint64_t file_offset; // offset 8: file offset of this segment
uint64_t virtual_addr; // offset 16: virtual address where this segment should be mapped in memory
uint64_t physical_addr; // offset 24: on systems where this is relevant, PHYSICAL address where this segment should be mapped in memory
uint64_t size_in_file; // offset 32: size of this segment in the ELF file (may be zero)
uint64_t size_in_memory; // offset 40: size of this segment in memory (may be zero)
uint64_t alignment; // offset 48: memory alignment (0 or 1 mean non alignment, else must be a power of 2 where virtual_addr == file_offset % alignment)
} elf64; // size == 56
} u;
} elf_program_header_t;
END_OF_PACKED_STRUCT () // restore default alignment
// Executable and Linkable Format section header structure type definition
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) elf_section_header_s
{
PACKED (union)
{
PACKED (struct)
{
uint32_t name_offset; // offset 0: offset in the string table of the name of this section
uint32_t type; // offset 4: section type (0: unused, 1: program data, 2: symbols table, 3: strings table, 4: relocs with addends, 5: symbols hash table, 6: dyld info, 7: notes, 8: BSS, 9: relocs without addends, 11: dyld symbols table, 14: constructors, 15: destructors, 16, preconstructors, 17: group, 18: extended section indices, 19: number of typedefs ...)
} elf;
PACKED (struct) // size == 40
{
uint32_t name_offset; // offset 0: offset in the string table of the name of this section
uint32_t type; // offset 4: section type (0: unused, 1: program data, 2: symbols table, 3: strings table, 4: relocs with addends, 5: symbols hash table, 6: dyld info, 7: notes, 8: BSS, 9: relocs without addends, 11: dyld symbols table, 14: constructors, 15: destructors, 16, preconstructors, 17: group, 18: extended section indices, 19: number of typedefs ...)
uint32_t flags; // offset 8: bitmapped flags (1: writable, 2: takes RAM, 4: executable, 8: reserved, 16: mergeable, 32: contains C-strings, 64: sh_info contains SHT index, 128: preserve order, 256: OS-specific, 512: group member, 1024: TLS template ...)
uint32_t virtual_addr; // offset 12: address in virtual memory where this section may be loaded
uint32_t file_offset; // offset 16: offset of this section in the ELF file
uint32_t size; // offset 20: size of this section
uint32_t linked_index; // offset 24: optional section index of an associated section
uint32_t info; // offset 28: optional extra information
uint32_t alignment; // offset 32: required memory alignment (must be a power of 2)
uint32_t entry_size; // offset 36: for table-like sections, size of an element in the table
} elf32; // size == 40
PACKED (struct) // size == 64
{
uint32_t name_offset; // offset 0: offset in the string table of the name of this section
uint32_t type; // offset 4: section type (0: unused, 1: program data, 2: symbols table, 3: strings table, 4: relocs with addends, 5: symbols hash table, 6: dyld info, 7: notes, 8: BSS, 9: relocs without addends, 11: dyld symbols table, 14: constructors, 15: destructors, 16, preconstructors, 17: group, 18: extended section indices, 19: number of typedefs ...)
uint64_t flags; // offset 8: bitmapped flags (1: writable, 2: takes RAM, 4: executable, 8: reserved, 16: mergeable, 32: contains C-strings, 64: sh_info contains SHT index, 128: preserve order, 256: OS-specific, 512: group member, 1024: TLS template ...)
uint64_t virtual_addr; // offset 16: address in virtual memory where this section may be loaded
uint64_t file_offset; // offset 24: offset of this section in the ELF file
uint64_t size; // offset 32: size of this section
uint32_t linked_index; // offset 40: optional section index of an associated section
uint32_t info; // offset 44: optional extra information
uint64_t alignment; // offset 48: required memory alignment (must be a power of 2)
uint64_t entry_size; // offset 56: for table-like sections, size of an element in the table
} elf64; // size == 64
} u;
} elf_section_header_t;
END_OF_PACKED_STRUCT () // restore default alignment
// Executable and Linkable Format dynamic section entry structure type definition
START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
typedef PACKED (struct) elf_dynamic_section_entry_s
{
PACKED (union)
{
PACKED (struct) // size == 8
{
int32_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
uint32_t value; // value (as integer, or as pointed address)
} elf32; // size == 8
PACKED (struct) // size == 16
{
int64_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
uint64_t value; // value (as integer, or as pointed address)
} elf64; // size == 16
} u;
} elf_dynamic_section_entry_t;
END_OF_PACKED_STRUCT () // restore default alignment
// generic buffer structure type definition
typedef struct buffer_s
{
uint8_t *bytes; // mallocated data
size_t len; // length of allocated data
} buffer_t;
// IFS directory entry insertion parameters structure type definition
typedef struct parms_s
{
int dperms; // directory permissions (e.g. 0755)
int perms; // file permissions (e.g. 0644)
int uid; // owner user ID (e.g. 0 = root)
int gid; // owner group ID (e.g. 0 = root)
int st_mode; // entry type (e.g. S_IFREG for files) and permissions
uint32_t mtime; // entry's modification time POSIX timestamp - set to UINT32_MAX to use the concerned files' mtime on the build host
uint32_t mtime_for_inline_files; // same as above but only for files that don't exist on the build host (i.e. files with an explicit content blob)
char prefix[MAXPATHLEN]; // install path (e.g. "proc/boot")
bool should_follow_symlinks; // follow symlinks
bool should_autosymlink_dylib; // dynamic libraries should be written under their official SONAME and a named symlink be created pointing at them
bool is_compiled_bootscript; // entry has [+script] attribute
int extra_ino_flags; // bitmap of extra inode flags (IFS_INO_xxx)
char search[10 * MAXPATHLEN]; // binary search path (the default one will be constructed at startup)
buffer_t data;
} parms_t;
// global variables
static char line_buffer[4096]; // scrap buffer for the IFS build file parser
static uint32_t image_base = 4 * 1024 * 1024; // default image base, as per QNX docs -- can be changed with the [image=XXXX] attribute in the IFS build file
static uint32_t image_end = UINT32_MAX; // default image end (no limit)
static uint32_t image_maxsize = UINT32_MAX; // default image max size (no limit)
static uint32_t image_totalsize = 0; // image total size, measured once all the blocks have been written to the output IFS file
static uint32_t image_align = 4; // default image alignment, as per QNX docs
static uint32_t image_kernel_ino = 0;
static uint32_t image_bootscript_ino = 0;
#if defined(__x86_64__)
static char image_processor[16] = "x86_64"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
#elif defined(__aarch64__)
static char image_processor[16] = "aarch64le"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
#else // unknown platform
#error Please port ifstool to this platform
#endif
static char *buildfile_pathname = NULL; // pathname of IFS build file
static char *current_line = NULL; // copy of current line in IFS build file
static int lineno = 0; // current line number in IFS build file
static char *QNX_TARGET = NULL; // value of the $QNX_TARGET environment variable
static char *MKIFS_PATH = NULL; // value of the $MKIFS_PATH environment variable (may contain references to $QNX_TARGET). Initialized by this program if empty.
// prototypes of local functions
static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data); // used internally in SHA512_Update() and SHA512_Final()
static void SHA512_Init (SHA512_CTX *context);
static void SHA512_Update (SHA512_CTX *context, void *data, size_t len);
static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context);
static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest); // computes a SHA-512 in one pass (shortcut for SHA512_Init(), SHA512_Update() N times and SHA512_Final())
static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness); // compute an IFS image or startup checksum to store in the trailer
static long long read_integer (const char *str); // reads an integer number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...); // hexdump-style formatted output to a file stream (which may be stdout/stderr)
static char *binary (const uint8_t x, char char_for_zero, char char_for_one); // returns the binary representation of byte 'x' as a string
static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8]); // returns the ORed description of byte 'x' according to the description strings for each bit
static char *read_filecontents (const char *pathname, const char *search_path, buffer_t *outbuf); // locates pathname among MKIFS_PATH, reads it, places its contents in a buffer (caller frees) and returns a pointer to the resolved pathname (static string)
static int fwrite_filecontents (const char *pathname, FILE *fp); // dumps the contents of pathname into fp
static int relative_offset_of_in (const char *name, const buffer_t *stringbuf); // returns the relative offset of a particular string in a string table
static elf_section_header_t *elf_get_section_header_by_name (const elf_header_t *elf, const char *section_name); // get a pointer to a named section header in an ELF file
static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp); // writes the given filesystem entry into fp (without its contents)
static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname); // stack up a new filesystem entry
static int fsentry_compare_pathnames_cb (const void *a, const void *b); // qsort() comparison callback that sorts filesystem entries by pathnames
static void update_MKIFS_PATH (const char *processor);
static int dump_ifs_info (const char *ifs_pathname, bool want_everything); // dumps detailed info about a particular IFS file on the standard output, returns 0 on success and >0 on error
static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data)
{
// logical functions used in SHA-384 and SHA-512
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) // 64-bit rotate right
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ ((x) >> 7))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ ((x) >> 6))
// hash constant words K for SHA-384 and SHA-512
static const uint64_t K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
uint64_t a, b, c, d, e, f, g, h, s0, s1;
uint64_t T1, T2, *W512 = (uint64_t *) context->buffer;
int j;
// initialize registers with the prev. intermediate value
a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7];
for (j = 0; j < 16; j++)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
W512[j] = __builtin_bswap64 (*data); // convert to host byte order
#elif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
W512[j] = *data;
#else // __BYTE_ORDER__ == ???
#error Please port this SHA-512 code to your exotic endianness platform. What are you compiling this on? PDP? Honeywell?
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
// apply the SHA-512 compression function to update a..h
T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + W512[j];
T2 = Sigma0_512 (a) + Maj (a, b, c);
// update registers
h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
data++;
}
for (; j < 80; j++)
{
// part of the message block expansion
s0 = W512[(j + 1) & 0x0f];
s0 = sigma0_512 (s0);
s1 = W512[(j + 14) & 0x0f];
s1 = sigma1_512 (s1);
// apply the SHA-512 compression function to update a..h
T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
T2 = Sigma0_512 (a) + Maj (a, b, c);
// update registers
h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
}
// compute the current intermediate hash value
context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h;
// clean up
a = b = c = d = e = f = g = h = T1 = T2 = 0;
#undef sigma1_512
#undef sigma0_512
#undef Sigma1_512
#undef Sigma0_512
#undef Maj
#undef Ch
#undef S64
return;
}
static void SHA512_Init (SHA512_CTX *context)
{
// initial hash value H for SHA-512
static const uint64_t sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
memcpy (context
->state
, sha512_initial_hash_value
, SHA512_DIGEST_LENGTH
);
memset (context
->buffer
, 0, SHA512_BLOCK_LENGTH
);
context->bitcount[0] = context->bitcount[1] = 0;
}
void SHA512_Update (SHA512_CTX *context, void *datain, size_t len)
{
#define ADDINC128(w,n) do { \
(w)[0] += (uint64_t) (n); \
if ((w)[0] < (n)) \
(w)[1]++; \
} while (0) // macro for incrementally adding the unsigned 64-bit integer n to the unsigned 128-bit integer (represented using a two-element array of 64-bit words
size_t freespace, usedspace;
const uint8_t *data = (const uint8_t *) datain;
if (len == 0)
return; // calling with empty data is valid - we do nothing
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0)
{
// calculate how much free space is available in the buffer
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace)
{
// fill the buffer completely and process it
memcpy (&context
->buffer
[usedspace
], data
, freespace
);
ADDINC128 (context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
sha512_private_transform (context, (uint64_t *) context->buffer);
}
else
{
// the buffer is not full yet
memcpy (&context
->buffer
[usedspace
], data
, len
);
ADDINC128 (context->bitcount, len << 3);
// clean up
usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH)
{
// process as many complete blocks as we can
sha512_private_transform (context, (uint64_t *) data);
ADDINC128 (context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0)
{
// save leftovers
memcpy (context
->buffer
, data
, len
);
ADDINC128 (context->bitcount, len << 3);
}
// clean up
usedspace = freespace = 0;
#undef ADDINC128
return;
}
static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
{
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
size_t usedspace;
union { uint8_t *as_bytes; uint64_t *as_uint64s; } cast_var = { NULL };
// if no digest buffer is passed, don't bother finalizing the computation
if (digest != NULL)
{
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
context->bitcount[0] = __builtin_bswap64 (context->bitcount[0]); // convert from host byte order
context->bitcount[1] = __builtin_bswap64 (context->bitcount[1]); // convert from host byte order
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
if (usedspace > 0)
{
// begin padding with a 1 bit
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
memset (&context
->buffer
[usedspace
], 0, SHA512_SHORT_BLOCK_LENGTH
- usedspace
); // set-up for the last transform
else
{
if (usedspace < SHA512_BLOCK_LENGTH)
memset (&context
->buffer
[usedspace
], 0, SHA512_BLOCK_LENGTH
- usedspace
);
sha512_private_transform (context, (uint64_t *) context->buffer); // do second-to-last transform
memset (context
->buffer
, 0, SHA512_BLOCK_LENGTH
- 2); // and set-up for the last transform
}
}
else // usedspace == 0
{
memset (context
->buffer
, 0, SHA512_SHORT_BLOCK_LENGTH
); // prepare for final transform
*context->buffer = 0x80; // begin padding with a 1 bit
}
// store the length of input data (in bits)
cast_var.as_bytes = context->buffer;
cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 0] = context->bitcount[1];
cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
// final transform
sha512_private_transform (context, (uint64_t *) context->buffer);
// save the hash data for output
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
for (int j = 0; j < 8; j++)
context->state[j] = __builtin_bswap64 (context->state[j]); // convert to host byte order
#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
memcpy (digest
, context
->state
, SHA512_DIGEST_LENGTH
);
}
// zero out state data
memset (context
, 0, sizeof (SHA512_CTX
));
#undef SHA512_SHORT_BLOCK_LENGTH
return;
}
static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest_or_NULL)
{
// computes the SHA-512 hash of a block of data in one pass and write it to digest, or to a static buffer if NULL
// returns the STRING REPRESENTATION of digest in a statically-allocated string
static thread_local uint8_t static_digest[SHA512_DIGEST_LENGTH] = "";
static thread_local char digest_as_string[2 * SHA512_DIGEST_LENGTH + 1] = "";
SHA512_CTX ctx;
size_t byte_index;
SHA512_Init (&ctx);
SHA512_Update (&ctx, data, data_len);
if (digest_or_NULL == NULL)
digest_or_NULL = static_digest;
SHA512_Final (digest_or_NULL, &ctx);
for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
sprintf (&digest_as_string
[2 * byte_index
], "%02x", digest_or_NULL
[byte_index
]);
return (digest_as_string);
}
static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness)
{
// computes the checksum of an IFS image or startup section, i.e. from the start of the header to the end of the trailer minus the last 4 bytes where the checksum is stored
uint8_t accumulator[4] = { 0, 0, 0, 0 };
const char *current_char_ptr;
int32_t image_cksum;
size_t i;
image_cksum = 0;
current_char_ptr = data;
for (i = 0; i < data_len; i++)
{
accumulator[i % 4] = *current_char_ptr;
if (i % 4 == 3)
if (is_foreign_endianness)
image_cksum += (accumulator[3] << 0) + (accumulator[2] << 8) + (accumulator[1] << 16) + (accumulator[0] << 24);
else
image_cksum += (accumulator[0] << 0) + (accumulator[1] << 8) + (accumulator[2] << 16) + (accumulator[3] << 24);
current_char_ptr++;
}
return (is_foreign_endianness ? __builtin_bswap32 (-image_cksum) : -image_cksum);
}
static long long read_integer (const char *str)
{
// reads a number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
char *endptr = NULL;
long long ret = strtoll (str, &endptr, 0); // use strtoll() to handle hexadecimal (0x...), octal (0...) and decimal (...) bases
if (endptr != NULL)
{
if ((*endptr == 'k') || (*endptr == 'K')) ret *= (size_t) 1024;
else if ((*endptr == 'm') || (*endptr == 'M')) ret *= (size_t) 1024 * 1024;
else if ((*endptr == 'g') || (*endptr == 'G')) ret *= (size_t) 1024 * 1024 * 1024;
else if ((*endptr == 't') || (*endptr == 'T')) ret *= (size_t) 1024 * 1024 * 1024 * 1024; // future-proof enough, I suppose?
}
return (ret);
}
static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...)
{
// this function logs hexadecimal data to an opened file pointer (or to stdout/stderr)
va_list argptr;
size_t index;
int i;
// concatenate all the arguments in one string and write it to the file
// for each row of howmany_columns bytes of data...
for (index = 0; index < data_size; index += howmany_columns)
{
fprintf (fp
, " %05zu ", index
); // print array address of row
for (i = 0; i < howmany_columns; i++)
if (index + i < data_size)
fprintf (fp
, " %02X", data
[index
+ i
]); // if row contains data, print data as hex bytes
else
fprintf (fp
, " "); // else fill the space with blanks
for (i = 0; i < howmany_columns; i++)
if (index + i < data_size)
fputc ((data
[index
+ i
] >= 32) && (data
[index
+ i
] < 127) ? data
[index
+ i
] : '.', fp
); // now if row contains data, print data as ASCII
else
fputc (' ', fp
); // else fill the space with blanks
}
return; // and return
}
static char *binary (const uint8_t x, char char_for_zero, char char_for_one)
{
// returns the binary representation of x as a string
static thread_local char outstr[9] = "00000000";
for (int i = 0; i < 8; i++)
outstr[i] = (x & (0x80 >> i) ? char_for_one : char_for_zero);
return (outstr);
}
static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8])
{
// returns the ORed description of byte 'x' according to the description strings for each bit
static thread_local char *default_bitstrings[8] = { "bit0", "bit1", "bit2", "bit3", "bit4", "bit5", "bit6", "bit7" };
static thread_local char outstr[8 * 64] = "";
outstr[0] = 0;
for (int i = 0; i < 8; i++)
if (x & (1 << i))
{
if (outstr[0] != 0)
strcat (outstr
, ((bitwise_stringdescs
!= NULL
) && (*bitwise_stringdescs
[i
] != 0) ? bitwise_stringdescs
[i
] : default_bitstrings
[i
]));
}
return (outstr);
}
static char *read_filecontents (const char *pathname, const char *search_path, buffer_t *outbuf)
{
// locates pathname among MKIFS_PATH, and places its contents in a buffer (caller frees). Returns resolved pathname (static buffer) or NULL.
static thread_local char final_pathname[MAXPATHLEN];
const char *nextsep;
const char *token;
FILE *fp;
// is it an absolute pathname (POSIX and Windows variants) ?
if (IS_DIRSEP
(pathname
[0]) || (isalpha (pathname
[0]) && (pathname
[1] == ':') && IS_DIRSEP
(pathname
[2])))
strcpy (final_pathname
, pathname
); // in this case, it MUST exist at its designated location (either absolute or relative to the current working directory)
else // the path is relative, search it among the search paths we have
{
// construct a potential final path using each element of the search path
token = (*search_path != 0 ? search_path : NULL);
nextsep
= (token
!= NULL
? &token
[strcspn (token
, PATH_SEP_STR
)] : NULL
);
while (token != NULL)
{
sprintf (final_pathname
, "%.*s/%s", (int) (nextsep
- token
), token
, pathname
);
if (access (final_pathname, 0) == 0)
break; // if a file can indeed be found at this location, stop searching
token = (*nextsep != 0 ? nextsep + 1 : NULL);
nextsep
= (token
!= NULL
? &token
[strcspn (token
, PATH_SEP_STR
)] : NULL
);
}
// have we exhausted all possibilities ?
if (token == NULL)
{
errno = ENOENT;
return (NULL); // file not found, return with ENOENT
}
}
// now open and read the file
fp
= fopen (final_pathname
, "rb");
if (fp == NULL)
return (NULL); // unexistent file (errno is set to ENOENT)
outbuf
->len
= ftell (fp
); // measure file length
outbuf
->bytes
= malloc (outbuf
->len
);
if (outbuf->bytes == NULL)
{
outbuf->len = 0;
return (NULL); // out of memory (errno is set to ENOMEM)
}
if (fread (outbuf
->bytes
, 1, outbuf
->len
, fp
) != outbuf
->len
) // read the file in whole
{
outbuf->len = 0;
return (NULL); // short read (errno is set)
}
fclose (fp
); // close the file
return (final_pathname); // file was read successfully and its content put in databuf with size datalen
}
static int fwrite_filecontents (const char *pathname, FILE *fp)
{
// dumps the binary contents of pathname to fp
uint8_t *blob_buffer;
size_t blob_size;
FILE *blob_fp;
int ret;
blob_fp
= fopen (pathname
, "rb");
if (blob_fp == NULL)
return (-1); // errno is set
fseek (blob_fp
, 0, SEEK_END
);
blob_size
= ftell (blob_fp
);
blob_buffer
= malloc (blob_size
);
if (blob_buffer == NULL)
{
return (-1); // errno is set to ENOMEM
}
fseek (blob_fp
, 0, SEEK_SET
);
fread (blob_buffer
, 1, blob_size
, blob_fp
);
ret
= (int) fwrite (blob_buffer
, 1, blob_size
, fp
);
fflush (fp
); // force flush to disk, because the C stream API is *buffered*
return (ret);
}
static int relative_offset_of_in (const char *name, const buffer_t *stringbuf)
{
int name_len
= (int) strlen (name
) + 1;
WELLMANNERED_ASSERT (name_len < stringbuf->len, "bad call (name longer than string table)");
for (int idx = 0; idx <= stringbuf->len - name_len; idx++)
if (memcmp (&stringbuf
->bytes
[idx
], name
, name_len
) == 0)
return (idx);
WELLMANNERED_ASSERT (false, "bad call (name '%s' not found in string table)", name);
return (0);
}
static elf_section_header_t *elf_get_section_header_by_name (const elf_header_t *elf, const char *section_name)
{
elf_section_header_t *shdr_shstrtab; // section header of the section header strings table
elf_section_header_t *shdr;
size_t table_count;
size_t table_index;
char *shstrtab; // section header strings table
char *name;
shdr_shstrtab = (elf_section_header_t *) ((uint8_t *) elf + ELF_GET_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, section_header_item_size) * ELF_GET_NUMERIC (elf, elf, section_header_names_idx)); // quick access to section header for the section that contains the section names
shstrtab = ((uint8_t *) elf + ELF_GET_NUMERIC (elf, shdr_shstrtab, file_offset)); // locate the start of the strings table that contains the section names
// cycle through the sections table
table_count = ELF_GET_NUMERIC (elf, elf, section_header_table_len);
for (table_index = 0; table_index < table_count; table_index++)
{
shdr = (elf_section_header_t *) ((uint8_t *) elf + ELF_GET_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, section_header_item_size) * table_index); // quick access to section header
name = &shstrtab[ELF_GET_NUMERIC (elf, shdr, name_offset)]; // peek at its name
if (strcmp (name
, section_name
) == 0)
return (shdr); // if found, return a pointer to this section header
}
return (NULL); // section not found
}
static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp)
{
// writes a directory entry in the image filesystem file pointed to by fp (or fakes so if fp is NULL)
// and return the number of bytes written (or that would have been written)
static const uint8_t zeropad_buffer[] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
size_t datalen;
size_t count;
count = 0;
if (fp != NULL)
fwrite_or_die (&fsentry->header, 1, sizeof (fsentry->header), fp); // write the entry header (PACKED STRUCT)
count += sizeof (fsentry->header);
if (S_ISREG (fsentry->header.mode))
{
if (fp != NULL)
{
fwrite_or_die (&fsentry->u.file.offset, 1, sizeof (uint32_t), fp); // write offset
fwrite_or_die (&fsentry->u.file.size, 1, sizeof (uint32_t), fp); // write size
}
count += 2 * sizeof (uint32_t);
datalen
= strlen (fsentry
->u.
file.
path) + 1;
if (fp != NULL)
fwrite_or_die (fsentry->u.file.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
count += datalen;
}
else if (S_ISDIR (fsentry->header.mode))
{
datalen
= strlen (fsentry
->u.
dir.
path) + 1;
if (fp != NULL)
fwrite_or_die (fsentry->u.dir.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
count += datalen;
}
else if (S_ISLNK (fsentry->header.mode))
{
if (fp != NULL)
{
fwrite_or_die (&fsentry->u.symlink.sym_offset, 1, sizeof (uint16_t), fp); // write offset
fwrite_or_die (&fsentry->u.symlink.sym_size, 1, sizeof (uint16_t), fp); // write size
}
count += 2 * sizeof (uint16_t);
datalen
= strlen (fsentry
->u.
symlink.
path) + 1;
if (fp != NULL)
fwrite_or_die (fsentry->u.symlink.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
count += datalen;
datalen
= strlen (fsentry
->u.
symlink.
contents) + 1;
if (fp != NULL)
fwrite_or_die (fsentry->u.symlink.contents, 1, (size_t) datalen, fp); // write null-terminated symlink contents
count += datalen;
}
else
{
if (fp != NULL)
{
fwrite_or_die (&fsentry->u.device.dev, 1, sizeof (uint32_t), fp); // write dev number
fwrite_or_die (&fsentry->u.device.rdev, 1, sizeof (uint32_t), fp); // write rdev number
}
count += 2 * sizeof (uint32_t);
datalen
= strlen (fsentry
->u.
device.
path) + 1;
if (fp != NULL)
fwrite_or_die (fsentry->u.device.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
count += datalen;
}
if (count < fsentry->header.size)
{
if (fp != NULL)
fwrite_or_die (zeropad_buffer, 1, fsentry->header.size - count, fp); // pad as necessary
count += fsentry->header.size - count;
}
else if (count > fsentry->header.size)
{
fprintf (stderr
, "ERROR: attempt to write invalid dirent (claimed size %zd, written size %zd). Aborting.\n", (size_t) fsentry
->header.
size, count
);
}
return (count);
}
static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname)
{
#define ADD_NAME_TO_STRINGTABLE(name,strtab) do { \
name_len = strlen ((name)) + 1; \
reallocated_ptr = realloc ((strtab).bytes, (strtab).len + name_len); \
WELLMANNERED_ASSERT (reallocated_ptr, "out of memory"); \
(strtab).bytes = reallocated_ptr; \
memcpy (&(strtab).bytes[(strtab).len], (name), name_len); \
(strtab).len += name_len; \
} while (0)
#define APPEND_SECTION_DATA(section,sectionhdr_offset) do { \
memcpy (&entry_parms->data.bytes[entry_parms->data.len], (section).bytes, (section).len); /* write section in place */ \
free ((section).bytes); /* free it */ \
new_shdr = (elf_section_header_t *) &new_shtab.bytes[(sectionhdr_offset)]; /* now fix this section header */ \
ELF_SET_NUMERIC (elf, new_shdr, file_offset, entry_parms->data.len); /* fix section offset in the new section headers table */ \
entry_parms->data.len += (section).len; /* update new ELF file length */ \
} while (0)
static thread_local char candidate_pathname[1024];
static int inode_count = 0; // will be preincremented each time this function is called
const char *original_stored_pathname = NULL;
const elf_dynamic_section_entry_t *dynamic_entry; // dynamic section entry
const elf_section_header_t *shdr_dynstr; // dynamic strings
const elf_section_header_t *shdr_dynamic; // dynamic section
const elf_section_header_t *shdr;
elf_section_header_t *new_shdr;
size_t new_qnxinfo_shdr_offset;
size_t new_debuglink_shdr_offset;
size_t new_qnxusage_shdr_offset;
size_t new_buildid_shdr_offset;
size_t new_shstrtab_shdr_offset;
elf_program_header_t *phdr;
const char *canonical_dylib_name;
const char *dynamic_strings; // strings table of the ".dynamic" section
const char *last_dirsep;
elf_header_t *elf;
buffer_t new_shtab = { NULL, 0 };
buffer_t elfsection_qnxinfo = { NULL, 0 };
buffer_t elfsection_qnxusage = { NULL, 0 };
buffer_t elfsection_debuglink = { NULL, 0 };
buffer_t elfsection_buildid = { NULL, 0 };
buffer_t elfsection_shstrtab = { NULL, 0 };
char *resolved_pathname;
void *reallocated_ptr;
void *old_data;
struct stat stat_buf;
size_t new_shdrtable_offset;
size_t end_padding_offset;
size_t table_index;
size_t table_count;
size_t name_len;
fsentry_t *fsentry;
if (S_ISDIR (entry_parms->st_mode)) // are we storing a directory ?
{
fprintf (stderr
, "directory: ino 0x%x uid %d gid %d mode 0%o path \"%s\"\n", inode_count
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
);
}
else if (S_ISREG (entry_parms->st_mode)) // else are we storing a regular file ?
{
if (strcmp (stored_pathname
, "/proc/boot/boot") == 0) // is it the kernel ?
{
// HACK: for now just consider the kernel as a binary blob
// FIXME: reimplement properly
sprintf (candidate_pathname
, "%s/procnto-smp-instr", entry_parms
->prefix
); // fix the entry name
stored_pathname = candidate_pathname;
entry_parms->extra_ino_flags |= IFS_INO_PROCESSED_ELF | IFS_INO_BOOTSTRAP_EXE; // procnto needs to have these flags stamped on the inode
entry_parms->st_mode = S_IFREG | 0700; // procnto requires 0700 permissions
image_kernel_ino = entry_parms->extra_ino_flags | (inode_count + 1);
}
else if (entry_parms->is_compiled_bootscript) // else is it a startup script ?
image_bootscript_ino = inode_count + 1; // save boot script inode number for image header
// do we already know the data for this data blob ?
if (entry_parms->data.bytes != NULL)
{
entry_parms->mtime = entry_parms->mtime_for_inline_files;
fprintf (stderr
, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" blob (len %zd)\n", entry_parms
->extra_ino_flags
| (inode_count
+ 1), entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, entry_parms
->data.
len);
}
else if (buildhost_pathname != NULL) // else was a source file pathname supplied ?
{
resolved_pathname = read_filecontents (buildhost_pathname, (entry_parms->search[0] != 0 ? entry_parms->search : MKIFS_PATH), &entry_parms->data); // locate the file
if (resolved_pathname == NULL)
{
fprintf (stderr
, "fatal error: filesystem entry \"%s\" specified in \"%s\" line %d not found on build host: %s\n", buildhost_pathname
, buildfile_pathname
, lineno
, strerror (errno
));
}
stat (resolved_pathname, &stat_buf); // can't fail
if (entry_parms->mtime == UINT32_MAX)
entry_parms->mtime = (uint32_t) stat_buf.st_mtime;
fprintf (stderr
, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" buildhost_file \"%s\" (len %zd)\n", inode_count
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, buildhost_pathname
, entry_parms
->data.
len);
}
// is the file we're storing an ELF file ?
if ((entry_parms->data.len > 52) // file is big enough to contain an ELF header
&& ((elf = (elf_header_t *) entry_parms->data.bytes) != NULL) // cast (necessary true)
&& (memcmp (ELF_GET_STRING
(elf
, elf
, magic
), ELF_MAGIC_STR
, 4) == 0)) // file starts with the ELF magic
{
// is the file we're storing a relocatable executable (i.e. a dynamic library) and should we check for its canonical name ?
if ((ELF_GET_NUMERIC (elf, elf, type) == 3) && entry_parms->should_autosymlink_dylib)
{
// we need to find the SONAME of this library
canonical_dylib_name = NULL;
// locate the sections we need (the dynamic section and its strings table)
shdr_dynamic = elf_get_section_header_by_name (elf, ".dynamic");
shdr_dynstr = elf_get_section_header_by_name (elf, ".dynstr");
// make sure we have both the dynamic section header and its own strings table header
if ((shdr_dynamic != NULL) && (shdr_dynstr != NULL))
{
dynamic_strings = (char *) &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr_dynstr, file_offset)]; // quick access to dynamic sections strings table
// walk through the dynamic section, look for the DT_SONAME entry
for (dynamic_entry = (elf_dynamic_section_entry_t *) &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr_dynamic, file_offset)];
(ELF_GET_NUMERIC (elf, dynamic_entry, tag) != ELF_DT_NULL);
dynamic_entry = (elf_dynamic_section_entry_t *) ((uint8_t *) dynamic_entry + ELF_STRUCT_SIZE (elf, dynamic_entry)))
if (ELF_GET_NUMERIC (elf, dynamic_entry, tag) == ELF_DT_SONAME)
{
canonical_dylib_name = dynamic_strings + ELF_GET_NUMERIC (elf, dynamic_entry, value);
break;
}
// do we have it ?
if ((canonical_dylib_name != NULL) && (canonical_dylib_name[0] != 0))
{
sprintf (candidate_pathname
, "%s/%s", entry_parms
->prefix
, canonical_dylib_name
);
if (strcmp (candidate_pathname
, stored_pathname
) != 0) // claimed dylib name differs from passed name ?
{
original_stored_pathname = stored_pathname; // if so, remember to create a symlink here
stored_pathname = candidate_pathname;
}
}
}
} // end if the file we're storing is a dylib
// now strip this ELF file if necessary
if (!(entry_parms->extra_ino_flags & IFS_INO_PROCESSED_ELF))
{
// NOTE: for each ELF file, mkifs
// -> alters the program header table and offsets each p_addr (physical address) member by 0x1400000 plus the current file offset (this cannot be done right now, will need to be done once they are known)
// -> throws away and reconstructs the sections table by keeping only the sections that are in the program header, and writes the section table at the start of the first thrown-away section
// FIXME: what if a thrown away section is located between two program segments ? are they collapsed, moving the segments beyond it one slot down ?
// reconstructed ELF:
// ==== START OF FILE ====
// ELF header
// program header table
// (same sections, just p_addr offset changed)
// section data 5 (named ".note.gnu.build-id")
// "............GNU....ZY.....c.o..l"
// PROGRAM
// sections table
// + section 1: ALL ZEROES
// + section 2: fileoffs 0x21a8 size 0xfd --> "QNX_info" --> QNX binary description: "NAME=pci_debug2.so.3.0\nDESCRIPTION=PCI Server System Debug Module\nDATE=2023/11/19-10:01:13-EST\nSTATE=lookup\nHOST=docker-n1.bts.rim.net\nUSER=builder\nVERSION=QNXOS_main\nTAGID=QNXOS_800-135\nPACKAGE=com.qnx.qnx800.target.pci.debug/3.0.0.00135T202311191043L\n"
// + section 3: fileoffs 0x22a5 size 0x1c --> ".gnu_debuglink" --> indicates the debug file (and a possible checksum?): "pci_debug2.so.3.0.sym" "\0\0\0" "VX2p"
// + section 4: fileoffs 0x22c1 size 0x2ad --> "QNX_usage" --> HELP TEXT: "\n-------------------------------------------------------------------------------\n%C\n\nThis module implements debug logging for all PCI server modules. It is\nincluded by setting the environment variable PCI_DEBUG_MODULE and uses\nthe slogger2 APIs.\nNOTE:.On systems which support slogger2, you are encouraged to use this module.instead of pci_debug.so...Release History.---------------..3.0 - This module is functionally equivalent to the previous 2.x version. however it is incompatible with all pre v3.x PCI components..2.1 - fixes a bug whereby if slogger2 is not running and the PCI_DEBUG_MODULE. environment variable is set, the client will SIGSEGV..2.0 - initial release.."
// + section 5: fileoffs 0x190 size 0x32 --> ".note.gnu.build-id" --> GNU build ID
// + section 6: fileoffs 0x256e size 0x40 --> ".shstrtab" --> sections names strings table
// section data 2 (named "QNX_info")
// (QNX binary description)
// section data 3 (named ".gnu_debuglink")
// (debug file)
// section data 4 (named "QNX_usage")
// (help text)
// section data 6 (named ".shstrtab")
// "\0"
// ".shstrtab\0"
// "QNX_info\0"
// ".gnu_debuglink\0"
// "QNX_usage\0"
// ".note.gnu.build-id\0"
// ==== END OF FILE ====
// parse the program header table, and measure the farthest offset known by this table where we'll write the reconstructed section headers table
new_shdrtable_offset = 0;
table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len);
for (table_index = 0; table_index < table_count; table_index++)
{
phdr = (elf_program_header_t *) &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
if (ELF_GET_NUMERIC (elf, phdr, file_offset) + ELF_GET_NUMERIC (elf, phdr, size_in_file) > new_shdrtable_offset)
new_shdrtable_offset = ELF_GET_NUMERIC (elf, phdr, file_offset) + ELF_GET_NUMERIC (elf, phdr, size_in_file);
}
// re-create the section header table
elfsection_shstrtab.
bytes = malloc (1); // initialize an empty section headers strings table
WELLMANNERED_ASSERT (elfsection_shstrtab.bytes, "out of memory");
elfsection_shstrtab.bytes[0] = 0;
elfsection_shstrtab.len = 1;
ADD_NAME_TO_STRINGTABLE (".shstrtab", elfsection_shstrtab);
new_shtab.
bytes = malloc (ELF_STRUCT_SIZE
(elf
, shdr
)); // prepare a section headers table with just the default entry
WELLMANNERED_ASSERT (new_shtab.bytes, "out of memory");
memset (new_shtab.
bytes, 0, ELF_STRUCT_SIZE
(elf
, shdr
)); // the first section header is always zerofilled
new_shtab.len = ELF_STRUCT_SIZE (elf, shdr); // and remember how big the section headers table is now
if ((shdr = elf_get_section_header_by_name (elf, "QNX_info")) != NULL)
{
if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
{
elfsection_qnxinfo.len = ELF_GET_NUMERIC (elf, shdr, size);
elfsection_qnxinfo.
bytes = malloc (elfsection_qnxinfo.
len);
WELLMANNERED_ASSERT (elfsection_qnxinfo.bytes, "out of memory");
memcpy (elfsection_qnxinfo.
bytes, &entry_parms
->data.
bytes[ELF_GET_NUMERIC
(elf
, shdr
, file_offset
)], elfsection_qnxinfo.
len);
}
reallocated_ptr
= realloc (new_shtab.
bytes, new_shtab.
len + ELF_STRUCT_SIZE
(elf
, shdr
)); // grow our section headers table to have one entry more
WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
new_qnxinfo_shdr_offset = new_shtab.len; // remember the new offset of this section header
new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_qnxinfo_shdr_offset]; // now populate this section header
ADD_NAME_TO_STRINGTABLE ("QNX_info", elfsection_shstrtab);
ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in ("QNX_info", &elfsection_shstrtab)); // update the relative offset of the section name
ELF_SET_NUMERIC (elf, new_shdr, type, ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
ELF_SET_NUMERIC (elf, new_shdr, flags, ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
ELF_SET_NUMERIC (elf, new_shdr, size, ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
ELF_SET_NUMERIC (elf, new_shdr, info, ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
ELF_SET_NUMERIC (elf, new_shdr, alignment, ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
ELF_SET_NUMERIC (elf, new_shdr, entry_size, ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
}
if ((shdr = elf_get_section_header_by_name (elf, ".gnu_debuglink")) != NULL)
{
if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
{
elfsection_debuglink.len = ELF_GET_NUMERIC (elf, shdr, size);
elfsection_debuglink.
bytes = malloc (elfsection_debuglink.
len);
WELLMANNERED_ASSERT (elfsection_debuglink.bytes, "out of memory");
memcpy (elfsection_debuglink.
bytes, &entry_parms
->data.
bytes[ELF_GET_NUMERIC
(elf
, shdr
, file_offset
)], elfsection_debuglink.
len);
}
reallocated_ptr
= realloc (new_shtab.
bytes, new_shtab.
len + ELF_STRUCT_SIZE
(elf
, shdr
)); // grow our section headers table to have one entry more
WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
new_debuglink_shdr_offset = new_shtab.len; // remember the new offset of this section header
new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_debuglink_shdr_offset]; // now populate this section header
ADD_NAME_TO_STRINGTABLE (".gnu_debuglink", elfsection_shstrtab);
ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in (".gnu_debuglink", &elfsection_shstrtab)); // update the relative offset of the section name
ELF_SET_NUMERIC (elf, new_shdr, type, ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
ELF_SET_NUMERIC (elf, new_shdr, flags, ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
ELF_SET_NUMERIC (elf, new_shdr, size, ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
ELF_SET_NUMERIC (elf, new_shdr, info, ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
ELF_SET_NUMERIC (elf, new_shdr, alignment, ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
ELF_SET_NUMERIC (elf, new_shdr, entry_size, ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
}
if ((shdr = elf_get_section_header_by_name (elf, "QNX_usage")) != NULL)
{
if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
{
elfsection_qnxusage.len = ELF_GET_NUMERIC (elf, shdr, size);
elfsection_qnxusage.
bytes = malloc (elfsection_qnxusage.
len);
WELLMANNERED_ASSERT (elfsection_qnxusage.bytes, "out of memory");
memcpy (elfsection_qnxusage.
bytes, &entry_parms
->data.
bytes[ELF_GET_NUMERIC
(elf
, shdr
, file_offset
)], elfsection_qnxusage.
len);
}
reallocated_ptr
= realloc (new_shtab.
bytes, new_shtab.
len + ELF_STRUCT_SIZE
(elf
, shdr
)); // grow our section headers table to have one entry more
WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
new_qnxusage_shdr_offset = new_shtab.len; // remember the new offset of this section header
new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_qnxusage_shdr_offset]; // now populate this section header
ADD_NAME_TO_STRINGTABLE ("QNX_usage", elfsection_shstrtab);
ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in ("QNX_usage", &elfsection_shstrtab)); // update the relative offset of the section name
ELF_SET_NUMERIC (elf, new_shdr, type, ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
ELF_SET_NUMERIC (elf, new_shdr, flags, ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
ELF_SET_NUMERIC (elf, new_shdr, size, ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
ELF_SET_NUMERIC (elf, new_shdr, info, ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
ELF_SET_NUMERIC (elf, new_shdr, alignment, ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
ELF_SET_NUMERIC (elf, new_shdr, entry_size, ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
}
if ((shdr = elf_get_section_header_by_name (elf, ".note.gnu.build-id")) != NULL)
{
if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
{
elfsection_buildid.len = ELF_GET_NUMERIC (elf, shdr, size);
elfsection_buildid.
bytes = malloc (elfsection_buildid.
len);
WELLMANNERED_ASSERT (elfsection_buildid.bytes, "out of memory");
memcpy (elfsection_buildid.
bytes, &entry_parms
->data.
bytes[ELF_GET_NUMERIC
(elf
, shdr
, file_offset
)], elfsection_buildid.
len);
}
reallocated_ptr
= realloc (new_shtab.
bytes, new_shtab.
len + ELF_STRUCT_SIZE
(elf
, shdr
)); // grow our section headers table to have one entry more
WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
new_buildid_shdr_offset = new_shtab.len; // remember the new offset of this section header
new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_buildid_shdr_offset]; // now populate this section header
ADD_NAME_TO_STRINGTABLE (".note.gnu.build-id", elfsection_shstrtab);
ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in (".note.gnu.build-id", &elfsection_shstrtab)); // update the relative offset of the section name
ELF_SET_NUMERIC (elf, new_shdr, type, ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
ELF_SET_NUMERIC (elf, new_shdr, flags, ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
ELF_SET_NUMERIC (elf, new_shdr, size, ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
ELF_SET_NUMERIC (elf, new_shdr, info, ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
ELF_SET_NUMERIC (elf, new_shdr, alignment, ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
ELF_SET_NUMERIC (elf, new_shdr, entry_size, ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
}
reallocated_ptr
= realloc (new_shtab.
bytes, new_shtab.
len + ELF_STRUCT_SIZE
(elf
, shdr
)); // grow our section headers table to have one entry more
WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
new_shstrtab_shdr_offset = new_shtab.len; // remember the new offset of this section header
new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_shstrtab_shdr_offset]; // now populate this section header
ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in (".shstrtab", &elfsection_shstrtab)); // update the relative offset of the section name
ELF_SET_NUMERIC (elf, new_shdr, type, ELF_SECTIONTYPE_STRINGTABLE); // section type (SHT_STRTAB)
ELF_SET_NUMERIC (elf, new_shdr, flags, 0); // section flags (we could set SHF_STRINGS i.e. 0x20 here, but mkifs does not, so mimic that)
ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, 0); // this section does not need to be mapped
ELF_SET_NUMERIC (elf, new_shdr, file_offset, WILL_BE_FILLED_LATER); // will be filled once we know it
ELF_SET_NUMERIC (elf, new_shdr, size, elfsection_shstrtab.len); // section size
ELF_SET_NUMERIC (elf, new_shdr, linked_index, 0); // this section is not linked to any other
ELF_SET_NUMERIC (elf, new_shdr, info, 0); // this section has no additional info
ELF_SET_NUMERIC (elf, new_shdr, alignment, 1); // this section is byte-aligned
ELF_SET_NUMERIC (elf, new_shdr, entry_size, 0); // this section is not a table, so entry_size is zero
// jump over the new section headers table and write the sections that need to be relocated after the section headers table
entry_parms->data.len = new_shdrtable_offset + new_shtab.len; // assume there are no sections beyond the section headers table until known otherwise
if (elfsection_qnxinfo.bytes != NULL)
APPEND_SECTION_DATA (elfsection_qnxinfo, new_qnxinfo_shdr_offset); // write "QNX_info" section data if we have such a section
if (elfsection_debuglink.bytes != NULL)
APPEND_SECTION_DATA (elfsection_debuglink, new_debuglink_shdr_offset); // write ".gnu_debuglink" section data if we have such a section
if (elfsection_qnxusage.bytes != NULL)
APPEND_SECTION_DATA (elfsection_qnxusage, new_qnxusage_shdr_offset); // write "QNX_usage" section data if we have such a section
if (elfsection_buildid.bytes != NULL)
APPEND_SECTION_DATA (elfsection_buildid, new_buildid_shdr_offset); // write ".note.gnu.build-id" section data if we have such a section
APPEND_SECTION_DATA (elfsection_shstrtab, new_shstrtab_shdr_offset); // write the section header strings table as the last section
// now write the section headers table
memcpy (&entry_parms
->data.
bytes[new_shdrtable_offset
], new_shtab.
bytes, new_shtab.
len);
free (new_shtab.
bytes); // free it
// and finally fix the ELF header
ELF_SET_NUMERIC (elf, elf, section_header_table_offset, new_shdrtable_offset);
ELF_SET_NUMERIC (elf, elf, section_header_table_len, new_shtab.len / ELF_STRUCT_SIZE (elf, shdr));
ELF_SET_NUMERIC (elf, elf, section_header_names_idx, new_shtab.len / ELF_STRUCT_SIZE (elf, shdr) - 1); // the section headers strings table is the last section
// align size with page size (4096 on x86, 16k on ARM)
end_padding_offset = entry_parms->data.len;
if (ELF_GET_NUMERIC (elf, elf, instruction_set) == ELF_MACHINE_X86_64)
entry_parms->data.len = ROUND_TO_UPPER_MULTIPLE (end_padding_offset, 4 * 1024); // 4 kb pages on Intel processors
else if (ELF_GET_NUMERIC (elf, elf, instruction_set) == ELF_MACHINE_AARCH64)
entry_parms->data.len = ROUND_TO_UPPER_MULTIPLE (end_padding_offset, 16 * 1024); // 16 kb pages on ARM64
else
{
fprintf (stderr
, "fatal error: this ELF file \"%s\" does not belong to an architecture supported by ifstool (neither x86_64, nor aarch64)\n", stored_pathname
);
}
memset (&entry_parms
->data.
bytes[end_padding_offset
], 0, entry_parms
->data.
len - end_padding_offset
); // zerofill
entry_parms->extra_ino_flags |= IFS_INO_PROCESSED_ELF; // mark this inode as a preprocessed ELF file
} // end if the file is not yet a processed ELF
} // end if the file we're storing is an ELF file
}
else if (S_ISLNK (entry_parms->st_mode)) // else are we storing a symbolic link ?
fprintf (stderr
, "symlink: ino 0x%x uid %d gid %d mode 0%o path \"%s\" -> \"%s\"\n", inode_count
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, entry_parms
->data.
bytes);
else // we must be storing a FIFO
{
if (strchr (entry_parms
->data.
bytes, ':') == NULL
)
{
fprintf (stderr
, "fatal error: device entry \"%s\" malformed (no 'dev:rdev' pair)\n", stored_pathname
);
}
fprintf (stderr
, "fifo: ino 0x%x uid %d gid %d mode 0%o path \"%s\" dev rdev %s)\n", inode_count
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, entry_parms
->data.
bytes);
}
// grow filesystem entries array to hold one more slot
reallocated_ptr
= realloc (*fsentries
, (*fsentry_count
+ 1) * sizeof (fsentry_t
)); // attempt to reallocate
if (reallocated_ptr == NULL)
{
fprintf (stderr
, "fatal error: out of memory\n");
}
*fsentries = reallocated_ptr; // save reallocated pointer
fsentry = &(*fsentries)[*fsentry_count]; // quick access to fs entry slot
//fsentry->header.size = 0; // will be filled once we know it
fsentry->header.extattr_offset = 0;
fsentry->header.ino = entry_parms->extra_ino_flags | (++inode_count);
fsentry->header.mode = entry_parms->st_mode;
fsentry->header.gid = entry_parms->gid;
fsentry->header.uid = entry_parms->uid;
fsentry
->header.
mtime = (entry_parms
->mtime
== UINT32_MAX
? (uint32_t) time (NULL
) : entry_parms
->mtime
);
if (S_ISDIR (entry_parms->st_mode))
{
fsentry->u.dir.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE
(sizeof (fsentry
->header
) + strlen (fsentry
->u.
dir.
path) + 1, image_align
); // now we can set the size
fsentry->UNSAVED_was_data_written = true; // no data to save
}
else if (S_ISREG (entry_parms->st_mode))
{
fsentry->u.file.offset = WILL_BE_FILLED_LATER; // will be filled later in main() when the file's data blob will be written to the output file
fsentry->u.file.size = (uint32_t) entry_parms->data.len;
fsentry->u.file.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry
->u.
file.
UNSAVED_databuf = malloc (entry_parms
->data.
len);
WELLMANNERED_ASSERT (fsentry->u.file.UNSAVED_databuf, "out of memory");
memcpy (fsentry
->u.
file.
UNSAVED_databuf, entry_parms
->data.
bytes, entry_parms
->data.
len);
fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE
(sizeof (fsentry
->header
) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry
->u.
file.
path) + 1, image_align
); // now we can set the size
fsentry->UNSAVED_was_data_written = false; // there *IS* data to save
}
else if (S_ISLNK (entry_parms->st_mode))
{
fsentry
->u.
symlink.
sym_offset = (uint16_t) (strlen (stored_pathname
[0] == '/' ? &stored_pathname
[1] : stored_pathname
) + 1);
fsentry->u.symlink.sym_size = (uint16_t) entry_parms->data.len;
fsentry->u.symlink.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry->u.symlink.contents = strdup (entry_parms->data.bytes);
WELLMANNERED_ASSERT (fsentry->u.symlink.contents, "out of memory");
fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint16_t) + sizeof (uint16_t) + (size_t) fsentry->u.symlink.sym_offset + fsentry->u.symlink.sym_size + 1, image_align); // now we can set the size
fsentry->UNSAVED_was_data_written = true; // no data to save
}
else // necessarily a device node
{
fsentry
->u.
device.
dev = strtol (entry_parms
->data.
bytes, NULL
, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
fsentry
->u.
device.
rdev = strtol (strchr (entry_parms
->data.
bytes, ':') + 1, NULL
, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
fsentry->u.device.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE
(sizeof (fsentry
->header
) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry
->u.
device.
path), image_align
); // now we can set the size
fsentry->UNSAVED_was_data_written = true; // no data to save
}
(*fsentry_count)++;
// should we also add a symlink to this entry ? (in case we stored a dylib file under its canonical name)
if (original_stored_pathname != NULL)
{
entry_parms->is_compiled_bootscript = false;
entry_parms->should_autosymlink_dylib = false;
entry_parms->should_follow_symlinks = false;
entry_parms->st_mode = S_IFLNK | 0777; // NOTE: mkifs stores symlink permissions as rwxrwxrwx !
entry_parms->extra_ino_flags = (fsentry->header.ino & (IFS_INO_PROCESSED_ELF | IFS_INO_RUNONCE_ELF | IFS_INO_BOOTSTRAP_EXE)); // preserve target's inode flags
last_dirsep
= strrchr (stored_pathname
, '/');
old_data = entry_parms->data.bytes; // backup previous data pointer
entry_parms->data.bytes = (uint8_t *) (last_dirsep == NULL ? stored_pathname : last_dirsep + 1); // store symlink target in dirent data
entry_parms
->data.
len = strlen (entry_parms
->data.
bytes);
add_fsentry (fsentries, fsentry_count, entry_parms, original_stored_pathname, NULL);
entry_parms->data.bytes = old_data; // restore previous data pointer so that it can be freed normally
}
return (*fsentry_count);
}
static int fsentry_compare_pathnames_cb (const void *a, const void *b)
{
// qsort() callback that compares two imagefs filesystem entries and sort them alphabetically by pathname
const fsentry_t *entry_a = (const fsentry_t *) a;
const fsentry_t *entry_b = (const fsentry_t *) b;
const char *pathname_a = (S_ISDIR (entry_a->header.mode) ? entry_a->u.dir.path : (S_ISREG (entry_a->header.mode) ? entry_a->u.file.path : (S_ISLNK (entry_a->header.mode) ? entry_a->u.symlink.path : entry_a->u.device.path)));
const char *pathname_b = (S_ISDIR (entry_b->header.mode) ? entry_b->u.dir.path : (S_ISREG (entry_b->header.mode) ? entry_b->u.file.path : (S_ISLNK (entry_b->header.mode) ? entry_b->u.symlink.path : entry_b->u.device.path)));
return (strcmp (pathname_a
, pathname_b
));
}
static void update_MKIFS_PATH (const char *processor)
{
// updates the value of MKIFS_PATH according to the passed processor name string, unless an environment variable already defines it
char processor_base[16];
size_t data_len;
char *envvar;
char *token;
envvar
= getenv ("MKIFS_PATH"); // look in the environment first, and construct a default one if not supplied
if (envvar != NULL)
MKIFS_PATH = envvar; // if envvar is present, set MKIFS_PATH to point to it
else // envvar not present
{
if (MKIFS_PATH != NULL)
free (MKIFS_PATH
); // free any MKIFS_PATH that we constructed earlier
strcpy (processor_base
, processor
); // construct PROCESSOR_BASE
token
= strchr (processor_base
, '-');
if (token != NULL)
*token = 0; // split anything from the first dash onwards
data_len
= strlen (processor_base
);
if ((data_len > 2) && ((processor_base[data_len - 2] == 'b') || (processor_base[data_len - 2] == 'l')) && (processor_base[data_len - 1] == 'e'))
processor_base[data_len - 2] = 0; // if it ends with "le" or "be", strip that too
MKIFS_PATH
= malloc (10 * MAXPATHLEN
); // construct a default MKIFS_PATH now
WELLMANNERED_ASSERT (MKIFS_PATH, "out of memory");
sprintf (MKIFS_PATH
, "." PATH_SEP_STR
"%s/%s/sbin" PATH_SEP_STR
"%s/%s/usr/sbin" PATH_SEP_STR
"%s/%s/boot/sys" PATH_SEP_STR
"%s/%s/boot/sys" PATH_SEP_STR
"%s/%s/bin" PATH_SEP_STR
"%s/%s/usr/bin" PATH_SEP_STR
"%s/%s/lib" PATH_SEP_STR
"%s/%s/lib/dll" PATH_SEP_STR
"%s/%s/usr/lib", // use a platform-specific character as path separator
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor_base,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor,
QNX_TARGET, processor);
}
return;
}
int main (int argc, char **argv)
{
// program entrypoint
#define PAD_OUTFILE_TO(val) do { curr_offset = ftell (fp); while (curr_offset < (val)) { putc (0, fp); curr_offset++; } } while (0)
static startup_header_t startup_header = { 0 }; // output IFS's startup header
static startup_trailer_v2_t startup_trailer = { 0 }; // output IFS's startup trailer (version 2, with SHA-512 checksum and int32 checksum)
static image_header_t image_header = { 0 }; // output IFS's imagefs header
static image_trailer_v2_t image_trailer = { 0 }; // output IFS's imagefs trailer (version 2, with SHA-512 checksum and int32 checksum)
static fsentry_t *fsentries = NULL; // output IFS's filesystem entries
static size_t fsentry_count = 0; // number of entries in the IFS filesystem
static parms_t default_parms = { // default parameters for a filesystem entry
.dperms = 0755,
.perms = 0644,
.uid = 0,
.gid = 0,
.st_mode = S_IFREG,
.mtime = UINT32_MAX,
.mtime_for_inline_files = UINT32_MAX,
.prefix = "/proc/boot",
.should_follow_symlinks = true, // [+|-followlink]
.should_autosymlink_dylib = true, // [+|-autolink]
.is_compiled_bootscript = false, // [+|-script]
.extra_ino_flags = 0,
.search = "",
.data = { NULL, 0 }
};
static parms_t entry_parms = { 0 }; // current parameters for a filesystem entry (will be initialized to default_parms each time a new entry is parsed in the build file)
// bootable IFS support
char *bootfile_pathname = NULL; // HACK: pathname to bootcode binary blob file to put at the start of a bootable IFS
size_t bootfile_size = 0; // HACK: size of the bootcode binary blob file to put at the start of a bootable IFS
char *startupfile_pathname = NULL; // HACK: pathname to precompiled startup file blob to put in the startup header of a bootable IFS
size_t startupfile_ep_from_imagebase = 0; // HACK: startup code entrypoint offset from image base for a bootable IFS
char *kernelfile_pathname = NULL; // HACK: pathname to precompiled kernel file blob to put in a bootable IFS
size_t kernelfile_offset = 0; // HACK: kernel file offset in bootable IFS
char path_on_buildhost[MAXPATHLEN] = "";
char path_in_ifs[MAXPATHLEN] = "";
char *ifs_pathname = NULL;
void *reallocated_ptr;
const elf_header_t *elf;
elf_program_header_t *phdr;
struct tm utc_time;
struct stat stat_buf;
size_t startuptrailer_offset;
size_t startupheader_offset;
size_t imagetrailer_offset;
size_t imageheader_offset;
size_t corrective_offset;
size_t imgdir_offset;
size_t imgdir_size;
size_t final_size;
size_t available_space;
size_t allocated_size;
size_t fsentry_index;
size_t largest_index;
size_t largest_size;
size_t curr_offset;
size_t table_index;
size_t table_count;
buffer_t blob;
int32_t checksum;
char *specifiedpathname_start;
char *directiveblock_start;
char *write_ptr;
char *line_ptr;
char *token;
char *value;
char *sep;
//char *ctx;
int arg_index;
bool is_quoted_context = false;
bool is_escaped_char = false;
bool should_discard_inline_contents = false;
bool want_info = false;
bool want_everything = false;
bool want_help = false;
bool is_foreign_endianness;
int string_len;
int read_char;
FILE *buildfile_fp;
FILE *fp;
// parse arguments
for (arg_index = 1; arg_index < argc; arg_index++)
{
if ((strcmp (argv
[arg_index
], "--bootfile") == 0) && (arg_index
+ 1 < argc
)) // --bootfile path/to/blob.bin
bootfile_pathname = argv[++arg_index];
else if ((strcmp (argv
[arg_index
], "--startupfile") == 0) && (arg_index
+ 1 < argc
)) // --startupfile path/to/blob.bin@0x1030
{
sep
= strchr (argv
[++arg_index
], '@');
if ((sep == NULL) || (sep[1] == 0))
{
fprintf (stderr
, "error: the --startupfile arguments expects <pathname>@<entrypoint_from_image_base>\n");
}
*sep = 0;
startupfile_pathname = argv[arg_index];
startupfile_ep_from_imagebase = (size_t) read_integer (sep + 1);
}
else if ((strcmp (argv
[arg_index
], "--kernelfile") == 0) && (arg_index
+ 1 < argc
)) // --kernelfile path/to/blob.bin@0x32000
{
sep
= strchr (argv
[++arg_index
], '@');
if ((sep == NULL) || (sep[1] == 0))
{
fprintf (stderr
, "error: the --kernelfile arguments expects <pathname>@<fileoffset>\n");
}
*sep = 0;
kernelfile_pathname = argv[arg_index];
kernelfile_offset = (size_t) read_integer (sep + 1);
}
else if (strcmp (argv
[arg_index
], "-n") == 0)
default_parms.mtime_for_inline_files = 0; // inline files should have a mtime set to zero
else if (strcmp (argv
[arg_index
], "-nn") == 0)
{
default_parms.mtime = 0; // *all* files should have a mtime set to zero
default_parms.mtime_for_inline_files = 0;
}
else if (strcmp (argv
[arg_index
], "--info") == 0)
want_info = true;
else if (strcmp (argv
[arg_index
], "--everything") == 0)
want_everything = true;
else if ((strcmp (argv
[arg_index
], "-?") == 0) || (strcmp (argv
[arg_index
], "--help") == 0))
want_help = true;
else if (buildfile_pathname == NULL)
buildfile_pathname = argv[arg_index];
else if (ifs_pathname == NULL)
ifs_pathname = argv[arg_index];
}
// do we not have enough information to run ?
if (want_help || (buildfile_pathname == NULL) || (!want_info && (ifs_pathname == NULL)))
{
fprintf ((want_help
? stdout
: stderr
), "ifstool - QNX in-kernel filesystem creation utility by Pierre-Marie Baty <pm@pmbaty.com>\n");
fprintf ((want_help
? stdout
: stderr
), " version " VERSION_FMT_YYYYMMDD
"\n", VERSION_ARG_YYYYMMDD
);
if (!want_help)
fprintf (stderr
, "error: missing parameters\n");
fprintf ((want_help
? stdout
: stderr
), "usage:\n");
fprintf ((want_help
? stdout
: stderr
), " ifstool [--bootfile <pathname>] [--startupfile <pathname>@<EP_from_imgbase>] [--kernelfile <pathname>@<fileoffs>] [-n[n]] <buildfile> <outfile>\n");
fprintf ((want_help
? stdout
: stderr
), " ifstool --info [--everything] <ifs file>\n");
fprintf ((want_help
? stdout
: stderr
), " ifstool --help\n");
fprintf ((want_help
? stdout
: stderr
), "NOTE: the compilation feature requires predigested boot, startup and kernel files produced by mkifs.\n");
exit (want_help
? 0 : 1);
}
// do we want info about a particular IFS ? if so, dump it
if (want_info)
exit (dump_ifs_info
(buildfile_pathname
, want_everything
)); // NOTE: the first argument after --info is actually the IFS file, not a build file, but the arguments are collected in this order
// make sure we have ${QNX_TARGET} pointing somewhere
QNX_TARGET
= getenv ("QNX_TARGET");
if (QNX_TARGET == NULL)
{
fprintf (stderr
, "error: the QNX_TARGET environment variable is not set\n");
}
else if (access (QNX_TARGET, 0) != 0)
{
fprintf (stderr
, "error: the QNX_TARGET environment variable doesn't point to an existing directory\n");
}
// prepare a default MKIFS_PATH assuming the host processor
update_MKIFS_PATH (image_processor);
// open build file
buildfile_fp
= fopen (buildfile_pathname
, "rb");
if (buildfile_fp == NULL)
{
fprintf (stderr
, "error: unable to open build file \"%s\" for reading (%s)\n", buildfile_pathname
, strerror (errno
));
}
// stack up filesystem entries
memcpy (&entry_parms
, &default_parms
, sizeof (default_parms
));
entry_parms.st_mode = S_IFDIR | default_parms.dperms;
add_fsentry (&fsentries, &fsentry_count, &entry_parms, "", NULL); // add the root dir first
// parse the IFS build file line per line
while (fgets (line_buffer
, sizeof (line_buffer
), buildfile_fp
) != NULL
)
{
if (current_line != NULL)
current_line = strdup (line_buffer);
WELLMANNERED_ASSERT (current_line, "out of memory");
lineno++; // keep track of current line number
line_ptr = line_buffer;
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip leading spaces
if ((*line_ptr == 0) || (*line_ptr == '#'))
continue; // skip empty or comment lines
string_len
= (int) strlen (line_buffer
);
if ((string_len > 0) && (line_buffer[string_len - 1] == '\n'))
line_buffer[string_len - 1] = 0; // chop off newline for easier debug output
// reset entry values
memcpy (&entry_parms
, &default_parms
, sizeof (default_parms
));
path_in_ifs[0] = 0;
path_on_buildhost[0] = 0;
should_discard_inline_contents = false;
// does this line start with an attribute block ?
if (*line_ptr == '[')
{
line_ptr++; // skip the leading square bracket
directiveblock_start = line_ptr; // remember where it starts
is_quoted_context = false;
while ((*line_ptr != 0) && !((*line_ptr == ']') && (line_ptr[-1] != '\\')))
{
if (*line_ptr == '"')
is_quoted_context ^= true; // remember when we're between quotes
else if (!is_quoted_context && (*line_ptr == ' '))
*line_ptr = RECORD_SEP; // turn all spaces outside quoted contexts into an ASCII record separator to ease token splitting
line_ptr++; // reach the next unescaped closing square bracket
}
if (*line_ptr != ']')
{
fprintf (stderr
, "warning: syntax error in \"%s\" line %d: unterminated attributes block (skipping)\n", buildfile_pathname
, lineno
);
continue; // invalid attribute block, skip line
}
*line_ptr = 0; // end the attribute block so that it is a parsable C string
// now parse the attribute tokens
// DOCUMENTATION: https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino.utilities/topic/m/mkifs.html#mkifs__description
token
= strtok (directiveblock_start
, RECORD_SEP_STR
);
while (token != NULL)
{
// evaluate attribute token
#define REACH_TOKEN_VALUE() do { value = strchr (token, '=') + 1; if (*value == '"') value++; } while (0)
if (strncmp (token
, "uid=", 4) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
uid = (int) read_integer
(value
); }
else if (strncmp (token
, "gid=", 4) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
gid = (int) read_integer
(value
); }
else if (strncmp (token
, "dperms=", 7) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
dperms = (int) read_integer
(value
); }
else if (strncmp (token
, "perms=", 6) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
perms = (int) read_integer
(value
); }
else if (strncmp (token
, "type=", 5) == 0) { REACH_TOKEN_VALUE
(); entry_parms.
st_mode = (strcmp (value
, "dir") == 0 ? S_IFDIR
: (strcmp (value
, "file") == 0 ? S_IFREG
: (strcmp (value
, "link") == 0 ? S_IFLNK
: (strcmp (value
, "fifo") == 0 ? S_IFIFO
: (fprintf (stderr
, "warning: invalid 'type' attribute in \"%s\" line %d: '%s', defaulting to 'file'\n", buildfile_pathname
, lineno
, value
), S_IFREG
))))); }
else if (strncmp (token
, "prefix=", 7) == 0) { REACH_TOKEN_VALUE
(); strcpy (entry_parms.
prefix, (*value
== '/' ? value
+ 1 : value
)); } // skip possible leading slash in prefix
else if (strncmp (token
, "image=", 6) == 0) { REACH_TOKEN_VALUE
();
image_base = (uint32_t) read_integer (value); // read image base address
if ((sep
= strchr (value
, '-')) != NULL
) image_end
= (uint32_t) read_integer
(sep
+ 1); // if we have a dash, read optional image end (FIXME: check this value and produce an error in the relevant case. Not important.)
if ((sep
= strchr (value
, ',')) != NULL
) image_maxsize
= (uint32_t) read_integer
(sep
+ 1); // if we have a comma, read optional image max size
if ((sep
= strchr (value
, '=')) != NULL
) image_totalsize
= (uint32_t) read_integer
(sep
+ 1); // if we have an equal sign, read optional image padding size
if ((sep
= strchr (value
, '%')) != NULL
) image_align
= (uint32_t) read_integer
(sep
+ 1); // if we have a modulo sign, read optional image aligmnent
fprintf (stderr
, "info: image 0x%x-0x%x maxsize %d totalsize %d align %d\n", image_base
, image_end
, image_maxsize
, image_totalsize
, image_align
);
}
else if (strncmp (token
, "virtual=", 8) == 0) { REACH_TOKEN_VALUE
();
if ((bootfile_pathname == NULL) || (startupfile_pathname == NULL) || (kernelfile_pathname == NULL)) // HACK until I figure out how to re-create them
{
fprintf (stderr
, "error: creating bootable images require the --bootfile, --startupfile and --kernelfile command-line options in \"%s\" line %d\n", buildfile_pathname
, lineno
);
}
if ((sep
= strchr (value
, ',')) != NULL
) // do we have a comma separating (optional) processor and boot file name ?
{
*sep = 0;
strcpy (image_processor
, value
); // save processor
update_MKIFS_PATH (image_processor);
value = sep + 1;
}
//sprintf (image_bootfile, "%s/%s/boot/sys/%s.boot", QNX_TARGET, image_processor, value); // save preboot file name (FIXME: we should search in MKIFS_PATH instead of this. Not important.)
//strcpy (image_bootfile, bootfile_pathname); // FIXME: HACK
if (stat (bootfile_pathname, &stat_buf) != 0)
{
fprintf (stderr
, "error: unable to stat the boot file \"%s\" specified in \"%s\" line %d: %s\n", bootfile_pathname
, buildfile_pathname
, lineno
, strerror (errno
));
}
bootfile_size = stat_buf.st_size; // save preboot file size
fprintf (stderr
, "info: processor \"%s\" bootfile \"%s\"\n", image_processor
, bootfile_pathname
);
#if 1
// ######################################################################################################################################################################################################################################
// # FIXME: figure out how to re-create it: linker call involved
// # $ x86_64-pc-nto-qnx8.0.0-ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0xffff800000001000 --no-relax ${QNX_TARGET}/x86_64/boot/sys/procnto-smp-instr -o procnto-smp-instr.sym.UNSTRIPPED
// ######################################################################################################################################################################################################################################
if (read_filecontents (kernelfile_pathname, ".", &entry_parms.data) == NULL)
{
fprintf (stderr
, "fatal error: unable to read precompiled kernel file \"%s\" specified in --kernelfile argument\n", kernelfile_pathname
);
}
#else // nonworking
strcpy (path_on_buildhost
, "procnto-smp-instr");
#endif // nonworking
should_discard_inline_contents = true; // remember we already have data (so as to discard the inline block's contents)
}
else if (strncmp (token
, "mtime=", 6) == 0) { REACH_TOKEN_VALUE
(); if (strcmp (value
, "*") == 0) entry_parms.
mtime = UINT32_MAX
; else {
// value *must* be "YYYY-MM-DD-HH:MM:SS" by specification
memset (&utc_time
, 0, sizeof (utc_time
));
if (sscanf (value
, "%u-%u-%u-%u:%u:%u", &utc_time.
tm_year, &utc_time.
tm_mon, &utc_time.
tm_mday, &utc_time.
tm_hour, &utc_time.
tm_min, &utc_time.
tm_sec) != 6)
{
fprintf (stderr
, "warning: syntax error in \"%s\" line %d: mtime specification not in YYYY-MM-DD-HH:MM:SS format (skipping)\n", buildfile_pathname
, lineno
);
continue; // invalid attribute block, skip line
}
utc_time.tm_mon--; // convert month from [1-12] to [0-11]
entry_parms.
mtime = (uint32_t) mktime (&utc_time
);
}
}
else if (strcmp (token
, "+script") == 0) {
entry_parms.is_compiled_bootscript = true;
entry_parms.
data.
bytes = malloc (sizeof (INITIAL_STARTUP_SCRIPT
) - 1);
WELLMANNERED_ASSERT (entry_parms.data.bytes, "out of memory");
memcpy (entry_parms.
data.
bytes, INITIAL_STARTUP_SCRIPT
, sizeof (INITIAL_STARTUP_SCRIPT
) - 1); // FIXME: HACK until the script compiler is implemented
entry_parms.data.len = sizeof (INITIAL_STARTUP_SCRIPT) - 1;
should_discard_inline_contents = true; // remember we already have data (so as to discard the inline block's contents)
}
else if (strcmp (token
, "-script") == 0) entry_parms.
is_compiled_bootscript = false;
else if (strcmp (token
, "+followlink") == 0) entry_parms.
should_follow_symlinks = true;
else if (strcmp (token
, "-followlink") == 0) entry_parms.
should_follow_symlinks = false;
else if (strcmp (token
, "+autolink") == 0) entry_parms.
should_autosymlink_dylib = true;
else if (strcmp (token
, "-autolink") == 0) entry_parms.
should_autosymlink_dylib = false;
else fprintf (stderr
, "warning: unimplemented attribute in \"%s\" line %d: '%s'\n", buildfile_pathname
, lineno
, token
);
#undef REACH_TOKEN_VALUE
token
= strtok (NULL
, RECORD_SEP_STR
); // proceed to next attribute token
}
line_ptr++; // reach the next character
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip leading spaces
// are we at the end of the line ? if so, it means the attribute values that are set should become the default
if ((*line_ptr == 0) || (*line_ptr == '#'))
{
#define APPLY_DEFAULT_ATTR_NUM(attr,descr,fmt) do { if (entry_parms.attr != default_parms.attr) { \
fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
default_parms.attr = entry_parms.attr; \
} } while (0)
#define APPLY_DEFAULT_ATTR_STR(attr,descr,fmt) do { if (strcmp (entry_parms.attr, default_parms.attr) != 0) { \
fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
strcpy (default_parms.attr, entry_parms.attr); \
} } while (0)
APPLY_DEFAULT_ATTR_NUM (dperms, "directory permissions", "0%o");
APPLY_DEFAULT_ATTR_NUM (perms, "file permissions", "0%o");
APPLY_DEFAULT_ATTR_NUM (uid, "owner ID", "%d");
APPLY_DEFAULT_ATTR_NUM (gid, "group ID", "%d");
APPLY_DEFAULT_ATTR_NUM (st_mode, "inode type", "0%o");
APPLY_DEFAULT_ATTR_STR (prefix, "prefix", "\"%s\"");
APPLY_DEFAULT_ATTR_NUM (is_compiled_bootscript, "compiled script state", "%d");
APPLY_DEFAULT_ATTR_NUM (should_follow_symlinks, "symlink resolution", "%d");
APPLY_DEFAULT_ATTR_NUM (should_autosymlink_dylib, "dylib canonical name symlinking", "%d");
#undef APPLY_DEFAULT_ATTR_STR
#undef APPLY_DEFAULT_ATTR_NUM
continue; // end of line reached, proceed to the next line
}
// end of attributes parsing
} // end of "this line starts with an attributes block"
// there's data in this line. We expect a filename in the IFS. Read it and unescape escaped characters
string_len
= sprintf (path_in_ifs
, "%s", entry_parms.
prefix);
while ((string_len > 0) && (path_in_ifs[string_len - 1] == '/'))
string_len--; // chop off any trailing slashes from prefix
write_ptr = &path_in_ifs[string_len];
*write_ptr++ = '/'; // add ONE trailing slash
specifiedpathname_start = write_ptr; // remember the specified pathname will start here
is_quoted_context = (*line_ptr == '"');
if (is_quoted_context)
line_ptr++; // skip a possible initial quote
if (*line_ptr == '/')
{
fprintf (stderr
, "warning: paths in the IFS file should not begin with a leading '/' in \"%s\" line %d\n", buildfile_pathname
, lineno
);
line_ptr++; // consistency check: paths in the IFS should not begin with a '/'
}
while ((*line_ptr
!= 0) && ((!is_quoted_context
&& (*line_ptr
!= '=') && !isspace (*line_ptr
)) || (is_quoted_context
&& (*line_ptr
== '"'))))
{
if (*line_ptr == '\\')
{
line_ptr++;
*write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
}
else
*write_ptr++ = *line_ptr;
line_ptr++;
}
*write_ptr = 0; // terminate the string
if (is_quoted_context && (*line_ptr == '"'))
line_ptr++; // skip a possible final quote
// we reached a space OR an equal sign
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip optional spaces after the filename in the IFS
// do we have an equal sign ?
if (*line_ptr == '=') // we must be creating either a directory or a file, do we have an equal sign ?
{
line_ptr++; // skip the equal sign
while ((*line_ptr
!= 0) && isspace (*line_ptr
))
line_ptr++; // skip optional spaces after the equal sign
if (*line_ptr == 0)
{
fprintf (stderr
, "warning: syntax error in \"%s\" line %d: missing data specification after equal sign (skipping)\n", buildfile_pathname
, lineno
);
continue; // invalid symlink specification, skip line
}
// read the host system's path, it may be either a path or a contents definition. Is it a content definition ?
if (*line_ptr == '{')
{
allocated_size = 0;
line_ptr++; // skip the leading content definition
is_escaped_char = false;
for (;;)
{
read_char
= fgetc (buildfile_fp
);
if (read_char == EOF)
{
fprintf (stderr
, "fatal error: syntax error in \"%s\" line %d: unterminated contents block (end of file reached)\n", buildfile_pathname
, lineno
);
exit (1); // invalid contents block
}
else if ((read_char == '\\') && !is_escaped_char)
is_escaped_char = true; // remember the next char is escaped
else if ((read_char == '}') && !is_escaped_char)
break; // found an unescaped closing bracked, stop parsing
else
{
is_escaped_char = false; // any other char, meaning the next one will not be escaped
if (!should_discard_inline_contents) // only store the contents if we do NOT know the data yet
{
if (entry_parms.data.len == allocated_size) // reallocate in 4 kb blocks
{
reallocated_ptr
= realloc (entry_parms.
data.
bytes, allocated_size
+ 4096);
WELLMANNERED_ASSERT (reallocated_ptr != NULL, "out of memory");
entry_parms.data.bytes = reallocated_ptr;
allocated_size += 4096;
}
entry_parms.data.bytes[entry_parms.data.len++] = read_char;
}
if (read_char == '\n')
lineno++; // update line counter as we parse the inline content
}
} // end for
}
else // not a content definition between { brackets }, must be either a pathname on the build host, or the target of a symlink
{
is_quoted_context = (*line_ptr == '"');
if (is_quoted_context)
line_ptr++; // skip a possible initial quote
specifiedpathname_start = line_ptr; // remember where the specified pathname starts
write_ptr = line_ptr; // now unescape all characters
while ((*line_ptr
!= 0) && ((!is_quoted_context
&& !isspace (*line_ptr
)) || (is_quoted_context
&& (*line_ptr
== '"'))))
{
if (*line_ptr == '\\')
{
line_ptr++;
*write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
}
else
*write_ptr++ = *line_ptr;
line_ptr++;
}
*write_ptr = 0; // terminate the string
if (is_quoted_context && (*line_ptr == '"'))
line_ptr++; // skip a possible final quote
if (S_ISLNK (entry_parms.st_mode)) // are we storing a symlink ?
{
entry_parms.data.bytes = strdup (specifiedpathname_start); // if so, store the symlink target as the dirent's blob data
WELLMANNERED_ASSERT (entry_parms.data.bytes != NULL, "out of memory");
entry_parms.
data.
len = strlen (specifiedpathname_start
);
}
else // it's a build host filesystem path
strcpy (path_on_buildhost
, line_ptr
); // the path on the build host is given after the equal sign
}
}
else // no equal sign, meaning the file will have the same name on the build host filesystem
{
// consistency check: symlinks MUST have an equal sign
if (entry_parms.st_mode == S_IFLNK)
{
fprintf (stderr
, "warning: syntax error in \"%s\" line %d: missing equal sign and symlink target (skipping)\n", buildfile_pathname
, lineno
);
continue; // invalid symlink specification, skip line
}
strcpy (path_on_buildhost
, specifiedpathname_start
); // the path on the build host is the one specified
sep
= strrchr (specifiedpathname_start
, '/');
if (sep != NULL)
memmove (specifiedpathname_start
, sep
+ 1, strlen (sep
+ 1) + 1); // the path in the IFS will be the BASENAME of the path specified (after the prefix)
}
// now add this entry to the image filesystem
if (S_ISDIR (entry_parms.st_mode))
entry_parms.st_mode |= entry_parms.dperms;
else if (S_ISLNK (entry_parms.st_mode))
entry_parms.st_mode |= 0777; // NOTE: mkifs sets symlink permissions to rwxrwxrwx !?
else // file or device node
entry_parms.st_mode |= entry_parms.perms;
add_fsentry (&fsentries, &fsentry_count, &entry_parms, path_in_ifs, path_on_buildhost); // and add filesystem entry
if (entry_parms.data.bytes != NULL)
free (entry_parms.
data.
bytes); // if blob data was allocated, free it
}
// write IFS file
fp
= fopen (ifs_pathname
, "w+b");
if (fp == NULL)
{
fprintf (stderr
, "error: failed to open \"%s\" for writing (%s)\n", ifs_pathname
, strerror (errno
));
}
// do we have a startup file ? if so, this is a bootable image
if (startupfile_pathname != NULL)
{
// write boot prefix
// ######################################################################################################################################################################################################################################
// # FIXME: figure out how to re-create it
// ######################################################################################################################################################################################################################################
fwrite_filecontents (bootfile_pathname, fp);
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
startupheader_offset
= ftell (fp
); // save startup header offset
memset (&startup_header
, 0, sizeof (startup_header
)); // prepare startup header
memcpy (startup_header.
signature, "\xeb\x7e\xff\x00", 4); // startup header signature, i.e. 0xff7eeb
startup_header.version = 1;
startup_header.flags1 = STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2; // flags, 0x21 (STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2)
startup_header.header_size = sizeof (startup_header); // 256
if (strcmp (image_processor
, "x86_64") == 0)
startup_header.machine = ELF_MACHINE_X86_64; // EM_X86_64
else if (strcmp (image_processor
, "aarch64le") == 0)
startup_header.machine = ELF_MACHINE_AARCH64; // EM_AARCH64
else
{
fprintf (stderr
, "fatal error: unsupported processor type '%s' found in build file \"%s\"\n", image_processor
, buildfile_pathname
);
}
startup_header.startup_vaddr = image_base + (uint32_t) startupfile_ep_from_imagebase; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
startup_header.image_paddr = image_base + (uint32_t) bootfile_size; // F[IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
startup_header.ram_paddr = startup_header.image_paddr; // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
startup_header.ram_size = WILL_BE_FILLED_LATER; // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee (40686)
startup_header.startup_size = WILL_BE_FILLED_LATER; // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
startup_header.stored_size = WILL_BE_FILLED_LATER; // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
startup_header.imagefs_size = WILL_BE_FILLED_LATER; // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
startup_header.preboot_size = (uint16_t) bootfile_size; // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
// ######################################################################################################################################################################################################################################
// # FIXME: figure out how to re-create it:
// first: open "startup-x86" ELF file,
// lookup section headers table (there is no program headers table in this one)
// FIXME: figure out something in there where the result is 0x1401030 !!!
// then: call the linker: ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0x1401030 --no-relax ${QNX_TARGET}/x86_64/boot/sys/startup-x86 -o startup.bin.UNSTRIPPED
// then: parse resulting ELF file, take all program segments and concatenate them --> this is the blob (FIXME: wrong?)
// ######################################################################################################################################################################################################################################
#if 0 // nonworking
{
buffer_t startupfile;
elf_section_header_t *shdr_text;
size_t segment_len;
FILE
*control_fp
= fopen ("startup.bin.MYSTRIPPED", "wb");
if (read_filecontents ("startup.bin.UNSTRIPPED", MKIFS_PATH, &startupfile) == NULL)
{
fprintf (stderr
, "fatal error: couldn't read startup-x86\n");
}
elf = (elf_header_t *) startupfile.bytes; // quick access to ELF header
table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
for (table_index = 0; table_index < table_count; table_index++) // cycle through program headers
{
phdr = (elf_program_header_t *) &startupfile.bytes[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
segment_len = ELF_GET_NUMERIC (elf, phdr, size_in_file);
fwrite_or_die (&startupfile.bytes[ELF_GET_NUMERIC (elf, phdr, file_offset)], 1, segment_len, fp); // dump program segment
fwrite_or_die (&startupfile.bytes[ELF_GET_NUMERIC (elf, phdr, file_offset)], 1, segment_len, control_fp); // dump program segment
while (segment_len % 4096 > 0)
{
segment_len++;
}
}
free (startupfile.
bytes);
}
#else // working
fwrite_filecontents (startupfile_pathname, fp); // write startup code from blob file
#endif // working
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
startuptrailer_offset
= ftell (fp
); // save startup trailer offset
fwrite_or_die (&startup_trailer, 1, sizeof (startup_trailer), fp); // write startup trailer
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
}
imageheader_offset
= ftell (fp
); // save image header offset
memset (&image_header
, 0, sizeof (image_header
)); // prepare image header
memcpy (&image_header.
signature, "imagefs", 7); // image filesystem signature, i.e. "imagefs"
image_header.flags = IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS; // endian neutral flags, 0x1c (IMAGE_FLAGS_TRAILER_V2 |Â IMAGE_FLAGS_SORTED |Â IMAGE_FLAGS_INO_BITS)
image_header.image_size = WILL_BE_FILLED_LATER; // size from header to end of trailer (here 0xca6fe0 or 13 266 912)
image_header.hdr_dir_size = WILL_BE_FILLED_LATER; // size from header to last dirent (here 0x12b8 or 4792)
image_header.dir_offset = sizeof (image_header); // offset from header to first dirent (here 0x5c or 92)
image_header.boot_ino[0] = image_kernel_ino; // inode of files for bootstrap p[ro?]g[ra?]ms (here 0xa0000002, 0, 0, 0)
image_header.script_ino = image_bootscript_ino; // inode of file for script (here 3)
image_header.mountpoint[0] = '/'; // default mountpoint for image ("/" + "\0\0\0")
fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
// write image directory (with the wrong file offsets)
imgdir_offset
= ftell (fp
);
imgdir_size = 0; // measure image dir size on the fly
for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
imgdir_size += fwrite_fsentry (&fsentries[fsentry_index], fp); // NOTE: padding is handled in this function
fwrite_or_die ("\0\0\0\0", 1, 4, fp); // there seems to be 4 bytes of padding after the image directory
imgdir_size += 4;
// is it a bootable image with a kernel file ?
if ((startupfile_pathname != NULL) && (kernelfile_pathname != NULL))
{
// start by writing the startup script data blob, if we have one
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
if (fsentries[fsentry_index].header.ino == image_bootscript_ino)
break; // locate the startup script directory entry
if (fsentry_index < fsentry_count) // found it ?
{
curr_offset
= ftell (fp
);
if (curr_offset + fsentries[fsentry_index].u.file.size >= kernelfile_offset)
{
fprintf (stderr
, "error: the compiled startup script is too big (%zd bytes, max is %zd) to fit at current offset %zd\n", (size_t) fsentries
[fsentry_index
].
u.
file.
size, kernelfile_offset
- curr_offset
, curr_offset
);
}
fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
// now write the filesystem entries that may fit before the kernel
for (;;)
{
curr_offset
= ftell (fp
); // see where we are
available_space = kernelfile_offset - curr_offset; // measure the available space
// look for the biggest one that can fit
largest_index = 0;
largest_size = 0;
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
{
if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written || (fsentries[fsentry_index].u.file.size > available_space))
continue; // skip all entries that don't have a separate data block, those who were written already and those that wouldn't fit
if (fsentries[fsentry_index].u.file.size > largest_size)
{
largest_size = fsentries[fsentry_index].u.file.size;
largest_index = fsentry_index;
}
}
if (largest_size == 0)
break; // found none ? if so, stop searching
fsentries[largest_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
// is the file we're storing a preprocessed ELF file ?
if (fsentries[largest_index].header.ino & IFS_INO_PROCESSED_ELF)
{
elf = (elf_header_t *) fsentries[largest_index].u.file.UNSAVED_databuf; // quick access to ELF header
table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
for (table_index = 0; table_index < table_count; table_index++)
{
phdr = (elf_program_header_t *) &fsentries[largest_index].u.file.UNSAVED_databuf[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
corrective_offset = ELF_GET_NUMERIC (elf, phdr, virtual_addr) - ELF_GET_NUMERIC (elf, phdr, file_offset);
if (ELF_GET_NUMERIC (elf, phdr, size_in_memory) != 0) // only patch the physical address of segments that have an actual size in memory
ELF_SET_NUMERIC (elf, phdr, physical_addr, ELF_GET_NUMERIC (elf, phdr, physical_addr) + 0x1400000 + curr_offset - corrective_offset); // patch the physical address member of the program header table
}
}
fwrite_or_die (fsentries[largest_index].u.file.UNSAVED_databuf, 1, fsentries[largest_index].u.file.size, fp); // write file data blob
fsentries[largest_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
fprintf (stderr
, "Current offset: 0x%zx\n", curr_offset
);
fprintf (stderr
, "Kernel file offset: 0x%zx\n", kernelfile_offset
);
PAD_OUTFILE_TO (kernelfile_offset); // reach the kernel offset
// now write the QNX kernel
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
if (fsentries[fsentry_index].header.ino == image_kernel_ino)
break; // locate the kernel directory entry (can't fail)
curr_offset
= ftell (fp
); // see where we are
fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write kernel file data blob
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
// then write all the other files by increasing inode number: ELF files first
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
{
if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written // filter out anything that's not a file, and anything that's been already written
|| (fsentries
[fsentry_index
].
u.
file.
size < 4) || (memcmp (fsentries
[fsentry_index
].
u.
file.
UNSAVED_databuf, ELF_MAGIC_STR
, 4) != 0)) // filter out anything that's not an ELF file
continue; // skip all entries that don't have a separate data block and those who were written already
curr_offset
= ftell (fp
);
fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
// is the file we're storing a preprocessed ELF file ?
if (fsentries[fsentry_index].header.ino & IFS_INO_PROCESSED_ELF)
{
elf = (elf_header_t *) fsentries[fsentry_index].u.file.UNSAVED_databuf; // quick access to ELF header
table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
for (table_index = 0; table_index < table_count; table_index++)
{
phdr = (elf_program_header_t *) &fsentries[fsentry_index].u.file.UNSAVED_databuf[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
corrective_offset = ELF_GET_NUMERIC (elf, phdr, virtual_addr) - ELF_GET_NUMERIC (elf, phdr, file_offset);
if (ELF_GET_NUMERIC (elf, phdr, size_in_memory) != 0) // only patch the physical address of segments that have an actual size in memory
ELF_SET_NUMERIC (elf, phdr, physical_addr, ELF_GET_NUMERIC (elf, phdr, physical_addr) + 0x1400000 + curr_offset - corrective_offset); // patch the physical address member of the program header table
}
}
fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++) // other files (non-ELF, e.g. scripts and data files) last
{
if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written) // filter out anything that's not a file, and anything that's been already written
continue; // skip all entries that don't have a separate data block and those who were written already
curr_offset
= ftell (fp
);
fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
}
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
// finally, write trailer (including empty checksum)
imagetrailer_offset
= ftell (fp
); // save image trailer offset
fwrite_or_die (&image_trailer, 1, sizeof (image_trailer), fp); // write image trailer
PAD_OUTFILE_TO
(ROUND_TO_UPPER_MULTIPLE
(ftell (fp
), image_align
)); // pad as necessary
// if we need to pad it to a specific length, do so
PAD_OUTFILE_TO (image_totalsize);
// see if we are past the image max size, in which case it's an error
if (final_size > image_maxsize)
{
fprintf (stderr
, "error: image file \"%s\" size %zd exceeds max size (%zd)\n", ifs_pathname
, final_size
, (size_t) image_maxsize
);
}
// do we have a startup file ? if so, this is a bootable image
if (startupfile_pathname != NULL)
{
// rewrite startup header with final values
fseek_or_die (fp, startupheader_offset, SEEK_SET);
startup_header.startup_size = (uint32_t) (imageheader_offset - startupheader_offset); // size of startup header up to image header
startup_header.imagefs_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
startup_header.ram_size = (uint32_t) (final_size - startupheader_offset);
startup_header.stored_size = (uint32_t) (final_size - startupheader_offset);
fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
}
// rewrite image header with final values
fseek_or_die (fp, imageheader_offset, SEEK_SET);
image_header.image_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
image_header.hdr_dir_size = sizeof (image_header) + (uint32_t) imgdir_size; // size from start of image header to last dirent
fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
// rewrite image directory with final offset values
fseek_or_die (fp, imgdir_offset, SEEK_SET);
if (image_header.flags & IMAGE_FLAGS_SORTED)
qsort (&fsentries
[1], fsentry_count
- 1, sizeof (fsentry_t
), fsentry_compare_pathnames_cb
); // sort the filesystem entries by pathname
for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
fwrite_fsentry (&fsentries[fsentry_index], fp);
fclose (fp
); // ensure everything is flushed
// ALL CHECKSUMS AT THE VERY END
read_filecontents (ifs_pathname, ".", &blob);
WELLMANNERED_ASSERT
(blob.
bytes != NULL
, "failed to open IFS file for checksumming: %s", strerror (errno
));
// do we have a startup file ? if so, this is a bootable image
if (startupfile_pathname != NULL)
{
// compute SHA-512 checksum and V1 checksum of startup block
if ( ( (startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|| (!(startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
else
is_foreign_endianness = false; // else this header is for the same endianness as us
SHA512 (&blob.bytes[startupheader_offset], startuptrailer_offset - startupheader_offset, &blob.bytes[startuptrailer_offset]); // compute SHA512 checksum and write it in place in blob data
checksum = update_checksum (&blob.bytes[startupheader_offset], startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness); // compute old checksum
memcpy (&blob.
bytes[startuptrailer_offset
+ SHA512_DIGEST_LENGTH
], &checksum
, 4); // and write it in place
}
// compute SHA-512 checksum and V1 checksum of image block
if ( ( (image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|| (!(image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
else
is_foreign_endianness = false; // else this header is for the same endianness as us
SHA512 (&blob.bytes[imageheader_offset], imagetrailer_offset - imageheader_offset, &blob.bytes[imagetrailer_offset]); // compute SHA512 checksum and write it in place in blob data
checksum = update_checksum (&blob.bytes[imageheader_offset], imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness); // compute old checksum
memcpy (&blob.
bytes[imagetrailer_offset
+ SHA512_DIGEST_LENGTH
], &checksum
, 4); // and write it in place
// now rewrite IFS with the correct checksums
fp
= fopen (ifs_pathname
, "wb");
WELLMANNERED_ASSERT
(fp
, "failed to reopen IFS file for checksumming: %s", strerror (errno
));
fwrite_or_die (blob.bytes, 1, blob.len, fp);
// finished, exit with a success code
}
static int dump_ifs_info (const char *ifs_pathname, bool want_everything)
{
#define hex_printf(buf,size,...) do { \
if (want_everything || ((size) <= 16 * 1024)) /* only print when it's not too big (up to 16 kb) */\
hex_fprintf (stdout, (buf), (size), 16, __VA_ARGS__); /* use 16 columns in hex output to stdout */ \
else { \
printf (__VA_ARGS__); \
hex_fprintf (stdout, (buf), 1024, 16, " first kilobyte:\n"); \
} \
} while (0)
#define BINARY(x) binary ((x), '-', 'x')
static const char *startupheader_flags1_strings[8] = {
"VIRTUAL", // bit 0
"BIGENDIAN", // bit 1
"COMPRESS_BIT1", // bit 2
"COMPRESS_BIT2", // bit 3
"COMPRESS_BIT3", // bit 4
"TRAILER_V2", // bit 5
"", // bit 6
"", // bit 7
};
static const char *imageheader_flags_strings[8] = {
"BIGENDIAN", // bit 0
"READONLY", // bit 1
"INO_BITS", // bit 2
"SORTED", // bit 3
"TRAILER_V2", // bit 4
"", // bit 5
"", // bit 6
"", // bit 7
};
startup_header_t *startup_header = NULL;
size_t startupheader_offset = 0;
startup_trailer_v1_t *startup_trailer_v1 = NULL;
startup_trailer_v2_t *startup_trailer_v2 = NULL;
size_t startuptrailer_offset = 0;
image_header_t *image_header = NULL;
size_t imageheader_offset = 0;
image_trailer_v1_t *image_trailer_v1 = NULL;
image_trailer_v2_t *image_trailer_v2 = NULL;
size_t imagetrailer_offset = 0;
fsentry_t **fsentries = NULL; // mallocated
size_t fsentry_count = 0;
fsentry_t *current_fsentry = NULL;
char recorded_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
char computed_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
size_t startupfile_blobsize = 0;
void *reallocated_ptr;
bool is_foreign_endianness;
size_t bootfile_blobsize = 0;
size_t current_offset;
size_t fsentry_index;
size_t nearest_distance;
size_t nearest_index;
size_t byte_index;
uint32_t recorded_checksum;
uint32_t computed_checksum;
buffer_t file;
time_t mtime;
// open and read IFS file
if (read_filecontents (ifs_pathname, ".", &file) == NULL)
{
fprintf (stderr
, "error: can't open \"%s\" for reading: %s\n", ifs_pathname
, strerror (errno
));
return (1);
}
printf ("QNX In-kernel Filesystem analysis produced by ifstool version " VERSION_FMT_YYYYMMDD
"\n", VERSION_ARG_YYYYMMDD
);
printf ("IFS file \"%s\" - size 0x%zx (%zd) bytes\n", ifs_pathname
, file.
len, file.
len);
// parse file from start to end
current_offset = 0;
for (;;)
{
// does a startup header start here ?
if ((current_offset
+ sizeof (startup_header_t
) < file.
len) && (memcmp (&file.
bytes[current_offset
], "\xeb\x7e\xff\x00", 4) == 0))
{
startupheader_offset = current_offset;
startup_header = (startup_header_t *) &file.bytes[startupheader_offset];
// layout:
// [STARTUP HEADER]
// (startup file blob)
// [STARTUP TRAILER v1 or v2]
printf ("Startup header at offset 0x%zx (%zd):\n", current_offset
, current_offset
);
printf (" signature = %02x %02x %02x %02x - good\n", startup_header
->signature
[0], startup_header
->signature
[1], startup_header
->signature
[2], startup_header
->signature
[3]);
printf (" version = 0x%04x (%d) - %s\n", startup_header
->version
, startup_header
->version
, (startup_header
->version
== 1 ? "looks good" : "???"));
printf (" flags1 = 0x%02x (%s)\n", startup_header
->flags1
, describe_uint8
(startup_header
->flags1
, startupheader_flags1_strings
));
printf (" flags2 = 0x%02x (%s) - %s\n", startup_header
->flags2
, BINARY
(startup_header
->flags2
), (startup_header
->flags2
== 0 ? "looks good" : "???"));
printf (" header_size = 0x%04x (%d) - %s\n", startup_header
->header_size
, startup_header
->header_size
, (startup_header
->header_size
== sizeof (startup_header_t
) ? "looks good" : "BAD"));
printf (" machine = 0x%04x (%d) - %s\n", startup_header
->machine
, startup_header
->machine
, (startup_header
->machine
== ELF_MACHINE_X86_64
? "x86_64" : (startup_header
->machine
== ELF_MACHINE_AARCH64
? "aarch64" : "unknown")));
printf (" startup_vaddr = 0x%08x (%d) - virtual address to transfer to after IPL is done\n", startup_header
->startup_vaddr
, startup_header
->startup_vaddr
);
printf (" paddr_bias = 0x%08x (%d) - value to add to physical addresses to get an indirectable pointer value\n", startup_header
->paddr_bias
, startup_header
->paddr_bias
);
printf (" image_paddr = 0x%08x (%d) - physical address of image\n", startup_header
->image_paddr
, startup_header
->image_paddr
);
printf (" ram_paddr = 0x%08x (%d) - physical address of RAM to copy image to (startup_size bytes copied)\n", startup_header
->ram_paddr
, startup_header
->ram_paddr
);
printf (" ram_size = 0x%08x (%d) - amount of RAM used by the startup program and executables in the fs\n", startup_header
->ram_size
, startup_header
->ram_size
);
printf (" startup_size = 0x%08x (%d) - size of startup (never compressed) - %s\n", startup_header
->startup_size
, startup_header
->startup_size
, (current_offset
+ sizeof (image_header_t
) + startup_header
->startup_size
+ (startup_header
->flags1
& STARTUP_HDR_FLAGS1_TRAILER_V2
? sizeof (image_trailer_v2_t
) : sizeof (image_trailer_v1_t
)) < file.
len ? "looks good" : "BAD (IFS file too short)"));
printf (" stored_size = 0x%08x (%d) - size of entire image - %s\n", startup_header
->stored_size
, startup_header
->stored_size
, (startup_header
->stored_size
== startup_header
->ram_size
? "looks good" : "???"));
printf (" imagefs_paddr = 0x%08x (%d) - set by IPL when startup runs - %s\n", startup_header
->imagefs_paddr
, startup_header
->imagefs_paddr
, (startup_header
->imagefs_paddr
== 0 ? "looks good" : "??? should be zero"));
printf (" imagefs_size = 0x%08x (%d) - size of uncompressed imagefs\n", startup_header
->imagefs_size
, startup_header
->imagefs_size
);
printf (" preboot_size = 0x%04x (%d) - size of loaded before header - %s\n", startup_header
->preboot_size
, startup_header
->preboot_size
, (startup_header
->preboot_size
== current_offset
? "looks good" : "???"));
printf (" zero0 = 0x%04x (%d) - zeros - %s\n", startup_header
->zero0
, startup_header
->zero0
, (startup_header
->zero0
== 0 ? "looks good" : "??? should be zero"));
printf (" zero[0] = 0x%08x (%d) - zeros - %s\n", startup_header
->zero
[0], startup_header
->zero
[0], (startup_header
->zero
[0] == 0 ? "looks good" : "??? should be zero"));
printf (" addr_off = 0x%016llx (%lld) - offset for startup_vaddr and [image|ram|imagefs]_paddr - %s\n", startup_header
->addr_off
, startup_header
->addr_off
, (startup_header
->addr_off
== 0 ? "looks good" : "??? should be zero"));
hex_printf ((uint8_t *) &startup_header->info[0], sizeof (startup_header->info), " info[48] =\n");
// validate that the file can contain up to the startup trailer
if (current_offset + startup_header->startup_size > file.len)
{
printf ("WARNING: this IFS file is corrupted (startup trailer extends past end of file)\n");
goto endofdata;
}
// check if this endianness is ours
if ( ( (startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|| (!(startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
else
is_foreign_endianness = false; // else this header is for the same endianness as us
// locate the right startup trailer at the right offset
if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
{
startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v2_t);
startup_trailer_v2 = (startup_trailer_v2_t *) &file.bytes[startuptrailer_offset];
startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v2_t);
}
else // old V1 trailer
{
startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v1_t);
startup_trailer_v1 = (startup_trailer_v1_t *) &file.bytes[startuptrailer_offset];
startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v1_t);
}
current_offset += sizeof (startup_header_t); // jump over the startup header and reach the startup blob
printf ("Startup blob at offset 0x%zx (%zd):\n", current_offset
, current_offset
);
printf (" size 0x%zx (%zd) bytes\n", startupfile_blobsize
, startupfile_blobsize
);
printf (" checksum %d\n", update_checksum
(&file.
bytes[current_offset
], startupfile_blobsize
, is_foreign_endianness
));
current_offset += startupfile_blobsize; // jump over the startup blob and reach the startup trailer
printf ("Startup trailer at offset 0x%zx (%zd) - version %d:\n", current_offset
, current_offset
, (startup_header
->flags1
& STARTUP_HDR_FLAGS1_TRAILER_V2
? 2 : 1));
if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
{
for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
sprintf (&recorded_sha512
[2 * byte_index
], "%02x", startup_trailer_v2
->sha512
[byte_index
]);
strcpy (computed_sha512
, SHA512
(startup_header
, startuptrailer_offset
- startupheader_offset
, NULL
));
recorded_checksum = startup_trailer_v2->cksum;
computed_checksum = update_checksum (startup_header, startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness);
printf (" sha512([0x%zx-0x%zx[) = %s - %s\n", startupheader_offset
, startuptrailer_offset
, recorded_sha512
, (strcasecmp
(computed_sha512
, recorded_sha512
) == 0 ? "GOOD" : "BAD"));
printf (" cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset
, startuptrailer_offset
+ SHA512_DIGEST_LENGTH
, recorded_checksum
, (computed_checksum
== recorded_checksum
? "GOOD" : "BAD"));
if (strcasecmp (computed_sha512, recorded_sha512) != 0)
printf ("Computed SHA-512: %s\n", computed_sha512
);
if (computed_checksum != recorded_checksum)
printf ("Computed cksum: 0x%08x\n", computed_checksum
);
}
else // old v1 trailer
{
recorded_checksum = startup_trailer_v1->cksum;
computed_checksum = update_checksum (startup_header, sizeof (startup_header) + startupfile_blobsize, is_foreign_endianness);
printf (" cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset
, startuptrailer_offset
, recorded_checksum
, (computed_checksum
== recorded_checksum
? "GOOD" : "BAD"));
if (computed_checksum != recorded_checksum)
printf ("Computed cksum: 0x%08x\n", computed_checksum
);
}
current_offset += (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? sizeof (startup_trailer_v2_t) : sizeof (startup_trailer_v1_t)); // now reach the next segment
}
// else does an image header start here ?
else if ((current_offset
+ sizeof (image_header_t
) < file.
len) && (memcmp (&file.
bytes[current_offset
], "imagefs", 7) == 0))
{
imageheader_offset = current_offset;
image_header = (image_header_t *) &file.bytes[imageheader_offset];
// layout:
// [IMAGE HEADER]
// [image directory entries]
// [smallest file blobs up to KERNEL]
// [padding]
// [KERNEL]
// [rest of file blobs]
// [IMAGE FOOTER]
printf ("Image header at offset %zx (%zd):\n", current_offset
, current_offset
);
printf (" signature = %02x %02x %02x %02x %02x %02x %02x (\"%.7s\") - good\n", image_header
->signature
[0], image_header
->signature
[1], image_header
->signature
[2], image_header
->signature
[3], image_header
->signature
[4], image_header
->signature
[5], image_header
->signature
[6], image_header
->signature
);
printf (" flags = 0x%02x (%s)\n", image_header
->flags
, describe_uint8
(image_header
->flags
, imageheader_flags_strings
));
printf (" image_size = 0x%08x (%d) - size from header to end of trailer - %s\n", image_header
->image_size
, image_header
->image_size
, (current_offset
+ image_header
->image_size
<= file.
len ? "looks good" : "BAD (IFS file too short)"));
printf (" hdr_dir_size = 0x%08x (%d) - size from header to last dirent - %s\n", image_header
->hdr_dir_size
, image_header
->hdr_dir_size
, (current_offset
+ image_header
->hdr_dir_size
< file.
len ? "looks good" : "BAD (IFS file too short)"));
printf (" dir_offset = 0x%08x (%d) - offset from header to first dirent - %s\n", image_header
->dir_offset
, image_header
->dir_offset
, (current_offset
+ image_header
->dir_offset
>= file.
len ? "BAD (IFS file too short)" : (image_header
->dir_offset
> image_header
->hdr_dir_size
? "BAD" : "looks good")));
printf (" boot_ino[4] = { 0x%08x, 0x%08x, 0x%08x, 0x%08x }\n", image_header
->boot_ino
[0], image_header
->boot_ino
[1], image_header
->boot_ino
[2], image_header
->boot_ino
[3]);
printf (" script_ino = 0x%08x (%d) - inode of compiled bootscript\n", image_header
->script_ino
, image_header
->script_ino
);
printf (" chain_paddr = 0x%08x (%d) - offset to next fs signature\n", image_header
->chain_paddr
, image_header
->chain_paddr
);
hex_printf ((uint8_t *) &image_header->spare[0], sizeof (image_header->spare), " spare[10] =\n");
printf (" mountflags = 0x%08x (%s %s %s %s)\n", image_header
->mountflags
, BINARY
(((uint8_t *) &image_header
->mountflags
)[0]), BINARY
(((uint8_t *) &image_header
->mountflags
)[1]), BINARY
(((uint8_t *) &image_header
->mountflags
)[2]), BINARY
(((uint8_t *) &image_header
->mountflags
)[3]));
printf (" mountpoint = \"%s\"\n", image_header
->mountpoint
);
// validate that the file can contain up to the image trailer
if (current_offset + image_header->image_size > file.len)
{
printf ("WARNING: this IFS file is corrupted (image trailer extends past end of file)\n");
goto endofdata;
}
// check if this endianness is ours
if ( ( (image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|| (!(image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
else
is_foreign_endianness = false; // else this header is for the same endianness as us
// locate the image trailer at the right offset
if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
{
imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v2_t);
image_trailer_v2 = (image_trailer_v2_t *) &file.bytes[imagetrailer_offset];
}
else // old V1 trailer
{
imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v1_t);
image_trailer_v1 = (image_trailer_v1_t *) &file.bytes[imagetrailer_offset];
}
current_offset += sizeof (image_header_t); // jump over the image header and reach the first directory entry
// there may be padding before the first directory entry
if (image_header->dir_offset - sizeof (image_header_t) > 0)
hex_printf (&file.bytes[current_offset], image_header->dir_offset - sizeof (image_header_t), "\n" "%zd padding bytes at offset 0x%zd (%zd):\n", image_header->dir_offset - sizeof (image_header_t), current_offset, current_offset);
current_offset += image_header->dir_offset - sizeof (image_header_t); // padding was processed, jump over it
// dump all directory entries until the last one included
fsentries = NULL;
fsentry_count = 0;
while (current_offset < imageheader_offset + image_header->hdr_dir_size)
{
current_fsentry = (fsentry_t *) &file.bytes[current_offset];
if (imageheader_offset + image_header->hdr_dir_size - current_offset < sizeof (current_fsentry->header))
break; // end padding reached
// stack up the filesystem entry pointers in an array while we read them
reallocated_ptr
= realloc (fsentries
, (fsentry_count
+ 1) * sizeof (fsentry_t
*));
WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
fsentries = reallocated_ptr;
fsentries[fsentry_count] = current_fsentry;
fsentry_count++;
printf ("Filesystem entry at offset 0x%zx (%zd) - last one at 0x%zd (%zd):\n", current_offset
, current_offset
, imageheader_offset
+ image_header
->hdr_dir_size
, imageheader_offset
+ image_header
->hdr_dir_size
);
printf (" size = 0x%04x (%d) - size of dirent - %s\n", current_fsentry
->header.
size, current_fsentry
->header.
size, ((current_fsentry
->header.
size > 0) && (current_offset
+ current_fsentry
->header.
size < file.
len) ? "looks good" : "BAD"));
printf (" extattr_offset = 0x%04x (%d) - %s\n", current_fsentry
->header.
extattr_offset, current_fsentry
->header.
extattr_offset, (current_fsentry
->header.
extattr_offset == 0 ? "no extattr" : "has extattr"));
printf (" ino = 0x%08x (%d) - inode number (%s%s%s%s)\n", current_fsentry
->header.
ino, current_fsentry
->header.
ino, (current_fsentry
->header.
ino & 0xE0000000 ? "is" : "nothing special"), (current_fsentry
->header.
ino & IFS_INO_PROCESSED_ELF
? " PROCESSED_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_RUNONCE_ELF
? " RUNONCE_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_BOOTSTRAP_EXE
? " BOOTSTRAP_EXE" : ""));
printf (" mode = 0x%08x (%d) - %s (0%o), POSIX permissions 0%o\n", current_fsentry
->header.
mode, current_fsentry
->header.
mode, (S_ISDIR
(current_fsentry
->header.
mode) ? "directory" : (S_ISREG
(current_fsentry
->header.
mode) ? "file" : (S_ISLNK
(current_fsentry
->header.
mode) ? "symlink" : "device"))), (current_fsentry
->header.
mode & 0xF000) >> 12, current_fsentry
->header.
mode & 0xFFF);
printf (" gid = 0x%08x (%d) - owner group ID%s\n", current_fsentry
->header.
gid, current_fsentry
->header.
gid, (current_fsentry
->header.
gid == 0 ? " (root)" : ""));
printf (" uid = 0x%08x (%d) - owner user ID%s\n", current_fsentry
->header.
uid, current_fsentry
->header.
uid, (current_fsentry
->header.
uid == 0 ? " (root)" : ""));
mtime = (time_t) current_fsentry->header.mtime;
printf (" mtime = 0x%08x (%d) - POSIX timestamp: %s", current_fsentry
->header.
mtime, current_fsentry
->header.
mtime, asctime (localtime (&mtime
))); // NOTE: asctime() provides the newline
if (S_ISDIR (current_fsentry->header.mode))
printf (" [DIRECTORY] path = \"%s\"\n", (char *) ¤t_fsentry
->u.
dir.
path); // convert from pointer to char array
else if (S_ISREG (current_fsentry->header.mode))
{
printf (" [FILE] offset = 0x%08x (%d) - %s\n", current_fsentry
->u.
file.
offset, current_fsentry
->u.
file.
offset, (imageheader_offset
+ current_fsentry
->u.
file.
offset < file.
len ? "looks good" : "BAD (IFS file too short)"));
printf (" [FILE] size = 0x%08x (%d) - %s\n", current_fsentry
->u.
file.
size, current_fsentry
->u.
file.
size, (imageheader_offset
+ current_fsentry
->u.
file.
offset + current_fsentry
->u.
file.
size < file.
len ? "looks good" : "BAD (IFS file too short)"));
printf (" [FILE] path = \"%s\"\n", (char *) ¤t_fsentry
->u.
file.
path); // convert from pointer to char array
}
else if (S_ISLNK (current_fsentry->header.mode))
{
printf (" [SYMLINK] sym_offset = 0x%04x (%d) - %s\n", current_fsentry
->u.
symlink.
sym_offset, current_fsentry
->u.
symlink.
sym_offset, (sizeof (current_fsentry
->header
) + 2 * sizeof (uint16_t) + current_fsentry
->u.
symlink.
sym_offset <= current_fsentry
->header.
size ? "looks good" : "BAD (dirent too short)"));
printf (" [SYMLINK] sym_size = 0x%04x (%d) - %s\n", current_fsentry
->u.
symlink.
sym_size, current_fsentry
->u.
symlink.
sym_size, (sizeof (current_fsentry
->header
) + 2 * sizeof (uint16_t) + current_fsentry
->u.
symlink.
sym_offset + current_fsentry
->u.
symlink.
sym_size <= current_fsentry
->header.
size ? "looks good" : "BAD (dirent too short)"));
printf (" [SYMLINK] path = \"%s\"\n", (char *) ¤t_fsentry
->u.
symlink.
path); // convert from pointer to char array
printf (" [SYMLINK] contents = \"%s\"\n", ((char *) ¤t_fsentry
->u.
symlink.
path) + current_fsentry
->u.
symlink.
sym_offset); // convert from pointer to char array
}
else // can only be a device
{
printf (" [DEVICE] dev = 0x%08x (%d)\n", current_fsentry
->u.
device.
dev, current_fsentry
->u.
device.
dev);
printf (" [DEVICE] rdev = 0x%08x (%d)\n", current_fsentry
->u.
device.
rdev, current_fsentry
->u.
device.
rdev);
printf (" [DEVICE] path = \"%s\"\n", (char *) ¤t_fsentry
->u.
device.
path); // convert from pointer to char array
}
if ((current_fsentry->header.size == 0) || (current_offset + current_fsentry->header.size >= file.len))
{
printf ("WARNING: this IFS file is corrupted (the size of this directory entry is invalid)\n");
goto endofdata;
}
current_offset += current_fsentry->header.size;
}
if (imageheader_offset + image_header->hdr_dir_size < current_offset + sizeof (current_fsentry->header))
hex_printf (&file.bytes[current_offset], imageheader_offset + image_header->hdr_dir_size - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + image_header->hdr_dir_size - current_offset, current_offset, current_offset);
current_offset += imageheader_offset + image_header->hdr_dir_size - current_offset; // padding was processed, jump over it
// at this point we are past the directory entries; what is stored now, up to and until the image trailer, is the files' data
if (fsentry_count > 0)
{
while (current_offset < imagetrailer_offset) // and parse data up to the trailer
{
nearest_distance = SIZE_MAX;
nearest_index = SIZE_MAX;
for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
if (S_ISREG (fsentries[fsentry_index]->header.mode) // if this directory entry a file (i.e. it has a data blob)...
&& (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset >= current_offset) // ... AND its data blob is still ahead of our current pointer ...
&& (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset < nearest_distance)) // ... AND it's the closest to us we've found so far
{
nearest_distance = imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset; // then remember it
nearest_index = fsentry_index;
}
if (nearest_index == SIZE_MAX)
break; // found no file ahead, which means we've parsed the whole file data area, so stop the loop so as to proceed to the image trailer
fsentry_index = nearest_index;
current_fsentry = fsentries[fsentry_index]; // quick access to closest fsentry
// there may be padding before the file data
if (imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset > 0)
hex_printf (&file.bytes[current_offset], imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, current_offset, current_offset);
current_offset += imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset; // padding was processed, jump over it
printf ("File data blob at offset 0x%zx (%zd):\n", current_offset
, current_offset
);
printf (" corresponding dirent index: %zd/%zd\n", fsentry_index
, fsentry_count
);
printf (" corresponding inode 0x%08x (%d) -%s%s%s%s\n", current_fsentry
->header.
ino, current_fsentry
->header.
ino, (current_fsentry
->header.
ino & 0xE0000000 ? "" : " nothing special"), (current_fsentry
->header.
ino & IFS_INO_PROCESSED_ELF
? " PROCESSED_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_RUNONCE_ELF
? " RUNONCE_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_BOOTSTRAP_EXE
? " BOOTSTRAP_EXE" : ""));
printf (" corresponding path: \"%s\"\n", (char *) ¤t_fsentry
->u.
file.
path); // convert from pointer to char array
printf (" size 0x%zx (%zd) bytes\n", (size_t) current_fsentry
->u.
file.
size, (size_t) current_fsentry
->u.
file.
size);
if (current_offset + 4 < file.len)
hex_printf (&file.bytes[current_offset], current_fsentry->u.file.size, " data:\n");
if (current_offset + current_fsentry->u.file.size < file.len)
printf (" checksum %d\n", update_checksum
(&file.
bytes[current_offset
], current_fsentry
->u.
file.
size, is_foreign_endianness
));
else
{
printf ("WARNING: this IFS file is corrupted (the size of this file data extends past the IFS size)\n");
goto endofdata;
}
current_offset += current_fsentry->u.file.size; // now jump over this file's data
}
}
// ad this point we're past the last file data, there may be padding before the image trailer
if (imagetrailer_offset - current_offset > 0)
hex_printf (&file.bytes[current_offset], imagetrailer_offset - current_offset, "\n" "%zd padding bytes at offset %zx (%zd):\n", imagetrailer_offset - current_offset, current_offset, current_offset);
current_offset += imagetrailer_offset - current_offset; // padding was processed, jump over it
printf ("Image trailer at offset 0x%zx (%zd) - version %d:\n", current_offset
, current_offset
, (image_header
->flags
& IMAGE_FLAGS_TRAILER_V2
? 2 : 1));
if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
{
for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
sprintf (&recorded_sha512
[2 * byte_index
], "%02x", image_trailer_v2
->sha512
[byte_index
]);
strcpy (computed_sha512
, SHA512
(image_header
, imagetrailer_offset
- imageheader_offset
, NULL
));
recorded_checksum = image_trailer_v2->cksum;
computed_checksum = update_checksum (image_header, imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness);
printf (" sha512([0x%zx-0x%zx[) = %s - %s\n", imageheader_offset
, imagetrailer_offset
, recorded_sha512
, (strcasecmp
(computed_sha512
, recorded_sha512
) == 0 ? "GOOD" : "BAD"));
printf (" cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset
, imagetrailer_offset
+ SHA512_DIGEST_LENGTH
, recorded_checksum
, (computed_checksum
== recorded_checksum
? "GOOD" : "BAD"));
if (strcasecmp (computed_sha512, recorded_sha512) != 0)
printf ("Computed SHA-512: %s\n", computed_sha512
);
if (computed_checksum != recorded_checksum)
printf ("Computed cksum: 0x%08x\n", computed_checksum
);
}
else // old v1 trailer
{
recorded_checksum = image_trailer_v1->cksum;
computed_checksum = update_checksum (image_header, image_header->image_size - sizeof (image_trailer_v1_t), is_foreign_endianness);
printf (" cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset
, imagetrailer_offset
, recorded_checksum
, (computed_checksum
== recorded_checksum
? "GOOD" : "BAD"));
if (computed_checksum != recorded_checksum)
printf ("Computed cksum: 0x%08x\n", computed_checksum
);
}
current_offset += (image_header->flags & IMAGE_FLAGS_TRAILER_V2 ? sizeof (image_trailer_v2_t) : sizeof (image_trailer_v1_t)); // now reach the next segment (typically end of file)
}
// else it has to be a boot blob, of which we don't know the size, except that it has to fit in 0xffff bytes and be immediately followed by a startup header
else
{
// so scan for the first startup header magic and version (which makes us 6 bytes to scan for, i.e. "\xeb\x7e\xff\x00" for the magic and "\x01\x00" (LSB) for the version 1)
for (byte_index = current_offset; byte_index < file.len - 6; byte_index++)
if (memcmp (&file.
bytes[byte_index
], "\xeb\x7e\xff\x00" "\x01\x00", 4 + 2) == 0)
break; // stop as soon as we find it
if (byte_index >= file.len - 6)
break; // if not found, stop scanning
bootfile_blobsize = byte_index - current_offset;
printf ("Boot blob at offset 0x%zx (%zd):\n", current_offset
, current_offset
);
printf (" size 0x%zx (%zd) bytes\n", bootfile_blobsize
, bootfile_blobsize
);
printf (" checksum 0x%08x\n", update_checksum
(&file.
bytes[current_offset
], bootfile_blobsize
, false)); // NOTE: endianness is not known yet -- assume same
current_offset = byte_index; // now reach the next segment
}
}
endofdata:
// at this point there's nothing left we're able to parse
if (current_offset < file.len)
{
printf ("End of identifiable data reached.\n");
hex_printf (&file.bytes[current_offset], file.len - current_offset, "\n" "%zd extra bytes at offset %zx (%zd):\n", file.len - current_offset, current_offset, current_offset);
}
printf ("End of file reached at offset 0x%zx (%zd)\n", file.
len, file.
len);
printf ("IFS dissecation complete.\n");
return (0);
}