Subversion Repositories QNX 8.QNX8 IFS tool

Rev

Rev 10 | Rev 12 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. // ifstool.c -- portable reimplementation of QNX's mkifs by Pierre-Marie Baty <pm@pmbaty.com>
  2.  
  3. #include <stdint.h>
  4. #include <stdbool.h>
  5. #include <stdlib.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <errno.h>
  10. #include <sys/stat.h>
  11. #include <ctype.h>
  12. #include <time.h>
  13.  
  14.  
  15. // compiler-specific glue
  16. #ifdef _MSC_VER
  17. #include <io.h>
  18. #define __x86_64__ 1
  19. #define __ORDER_BIG_ENDIAN__    4321
  20. #define __ORDER_LITTLE_ENDIAN__ 1234
  21. #define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
  22. #define __attribute__(x)
  23. #define __builtin_bswap16(x) _byteswap_ushort ((unsigned short) (x))
  24. #define __builtin_bswap32(x) _byteswap_ulong ((unsigned long) (x))
  25. #define __builtin_bswap64(x) _byteswap_uint64 ((unsigned long long) (x))
  26. #define S_IFIFO 0x1000
  27. #define S_IFLNK 0xa000
  28. #define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)
  29. #define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)
  30. #define S_ISLNK(m) (((m) & S_IFMT) == S_IFLNK)
  31. #define strdup(s) _strdup ((s))
  32. #define strcasecmp(s1,s2) _stricmp ((s1), (s2))
  33. #define fseek(fp,off,m) _fseeki64 ((fp), (off), (m))
  34. #define access(p,m) _access ((p), (m))
  35. #define MAXPATHLEN 1024
  36. #ifndef thread_local
  37. #define thread_local __declspec(thread) // the thread_local keyword wasn't defined before C++11 and C23
  38. #endif // !thread_local
  39. #define START_OF_PACKED_STRUCT() __pragma(pack(push)) __pragma(pack(1))
  40. #define END_OF_PACKED_STRUCT() __pragma(pack(pop))
  41. #define PACKED(thing) thing
  42. #else // !_MSC_VER
  43. #include <sys/param.h>
  44. #include <unistd.h>
  45. #ifndef thread_local
  46. #define thread_local __thread // the thread_local keyword wasn't defined before C++11 and C23
  47. #endif // !thread_local
  48. #define START_OF_PACKED_STRUCT()
  49. #define END_OF_PACKED_STRUCT()
  50. #define PACKED(thing) thing __attribute__((packed))
  51. #endif // _MSC_VER
  52.  
  53.  
  54. // handy macros that generate a version number in the format "YYYYMMDD" corresponding to the build date. Usage: printf ("version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
  55. #ifndef VERSION_ARG_YYYYMMDD
  56. #define BUILDDATE_YEAR  (&__DATE__[7]) // compiler will optimize this into a const string, e.g. "2021"
  57. #define BUILDDATE_MONTH ( \
  58.    *((uint32_t *) __DATE__) == *((uint32_t *) "Jan ") ? "01" : \
  59.    *((uint32_t *) __DATE__) == *((uint32_t *) "Feb ") ? "02" : \
  60.    *((uint32_t *) __DATE__) == *((uint32_t *) "Mar ") ? "03" : \
  61.    *((uint32_t *) __DATE__) == *((uint32_t *) "Apr ") ? "04" : \
  62.    *((uint32_t *) __DATE__) == *((uint32_t *) "May ") ? "05" : \
  63.    *((uint32_t *) __DATE__) == *((uint32_t *) "Jun ") ? "06" : \
  64.    *((uint32_t *) __DATE__) == *((uint32_t *) "Jul ") ? "07" : \
  65.    *((uint32_t *) __DATE__) == *((uint32_t *) "Aug ") ? "08" : \
  66.    *((uint32_t *) __DATE__) == *((uint32_t *) "Sep ") ? "09" : \
  67.    *((uint32_t *) __DATE__) == *((uint32_t *) "Oct ") ? "10" : \
  68.    *((uint32_t *) __DATE__) == *((uint32_t *) "Nov ") ? "11" : \
  69.    *((uint32_t *) __DATE__) == *((uint32_t *) "Dec ") ? "12" : \
  70.    "XX" \
  71. ) // compiler will optimize this into a const string, e.g. "11"
  72. #define BUILDDATE_DAY ( \
  73.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  1 ") ? "01" : \
  74.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  2 ") ? "02" : \
  75.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  3 ") ? "03" : \
  76.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  4 ") ? "04" : \
  77.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  5 ") ? "05" : \
  78.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  6 ") ? "06" : \
  79.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  7 ") ? "07" : \
  80.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  8 ") ? "08" : \
  81.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  9 ") ? "09" : \
  82.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 10 ") ? "10" : \
  83.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 11 ") ? "11" : \
  84.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 12 ") ? "12" : \
  85.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 13 ") ? "13" : \
  86.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 14 ") ? "14" : \
  87.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 15 ") ? "15" : \
  88.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 16 ") ? "16" : \
  89.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 17 ") ? "17" : \
  90.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 18 ") ? "18" : \
  91.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 19 ") ? "19" : \
  92.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 20 ") ? "20" : \
  93.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 21 ") ? "21" : \
  94.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 22 ") ? "22" : \
  95.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 23 ") ? "23" : \
  96.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 24 ") ? "24" : \
  97.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 25 ") ? "25" : \
  98.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 26 ") ? "26" : \
  99.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 27 ") ? "27" : \
  100.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 28 ") ? "28" : \
  101.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 29 ") ? "29" : \
  102.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 30 ") ? "30" : \
  103.    *((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 31 ") ? "31" : \
  104.    "XX" \
  105. ) // compiler will optimize this into a const string, e.g. "14"
  106. #define VERSION_FMT_YYYYMMDD "%04s%02s%02s"
  107. #define VERSION_ARG_YYYYMMDD BUILDDATE_YEAR, BUILDDATE_MONTH, BUILDDATE_DAY
  108. #endif // !VERSION_ARG_YYYYMMDD
  109.  
  110.  
  111. // macro to bring __FILE_NAME__ support to moronic compilers
  112. #ifndef __FILE_NAME__ // Clang 9+ has the macro, GCC 12+ added it too in 2021, MSVC obviously won't do it. Heh.
  113. #define __FILE_NAME__ ( \
  114.    (sizeof (__FILE__) >  2) && (__FILE__[sizeof (__FILE__) -  2] == '/') ? &__FILE__[sizeof (__FILE__) -  1] : \
  115.    (sizeof (__FILE__) >  3) && (__FILE__[sizeof (__FILE__) -  3] == '/') ? &__FILE__[sizeof (__FILE__) -  2] : \
  116.    (sizeof (__FILE__) >  4) && (__FILE__[sizeof (__FILE__) -  4] == '/') ? &__FILE__[sizeof (__FILE__) -  3] : \
  117.    (sizeof (__FILE__) >  5) && (__FILE__[sizeof (__FILE__) -  5] == '/') ? &__FILE__[sizeof (__FILE__) -  4] : \
  118.    (sizeof (__FILE__) >  6) && (__FILE__[sizeof (__FILE__) -  6] == '/') ? &__FILE__[sizeof (__FILE__) -  5] : \
  119.    (sizeof (__FILE__) >  7) && (__FILE__[sizeof (__FILE__) -  7] == '/') ? &__FILE__[sizeof (__FILE__) -  6] : \
  120.    (sizeof (__FILE__) >  8) && (__FILE__[sizeof (__FILE__) -  8] == '/') ? &__FILE__[sizeof (__FILE__) -  7] : \
  121.    (sizeof (__FILE__) >  9) && (__FILE__[sizeof (__FILE__) -  9] == '/') ? &__FILE__[sizeof (__FILE__) -  8] : \
  122.    (sizeof (__FILE__) > 10) && (__FILE__[sizeof (__FILE__) - 10] == '/') ? &__FILE__[sizeof (__FILE__) -  9] : \
  123.    (sizeof (__FILE__) > 11) && (__FILE__[sizeof (__FILE__) - 11] == '/') ? &__FILE__[sizeof (__FILE__) - 10] : \
  124.    (sizeof (__FILE__) > 12) && (__FILE__[sizeof (__FILE__) - 12] == '/') ? &__FILE__[sizeof (__FILE__) - 11] : \
  125.    (sizeof (__FILE__) > 13) && (__FILE__[sizeof (__FILE__) - 13] == '/') ? &__FILE__[sizeof (__FILE__) - 12] : \
  126.    (sizeof (__FILE__) > 14) && (__FILE__[sizeof (__FILE__) - 14] == '/') ? &__FILE__[sizeof (__FILE__) - 13] : \
  127.    (sizeof (__FILE__) > 15) && (__FILE__[sizeof (__FILE__) - 15] == '/') ? &__FILE__[sizeof (__FILE__) - 14] : \
  128.    (sizeof (__FILE__) > 16) && (__FILE__[sizeof (__FILE__) - 16] == '/') ? &__FILE__[sizeof (__FILE__) - 15] : \
  129.    (sizeof (__FILE__) > 17) && (__FILE__[sizeof (__FILE__) - 17] == '/') ? &__FILE__[sizeof (__FILE__) - 16] : \
  130.    (sizeof (__FILE__) > 18) && (__FILE__[sizeof (__FILE__) - 18] == '/') ? &__FILE__[sizeof (__FILE__) - 17] : \
  131.    (sizeof (__FILE__) > 19) && (__FILE__[sizeof (__FILE__) - 19] == '/') ? &__FILE__[sizeof (__FILE__) - 18] : \
  132.    (sizeof (__FILE__) > 20) && (__FILE__[sizeof (__FILE__) - 20] == '/') ? &__FILE__[sizeof (__FILE__) - 19] : \
  133.    (sizeof (__FILE__) > 21) && (__FILE__[sizeof (__FILE__) - 21] == '/') ? &__FILE__[sizeof (__FILE__) - 20] : \
  134.    (sizeof (__FILE__) > 22) && (__FILE__[sizeof (__FILE__) - 22] == '/') ? &__FILE__[sizeof (__FILE__) - 21] : \
  135.    (sizeof (__FILE__) > 23) && (__FILE__[sizeof (__FILE__) - 23] == '/') ? &__FILE__[sizeof (__FILE__) - 22] : \
  136.    (sizeof (__FILE__) > 24) && (__FILE__[sizeof (__FILE__) - 24] == '/') ? &__FILE__[sizeof (__FILE__) - 23] : \
  137.    (sizeof (__FILE__) > 25) && (__FILE__[sizeof (__FILE__) - 25] == '/') ? &__FILE__[sizeof (__FILE__) - 24] : \
  138.    (sizeof (__FILE__) > 26) && (__FILE__[sizeof (__FILE__) - 26] == '/') ? &__FILE__[sizeof (__FILE__) - 25] : \
  139.    (sizeof (__FILE__) > 27) && (__FILE__[sizeof (__FILE__) - 27] == '/') ? &__FILE__[sizeof (__FILE__) - 26] : \
  140.    (sizeof (__FILE__) > 28) && (__FILE__[sizeof (__FILE__) - 28] == '/') ? &__FILE__[sizeof (__FILE__) - 27] : \
  141.    (sizeof (__FILE__) > 29) && (__FILE__[sizeof (__FILE__) - 29] == '/') ? &__FILE__[sizeof (__FILE__) - 28] : \
  142.    (sizeof (__FILE__) > 30) && (__FILE__[sizeof (__FILE__) - 30] == '/') ? &__FILE__[sizeof (__FILE__) - 29] : \
  143.    (sizeof (__FILE__) > 31) && (__FILE__[sizeof (__FILE__) - 31] == '/') ? &__FILE__[sizeof (__FILE__) - 30] : \
  144.    (sizeof (__FILE__) > 32) && (__FILE__[sizeof (__FILE__) - 32] == '/') ? &__FILE__[sizeof (__FILE__) - 31] : \
  145.    (sizeof (__FILE__) > 33) && (__FILE__[sizeof (__FILE__) - 33] == '/') ? &__FILE__[sizeof (__FILE__) - 32] : \
  146.    __FILE__) // this *COMPILE-TIME* macro complements the __FILE__ macro defined by the C standard by returning just the filename portion of the full path. Supports filenames up to 32 chars. Expand as necessary.
  147. #endif // !__FILE_NAME__
  148.  
  149.  
  150. // macro to exit less brutally than with abort() if something doesn't go the way we'd like to
  151. #define WELLMANNERED_ASSERT(is_is_true,...) do { if (!(is_is_true)) { fprintf (stderr, "ifstool: fatal error: consistency check in %s() at %s line %d failed: ", __FUNCTION__, __FILE_NAME__, __LINE__); fprintf (stderr, __VA_ARGS__); fputc ('\n', stderr); exit (1); } } while (0)
  152.  
  153.  
  154. // macros for checked read/write/seek operations
  155. #define fseek_or_die(fp,pos,mode) WELLMANNERED_ASSERT (fseek ((fp), (pos), (mode)) == 0, "fseek() failed with errno %d (%s)", errno, strerror (errno))
  156. #define fread_or_die(buf,sz,len,fp) WELLMANNERED_ASSERT (fread ((buf), (sz), (len), (fp)) == (len), "fread() failed with errno %d (%s)", errno, strerror (errno))
  157. #define fwrite_or_die(buf,sz,len,fp) WELLMANNERED_ASSERT ((fwrite ((buf), (sz), (len), (fp)) == (len)) && (fflush ((fp)) == 0), "flushed fwrite() failed with errno %d (%s)", errno, strerror (errno))
  158.  
  159.  
  160. // macros for accessing ELF files
  161. #define ELF_MAGIC_STR "\x7f" "ELF"
  162. #define ELF_ENDIAN_LITTLE 1 // 'endianness' member of an ELF header: ELF file is little endian
  163. #define ELF_ENDIAN_BIG    2 // 'endianness' member of an ELF header: ELF file is big endian
  164. #define ELF_MACHINE_X86_64  0x3e // 'instruction_set' member of an ELF header, also used in the IFS startup header: ELF file is for x86_64 processors (62 decimal)
  165. #define ELF_MACHINE_AARCH64 0xb7 // 'instruction_set' member of an ELF header, also used in the IFS startup header: ELF file is for ARM64 processors (183 decimal)
  166. #define ELF_SECTIONTYPE_STRINGTABLE 3
  167. #define ELF_DT_NULL    0 // marks end of dynamic section
  168. #define ELF_DT_SONAME 14 // canonical name of shared object
  169. #define ELF_GET_NUMERIC(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? /* is it a 64-bit ELF file ? */ \
  170.    ( \
  171.       (sizeof ((elfstruct)->u.elf64.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
  172.          (elfstruct)->u.elf64.member /* same endianness, or single byte required: don't swap */ \
  173.       : /* else */ \
  174.          (sizeof ((elfstruct)->u.elf64.member) == 8 ? __builtin_bswap64 ((elfstruct)->u.elf64.member) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf64.member) : __builtin_bswap16 ((elfstruct)->u.elf64.member))) /* different endianness: swap */ \
  175.    ) \
  176.    : /* else peek at 32-bit ELF */ \
  177.    ( \
  178.       (sizeof ((elfstruct)->u.elf32.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
  179.          (elfstruct)->u.elf32.member /* same endianness, or single byte required: don't swap */ \
  180.       : /* else */ \
  181.          (sizeof ((elfstruct)->u.elf32.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf32.member) : __builtin_bswap16 ((elfstruct)->u.elf32.member)) /* different endianness: swap */ \
  182.    ) \
  183. ) // this macro supports 32- and 64-bit ELF files in low and big endianness transparently
  184. #define ELF_SET_NUMERIC(elfhdr,elfstruct,member,data) ((elfhdr)->u.elf.platform_size == 2 ? /* is it a 64-bit ELF file ? */ \
  185.    ((elfstruct)->u.elf64.member = ( \
  186.       (sizeof ((elfstruct)->u.elf64.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
  187.          (sizeof ((elfstruct)->u.elf64.member) == 8 ? (uint64_t) ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? (uint32_t) ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 2 ? (uint16_t) ((data)) : (uint8_t) ((data))))) /* same endianness, or single byte required: don't swap */ \
  188.       : /* else */ \
  189.          (sizeof ((elfstruct)->u.elf64.member) == 8 ? __builtin_bswap64 ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? __builtin_bswap32 ((data)) : __builtin_bswap16 ((data)))) /* different endianness: swap */ \
  190.    )) \
  191.    : /* else poke at 32-bit ELF */ \
  192.    ((elfstruct)->u.elf32.member = ( \
  193.       (sizeof ((elfstruct)->u.elf32.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
  194.          (sizeof ((elfstruct)->u.elf64.member) == 4 ? (uint32_t) ((data)) : (sizeof ((elfstruct)->u.elf64.member) == 2 ? (uint16_t) ((data)) : (uint8_t) ((data)))) /* same endianness, or single byte required: don't swap */ \
  195.       : /* else */ \
  196.          (sizeof ((elfstruct)->u.elf32.member) == 4 ? __builtin_bswap32 ((data)) : __builtin_bswap16 ((data))) /* different endianness: swap */ \
  197.    )) \
  198. ) // this macro supports 32- and 64-bit ELF files in low and big endianness transparently
  199. #define ELF_GET_STRING(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? (elfstruct)->u.elf64.member : (elfstruct)->u.elf32.member) // this macro supports 32- and 64-bit ELF files transparently
  200. #define ELF_SET_STRING(elfhdr,elfstruct,member,data,len) memcpy (((elfhdr)->u.elf.platform_size == 2 ? (elfstruct)->u.elf64.member : (elfstruct)->u.elf32.member), (data), (len)) // this macro supports 32- and 64-bit ELF files transparently
  201. #define ELF_STRUCT_SIZE(elfhdr,elfstruct) ((elfhdr)->u.elf.platform_size == 2 ? sizeof ((elfstruct)->u.elf64) : sizeof ((elfstruct)->u.elf32)) // this macro supports 32- and 64-bit ELF files transparently
  202.  
  203.  
  204. // placeholder value
  205. #define WILL_BE_FILLED_LATER 0xbaadf00d // urgh
  206.  
  207.  
  208. // bitmapped flags used in the flags1 member of the startup header
  209. #define STARTUP_HDR_FLAGS1_VIRTUAL        (1 << 0)
  210. #define STARTUP_HDR_FLAGS1_BIGENDIAN      (1 << 1)
  211. //#define STARTUP_HDR_FLAGS1_COMPRESS_MASK  0x1c
  212. //#define STARTUP_HDR_FLAGS1_COMPRESS_SHIFT 0x02
  213. //#define STARTUP_HDR_FLAGS1_COMPRESS_NONE  0x00
  214. //#define STARTUP_HDR_FLAGS1_COMPRESS_ZLIB  0x04
  215. //#define STARTUP_HDR_FLAGS1_COMPRESS_LZO   0x08
  216. //#define STARTUP_HDR_FLAGS1_COMPRESS_UCL   0x0c
  217. #define STARTUP_HDR_FLAGS1_TRAILER_V2     (1 << 5) // if set, then a struct startup_trailer_v2 follows the startup. If the image is compressed, then the compressed imagefs is followed by a struct image_trailer_v2
  218.  
  219.  
  220. // bitmapped flags used in the flags member of the image header
  221. #define IMAGE_FLAGS_BIGENDIAN  (1 << 0) // header, trailer, dirents in big-endian format
  222. #define IMAGE_FLAGS_READONLY   (1 << 1) // do not try to write to image (rom/flash)
  223. #define IMAGE_FLAGS_INO_BITS   (1 << 2) // inode bits valid
  224. #define IMAGE_FLAGS_SORTED     (1 << 3) // dirent section is sorted (by pathname)
  225. #define IMAGE_FLAGS_TRAILER_V2 (1 << 4) // image uses struct image_trailer_v2
  226.  
  227.  
  228. // bitmapped flags superposed to a filesystem entry's inode number
  229. #define IFS_INO_PROCESSED_ELF 0x80000000
  230. #define IFS_INO_RUNONCE_ELF   0x40000000
  231. #define IFS_INO_BOOTSTRAP_EXE 0x20000000
  232.  
  233.  
  234. // miscellaneous macros
  235. #define ROUND_TO_UPPER_MULTIPLE(val,multiple) ((((val) + (size_t) (multiple) - 1) / (multiple)) * (multiple)) // note that val is being evaluated once, so it can be the result of a function call
  236. #ifdef _WIN32
  237. #define IS_DIRSEP(c) (((c) == '/') || ((c) == '\\')) // platform-specific directory separator, Win32 variant
  238. #define PATH_SEP ';' // platform-specific PATH element separator, Win32 variant
  239. #define PATH_SEP_STR ";" // platform-specific PATH element separator (as string), Win32 variant
  240. #else // !_WIN32, thus POSIX
  241. #define IS_DIRSEP(c) ((c) == '/') // platform-specific directory separator, UNIX variant
  242. #define PATH_SEP ':' // platform-specific PATH element separator, UNIX variant
  243. #define PATH_SEP_STR ":" // platform-specific PATH element separator (as string), UNIX variant
  244. #endif // _WIN32
  245. #define RECORD_SEP '\x1e' // arbitrarily-chosen ASCII record separator
  246. #define RECORD_SEP_STR "\x1e" // arbitrarily-chosen ASCII record separator (as string)
  247.  
  248.  
  249. // SHA-512 block and digest sizes
  250. #define SHA512_BLOCK_LENGTH 128 // in bytes
  251. #define SHA512_DIGEST_LENGTH 64 // in bytes
  252.  
  253.  
  254. // SHA-512 computation context structure type definition
  255. typedef struct sha512_ctx_s
  256. {
  257.    uint64_t state[8];
  258.    uint64_t bitcount[2];
  259.    uint8_t buffer[SHA512_BLOCK_LENGTH];
  260. } SHA512_CTX;
  261.  
  262.  
  263. #if 0 // TODO: startup script compiler. Someday.
  264. #define SCRIPT_FLAGS_EXTSCHED   0x01
  265. #define SCRIPT_FLAGS_SESSION    0x02
  266. #define SCRIPT_FLAGS_SCHED_SET  0x04
  267. #define SCRIPT_FLAGS_CPU_SET    0x08
  268. #define SCRIPT_FLAGS_BACKGROUND 0x20
  269. #define SCRIPT_FLAGS_KDEBUG     0x40
  270.  
  271. #define SCRIPT_POLICY_NOCHANGE 0
  272. #define SCRIPT_POLICY_FIFO     1
  273. #define SCRIPT_POLICY_RR       2
  274. #define SCRIPT_POLICY_OTHER    3
  275.  
  276. #define SCRIPT_TYPE_EXTERNAL        0
  277. #define SCRIPT_TYPE_WAITFOR         1
  278. #define SCRIPT_TYPE_REOPEN          2
  279. #define SCRIPT_TYPE_DISPLAY_MSG     3
  280. #define SCRIPT_TYPE_PROCMGR_SYMLINK 4
  281. #define SCRIPT_TYPE_EXTSCHED_APS    5
  282.  
  283. #define SCRIPT_CHECKS_MS 100
  284.  
  285. #define SCRIPT_SCHED_EXT_NONE 0
  286. #define SCRIPT_SCHED_EXT_APS  1
  287.  
  288. #define SCRIPT_APS_SYSTEM_PARTITION_ID   0
  289. #define SCRIPT_APS_SYSTEM_PARTITION_NAME "System"
  290. #define SCRIPT_APS_PARTITION_NAME_LENGTH 15
  291. #define SCRIPT_APS_MAX_PARTITIONS        8
  292.  
  293.  
  294. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  295. typedef PACKED (struct) bootscriptcmd_header_s
  296. {
  297.    uint16_t size; // size of cmd entry
  298.    uint8_t type;
  299.    uint8_t spare;
  300. } bootscriptcmd_header_t;
  301. END_OF_PACKED_STRUCT () // restore default alignment
  302.  
  303.  
  304. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  305. typedef union bootscriptcmd_s
  306. {
  307.    PACKED (struct) script_external
  308.    {
  309.       bootscriptcmd_header_t hdr;
  310.       uint8_t cpu; // CPU (turn into runmask)
  311.       uint8_t flags;
  312.       union script_external_extsched
  313.       {
  314.          uint8_t reserved[2];
  315.          PACKED (struct)
  316.          {
  317.             uint8_t id;
  318.             uint8_t reserved[1];
  319.          } aps;
  320.       } extsched; // extended scheduler
  321.       uint8_t policy; // POLICY_FIFO, POLICY_RR, ...
  322.       uint8_t priority; // priority to run cmd at
  323.       uint8_t argc; // # of args
  324.       uint8_t envc; // # of environment entries
  325.       char args[0]; // executable, argv, envp (null padded to 32-bit align)
  326.    } external;
  327.    PACKED (struct) script_waitfor_reopen
  328.    {
  329.       bootscriptcmd_header_t hdr;
  330.       uint16_t checks;
  331.       char fname[0]; // char fname[] (null padded to 32-bit align)
  332.    } waitfor_reopen;
  333.    PACKED (struct) script_display_msg
  334.    {
  335.       bootscriptcmd_header_t hdr;
  336.       char msg[0]; // char msg[] (null padded to 32-bit align)
  337.    } display_msg;
  338.    PACKED (struct) script_procmgr_symlink
  339.    {
  340.       bootscriptcmd_header_t hdr;
  341.       char src_dest[0]; // <src_name>, '\0', <dest_name> '\0' (null padded to 32-bit align)
  342.    } procmgr_symlink;
  343.    PACKED (struct) script_extsched_aps
  344.    {
  345.       bootscriptcmd_header_t hdr;
  346.       uint8_t parent;
  347.       uint8_t budget;
  348.       uint16_t critical;
  349.       uint8_t id;
  350.       char pname[0]; // char pname[] (null padded to 32-bit align)
  351.    } extsched_aps;
  352. } bootscriptcmd_t;
  353. END_OF_PACKED_STRUCT () // restore default alignment
  354. #endif // 0
  355.  
  356.  
  357. #define INITIAL_STARTUP_SCRIPT \
  358.    /* procmgr_symlink /proc/boot/ldqnx-64.so.2 /usr/lib/ldqnx-64.so.2 */ \
  359.    "\x34\x00" /*size*/ "\x04" /*type*/ "\x00" /*spare*/ "/proc/boot/ldqnx-64.so.2\0" "/usr/lib/ldqnx-64.so.2\0" \
  360.    /* sh /proc/boot/startup.sh */ \
  361.    "\x88\x00" /*size*/ "\x00" /*type*/ "\x00" /*spare*/ "\x00" /*CPU mask*/ "\x00" /*flags*/ "\x00\x00" /*reserved*/ "\x00" /*policy*/ "\x00" /*priority*/ "\02" /*argc*/ "\x02" /*envc*/ "sh\0" /*executable*/ "sh\0" "/proc/boot/startup.sh\0" /*argv*/ "PATH=/sbin:/usr/sbin:/bin:/usr/bin:/proc/boot\0" "LD_LIBRARY_PATH=/proc/boot:/lib:/lib/dll:/usr/lib\0" /*envp*/ \
  362.    /* display_msg "Startup complete */ \
  363.    "\x18\x00" /*size*/ "\x03" /*type*/ "\x00" /*spare*/ "Startup complete\n\0" "\x00\00" /*padding*/ \
  364.    /* trailer */ \
  365.    "\x00\x00\x00\x00"
  366.  
  367.  
  368. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  369. typedef PACKED (struct) fsentry_s
  370. {
  371.    PACKED (struct) fsentry_header_s
  372.    {
  373.       uint16_t size; // size of dirent
  374.       uint16_t extattr_offset; // if zero, no extattr data
  375.       uint32_t ino; // if zero, skip entry
  376.       uint32_t mode; // mode and perms of entry
  377.       uint32_t gid;
  378.       uint32_t uid;
  379.       uint32_t mtime;
  380.    } header;
  381.    PACKED (union) fsentry_specific_u
  382.    {
  383.       PACKED (struct) fsentry_file_s // when (mode & S_IFMT) == S_IFREG
  384.       {
  385.          uint32_t offset; // offset from header
  386.          uint32_t size;
  387.          char *path; // null terminated path (no leading slash)
  388.          char *UNSAVED_databuf; // file data blob buffer (NOT SAVED IN THE IFS)
  389.       } file;
  390.       PACKED (struct) fsentry_dir_s // when (mode & S_IFMT) == S_IFDIR
  391.       {
  392.          char *path; // null terminated path (no leading slash)
  393.       } dir;
  394.       PACKED (struct) fsentry_symlink_s // when (mode & S_IFMT) == S_IFLNK
  395.       {
  396.          uint16_t sym_offset; // offset to 'contents' from 'path'
  397.          uint16_t sym_size; // strlen (contents)
  398.          char *path; // null terminated path (no leading slash)
  399.          char *contents; // null terminated symlink contents
  400.       } symlink;
  401.       PACKED (struct) fsentry_device_s // when (mode & S_IFMT) == S_IF<CHR|BLK|FIFO|NAM|SOCK>
  402.       {
  403.          uint32_t dev;
  404.          uint32_t rdev;
  405.          char *path; // null terminated path (no leading slash)
  406.       } device;
  407.    } u;
  408.    bool UNSAVED_was_data_written; // whether this entry's data was written to the image (NOT SAVED IN THE IFS)
  409. } fsentry_t;
  410. END_OF_PACKED_STRUCT () // restore default alignment
  411.  
  412.  
  413. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  414. typedef PACKED (struct) startup_header_s // size 256 bytes
  415. {
  416.    // I - used by the QNX IPL
  417.    // S - used by the startup program
  418.    uint8_t signature[4];   // [I ] Header signature, "\xeb\x7e\xff\x00"
  419.    uint16_t version;       // [I ] Header version, i.e. 1
  420.    uint8_t flags1;         // [IS] Misc flags, 0x21 (= 0x20 | STARTUP_HDR_FLAGS1_VIRTUAL)
  421.    uint8_t flags2;         // [  ] No flags defined yet (0)
  422.    uint16_t header_size;   // [ S] sizeof(struct startup_header), i.e. 256
  423.    uint16_t machine;       // [IS] Machine type from elfdefinitions.h, i.e. 0x003E --> _ELF_DEFINE_EM(EM_X86_64, 62, "AMD x86-64 architecture")
  424.    uint32_t startup_vaddr; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
  425.    uint32_t paddr_bias;    // [ S] Value to add to physical address to get a value to put into a pointer and indirected through, here 0 (no indirections)
  426.    uint32_t image_paddr;   // [IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
  427.    uint32_t ram_paddr;     // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
  428.    uint32_t ram_size;      // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee
  429.    uint32_t startup_size;  // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
  430.    uint32_t stored_size;   // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
  431.    uint32_t imagefs_paddr; // [IS] Set by IPL to where the imagefs is when startup runs (0)
  432.    uint32_t imagefs_size;  // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
  433.    uint16_t preboot_size;  // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
  434.    uint16_t zero0;         // [  ] Zeros
  435.    uint32_t zero[1];       // [  ] Zeros
  436.    uint64_t addr_off;      // [ S] Offset to add to startup_vaddr, image_paddr, ram_paddr, and imagefs_paddr members, here zero (0)
  437.    uint32_t info[48];      // [IS] Array of startup_info* structures (zero filled)
  438. } startup_header_t;
  439. END_OF_PACKED_STRUCT () // restore default alignment
  440.  
  441.  
  442. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  443. typedef PACKED (struct) startup_trailer_s
  444. {
  445.    uint32_t cksum; // checksum from start of header to start of trailer
  446. } startup_trailer_v1_t;
  447. END_OF_PACKED_STRUCT () // restore default alignment
  448.  
  449.  
  450. // NOTE: The checksums in this trailer will only be valid prior to entering startup.
  451. // Because the startup binary is executed in-place, its data segment will change once the program is running.
  452. // Hence, any checksum validation would need to be done by the boot loader / IFS.
  453. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  454. typedef PACKED (struct) startup_trailer_v2_s
  455. {
  456.    uint8_t sha512[64]; // SHA512 from start of header to start of trailer
  457.    uint32_t cksum; // checksum from start of header to start of this member
  458. } startup_trailer_v2_t;
  459. END_OF_PACKED_STRUCT () // restore default alignment
  460.  
  461.  
  462. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  463. typedef PACKED (struct) image_header_s
  464. {
  465.    uint8_t signature[7]; // image filesystem signature, i.e. "imagefs"
  466.    uint8_t flags; // endian neutral flags, 0x1c
  467.    uint32_t image_size; // size from start of header to end of trailer (here 0xca6fe0 or 13 266 912)
  468.    uint32_t hdr_dir_size; // size from start of header to last dirent (here 0x12b8 or 4792)
  469.    uint32_t dir_offset; // offset from start of header to start of first dirent (here 0x5c or 92)
  470.    uint32_t boot_ino[4]; // inode of files for bootstrap pgms (here 0xa0000002, 0, 0, 0)
  471.    uint32_t script_ino; // inode of file for script (here 3)
  472.    uint32_t chain_paddr; // offset to next filesystem signature (0)
  473.    uint32_t spare[10]; // zerofill
  474.    uint32_t mountflags; // default _MOUNT_* from sys/iomsg.h (0)
  475.    char mountpoint[4]; // default mountpoint for image ("/" + "\0\0\0")
  476. } image_header_t;
  477. END_OF_PACKED_STRUCT () // restore default alignment
  478.  
  479.  
  480. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  481. typedef PACKED (struct) image_trailer_v1_s
  482. {
  483.    uint32_t cksum; // checksum from start of header to start of trailer
  484. } image_trailer_v1_t; // NOTE: this is the same structure as startup_trailer_v1_t
  485. END_OF_PACKED_STRUCT () // restore default alignment
  486.  
  487.  
  488. // NOTE: the checksums in this trailer will only be valid until the first non-startup bootstrap binary (e.g., startup-verifier, procnto, ...) is invoked.
  489. // Because bootstrap binaries execute in-place, their data segments will change once the programs are running.
  490. // Hence, any checksum validation would need to be done either by the boot loader / IFS or by the startup.
  491. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  492. typedef PACKED (struct) image_trailer_v2_s
  493. {
  494.    uint8_t sha512[64]; // SHA512 from start of image header to start of trailer
  495.    uint32_t cksum; // checksum from start of header to start of this member
  496. } image_trailer_v2_t; // NOTE: this is the same structure as startup_trailer_v2_t
  497. END_OF_PACKED_STRUCT () // restore default alignment
  498.  
  499.  
  500. // Executable and Linkable Format master header structure type definition
  501. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  502. typedef PACKED (struct) elf_header_s
  503. {
  504.    PACKED (union)
  505.    {
  506.       PACKED (struct)
  507.       {
  508.          uint8_t magic[4];                     // offset 0: "\x7f" + "ELF"
  509.          uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
  510.          uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
  511.          uint8_t header_version;               // offset 6: typically 1
  512.          uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
  513.          uint8_t spare[8];                     // offset 8: zeroes
  514.          uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
  515.          uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
  516.          uint32_t elf_version;                 // offset 20: typically 1
  517.       } elf;
  518.       PACKED (struct) // size == 52
  519.       {
  520.          uint8_t magic[4];                     // offset 0: "\x7f" + "ELF"
  521.          uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
  522.          uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
  523.          uint8_t header_version;               // offset 6: typically 1
  524.          uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
  525.          uint8_t spare[8];                     // offset 8: zeroes
  526.          uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
  527.          uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
  528.          uint32_t elf_version;                 // offset 20: typically 1
  529.          uint32_t entrypoint_offset;           // offset 24: offset to program entrypoint
  530.          uint32_t program_header_table_offset; // offset 28: offset to program header table
  531.          uint32_t section_header_table_offset; // offset 32: offset to section header table
  532.          uint32_t flags;                       // offset 36: flags (architecture-dependent, none for x86)
  533.          uint16_t header_size;                 // offset 40: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF -- DO NOT USE sizeof() ON THE elf_header_s STRUCT BECAUSE OF THE UNION! WRITE THE CORRECT SIZE YOURSELF!
  534.          uint16_t program_header_item_size;    // offset 42: size of an entry in the program header table
  535.          uint16_t program_header_table_len;    // offset 44: number of entries in the program header table
  536.          uint16_t section_header_item_size;    // offset 46: size of an entry in the section header table
  537.          uint16_t section_header_table_len;    // offset 48: number of entries in the section header table
  538.          uint16_t section_header_names_idx;    // offset 50: index of the entry in the section header table that contains the section names
  539.       } elf32; // size == 52
  540.       PACKED (struct) // size == 64
  541.       {
  542.          uint8_t magic[4];                     // offset 0: "\x7f" + "ELF"
  543.          uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
  544.          uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
  545.          uint8_t header_version;               // offset 6: typically 1
  546.          uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
  547.          uint8_t spare[8];                     // offset 8: zeroes
  548.          uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
  549.          uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
  550.          uint32_t elf_version;                 // offset 20: typically 1
  551.          uint64_t entrypoint_offset;           // offset 24: program entry offset
  552.          uint64_t program_header_table_offset; // offset 32: offset to program header table
  553.          uint64_t section_header_table_offset; // offset 40: offset to section header table
  554.          uint32_t flags;                       // offset 48: flags (architecture-dependent, none for x86)
  555.          uint16_t header_size;                 // offset 52: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF
  556.          uint16_t program_header_item_size;    // offset 54: size of an entry in the program header table
  557.          uint16_t program_header_table_len;    // offset 56: number of entries in the program header table
  558.          uint16_t section_header_item_size;    // offset 58: size of an entry in the section header table
  559.          uint16_t section_header_table_len;    // offset 60: number of entries in the section header table
  560.          uint16_t section_header_names_idx;    // offset 62: index of the entry in the section header table that contains the section names
  561.       } elf64; // size == 64
  562.    } u;
  563. } elf_header_t;
  564. END_OF_PACKED_STRUCT () // restore default alignment
  565.  
  566.  
  567. // Executable and Linkable Format program header structure type definition
  568. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  569. typedef PACKED (struct) elf_program_header_s
  570. {
  571.    PACKED (union)
  572.    {
  573.       PACKED (struct)
  574.       {
  575.          uint32_t segment_type; // offset 0: type of segment (0: unused table entry, 1: loadable, 2: dynamic linking information, 3: interpreter information, 4: auxiliary information, 5: reserved, 6: this very segment, 7: TLS template)
  576.       } elf;
  577.       PACKED (struct) // size == 32
  578.       {
  579.          uint32_t segment_type;   // offset 0: type of segment (0: unused table entry, 1: loadable, 2: dynamic linking information, 3: interpreter information, 4: auxiliary information, 5: reserved, 6: this very segment, 7: TLS template)
  580.          uint32_t file_offset;    // offset 4: file offset of this segment
  581.          uint32_t virtual_addr;   // offset 8: virtual address where this segment should be mapped in memory
  582.          uint32_t physical_addr;  // offset 12: on systems where this is relevant, PHYSICAL address where this segment should be mapped in memory
  583.          uint32_t size_in_file;   // offset 16: size of this segment in the ELF file (may be zero)
  584.          uint32_t size_in_memory; // offset 20: size of this segment in memory (may be zero)
  585.          uint32_t segment_flags;  // offset 24: bitmap of segment flags (1: executable, 2: writable, 4: readable)
  586.          uint32_t alignment;      // offset 28: memory alignment (0 or 1 mean non alignment, else must be a power of 2 where virtual_addr == file_offset % alignment)
  587.       } elf32; // size == 32
  588.       PACKED (struct) // size == 56
  589.       {
  590.          uint32_t segment_type;   // offset 0: type of segment (0: unused table entry, 1: loadable, 2: dynamic linking information, 3: interpreter information, 4: auxiliary information, 5: reserved, 6: this very segment, 7: TLS template)
  591.          uint32_t segment_flags;  // offset 4: bitmap of segment flags (1: executable, 2: writable, 4: readable)
  592.          uint64_t file_offset;    // offset 8: file offset of this segment
  593.          uint64_t virtual_addr;   // offset 16: virtual address where this segment should be mapped in memory
  594.          uint64_t physical_addr;  // offset 24: on systems where this is relevant, PHYSICAL address where this segment should be mapped in memory
  595.          uint64_t size_in_file;   // offset 32: size of this segment in the ELF file (may be zero)
  596.          uint64_t size_in_memory; // offset 40: size of this segment in memory (may be zero)
  597.          uint64_t alignment;      // offset 48: memory alignment (0 or 1 mean non alignment, else must be a power of 2 where virtual_addr == file_offset % alignment)
  598.       } elf64; // size == 56
  599.    } u;
  600. } elf_program_header_t;
  601. END_OF_PACKED_STRUCT () // restore default alignment
  602.  
  603.  
  604. // Executable and Linkable Format section header structure type definition
  605. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  606. typedef PACKED (struct) elf_section_header_s
  607. {
  608.    PACKED (union)
  609.    {
  610.       PACKED (struct)
  611.       {
  612.          uint32_t name_offset; // offset 0: offset in the string table of the name of this section
  613.          uint32_t type;        // offset 4: section type (0: unused, 1: program data, 2: symbols table, 3: strings table, 4: relocs with addends, 5: symbols hash table, 6: dyld info, 7: notes, 8: BSS, 9: relocs without addends, 11: dyld symbols table, 14: constructors, 15: destructors, 16, preconstructors, 17: group, 18: extended section indices, 19: number of typedefs ...)
  614.       } elf;
  615.       PACKED (struct) // size == 40
  616.       {
  617.          uint32_t name_offset;  // offset 0: offset in the string table of the name of this section
  618.          uint32_t type;         // offset 4: section type (0: unused, 1: program data, 2: symbols table, 3: strings table, 4: relocs with addends, 5: symbols hash table, 6: dyld info, 7: notes, 8: BSS, 9: relocs without addends, 11: dyld symbols table, 14: constructors, 15: destructors, 16, preconstructors, 17: group, 18: extended section indices, 19: number of typedefs ...)
  619.          uint32_t flags;        // offset 8: bitmapped flags (1: writable, 2: takes RAM, 4: executable, 8: reserved, 16: mergeable, 32: contains C-strings, 64: sh_info contains SHT index, 128: preserve order, 256: OS-specific, 512: group member, 1024: TLS template ...)
  620.          uint32_t virtual_addr; // offset 12: address in virtual memory where this section may be loaded
  621.          uint32_t file_offset;  // offset 16: offset of this section in the ELF file
  622.          uint32_t size;         // offset 20: size of this section
  623.          uint32_t linked_index; // offset 24: optional section index of an associated section
  624.          uint32_t info;         // offset 28: optional extra information
  625.          uint32_t alignment;    // offset 32: required memory alignment (must be a power of 2)
  626.          uint32_t entry_size;   // offset 36: for table-like sections, size of an element in the table
  627.       } elf32; // size == 40
  628.       PACKED (struct) // size == 64
  629.       {
  630.          uint32_t name_offset;  // offset 0: offset in the string table of the name of this section
  631.          uint32_t type;         // offset 4: section type (0: unused, 1: program data, 2: symbols table, 3: strings table, 4: relocs with addends, 5: symbols hash table, 6: dyld info, 7: notes, 8: BSS, 9: relocs without addends, 11: dyld symbols table, 14: constructors, 15: destructors, 16, preconstructors, 17: group, 18: extended section indices, 19: number of typedefs ...)
  632.          uint64_t flags;        // offset 8: bitmapped flags (1: writable, 2: takes RAM, 4: executable, 8: reserved, 16: mergeable, 32: contains C-strings, 64: sh_info contains SHT index, 128: preserve order, 256: OS-specific, 512: group member, 1024: TLS template ...)
  633.          uint64_t virtual_addr; // offset 16: address in virtual memory where this section may be loaded
  634.          uint64_t file_offset;  // offset 24: offset of this section in the ELF file
  635.          uint64_t size;         // offset 32: size of this section
  636.          uint32_t linked_index; // offset 40: optional section index of an associated section
  637.          uint32_t info;         // offset 44: optional extra information
  638.          uint64_t alignment;    // offset 48: required memory alignment (must be a power of 2)
  639.          uint64_t entry_size;   // offset 56: for table-like sections, size of an element in the table
  640.       } elf64; // size == 64
  641.    } u;
  642. } elf_section_header_t;
  643. END_OF_PACKED_STRUCT () // restore default alignment
  644.  
  645.  
  646. // Executable and Linkable Format dynamic section entry structure type definition
  647. START_OF_PACKED_STRUCT () // we need byte-alignment for this struct
  648. typedef PACKED (struct) elf_dynamic_section_entry_s
  649. {
  650.    PACKED (union)
  651.    {
  652.       PACKED (struct) // size == 8
  653.       {
  654.          int32_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
  655.          uint32_t value; // value (as integer, or as pointed address)
  656.       } elf32; // size == 8
  657.       PACKED (struct) // size == 16
  658.       {
  659.          int64_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
  660.          uint64_t value; // value (as integer, or as pointed address)
  661.       } elf64; // size == 16
  662.    } u;
  663. } elf_dynamic_section_entry_t;
  664. END_OF_PACKED_STRUCT () // restore default alignment
  665.  
  666.  
  667. // generic buffer structure type definition
  668. typedef struct buffer_s
  669. {
  670.    uint8_t *bytes; // mallocated data
  671.    size_t len; // length of allocated data
  672. } buffer_t;
  673.  
  674.  
  675. // IFS directory entry insertion parameters structure type definition
  676. typedef struct parms_s
  677. {
  678.    int dperms; // directory permissions (e.g. 0755)
  679.    int perms; // file permissions (e.g. 0644)
  680.    int uid; // owner user ID (e.g. 0 = root)
  681.    int gid; // owner group ID (e.g. 0 = root)
  682.    int st_mode; // entry type (e.g. S_IFREG for files) and permissions
  683.    uint32_t mtime; // entry's modification time POSIX timestamp - set to UINT32_MAX to use the concerned files' mtime on the build host
  684.    uint32_t mtime_for_inline_files; // same as above but only for files that don't exist on the build host (i.e. files with an explicit content blob)
  685.    char prefix[MAXPATHLEN]; // install path (e.g. "proc/boot")
  686.    bool should_follow_symlinks; // follow symlinks
  687.    bool should_autosymlink_dylib; // dynamic libraries should be written under their official SONAME and a named symlink be created pointing at them
  688.    bool is_compiled_bootscript; // entry has [+script] attribute
  689.    int extra_ino_flags; // bitmap of extra inode flags (IFS_INO_xxx)
  690.    char search[10 * MAXPATHLEN]; // binary search path (the default one will be constructed at startup)
  691.  
  692.    buffer_t data;
  693. } parms_t;
  694.  
  695.  
  696. // global variables
  697. static char line_buffer[4096]; // scrap buffer for the IFS build file parser
  698. static uint32_t image_base = 4 * 1024 * 1024; // default image base, as per QNX docs -- can be changed with the [image=XXXX] attribute in the IFS build file
  699. static uint32_t image_end = UINT32_MAX; // default image end (no limit)
  700. static uint32_t image_maxsize = UINT32_MAX; // default image max size (no limit)
  701. static uint32_t image_totalsize = 0; // image total size, measured once all the blocks have been written to the output IFS file
  702. static uint32_t image_align = 4; // default image alignment, as per QNX docs
  703. static uint32_t image_kernel_ino = 0;
  704. static uint32_t image_bootscript_ino = 0;
  705. #if defined(__x86_64__)
  706. static char image_processor[16] = "x86_64"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
  707. #elif defined(__aarch64__)
  708. static char image_processor[16] = "aarch64le"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
  709. #else // unknown platform
  710. #error Please port ifstool to this platform
  711. #endif
  712. static char *buildfile_pathname = NULL; // pathname of IFS build file
  713. static char *current_line = NULL; // copy of current line in IFS build file
  714. static int lineno = 0; // current line number in IFS build file
  715. static char *QNX_TARGET = NULL; // value of the $QNX_TARGET environment variable
  716. static char *MKIFS_PATH = NULL; // value of the $MKIFS_PATH environment variable (may contain references to $QNX_TARGET). Initialized by this program if empty.
  717.  
  718.  
  719. // prototypes of local functions
  720. static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data); // used internally in SHA512_Update() and SHA512_Final()
  721. static void SHA512_Init (SHA512_CTX *context);
  722. static void SHA512_Update (SHA512_CTX *context, void *data, size_t len);
  723. static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context);
  724. static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest); // computes a SHA-512 in one pass (shortcut for SHA512_Init(), SHA512_Update() N times and SHA512_Final())
  725. static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness); // compute an IFS image or startup checksum to store in the trailer
  726. static long long read_integer (const char *str); // reads an integer number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
  727. static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...); // hexdump-style formatted output to a file stream (which may be stdout/stderr)
  728. static char *binary (const uint8_t x, char char_for_zero, char char_for_one); // returns the binary representation of byte 'x' as a string
  729. static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8]); // returns the ORed description of byte 'x' according to the description strings for each bit
  730. static char *read_filecontents (const char *pathname, const char *search_path, buffer_t *outbuf); // locates pathname among MKIFS_PATH, reads it, places its contents in a buffer (caller frees) and returns a pointer to the resolved pathname (static string)
  731. static int fwrite_filecontents (const char *pathname, FILE *fp); // dumps the contents of pathname into fp
  732. static int relative_offset_of_in (const char *name, const buffer_t *stringbuf); // returns the relative offset of a particular string in a string table
  733. static elf_section_header_t *elf_get_section_header_by_name (const elf_header_t *elf, const char *section_name); // get a pointer to a named section header in an ELF file
  734. static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp); // writes the given filesystem entry into fp (without its contents)
  735. static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname); // stack up a new filesystem entry
  736. static int fsentry_compare_pathnames_cb (const void *a, const void *b); // qsort() comparison callback that sorts filesystem entries by pathnames
  737. static void update_MKIFS_PATH (const char *processor);
  738. static int dump_ifs_info (const char *ifs_pathname, bool want_everything); // dumps detailed info about a particular IFS file on the standard output, returns 0 on success and >0 on error
  739.  
  740.  
  741. static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data)
  742. {
  743.    // logical functions used in SHA-384 and SHA-512
  744.    #define S64(b,x)      (((x) >> (b)) | ((x) << (64 - (b)))) // 64-bit rotate right
  745.    #define Ch(x,y,z)     (((x) & (y)) ^ ((~(x)) & (z)))
  746.    #define Maj(x,y,z)    (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  747.    #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  748.    #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  749.    #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ ((x) >> 7))
  750.    #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ ((x) >> 6))
  751.  
  752.    // hash constant words K for SHA-384 and SHA-512
  753.    static const uint64_t K512[80] = {
  754.       0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  755.       0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  756.       0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  757.       0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  758.       0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  759.       0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  760.       0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  761.       0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  762.       0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  763.       0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  764.    };
  765.  
  766.    uint64_t     a, b, c, d, e, f, g, h, s0, s1;
  767.    uint64_t     T1, T2, *W512 = (uint64_t *) context->buffer;
  768.    int j;
  769.  
  770.    // initialize registers with the prev. intermediate value
  771.    a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7];
  772.  
  773.    for (j = 0; j < 16; j++)
  774.    {
  775. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  776.       W512[j] = __builtin_bswap64 (*data); // convert to host byte order
  777. #elif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  778.       W512[j] = *data;
  779. #else // __BYTE_ORDER__ == ???
  780. #error Please port this SHA-512 code to your exotic endianness platform. What are you compiling this on? PDP? Honeywell?
  781. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  782.  
  783.       // apply the SHA-512 compression function to update a..h
  784.       T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + W512[j];
  785.       T2 = Sigma0_512 (a) + Maj (a, b, c);
  786.  
  787.       // update registers
  788.       h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
  789.  
  790.       data++;
  791.    }
  792.  
  793.    for (; j < 80; j++)
  794.    {
  795.       // part of the message block expansion
  796.       s0 = W512[(j + 1) & 0x0f];
  797.       s0 = sigma0_512 (s0);
  798.       s1 = W512[(j + 14) & 0x0f];
  799.       s1 = sigma1_512 (s1);
  800.  
  801.       // apply the SHA-512 compression function to update a..h
  802.       T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
  803.       T2 = Sigma0_512 (a) + Maj (a, b, c);
  804.  
  805.       // update registers
  806.       h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
  807.    }
  808.  
  809.    // compute the current intermediate hash value
  810.    context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h;
  811.  
  812.    // clean up
  813.    a = b = c = d = e = f = g = h = T1 = T2 = 0;
  814.    #undef sigma1_512
  815.    #undef sigma0_512
  816.    #undef Sigma1_512
  817.    #undef Sigma0_512
  818.    #undef Maj
  819.    #undef Ch
  820.    #undef S64
  821.    return;
  822. }
  823.  
  824.  
  825. static void SHA512_Init (SHA512_CTX *context)
  826. {
  827.    // initial hash value H for SHA-512
  828.    static const uint64_t sha512_initial_hash_value[8] = {
  829.       0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
  830.    };
  831.  
  832.    memcpy (context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  833.    memset (context->buffer, 0, SHA512_BLOCK_LENGTH);
  834.    context->bitcount[0] = context->bitcount[1] = 0;
  835. }
  836.  
  837.  
  838. void SHA512_Update (SHA512_CTX *context, void *datain, size_t len)
  839. {
  840.    #define ADDINC128(w,n) do { \
  841.            (w)[0] += (uint64_t) (n); \
  842.            if ((w)[0] < (n)) \
  843.                    (w)[1]++; \
  844.    } while (0) // macro for incrementally adding the unsigned 64-bit integer n to the unsigned 128-bit integer (represented using a two-element array of 64-bit words
  845.  
  846.    size_t freespace, usedspace;
  847.    const uint8_t *data = (const uint8_t *) datain;
  848.  
  849.    if (len == 0)
  850.       return; // calling with empty data is valid - we do nothing
  851.  
  852.    usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  853.    if (usedspace > 0)
  854.    {
  855.       // calculate how much free space is available in the buffer
  856.       freespace = SHA512_BLOCK_LENGTH - usedspace;
  857.  
  858.       if (len >= freespace)
  859.       {
  860.          // fill the buffer completely and process it
  861.          memcpy (&context->buffer[usedspace], data, freespace);
  862.          ADDINC128 (context->bitcount, freespace << 3);
  863.          len -= freespace;
  864.          data += freespace;
  865.          sha512_private_transform (context, (uint64_t *) context->buffer);
  866.       }
  867.       else
  868.       {
  869.          // the buffer is not full yet
  870.          memcpy (&context->buffer[usedspace], data, len);
  871.          ADDINC128 (context->bitcount, len << 3);
  872.  
  873.          // clean up
  874.          usedspace = freespace = 0;
  875.          return;
  876.       }
  877.    }
  878.  
  879.    while (len >= SHA512_BLOCK_LENGTH)
  880.    {
  881.       // process as many complete blocks as we can
  882.       sha512_private_transform (context, (uint64_t *) data);
  883.       ADDINC128 (context->bitcount, SHA512_BLOCK_LENGTH << 3);
  884.       len -= SHA512_BLOCK_LENGTH;
  885.       data += SHA512_BLOCK_LENGTH;
  886.    }
  887.  
  888.    if (len > 0)
  889.    {
  890.       // save leftovers
  891.       memcpy (context->buffer, data, len);
  892.       ADDINC128 (context->bitcount, len << 3);
  893.    }
  894.  
  895.    // clean up
  896.    usedspace = freespace = 0;
  897.    #undef ADDINC128
  898.    return;
  899. }
  900.  
  901.  
  902. static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
  903. {
  904.    #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
  905.  
  906.    size_t usedspace;
  907.    union { uint8_t *as_bytes; uint64_t *as_uint64s; } cast_var = { NULL };
  908.  
  909.    // if no digest buffer is passed, don't bother finalizing the computation
  910.    if (digest != NULL)
  911.    {
  912.       usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  913.  
  914. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  915.       context->bitcount[0] = __builtin_bswap64 (context->bitcount[0]); // convert from host byte order
  916.       context->bitcount[1] = __builtin_bswap64 (context->bitcount[1]); // convert from host byte order
  917. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  918.  
  919.       if (usedspace > 0)
  920.       {
  921.          // begin padding with a 1 bit
  922.          context->buffer[usedspace++] = 0x80;
  923.  
  924.          if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
  925.             memset (&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); // set-up for the last transform
  926.          else
  927.          {
  928.             if (usedspace < SHA512_BLOCK_LENGTH)
  929.                memset (&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
  930.  
  931.             sha512_private_transform (context, (uint64_t *) context->buffer); // do second-to-last transform
  932.             memset (context->buffer, 0, SHA512_BLOCK_LENGTH - 2); // and set-up for the last transform
  933.          }
  934.       }
  935.       else // usedspace == 0
  936.       {
  937.          memset (context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); // prepare for final transform
  938.          *context->buffer = 0x80; // begin padding with a 1 bit
  939.       }
  940.  
  941.       // store the length of input data (in bits)
  942.       cast_var.as_bytes = context->buffer;
  943.       cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 0] = context->bitcount[1];
  944.       cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
  945.  
  946.       // final transform
  947.       sha512_private_transform (context, (uint64_t *) context->buffer);
  948.  
  949.       // save the hash data for output
  950. #if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  951.       for (int j = 0; j < 8; j++)
  952.          context->state[j] = __builtin_bswap64 (context->state[j]); // convert to host byte order
  953. #endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
  954.       memcpy (digest, context->state, SHA512_DIGEST_LENGTH);
  955.    }
  956.  
  957.    // zero out state data
  958.    memset (context, 0, sizeof (SHA512_CTX));
  959.    #undef SHA512_SHORT_BLOCK_LENGTH
  960.    return;
  961. }
  962.  
  963.  
  964. static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest_or_NULL)
  965. {
  966.    // computes the SHA-512 hash of a block of data in one pass and write it to digest, or to a static buffer if NULL
  967.    // returns the STRING REPRESENTATION of digest in a statically-allocated string
  968.  
  969.    static thread_local uint8_t static_digest[SHA512_DIGEST_LENGTH] = "";
  970.    static thread_local char digest_as_string[2 * SHA512_DIGEST_LENGTH + 1] = "";
  971.  
  972.    SHA512_CTX ctx;
  973.    size_t byte_index;
  974.  
  975.    SHA512_Init (&ctx);
  976.    SHA512_Update (&ctx, data, data_len);
  977.    if (digest_or_NULL == NULL)
  978.       digest_or_NULL = static_digest;
  979.    SHA512_Final (digest_or_NULL, &ctx);
  980.  
  981.    for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
  982.       sprintf (&digest_as_string[2 * byte_index], "%02x", digest_or_NULL[byte_index]);
  983.    return (digest_as_string);
  984. }
  985.  
  986.  
  987. static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness)
  988. {
  989.    // computes the checksum of an IFS image or startup section, i.e. from the start of the header to the end of the trailer minus the last 4 bytes where the checksum is stored
  990.  
  991.    uint8_t accumulator[4] = { 0, 0, 0, 0 };
  992.    const char *current_char_ptr;
  993.    int32_t image_cksum;
  994.    size_t i;
  995.  
  996.    image_cksum = 0;
  997.    current_char_ptr = data;
  998.    for (i = 0; i < data_len; i++)
  999.    {
  1000.       accumulator[i % 4] = *current_char_ptr;
  1001.       if (i % 4 == 3)
  1002.          if (is_foreign_endianness)
  1003.             image_cksum += (accumulator[3] << 0) + (accumulator[2] << 8) + (accumulator[1] << 16) + (accumulator[0] << 24);
  1004.          else
  1005.             image_cksum += (accumulator[0] << 0) + (accumulator[1] << 8) + (accumulator[2] << 16) + (accumulator[3] << 24);
  1006.       current_char_ptr++;
  1007.    }
  1008.  
  1009.    return (is_foreign_endianness ? __builtin_bswap32 (-image_cksum) : -image_cksum);
  1010. }
  1011.  
  1012.  
  1013. static long long read_integer (const char *str)
  1014. {
  1015.    // reads a number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
  1016.  
  1017.    char *endptr = NULL;
  1018.    long long ret = strtoll (str, &endptr, 0); // use strtoll() to handle hexadecimal (0x...), octal (0...) and decimal (...) bases
  1019.    if (endptr != NULL)
  1020.    {
  1021.       if ((*endptr == 'k') || (*endptr == 'K')) ret *= (size_t) 1024;
  1022.       else if ((*endptr == 'm') || (*endptr == 'M')) ret *= (size_t) 1024 * 1024;
  1023.       else if ((*endptr == 'g') || (*endptr == 'G')) ret *= (size_t) 1024 * 1024 * 1024;
  1024.       else if ((*endptr == 't') || (*endptr == 'T')) ret *= (size_t) 1024 * 1024 * 1024 * 1024; // future-proof enough, I suppose?
  1025.    }
  1026.    return (ret);
  1027. }
  1028.  
  1029.  
  1030. static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...)
  1031. {
  1032.    // this function logs hexadecimal data to an opened file pointer (or to stdout/stderr)
  1033.  
  1034.    va_list argptr;
  1035.    size_t index;
  1036.    int i;
  1037.  
  1038.    // concatenate all the arguments in one string and write it to the file
  1039.    va_start (argptr, fmt);
  1040.    vfprintf (fp, fmt, argptr);
  1041.    va_end (argptr);
  1042.  
  1043.    // for each row of howmany_columns bytes of data...
  1044.    for (index = 0; index < data_size; index += howmany_columns)
  1045.    {
  1046.       fprintf (fp, "    %05zu  ", index); // print array address of row
  1047.       for (i = 0; i < howmany_columns; i++)
  1048.          if (index + i < data_size)
  1049.             fprintf (fp, " %02X", data[index + i]); // if row contains data, print data as hex bytes
  1050.          else
  1051.             fprintf (fp, "   "); // else fill the space with blanks
  1052.       fprintf (fp, "   ");
  1053.       for (i = 0; i < howmany_columns; i++)
  1054.          if (index + i < data_size)
  1055.             fputc ((data[index + i] >= 32) && (data[index + i] < 127) ? data[index + i] : '.', fp); // now if row contains data, print data as ASCII
  1056.          else
  1057.             fputc (' ', fp); // else fill the space with blanks
  1058.       fputc ('\n', fp);
  1059.    }
  1060.  
  1061.    return; // and return
  1062. }
  1063.  
  1064.  
  1065. static char *binary (const uint8_t x, char char_for_zero, char char_for_one)
  1066. {
  1067.    // returns the binary representation of x as a string
  1068.  
  1069.    static thread_local char outstr[9] = "00000000";
  1070.    for (int i = 0; i < 8; i++)
  1071.       outstr[i] = (x & (0x80 >> i) ? char_for_one : char_for_zero);
  1072.    return (outstr);
  1073. }
  1074.  
  1075.  
  1076. static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8])
  1077. {
  1078.    // returns the ORed description of byte 'x' according to the description strings for each bit
  1079.  
  1080.    static thread_local char *default_bitstrings[8] = { "bit0", "bit1", "bit2", "bit3", "bit4", "bit5", "bit6", "bit7" };
  1081.    static thread_local char outstr[8 * 64] = "";
  1082.  
  1083.    outstr[0] = 0;
  1084.    for (int i = 0; i < 8; i++)
  1085.       if (x & (1 << i))
  1086.       {
  1087.          if (outstr[0] != 0)
  1088.             strcat (outstr, "|");
  1089.          strcat (outstr, ((bitwise_stringdescs != NULL) && (*bitwise_stringdescs[i] != 0) ? bitwise_stringdescs[i] : default_bitstrings[i]));
  1090.       }
  1091.    return (outstr);
  1092. }
  1093.  
  1094.  
  1095. static char *read_filecontents (const char *pathname, const char *search_path, buffer_t *outbuf)
  1096. {
  1097.    // locates pathname among MKIFS_PATH, and places its contents in a buffer (caller frees). Returns resolved pathname (static buffer) or NULL.
  1098.  
  1099.    static thread_local char final_pathname[MAXPATHLEN];
  1100.  
  1101.    const char *nextsep;
  1102.    const char *token;
  1103.    FILE *fp;
  1104.  
  1105.    // is it an absolute pathname (POSIX and Windows variants) ?
  1106.    if (IS_DIRSEP (pathname[0]) || (isalpha (pathname[0]) && (pathname[1] == ':') && IS_DIRSEP (pathname[2])))
  1107.       strcpy (final_pathname, pathname); // in this case, it MUST exist at its designated location (either absolute or relative to the current working directory)
  1108.    else // the path is relative, search it among the search paths we have
  1109.    {
  1110.       // construct a potential final path using each element of the search path
  1111.       token = (*search_path != 0 ? search_path : NULL);
  1112.       nextsep = (token != NULL ? &token[strcspn (token, PATH_SEP_STR)] : NULL);
  1113.       while (token != NULL)
  1114.       {
  1115.          sprintf (final_pathname, "%.*s/%s", (int) (nextsep - token), token, pathname);
  1116.          if (access (final_pathname, 0) == 0)
  1117.             break; // if a file can indeed be found at this location, stop searching
  1118.  
  1119.          token = (*nextsep != 0 ? nextsep + 1 : NULL);
  1120.          nextsep = (token != NULL ? &token[strcspn (token, PATH_SEP_STR)] : NULL);
  1121.       }
  1122.  
  1123.       // have we exhausted all possibilities ?
  1124.       if (token == NULL)
  1125.       {
  1126.          errno = ENOENT;
  1127.          return (NULL); // file not found, return with ENOENT
  1128.       }
  1129.    }
  1130.  
  1131.    // now open and read the file
  1132.    fp = fopen (final_pathname, "rb");
  1133.    if (fp == NULL)
  1134.       return (NULL); // unexistent file (errno is set to ENOENT)
  1135.  
  1136.    fseek (fp, 0, SEEK_END);
  1137.    outbuf->len = ftell (fp); // measure file length
  1138.    fseek (fp, 0, SEEK_SET);
  1139.    outbuf->bytes = malloc (outbuf->len);
  1140.    if (outbuf->bytes == NULL)
  1141.    {
  1142.       fclose (fp);
  1143.       outbuf->len = 0;
  1144.       return (NULL); // out of memory (errno is set to ENOMEM)
  1145.    }
  1146.    if (fread (outbuf->bytes, 1, outbuf->len, fp) != outbuf->len) // read the file in whole
  1147.    {
  1148.       fclose (fp);
  1149.       outbuf->len = 0;
  1150.       return (NULL); // short read (errno is set)
  1151.    }
  1152.    fclose (fp); // close the file
  1153.  
  1154.    return (final_pathname); // file was read successfully and its content put in databuf with size datalen
  1155. }
  1156.  
  1157.  
  1158. static int fwrite_filecontents (const char *pathname, FILE *fp)
  1159. {
  1160.    // dumps the binary contents of pathname to fp
  1161.  
  1162.    uint8_t *blob_buffer;
  1163.    size_t blob_size;
  1164.    FILE *blob_fp;
  1165.    int ret;
  1166.  
  1167.    blob_fp = fopen (pathname, "rb");
  1168.    if (blob_fp == NULL)
  1169.       return (-1); // errno is set
  1170.  
  1171.    fseek (blob_fp, 0, SEEK_END);
  1172.    blob_size = ftell (blob_fp);
  1173.    blob_buffer = malloc (blob_size);
  1174.    if (blob_buffer == NULL)
  1175.    {
  1176.       fclose (blob_fp);
  1177.       return (-1); // errno is set to ENOMEM
  1178.    }
  1179.    fseek (blob_fp, 0, SEEK_SET);
  1180.    fread (blob_buffer, 1, blob_size, blob_fp);
  1181.    fclose (blob_fp);
  1182.  
  1183.    ret = (int) fwrite (blob_buffer, 1, blob_size, fp);
  1184.    fflush (fp); // force flush to disk, because the C stream API is *buffered*
  1185.    free (blob_buffer);
  1186.    return (ret);
  1187. }
  1188.  
  1189.  
  1190. static int relative_offset_of_in (const char *name, const buffer_t *stringbuf)
  1191. {
  1192.    int name_len = (int) strlen (name) + 1;
  1193.    WELLMANNERED_ASSERT (name_len < stringbuf->len, "bad call (name longer than string table)");
  1194.    for (int idx = 0; idx <= stringbuf->len - name_len; idx++)
  1195.       if (memcmp (&stringbuf->bytes[idx], name, name_len) == 0)
  1196.          return (idx);
  1197.    WELLMANNERED_ASSERT (false, "bad call (name '%s' not found in string table)", name);
  1198.    return (0);
  1199. }
  1200.  
  1201.  
  1202. static elf_section_header_t *elf_get_section_header_by_name (const elf_header_t *elf, const char *section_name)
  1203. {
  1204.    elf_section_header_t *shdr_shstrtab; // section header of the section header strings table
  1205.    elf_section_header_t *shdr;
  1206.    size_t table_count;
  1207.    size_t table_index;
  1208.    char *shstrtab; // section header strings table
  1209.    char *name;
  1210.  
  1211.    shdr_shstrtab = (elf_section_header_t *) ((uint8_t *) elf + ELF_GET_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, section_header_item_size) * ELF_GET_NUMERIC (elf, elf, section_header_names_idx)); // quick access to section header for the section that contains the section names
  1212.    shstrtab = ((uint8_t *) elf + ELF_GET_NUMERIC (elf, shdr_shstrtab, file_offset)); // locate the start of the strings table that contains the section names
  1213.  
  1214.    // cycle through the sections table
  1215.    table_count = ELF_GET_NUMERIC (elf, elf, section_header_table_len);
  1216.    for (table_index = 0; table_index < table_count; table_index++)
  1217.    {
  1218.       shdr = (elf_section_header_t *) ((uint8_t *) elf + ELF_GET_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, section_header_item_size) * table_index); // quick access to section header
  1219.       name = &shstrtab[ELF_GET_NUMERIC (elf, shdr, name_offset)]; // peek at its name
  1220.       if (strcmp (name, section_name) == 0)
  1221.          return (shdr); // if found, return a pointer to this section header
  1222.    }
  1223.  
  1224.    return (NULL); // section not found
  1225. }
  1226.  
  1227.  
  1228. static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp)
  1229. {
  1230.    // writes a directory entry in the image filesystem file pointed to by fp (or fakes so if fp is NULL)
  1231.    // and return the number of bytes written (or that would have been written)
  1232.  
  1233.    static const uint8_t zeropad_buffer[] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
  1234.  
  1235.    size_t datalen;
  1236.    size_t count;
  1237.  
  1238.    count = 0;
  1239.    if (fp != NULL)
  1240.       fwrite_or_die (&fsentry->header, 1, sizeof (fsentry->header), fp); // write the entry header (PACKED STRUCT)
  1241.    count += sizeof (fsentry->header);
  1242.    if (S_ISREG (fsentry->header.mode))
  1243.    {
  1244.       if (fp != NULL)
  1245.       {
  1246.          fwrite_or_die (&fsentry->u.file.offset, 1, sizeof (uint32_t), fp); // write offset
  1247.          fwrite_or_die (&fsentry->u.file.size,   1, sizeof (uint32_t), fp); // write size
  1248.       }
  1249.       count += 2 * sizeof (uint32_t);
  1250.       datalen = strlen (fsentry->u.file.path) + 1;
  1251.       if (fp != NULL)
  1252.          fwrite_or_die (fsentry->u.file.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1253.       count += datalen;
  1254.    }
  1255.    else if (S_ISDIR (fsentry->header.mode))
  1256.    {
  1257.       datalen = strlen (fsentry->u.dir.path) + 1;
  1258.       if (fp != NULL)
  1259.          fwrite_or_die (fsentry->u.dir.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1260.       count += datalen;
  1261.    }
  1262.    else if (S_ISLNK (fsentry->header.mode))
  1263.    {
  1264.       if (fp != NULL)
  1265.       {
  1266.          fwrite_or_die (&fsentry->u.symlink.sym_offset, 1, sizeof (uint16_t), fp); // write offset
  1267.          fwrite_or_die (&fsentry->u.symlink.sym_size,   1, sizeof (uint16_t), fp); // write size
  1268.       }
  1269.       count += 2 * sizeof (uint16_t);
  1270.       datalen = strlen (fsentry->u.symlink.path) + 1;
  1271.       if (fp != NULL)
  1272.          fwrite_or_die (fsentry->u.symlink.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1273.       count += datalen;
  1274.       datalen = strlen (fsentry->u.symlink.contents) + 1;
  1275.       if (fp != NULL)
  1276.          fwrite_or_die (fsentry->u.symlink.contents, 1, (size_t) datalen, fp); // write null-terminated symlink contents
  1277.       count += datalen;
  1278.    }
  1279.    else
  1280.    {
  1281.       if (fp != NULL)
  1282.       {
  1283.          fwrite_or_die (&fsentry->u.device.dev,  1, sizeof (uint32_t), fp); // write dev number
  1284.          fwrite_or_die (&fsentry->u.device.rdev, 1, sizeof (uint32_t), fp); // write rdev number
  1285.       }
  1286.       count += 2 * sizeof (uint32_t);
  1287.       datalen = strlen (fsentry->u.device.path) + 1;
  1288.       if (fp != NULL)
  1289.          fwrite_or_die (fsentry->u.device.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
  1290.       count += datalen;
  1291.    }
  1292.  
  1293.    if (count < fsentry->header.size)
  1294.    {
  1295.       if (fp != NULL)
  1296.          fwrite_or_die (zeropad_buffer, 1, fsentry->header.size - count, fp); // pad as necessary
  1297.       count += fsentry->header.size - count;
  1298.    }
  1299.    else if (count > fsentry->header.size)
  1300.    {
  1301.       fprintf (stderr, "ERROR: attempt to write invalid dirent (claimed size %zd, written size %zd). Aborting.\n", (size_t) fsentry->header.size, count);
  1302.       exit (1);
  1303.    }
  1304.  
  1305.    return (count);
  1306. }
  1307.  
  1308.  
  1309. static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname)
  1310. {
  1311.    #define ADD_NAME_TO_STRINGTABLE(name,strtab) do { \
  1312.       name_len = strlen ((name)) + 1; \
  1313.       reallocated_ptr = realloc ((strtab).bytes, (strtab).len + name_len); \
  1314.       WELLMANNERED_ASSERT (reallocated_ptr, "out of memory"); \
  1315.       (strtab).bytes = reallocated_ptr; \
  1316.       memcpy (&(strtab).bytes[(strtab).len], (name), name_len); \
  1317.       (strtab).len += name_len; \
  1318.    } while (0)
  1319.    #define APPEND_SECTION_DATA(section,sectionhdr_offset) do { \
  1320.       memcpy (&entry_parms->data.bytes[entry_parms->data.len], (section).bytes, (section).len); /* write section in place */ \
  1321.       free ((section).bytes); /* free it */ \
  1322.       new_shdr = (elf_section_header_t *) &new_shtab.bytes[(sectionhdr_offset)]; /* now fix this section header */ \
  1323.       ELF_SET_NUMERIC (elf, new_shdr, file_offset, entry_parms->data.len); /* fix section offset in the new section headers table */ \
  1324.       entry_parms->data.len += (section).len; /* update new ELF file length */ \
  1325.    } while (0)
  1326.  
  1327.    static thread_local char candidate_pathname[1024];
  1328.    static int inode_count = 0; // will be preincremented each time this function is called
  1329.  
  1330.    const char *original_stored_pathname = NULL;
  1331.    const elf_dynamic_section_entry_t *dynamic_entry; // dynamic section entry
  1332.    const elf_section_header_t *shdr_dynstr; // dynamic strings
  1333.    const elf_section_header_t *shdr_dynamic; // dynamic section
  1334.    const elf_section_header_t *shdr;
  1335.    elf_section_header_t *new_shdr;
  1336.    size_t new_qnxinfo_shdr_offset;
  1337.    size_t new_debuglink_shdr_offset;
  1338.    size_t new_qnxusage_shdr_offset;
  1339.    size_t new_buildid_shdr_offset;
  1340.    size_t new_shstrtab_shdr_offset;
  1341.    elf_program_header_t *phdr;
  1342.    const char *canonical_dylib_name;
  1343.    const char *dynamic_strings; // strings table of the ".dynamic" section
  1344.    const char *last_dirsep;
  1345.    elf_header_t *elf;
  1346.    buffer_t new_shtab = { NULL, 0 };
  1347.    buffer_t elfsection_qnxinfo   = { NULL, 0 };
  1348.    buffer_t elfsection_qnxusage  = { NULL, 0 };
  1349.    buffer_t elfsection_debuglink = { NULL, 0 };
  1350.    buffer_t elfsection_buildid   = { NULL, 0 };
  1351.    buffer_t elfsection_shstrtab  = { NULL, 0 };
  1352.    char *resolved_pathname;
  1353.    void *reallocated_ptr;
  1354.    void *old_data;
  1355.    struct stat stat_buf;
  1356.    size_t new_shdrtable_offset;
  1357.    size_t end_padding_offset;
  1358.    size_t table_index;
  1359.    size_t table_count;
  1360.    size_t name_len;
  1361.    fsentry_t *fsentry;
  1362.  
  1363.    if (S_ISDIR (entry_parms->st_mode)) // are we storing a directory ?
  1364.    {
  1365.       fprintf (stderr, "directory: ino 0x%x uid %d gid %d mode 0%o path \"%s\"\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname);
  1366.    }
  1367.    else if (S_ISREG (entry_parms->st_mode)) // else are we storing a regular file ?
  1368.    {
  1369.       if (strcmp (stored_pathname, "/proc/boot/boot") == 0) // is it the kernel ?
  1370.       {
  1371.          // HACK: for now just consider the kernel as a binary blob
  1372.          // FIXME: reimplement properly
  1373.          sprintf (candidate_pathname, "%s/procnto-smp-instr", entry_parms->prefix); // fix the entry name
  1374.          stored_pathname = candidate_pathname;
  1375.          entry_parms->extra_ino_flags |= IFS_INO_PROCESSED_ELF | IFS_INO_BOOTSTRAP_EXE; // procnto needs to have these flags stamped on the inode
  1376.          entry_parms->st_mode = S_IFREG | 0700; // procnto requires 0700 permissions
  1377.          image_kernel_ino = entry_parms->extra_ino_flags | (inode_count + 1);
  1378.       }
  1379.       else if (entry_parms->is_compiled_bootscript) // else is it a startup script ?
  1380.          image_bootscript_ino = inode_count + 1; // save boot script inode number for image header
  1381.  
  1382.       // do we already know the data for this data blob ?
  1383.       if (entry_parms->data.bytes != NULL)
  1384.       {
  1385.          entry_parms->mtime = entry_parms->mtime_for_inline_files;
  1386.          fprintf (stderr, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" blob (len %zd)\n", entry_parms->extra_ino_flags | (inode_count + 1), entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data.len);
  1387.       }
  1388.       else if (buildhost_pathname != NULL) // else was a source file pathname supplied ?
  1389.       {
  1390.          resolved_pathname = read_filecontents (buildhost_pathname, (entry_parms->search[0] != 0 ? entry_parms->search : MKIFS_PATH), &entry_parms->data); // locate the file
  1391.          if (resolved_pathname == NULL)
  1392.          {
  1393.             fprintf (stderr, "fatal error: filesystem entry \"%s\" specified in \"%s\" line %d not found on build host: %s\n", buildhost_pathname, buildfile_pathname, lineno, strerror (errno));
  1394.             exit (1);
  1395.          }
  1396.          stat (resolved_pathname, &stat_buf); // can't fail
  1397.          if (entry_parms->mtime == UINT32_MAX)
  1398.             entry_parms->mtime = (uint32_t) stat_buf.st_mtime;
  1399.          fprintf (stderr, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" buildhost_file \"%s\" (len %zd)\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, buildhost_pathname, entry_parms->data.len);
  1400.       }
  1401.  
  1402.       // is the file we're storing an ELF file ?
  1403.       if ((entry_parms->data.len > 52) // file is big enough to contain an ELF header
  1404.           && ((elf = (elf_header_t *) entry_parms->data.bytes) != NULL) // cast (necessary true)
  1405.           && (memcmp (ELF_GET_STRING (elf, elf, magic), ELF_MAGIC_STR, 4) == 0)) // file starts with the ELF magic
  1406.       {
  1407.          // is the file we're storing a relocatable executable (i.e. a dynamic library) and should we check for its canonical name ?
  1408.          if ((ELF_GET_NUMERIC (elf, elf, type) == 3) && entry_parms->should_autosymlink_dylib)
  1409.          {
  1410.             // we need to find the SONAME of this library
  1411.             canonical_dylib_name = NULL;
  1412.  
  1413.             // locate the sections we need (the dynamic section and its strings table)
  1414.             shdr_dynamic = elf_get_section_header_by_name (elf, ".dynamic");
  1415.             shdr_dynstr = elf_get_section_header_by_name (elf, ".dynstr");
  1416.  
  1417.             // make sure we have both the dynamic section header and its own strings table header
  1418.             if ((shdr_dynamic != NULL) && (shdr_dynstr != NULL))
  1419.             {
  1420.                dynamic_strings = (char *) &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr_dynstr, file_offset)]; // quick access to dynamic sections strings table
  1421.  
  1422.                // walk through the dynamic section, look for the DT_SONAME entry
  1423.                for (dynamic_entry = (elf_dynamic_section_entry_t *) &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr_dynamic, file_offset)];
  1424.                     (ELF_GET_NUMERIC (elf, dynamic_entry, tag) != ELF_DT_NULL);
  1425.                     dynamic_entry = (elf_dynamic_section_entry_t *) ((uint8_t *) dynamic_entry + ELF_STRUCT_SIZE (elf, dynamic_entry)))
  1426.                   if (ELF_GET_NUMERIC (elf, dynamic_entry, tag) == ELF_DT_SONAME)
  1427.                   {
  1428.                      canonical_dylib_name = dynamic_strings + ELF_GET_NUMERIC (elf, dynamic_entry, value);
  1429.                      break;
  1430.                   }
  1431.  
  1432.                // do we have it ?
  1433.                if ((canonical_dylib_name != NULL) && (canonical_dylib_name[0] != 0))
  1434.                {
  1435.                   sprintf (candidate_pathname, "%s/%s", entry_parms->prefix, canonical_dylib_name);
  1436.                   if (strcmp (candidate_pathname, stored_pathname) != 0) // claimed dylib name differs from passed name ?
  1437.                   {
  1438.                      original_stored_pathname = stored_pathname; // if so, remember to create a symlink here
  1439.                      stored_pathname = candidate_pathname;
  1440.                   }
  1441.                }
  1442.             }
  1443.          } // end if the file we're storing is a dylib
  1444.  
  1445.          // now strip this ELF file if necessary
  1446.          if (!(entry_parms->extra_ino_flags & IFS_INO_PROCESSED_ELF))
  1447.          {
  1448.             // NOTE: for each ELF file, mkifs
  1449.             // -> alters the program header table and offsets each p_addr (physical address) member by 0x1400000 plus the current file offset (this cannot be done right now, will need to be done once they are known)
  1450.             // -> throws away and reconstructs the sections table by keeping only the sections that are in the program header, and writes the section table at the start of the first thrown-away section
  1451.             // FIXME: what if a thrown away section is located between two program segments ? are they collapsed, moving the segments beyond it one slot down ?
  1452.  
  1453.             // reconstructed ELF:
  1454.             // ==== START OF FILE ====
  1455.             // ELF header
  1456.             // program header table
  1457.             //  (same sections, just p_addr offset changed)
  1458.             // section data 5 (named ".note.gnu.build-id")
  1459.             //  "............GNU....ZY.....c.o..l"
  1460.             // PROGRAM
  1461.             // sections table
  1462.             // + section 1: ALL ZEROES
  1463.             // + section 2: fileoffs 0x21a8 size 0xfd --> "QNX_info" --> QNX binary description: "NAME=pci_debug2.so.3.0\nDESCRIPTION=PCI Server System Debug Module\nDATE=2023/11/19-10:01:13-EST\nSTATE=lookup\nHOST=docker-n1.bts.rim.net\nUSER=builder\nVERSION=QNXOS_main\nTAGID=QNXOS_800-135\nPACKAGE=com.qnx.qnx800.target.pci.debug/3.0.0.00135T202311191043L\n"
  1464.             // + section 3: fileoffs 0x22a5 size 0x1c --> ".gnu_debuglink" --> indicates the debug file (and a possible checksum?): "pci_debug2.so.3.0.sym" "\0\0\0" "VX2p"
  1465.             // + section 4: fileoffs 0x22c1 size 0x2ad --> "QNX_usage" --> HELP TEXT: "\n-------------------------------------------------------------------------------\n%C\n\nThis module implements debug logging for all PCI server modules. It is\nincluded by setting the environment variable PCI_DEBUG_MODULE and uses\nthe slogger2 APIs.\nNOTE:.On systems which support slogger2, you are encouraged to use this module.instead of pci_debug.so...Release History.---------------..3.0 - This module is functionally equivalent to the previous 2.x version.      however it is incompatible with all pre v3.x PCI components..2.1 - fixes a bug whereby if slogger2 is not running and the PCI_DEBUG_MODULE.      environment variable is set, the client will SIGSEGV..2.0 - initial release.."
  1466.             // + section 5: fileoffs 0x190 size 0x32 --> ".note.gnu.build-id" --> GNU build ID
  1467.             // + section 6: fileoffs 0x256e size 0x40 --> ".shstrtab" --> sections names strings table
  1468.             // section data 2 (named "QNX_info")
  1469.             //  (QNX binary description)
  1470.             // section data 3 (named ".gnu_debuglink")
  1471.             //  (debug file)
  1472.             // section data 4 (named "QNX_usage")
  1473.             //  (help text)
  1474.             // section data 6 (named ".shstrtab")
  1475.             //  "\0"
  1476.             //  ".shstrtab\0"
  1477.             //  "QNX_info\0"
  1478.             //  ".gnu_debuglink\0"
  1479.             //  "QNX_usage\0"
  1480.             //  ".note.gnu.build-id\0"
  1481.             // ==== END OF FILE ====
  1482.  
  1483.             // parse the program header table, and measure the farthest offset known by this table where we'll write the reconstructed section headers table
  1484.  
  1485.             new_shdrtable_offset = 0;
  1486.             table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len);
  1487.             for (table_index = 0; table_index < table_count; table_index++)
  1488.             {
  1489.                phdr = (elf_program_header_t *) &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
  1490.                if (ELF_GET_NUMERIC (elf, phdr, file_offset) + ELF_GET_NUMERIC (elf, phdr, size_in_file) > new_shdrtable_offset)
  1491.                   new_shdrtable_offset = ELF_GET_NUMERIC (elf, phdr, file_offset) + ELF_GET_NUMERIC (elf, phdr, size_in_file);
  1492.             }
  1493.  
  1494.             // re-create the section header table
  1495.  
  1496.             elfsection_shstrtab.bytes = malloc (1); // initialize an empty section headers strings table
  1497.             WELLMANNERED_ASSERT (elfsection_shstrtab.bytes, "out of memory");
  1498.             elfsection_shstrtab.bytes[0] = 0;
  1499.             elfsection_shstrtab.len = 1;
  1500.             ADD_NAME_TO_STRINGTABLE (".shstrtab", elfsection_shstrtab);
  1501.  
  1502.             new_shtab.bytes = malloc (ELF_STRUCT_SIZE (elf, shdr)); // prepare a section headers table with just the default entry
  1503.             WELLMANNERED_ASSERT (new_shtab.bytes, "out of memory");
  1504.             memset (new_shtab.bytes, 0, ELF_STRUCT_SIZE (elf, shdr)); // the first section header is always zerofilled
  1505.             new_shtab.len = ELF_STRUCT_SIZE (elf, shdr); // and remember how big the section headers table is now
  1506.             if ((shdr = elf_get_section_header_by_name (elf, "QNX_info")) != NULL)
  1507.             {
  1508.                if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
  1509.                {
  1510.                   elfsection_qnxinfo.len = ELF_GET_NUMERIC (elf, shdr, size);
  1511.                   elfsection_qnxinfo.bytes = malloc (elfsection_qnxinfo.len);
  1512.                   WELLMANNERED_ASSERT (elfsection_qnxinfo.bytes, "out of memory");
  1513.                   memcpy (elfsection_qnxinfo.bytes, &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr, file_offset)], elfsection_qnxinfo.len);
  1514.                }
  1515.                reallocated_ptr = realloc (new_shtab.bytes, new_shtab.len + ELF_STRUCT_SIZE (elf, shdr)); // grow our section headers table to have one entry more
  1516.                WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  1517.                new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
  1518.                new_qnxinfo_shdr_offset = new_shtab.len; // remember the new offset of this section header
  1519.                new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
  1520.  
  1521.                new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_qnxinfo_shdr_offset]; // now populate this section header
  1522.                ADD_NAME_TO_STRINGTABLE ("QNX_info", elfsection_shstrtab);
  1523.                ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in ("QNX_info", &elfsection_shstrtab)); // update the relative offset of the section name
  1524.                ELF_SET_NUMERIC (elf, new_shdr, type,         ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
  1525.                ELF_SET_NUMERIC (elf, new_shdr, flags,        ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
  1526.                ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
  1527.                ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
  1528.                ELF_SET_NUMERIC (elf, new_shdr, size,         ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
  1529.                ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
  1530.                ELF_SET_NUMERIC (elf, new_shdr, info,         ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
  1531.                ELF_SET_NUMERIC (elf, new_shdr, alignment,    ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
  1532.                ELF_SET_NUMERIC (elf, new_shdr, entry_size,   ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
  1533.             }
  1534.             if ((shdr = elf_get_section_header_by_name (elf, ".gnu_debuglink")) != NULL)
  1535.             {
  1536.                if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
  1537.                {
  1538.                   elfsection_debuglink.len = ELF_GET_NUMERIC (elf, shdr, size);
  1539.                   elfsection_debuglink.bytes = malloc (elfsection_debuglink.len);
  1540.                   WELLMANNERED_ASSERT (elfsection_debuglink.bytes, "out of memory");
  1541.                   memcpy (elfsection_debuglink.bytes, &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr, file_offset)], elfsection_debuglink.len);
  1542.                }
  1543.                reallocated_ptr = realloc (new_shtab.bytes, new_shtab.len + ELF_STRUCT_SIZE (elf, shdr)); // grow our section headers table to have one entry more
  1544.                WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  1545.                new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
  1546.                new_debuglink_shdr_offset = new_shtab.len; // remember the new offset of this section header
  1547.                new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
  1548.  
  1549.                new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_debuglink_shdr_offset]; // now populate this section header
  1550.                ADD_NAME_TO_STRINGTABLE (".gnu_debuglink", elfsection_shstrtab);
  1551.                ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in (".gnu_debuglink", &elfsection_shstrtab)); // update the relative offset of the section name
  1552.                ELF_SET_NUMERIC (elf, new_shdr, type,         ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
  1553.                ELF_SET_NUMERIC (elf, new_shdr, flags,        ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
  1554.                ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
  1555.                ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
  1556.                ELF_SET_NUMERIC (elf, new_shdr, size,         ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
  1557.                ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
  1558.                ELF_SET_NUMERIC (elf, new_shdr, info,         ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
  1559.                ELF_SET_NUMERIC (elf, new_shdr, alignment,    ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
  1560.                ELF_SET_NUMERIC (elf, new_shdr, entry_size,   ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
  1561.             }
  1562.             if ((shdr = elf_get_section_header_by_name (elf, "QNX_usage")) != NULL)
  1563.             {
  1564.                if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
  1565.                {
  1566.                   elfsection_qnxusage.len = ELF_GET_NUMERIC (elf, shdr, size);
  1567.                   elfsection_qnxusage.bytes = malloc (elfsection_qnxusage.len);
  1568.                   WELLMANNERED_ASSERT (elfsection_qnxusage.bytes, "out of memory");
  1569.                   memcpy (elfsection_qnxusage.bytes, &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr, file_offset)], elfsection_qnxusage.len);
  1570.                }
  1571.                reallocated_ptr = realloc (new_shtab.bytes, new_shtab.len + ELF_STRUCT_SIZE (elf, shdr)); // grow our section headers table to have one entry more
  1572.                WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  1573.                new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
  1574.                new_qnxusage_shdr_offset = new_shtab.len; // remember the new offset of this section header
  1575.                new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
  1576.  
  1577.                new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_qnxusage_shdr_offset]; // now populate this section header
  1578.                ADD_NAME_TO_STRINGTABLE ("QNX_usage", elfsection_shstrtab);
  1579.                ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in ("QNX_usage", &elfsection_shstrtab)); // update the relative offset of the section name
  1580.                ELF_SET_NUMERIC (elf, new_shdr, type,         ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
  1581.                ELF_SET_NUMERIC (elf, new_shdr, flags,        ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
  1582.                ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
  1583.                ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
  1584.                ELF_SET_NUMERIC (elf, new_shdr, size,         ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
  1585.                ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
  1586.                ELF_SET_NUMERIC (elf, new_shdr, info,         ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
  1587.                ELF_SET_NUMERIC (elf, new_shdr, alignment,    ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
  1588.                ELF_SET_NUMERIC (elf, new_shdr, entry_size,   ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
  1589.             }
  1590.             if ((shdr = elf_get_section_header_by_name (elf, ".note.gnu.build-id")) != NULL)
  1591.             {
  1592.                if (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset) // if this section needs to be moved around, have a copy of it
  1593.                {
  1594.                   elfsection_buildid.len = ELF_GET_NUMERIC (elf, shdr, size);
  1595.                   elfsection_buildid.bytes = malloc (elfsection_buildid.len);
  1596.                   WELLMANNERED_ASSERT (elfsection_buildid.bytes, "out of memory");
  1597.                   memcpy (elfsection_buildid.bytes, &entry_parms->data.bytes[ELF_GET_NUMERIC (elf, shdr, file_offset)], elfsection_buildid.len);
  1598.                }
  1599.                reallocated_ptr = realloc (new_shtab.bytes, new_shtab.len + ELF_STRUCT_SIZE (elf, shdr)); // grow our section headers table to have one entry more
  1600.                WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  1601.                new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
  1602.                new_buildid_shdr_offset = new_shtab.len; // remember the new offset of this section header
  1603.                new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
  1604.  
  1605.                new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_buildid_shdr_offset]; // now populate this section header
  1606.                ADD_NAME_TO_STRINGTABLE (".note.gnu.build-id", elfsection_shstrtab);
  1607.                ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in (".note.gnu.build-id", &elfsection_shstrtab)); // update the relative offset of the section name
  1608.                ELF_SET_NUMERIC (elf, new_shdr, type,         ELF_GET_NUMERIC (elf, shdr, type)); // duplicate section type
  1609.                ELF_SET_NUMERIC (elf, new_shdr, flags,        ELF_GET_NUMERIC (elf, shdr, flags)); // duplicate section flags
  1610.                ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, ELF_GET_NUMERIC (elf, shdr, virtual_addr)); // duplicate section virtual address
  1611.                ELF_SET_NUMERIC (elf, new_shdr, file_offset, (ELF_GET_NUMERIC (elf, shdr, file_offset) > new_shdrtable_offset ? WILL_BE_FILLED_LATER : ELF_GET_NUMERIC (elf, shdr, file_offset))); // duplicate section offset only if it doesn't move
  1612.                ELF_SET_NUMERIC (elf, new_shdr, size,         ELF_GET_NUMERIC (elf, shdr, size)); // duplicate section size
  1613.                ELF_SET_NUMERIC (elf, new_shdr, linked_index, ELF_GET_NUMERIC (elf, shdr, linked_index)); // duplicate section linked index (FIXME: may be wrong now!)
  1614.                ELF_SET_NUMERIC (elf, new_shdr, info,         ELF_GET_NUMERIC (elf, shdr, info)); // duplicate section info
  1615.                ELF_SET_NUMERIC (elf, new_shdr, alignment,    ELF_GET_NUMERIC (elf, shdr, alignment)); // duplicate section alignment
  1616.                ELF_SET_NUMERIC (elf, new_shdr, entry_size,   ELF_GET_NUMERIC (elf, shdr, entry_size)); // duplicate section entry size
  1617.             }
  1618.             reallocated_ptr = realloc (new_shtab.bytes, new_shtab.len + ELF_STRUCT_SIZE (elf, shdr)); // grow our section headers table to have one entry more
  1619.             WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  1620.             new_shtab.bytes = reallocated_ptr; // reallocation succeeded, save the new pointer
  1621.             new_shstrtab_shdr_offset = new_shtab.len; // remember the new offset of this section header
  1622.             new_shtab.len += ELF_STRUCT_SIZE (elf, shdr); // and remember how bigger the section headers table is now
  1623.  
  1624.             new_shdr = (elf_section_header_t *) &new_shtab.bytes[new_shstrtab_shdr_offset]; // now populate this section header
  1625.             ELF_SET_NUMERIC (elf, new_shdr, name_offset, relative_offset_of_in (".shstrtab", &elfsection_shstrtab)); // update the relative offset of the section name
  1626.             ELF_SET_NUMERIC (elf, new_shdr, type,         ELF_SECTIONTYPE_STRINGTABLE); // section type (SHT_STRTAB)
  1627.             ELF_SET_NUMERIC (elf, new_shdr, flags,        0); // section flags (we could set SHF_STRINGS i.e. 0x20 here, but mkifs does not, so mimic that)
  1628.             ELF_SET_NUMERIC (elf, new_shdr, virtual_addr, 0); // this section does not need to be mapped
  1629.             ELF_SET_NUMERIC (elf, new_shdr, file_offset, WILL_BE_FILLED_LATER); // will be filled once we know it
  1630.             ELF_SET_NUMERIC (elf, new_shdr, size,         elfsection_shstrtab.len); // section size
  1631.             ELF_SET_NUMERIC (elf, new_shdr, linked_index, 0); // this section is not linked to any other
  1632.             ELF_SET_NUMERIC (elf, new_shdr, info,         0); // this section has no additional info
  1633.             ELF_SET_NUMERIC (elf, new_shdr, alignment,    1); // this section is byte-aligned
  1634.             ELF_SET_NUMERIC (elf, new_shdr, entry_size,   0); // this section is not a table, so entry_size is zero
  1635.  
  1636.             // jump over the new section headers table and write the sections that need to be relocated after the section headers table
  1637.             entry_parms->data.len = new_shdrtable_offset + new_shtab.len; // assume there are no sections beyond the section headers table until known otherwise
  1638.             if (elfsection_qnxinfo.bytes != NULL)
  1639.                APPEND_SECTION_DATA (elfsection_qnxinfo, new_qnxinfo_shdr_offset); // write "QNX_info" section data if we have such a section
  1640.             if (elfsection_debuglink.bytes != NULL)
  1641.                APPEND_SECTION_DATA (elfsection_debuglink, new_debuglink_shdr_offset); // write ".gnu_debuglink" section data if we have such a section
  1642.             if (elfsection_qnxusage.bytes != NULL)
  1643.                APPEND_SECTION_DATA (elfsection_qnxusage, new_qnxusage_shdr_offset); // write "QNX_usage" section data if we have such a section
  1644.             if (elfsection_buildid.bytes != NULL)
  1645.                APPEND_SECTION_DATA (elfsection_buildid, new_buildid_shdr_offset); // write ".note.gnu.build-id" section data if we have such a section
  1646.             APPEND_SECTION_DATA (elfsection_shstrtab, new_shstrtab_shdr_offset); // write the section header strings table as the last section
  1647.  
  1648.             // now write the section headers table
  1649.             memcpy (&entry_parms->data.bytes[new_shdrtable_offset], new_shtab.bytes, new_shtab.len);
  1650.             free (new_shtab.bytes); // free it
  1651.  
  1652.             // and finally fix the ELF header
  1653.             ELF_SET_NUMERIC (elf, elf, section_header_table_offset, new_shdrtable_offset);
  1654.             ELF_SET_NUMERIC (elf, elf, section_header_table_len, new_shtab.len / ELF_STRUCT_SIZE (elf, shdr));
  1655.             ELF_SET_NUMERIC (elf, elf, section_header_names_idx, new_shtab.len / ELF_STRUCT_SIZE (elf, shdr) - 1); // the section headers strings table is the last section
  1656.  
  1657.             // align size with page size (4096 on x86, 16k on ARM)
  1658.             end_padding_offset = entry_parms->data.len;
  1659.             if (ELF_GET_NUMERIC (elf, elf, instruction_set) == ELF_MACHINE_X86_64)
  1660.                entry_parms->data.len = ROUND_TO_UPPER_MULTIPLE (end_padding_offset, 4 * 1024); // 4 kb pages on Intel processors
  1661.             else if (ELF_GET_NUMERIC (elf, elf, instruction_set) == ELF_MACHINE_AARCH64)
  1662.                entry_parms->data.len = ROUND_TO_UPPER_MULTIPLE (end_padding_offset, 16 * 1024); // 16 kb pages on ARM64
  1663.             else
  1664.             {
  1665.                fprintf (stderr, "fatal error: this ELF file \"%s\" does not belong to an architecture supported by ifstool (neither x86_64, nor aarch64)\n", stored_pathname);
  1666.                exit (1);
  1667.             }
  1668.             memset (&entry_parms->data.bytes[end_padding_offset], 0, entry_parms->data.len - end_padding_offset); // zerofill
  1669.  
  1670.             entry_parms->extra_ino_flags |= IFS_INO_PROCESSED_ELF; // mark this inode as a preprocessed ELF file
  1671.          } // end if the file is not yet a processed ELF
  1672.       } // end if the file we're storing is an ELF file
  1673.    }
  1674.    else if (S_ISLNK (entry_parms->st_mode)) // else are we storing a symbolic link ?
  1675.       fprintf (stderr, "symlink: ino 0x%x uid %d gid %d mode 0%o path \"%s\" -> \"%s\"\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data.bytes);
  1676.    else // we must be storing a FIFO
  1677.    {
  1678.       if (strchr (entry_parms->data.bytes, ':') == NULL)
  1679.       {
  1680.          fprintf (stderr, "fatal error: device entry \"%s\" malformed (no 'dev:rdev' pair)\n", stored_pathname);
  1681.          exit (1);
  1682.       }
  1683.       fprintf (stderr, "fifo: ino 0x%x uid %d gid %d mode 0%o path \"%s\" dev rdev %s)\n", inode_count + 1, entry_parms->uid, entry_parms->gid, entry_parms->st_mode, stored_pathname, entry_parms->data.bytes);
  1684.    }
  1685.  
  1686.    // grow filesystem entries array to hold one more slot
  1687.    reallocated_ptr = realloc (*fsentries, (*fsentry_count + 1) * sizeof (fsentry_t)); // attempt to reallocate
  1688.    if (reallocated_ptr == NULL)
  1689.    {
  1690.       fprintf (stderr, "fatal error: out of memory\n");
  1691.       exit (1);
  1692.    }
  1693.    *fsentries = reallocated_ptr; // save reallocated pointer
  1694.    fsentry = &(*fsentries)[*fsentry_count]; // quick access to fs entry slot
  1695.    //fsentry->header.size = 0; // will be filled once we know it
  1696.    fsentry->header.extattr_offset = 0;
  1697.    fsentry->header.ino = entry_parms->extra_ino_flags | (++inode_count);
  1698.    fsentry->header.mode = entry_parms->st_mode;
  1699.    fsentry->header.gid = entry_parms->gid;
  1700.    fsentry->header.uid = entry_parms->uid;
  1701.    fsentry->header.mtime = (entry_parms->mtime == UINT32_MAX ? (uint32_t) time (NULL) : entry_parms->mtime);
  1702.    if (S_ISDIR (entry_parms->st_mode))
  1703.    {
  1704.       fsentry->u.dir.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1705.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + strlen (fsentry->u.dir.path) + 1, image_align); // now we can set the size
  1706.       fsentry->UNSAVED_was_data_written = true; // no data to save
  1707.    }
  1708.    else if (S_ISREG (entry_parms->st_mode))
  1709.    {
  1710.       fsentry->u.file.offset = WILL_BE_FILLED_LATER; // will be filled later in main() when the file's data blob will be written to the output file
  1711.       fsentry->u.file.size = (uint32_t) entry_parms->data.len;
  1712.       fsentry->u.file.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1713.       fsentry->u.file.UNSAVED_databuf = malloc (entry_parms->data.len);
  1714.       WELLMANNERED_ASSERT (fsentry->u.file.UNSAVED_databuf, "out of memory");
  1715.       memcpy (fsentry->u.file.UNSAVED_databuf, entry_parms->data.bytes, entry_parms->data.len);
  1716.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry->u.file.path) + 1, image_align); // now we can set the size
  1717.       fsentry->UNSAVED_was_data_written = false; // there *IS* data to save
  1718.    }
  1719.    else if (S_ISLNK (entry_parms->st_mode))
  1720.    {
  1721.       fsentry->u.symlink.sym_offset = (uint16_t) (strlen (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname) + 1);
  1722.       fsentry->u.symlink.sym_size = (uint16_t) entry_parms->data.len;
  1723.       fsentry->u.symlink.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1724.       fsentry->u.symlink.contents = strdup (entry_parms->data.bytes);
  1725.       WELLMANNERED_ASSERT (fsentry->u.symlink.contents, "out of memory");
  1726.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint16_t) + sizeof (uint16_t) + (size_t) fsentry->u.symlink.sym_offset + fsentry->u.symlink.sym_size + 1, image_align); // now we can set the size
  1727.       fsentry->UNSAVED_was_data_written = true; // no data to save
  1728.    }
  1729.    else // necessarily a device node
  1730.    {
  1731.       fsentry->u.device.dev  = strtol (entry_parms->data.bytes, NULL, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
  1732.       fsentry->u.device.rdev = strtol (strchr (entry_parms->data.bytes, ':') + 1, NULL, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers
  1733.       fsentry->u.device.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
  1734.       fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry->u.device.path), image_align); // now we can set the size
  1735.       fsentry->UNSAVED_was_data_written = true; // no data to save
  1736.    }
  1737.    (*fsentry_count)++;
  1738.  
  1739.    // should we also add a symlink to this entry ? (in case we stored a dylib file under its canonical name)
  1740.    if (original_stored_pathname != NULL)
  1741.    {
  1742.       entry_parms->is_compiled_bootscript = false;
  1743.       entry_parms->should_autosymlink_dylib = false;
  1744.       entry_parms->should_follow_symlinks = false;
  1745.       entry_parms->st_mode = S_IFLNK | 0777; // NOTE: mkifs stores symlink permissions as rwxrwxrwx !
  1746.       entry_parms->extra_ino_flags = (fsentry->header.ino & (IFS_INO_PROCESSED_ELF | IFS_INO_RUNONCE_ELF | IFS_INO_BOOTSTRAP_EXE)); // preserve target's inode flags
  1747.       last_dirsep = strrchr (stored_pathname, '/');
  1748.       old_data = entry_parms->data.bytes; // backup previous data pointer
  1749.       entry_parms->data.bytes = (uint8_t *) (last_dirsep == NULL ? stored_pathname : last_dirsep + 1); // store symlink target in dirent data
  1750.       entry_parms->data.len = strlen (entry_parms->data.bytes);
  1751.       add_fsentry (fsentries, fsentry_count, entry_parms, original_stored_pathname, NULL);
  1752.       entry_parms->data.bytes = old_data; // restore previous data pointer so that it can be freed normally
  1753.    }
  1754.  
  1755.    return (*fsentry_count);
  1756. }
  1757.  
  1758.  
  1759. static int fsentry_compare_pathnames_cb (const void *a, const void *b)
  1760. {
  1761.    // qsort() callback that compares two imagefs filesystem entries and sort them alphabetically by pathname
  1762.  
  1763.    const fsentry_t *entry_a = (const fsentry_t *) a;
  1764.    const fsentry_t *entry_b = (const fsentry_t *) b;
  1765.    const char *pathname_a = (S_ISDIR (entry_a->header.mode) ? entry_a->u.dir.path : (S_ISREG (entry_a->header.mode) ? entry_a->u.file.path : (S_ISLNK (entry_a->header.mode) ? entry_a->u.symlink.path : entry_a->u.device.path)));
  1766.    const char *pathname_b = (S_ISDIR (entry_b->header.mode) ? entry_b->u.dir.path : (S_ISREG (entry_b->header.mode) ? entry_b->u.file.path : (S_ISLNK (entry_b->header.mode) ? entry_b->u.symlink.path : entry_b->u.device.path)));
  1767.    return (strcmp (pathname_a, pathname_b));
  1768. }
  1769.  
  1770.  
  1771. static void update_MKIFS_PATH (const char *processor)
  1772. {
  1773.    // updates the value of MKIFS_PATH according to the passed processor name string, unless an environment variable already defines it
  1774.  
  1775.    char processor_base[16];
  1776.    size_t data_len;
  1777.    char *envvar;
  1778.    char *token;
  1779.    
  1780.    envvar = getenv ("MKIFS_PATH"); // look in the environment first, and construct a default one if not supplied
  1781.    if (envvar != NULL)
  1782.       MKIFS_PATH = envvar; // if envvar is present, set MKIFS_PATH to point to it
  1783.    else // envvar not present
  1784.    {
  1785.       if (MKIFS_PATH != NULL)
  1786.          free (MKIFS_PATH); // free any MKIFS_PATH that we constructed earlier
  1787.  
  1788.       strcpy (processor_base, processor); // construct PROCESSOR_BASE
  1789.       token = strchr (processor_base, '-');
  1790.       if (token != NULL)
  1791.          *token = 0; // split anything from the first dash onwards
  1792.       data_len = strlen (processor_base);
  1793.       if ((data_len > 2) && ((processor_base[data_len - 2] == 'b') || (processor_base[data_len - 2] == 'l')) && (processor_base[data_len - 1] == 'e'))
  1794.          processor_base[data_len - 2] = 0; // if it ends with "le" or "be", strip that too
  1795.  
  1796.       MKIFS_PATH = malloc (10 * MAXPATHLEN); // construct a default MKIFS_PATH now
  1797.       WELLMANNERED_ASSERT (MKIFS_PATH, "out of memory");
  1798.       sprintf (MKIFS_PATH, "." PATH_SEP_STR "%s/%s/sbin" PATH_SEP_STR "%s/%s/usr/sbin" PATH_SEP_STR "%s/%s/boot/sys" PATH_SEP_STR "%s/%s/boot/sys" PATH_SEP_STR "%s/%s/bin" PATH_SEP_STR "%s/%s/usr/bin" PATH_SEP_STR "%s/%s/lib" PATH_SEP_STR "%s/%s/lib/dll" PATH_SEP_STR "%s/%s/usr/lib", // use a platform-specific character as path separator
  1799.                QNX_TARGET, processor,
  1800.                QNX_TARGET, processor,
  1801.                QNX_TARGET, processor,
  1802.                QNX_TARGET, processor_base,
  1803.                QNX_TARGET, processor,
  1804.                QNX_TARGET, processor,
  1805.                QNX_TARGET, processor,
  1806.                QNX_TARGET, processor,
  1807.                QNX_TARGET, processor);
  1808.    }
  1809.  
  1810.    return;
  1811. }
  1812.  
  1813.  
  1814. int main (int argc, char **argv)
  1815. {
  1816.    // program entrypoint
  1817.  
  1818.    #define PAD_OUTFILE_TO(val) do { curr_offset = ftell (fp); while (curr_offset < (val)) { putc (0, fp); curr_offset++; } } while (0)
  1819.  
  1820.    static startup_header_t startup_header = { 0 }; // output IFS's startup header
  1821.    static startup_trailer_v2_t startup_trailer = { 0 }; // output IFS's startup trailer (version 2, with SHA-512 checksum and int32 checksum)
  1822.    static image_header_t image_header = { 0 }; // output IFS's imagefs header
  1823.    static image_trailer_v2_t image_trailer = { 0 }; // output IFS's imagefs trailer (version 2, with SHA-512 checksum and int32 checksum)
  1824.    static fsentry_t *fsentries = NULL; // output IFS's filesystem entries
  1825.    static size_t fsentry_count = 0; // number of entries in the IFS filesystem
  1826.    static parms_t default_parms = { // default parameters for a filesystem entry
  1827.       .dperms = 0755,
  1828.       .perms = 0644,
  1829.       .uid = 0,
  1830.       .gid = 0,
  1831.       .st_mode = S_IFREG,
  1832.       .mtime = UINT32_MAX,
  1833.       .mtime_for_inline_files = UINT32_MAX,
  1834.       .prefix = "/proc/boot",
  1835.       .should_follow_symlinks = true, // [+|-followlink]
  1836.       .should_autosymlink_dylib = true, // [+|-autolink]
  1837.       .is_compiled_bootscript = false, // [+|-script]
  1838.       .extra_ino_flags = 0,
  1839.       .search = "",
  1840.       .data = { NULL, 0 }
  1841.    };
  1842.    static parms_t entry_parms = { 0 }; // current parameters for a filesystem entry (will be initialized to default_parms each time a new entry is parsed in the build file)
  1843.  
  1844.    // bootable IFS support
  1845.    char *bootfile_pathname = NULL;           // HACK: pathname to bootcode binary blob file to put at the start of a bootable IFS
  1846.    size_t bootfile_size = 0;                 // HACK: size of the bootcode binary blob file to put at the start of a bootable IFS
  1847.    char *startupfile_pathname = NULL;        // HACK: pathname to precompiled startup file blob to put in the startup header of a bootable IFS
  1848.    size_t startupfile_ep_from_imagebase = 0; // HACK: startup code entrypoint offset from image base for a bootable IFS
  1849.    char *kernelfile_pathname = NULL;         // HACK: pathname to precompiled kernel file blob to put in a bootable IFS
  1850.    size_t kernelfile_offset = 0;             // HACK: kernel file offset in bootable IFS
  1851.  
  1852.    char path_on_buildhost[MAXPATHLEN] = "";
  1853.    char path_in_ifs[MAXPATHLEN] = "";
  1854.    char *ifs_pathname = NULL;
  1855.    void *reallocated_ptr;
  1856.    const elf_header_t *elf;
  1857.    elf_program_header_t *phdr;
  1858.    struct tm utc_time;
  1859.    struct stat stat_buf;
  1860.    size_t startuptrailer_offset;
  1861.    size_t startupheader_offset;
  1862.    size_t imagetrailer_offset;
  1863.    size_t imageheader_offset;
  1864.    size_t corrective_offset;
  1865.    size_t imgdir_offset;
  1866.    size_t imgdir_size;
  1867.    size_t final_size;
  1868.    size_t available_space;
  1869.    size_t allocated_size;
  1870.    size_t fsentry_index;
  1871.    size_t largest_index;
  1872.    size_t largest_size;
  1873.    size_t curr_offset;
  1874.    size_t table_index;
  1875.    size_t table_count;
  1876.    buffer_t blob;
  1877.    int32_t checksum;
  1878.    char *specifiedpathname_start;
  1879.    char *directiveblock_start;
  1880.    char *write_ptr;
  1881.    char *line_ptr;
  1882.    char *token;
  1883.    char *value;
  1884.    char *sep;
  1885.    //char *ctx;
  1886.    int arg_index;
  1887.    bool is_quoted_context = false;
  1888.    bool is_escaped_char = false;
  1889.    bool should_discard_inline_contents = false;
  1890.    bool want_info = false;
  1891.    bool want_everything = false;
  1892.    bool want_help = false;
  1893.    bool is_foreign_endianness;
  1894.    int string_len;
  1895.    int read_char;
  1896.    FILE *buildfile_fp;
  1897.    FILE *fp;
  1898.  
  1899.    // parse arguments
  1900.    for (arg_index = 1; arg_index < argc; arg_index++)
  1901.    {
  1902.       if ((strcmp (argv[arg_index], "--bootfile") == 0) && (arg_index + 1 < argc)) // --bootfile path/to/blob.bin
  1903.          bootfile_pathname = argv[++arg_index];
  1904.       else if ((strcmp (argv[arg_index], "--startupfile") == 0) && (arg_index + 1 < argc)) // --startupfile path/to/blob.bin@0x1030
  1905.       {
  1906.          sep = strchr (argv[++arg_index], '@');
  1907.          if ((sep == NULL) || (sep[1] == 0))
  1908.          {
  1909.             fprintf (stderr, "error: the --startupfile arguments expects <pathname>@<entrypoint_from_image_base>\n");
  1910.             exit (1);
  1911.          }
  1912.          *sep = 0;
  1913.          startupfile_pathname = argv[arg_index];
  1914.          startupfile_ep_from_imagebase = (size_t) read_integer (sep + 1);
  1915.       }
  1916.       else if ((strcmp (argv[arg_index], "--kernelfile") == 0) && (arg_index + 1 < argc)) // --kernelfile path/to/blob.bin@0x32000
  1917.       {
  1918.          sep = strchr (argv[++arg_index], '@');
  1919.          if ((sep == NULL) || (sep[1] == 0))
  1920.          {
  1921.             fprintf (stderr, "error: the --kernelfile arguments expects <pathname>@<fileoffset>\n");
  1922.             exit (1);
  1923.          }
  1924.          *sep = 0;
  1925.          kernelfile_pathname = argv[arg_index];
  1926.          kernelfile_offset = (size_t) read_integer (sep + 1);
  1927.       }
  1928.       else if (strcmp (argv[arg_index], "-n") == 0)
  1929.          default_parms.mtime_for_inline_files = 0; // inline files should have a mtime set to zero
  1930.       else if (strcmp (argv[arg_index], "-nn") == 0)
  1931.       {
  1932.          default_parms.mtime = 0; // *all* files should have a mtime set to zero
  1933.          default_parms.mtime_for_inline_files = 0;
  1934.       }
  1935.       else if (strcmp (argv[arg_index], "--info") == 0)
  1936.          want_info = true;
  1937.       else if (strcmp (argv[arg_index], "--everything") == 0)
  1938.          want_everything = true;
  1939.       else if ((strcmp (argv[arg_index], "-?") == 0) || (strcmp (argv[arg_index], "--help") == 0))
  1940.          want_help = true;
  1941.       else if (buildfile_pathname == NULL)
  1942.          buildfile_pathname = argv[arg_index];
  1943.       else if (ifs_pathname == NULL)
  1944.          ifs_pathname = argv[arg_index];
  1945.    }
  1946.  
  1947.    // do we not have enough information to run ?
  1948.    if (want_help || (buildfile_pathname == NULL) || (!want_info && (ifs_pathname == NULL)))
  1949.    {
  1950.       fprintf ((want_help ? stdout : stderr), "ifstool - QNX in-kernel filesystem creation utility by Pierre-Marie Baty <pm@pmbaty.com>\n");
  1951.       fprintf ((want_help ? stdout : stderr), "          version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
  1952.       if (!want_help)
  1953.          fprintf (stderr, "error: missing parameters\n");
  1954.       fprintf ((want_help ? stdout : stderr), "usage:\n");
  1955.       fprintf ((want_help ? stdout : stderr), "    ifstool [--bootfile <pathname>] [--startupfile <pathname>@<EP_from_imgbase>] [--kernelfile <pathname>@<fileoffs>] [-n[n]] <buildfile> <outfile>\n");
  1956.       fprintf ((want_help ? stdout : stderr), "    ifstool --info [--everything] <ifs file>\n");
  1957.       fprintf ((want_help ? stdout : stderr), "    ifstool --help\n");
  1958.       fprintf ((want_help ? stdout : stderr), "NOTE: the compilation feature requires predigested boot, startup and kernel files produced by mkifs.\n");
  1959.       exit (want_help ? 0 : 1);
  1960.    }
  1961.  
  1962.    // do we want info about a particular IFS ? if so, dump it
  1963.    if (want_info)
  1964.       exit (dump_ifs_info (buildfile_pathname, want_everything)); // NOTE: the first argument after --info is actually the IFS file, not a build file, but the arguments are collected in this order
  1965.  
  1966.    // make sure we have ${QNX_TARGET} pointing somewhere
  1967.    QNX_TARGET = getenv ("QNX_TARGET");
  1968.    if (QNX_TARGET == NULL)
  1969.    {
  1970.       fprintf (stderr, "error: the QNX_TARGET environment variable is not set\n");
  1971.       exit (1);
  1972.    }
  1973.    else if (access (QNX_TARGET, 0) != 0)
  1974.    {
  1975.       fprintf (stderr, "error: the QNX_TARGET environment variable doesn't point to an existing directory\n");
  1976.       exit (1);
  1977.    }
  1978.  
  1979.    // prepare a default MKIFS_PATH assuming the host processor
  1980.    update_MKIFS_PATH (image_processor);
  1981.  
  1982.    // open build file
  1983.    buildfile_fp = fopen (buildfile_pathname, "rb");
  1984.    if (buildfile_fp == NULL)
  1985.    {
  1986.       fprintf (stderr, "error: unable to open build file \"%s\" for reading (%s)\n", buildfile_pathname, strerror (errno));
  1987.       exit (1);
  1988.    }
  1989.  
  1990.    // stack up filesystem entries
  1991.    memcpy (&entry_parms, &default_parms, sizeof (default_parms));
  1992.    entry_parms.st_mode = S_IFDIR | default_parms.dperms;
  1993.    add_fsentry (&fsentries, &fsentry_count, &entry_parms, "", NULL); // add the root dir first
  1994.  
  1995.    // parse the IFS build file line per line
  1996.    while (fgets (line_buffer, sizeof (line_buffer), buildfile_fp) != NULL)
  1997.    {
  1998.       if (current_line != NULL)
  1999.          free (current_line);
  2000.       current_line = strdup (line_buffer);
  2001.       WELLMANNERED_ASSERT (current_line, "out of memory");
  2002.       lineno++; // keep track of current line number
  2003.  
  2004.       line_ptr = line_buffer;
  2005.       while ((*line_ptr != 0) && isspace (*line_ptr))
  2006.          line_ptr++; // skip leading spaces
  2007.  
  2008.       if ((*line_ptr == 0) || (*line_ptr == '#'))
  2009.          continue; // skip empty or comment lines
  2010.  
  2011.       string_len = (int) strlen (line_buffer);
  2012.       if ((string_len > 0) && (line_buffer[string_len - 1] == '\n'))
  2013.          line_buffer[string_len - 1] = 0; // chop off newline for easier debug output
  2014.  
  2015.       // reset entry values
  2016.       memcpy (&entry_parms, &default_parms, sizeof (default_parms));
  2017.       path_in_ifs[0] = 0;
  2018.       path_on_buildhost[0] = 0;
  2019.       should_discard_inline_contents = false;
  2020.  
  2021.       // does this line start with an attribute block ?
  2022.       if (*line_ptr == '[')
  2023.       {
  2024.          line_ptr++; // skip the leading square bracket
  2025.          directiveblock_start = line_ptr; // remember where it starts
  2026.          is_quoted_context = false;
  2027.          while ((*line_ptr != 0) && !((*line_ptr == ']') && (line_ptr[-1] != '\\')))
  2028.          {
  2029.             if (*line_ptr == '"')
  2030.                is_quoted_context ^= true; // remember when we're between quotes
  2031.             else if (!is_quoted_context && (*line_ptr == ' '))
  2032.                *line_ptr = RECORD_SEP; // turn all spaces outside quoted contexts into an ASCII record separator to ease token splitting
  2033.             line_ptr++; // reach the next unescaped closing square bracket
  2034.          }
  2035.          if (*line_ptr != ']')
  2036.          {
  2037.             fprintf (stderr, "warning: syntax error in \"%s\" line %d: unterminated attributes block (skipping)\n", buildfile_pathname, lineno);
  2038.             continue; // invalid attribute block, skip line
  2039.          }
  2040.          *line_ptr = 0; // end the attribute block so that it is a parsable C string
  2041.  
  2042.          // now parse the attribute tokens
  2043.          // DOCUMENTATION: https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino.utilities/topic/m/mkifs.html#mkifs__description
  2044.          token = strtok (directiveblock_start, RECORD_SEP_STR);
  2045.          while (token != NULL)
  2046.          {
  2047.             // evaluate attribute token
  2048.             #define REACH_TOKEN_VALUE() do { value = strchr (token, '=') + 1; if (*value == '"') value++; } while (0)
  2049.             if      (strncmp (token, "uid=",     4) == 0) { REACH_TOKEN_VALUE (); entry_parms.uid     = (int) read_integer (value); }
  2050.             else if (strncmp (token, "gid=",     4) == 0) { REACH_TOKEN_VALUE (); entry_parms.gid     = (int) read_integer (value); }
  2051.             else if (strncmp (token, "dperms=",  7) == 0) { REACH_TOKEN_VALUE (); entry_parms.dperms  = (int) read_integer (value); }
  2052.             else if (strncmp (token, "perms=",   6) == 0) { REACH_TOKEN_VALUE (); entry_parms.perms   = (int) read_integer (value); }
  2053.             else if (strncmp (token, "type=",    5) == 0) { REACH_TOKEN_VALUE (); entry_parms.st_mode = (strcmp (value, "dir") == 0 ? S_IFDIR : (strcmp (value, "file") == 0 ? S_IFREG : (strcmp (value, "link") == 0 ? S_IFLNK : (strcmp (value, "fifo") == 0 ? S_IFIFO : (fprintf (stderr, "warning: invalid 'type' attribute in \"%s\" line %d: '%s', defaulting to 'file'\n", buildfile_pathname, lineno, value), S_IFREG))))); }
  2054.             else if (strncmp (token, "prefix=",  7) == 0) { REACH_TOKEN_VALUE (); strcpy (entry_parms.prefix, (*value == '/' ? value + 1 : value)); } // skip possible leading slash in prefix
  2055.             else if (strncmp (token, "image=",   6) == 0) { REACH_TOKEN_VALUE ();
  2056.                image_base = (uint32_t) read_integer (value); // read image base address
  2057.                if ((sep = strchr (value, '-')) != NULL) image_end       = (uint32_t) read_integer (sep + 1); // if we have a dash, read optional image end (FIXME: check this value and produce an error in the relevant case. Not important.)
  2058.                if ((sep = strchr (value, ',')) != NULL) image_maxsize   = (uint32_t) read_integer (sep + 1); // if we have a comma, read optional image max size
  2059.                if ((sep = strchr (value, '=')) != NULL) image_totalsize = (uint32_t) read_integer (sep + 1); // if we have an equal sign, read optional image padding size
  2060.                if ((sep = strchr (value, '%')) != NULL) image_align     = (uint32_t) read_integer (sep + 1); // if we have a modulo sign, read optional image aligmnent
  2061.                fprintf (stderr, "info: image 0x%x-0x%x maxsize %d totalsize %d align %d\n", image_base, image_end, image_maxsize, image_totalsize, image_align);
  2062.             }
  2063.             else if (strncmp (token, "virtual=", 8) == 0) { REACH_TOKEN_VALUE ();
  2064.                if ((bootfile_pathname == NULL) || (startupfile_pathname == NULL) || (kernelfile_pathname == NULL)) // HACK until I figure out how to re-create them
  2065.                {
  2066.                   fprintf (stderr, "error: creating bootable images require the --bootfile, --startupfile and --kernelfile command-line options in \"%s\" line %d\n", buildfile_pathname, lineno);
  2067.                   exit (1);
  2068.                }
  2069.                if ((sep = strchr (value, ',')) != NULL) // do we have a comma separating (optional) processor and boot file name ?
  2070.                {
  2071.                   *sep = 0;
  2072.                   strcpy (image_processor, value); // save processor
  2073.                   update_MKIFS_PATH (image_processor);
  2074.                   value = sep + 1;
  2075.                }
  2076.                //sprintf (image_bootfile, "%s/%s/boot/sys/%s.boot", QNX_TARGET, image_processor, value); // save preboot file name (FIXME: we should search in MKIFS_PATH instead of this. Not important.)
  2077.                //strcpy (image_bootfile, bootfile_pathname); // FIXME: HACK
  2078.                if (stat (bootfile_pathname, &stat_buf) != 0)
  2079.                {
  2080.                   fprintf (stderr, "error: unable to stat the boot file \"%s\" specified in \"%s\" line %d: %s\n", bootfile_pathname, buildfile_pathname, lineno, strerror (errno));
  2081.                   exit (1);
  2082.                }
  2083.                bootfile_size = stat_buf.st_size; // save preboot file size
  2084.                fprintf (stderr, "info: processor \"%s\" bootfile \"%s\"\n", image_processor, bootfile_pathname);
  2085. #if 1
  2086.                // ######################################################################################################################################################################################################################################
  2087.                // # FIXME: figure out how to re-create it: linker call involved
  2088.                // # $ x86_64-pc-nto-qnx8.0.0-ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0xffff800000001000 --no-relax ${QNX_TARGET}/x86_64/boot/sys/procnto-smp-instr -o procnto-smp-instr.sym.UNSTRIPPED
  2089.                // ######################################################################################################################################################################################################################################
  2090.                if (read_filecontents (kernelfile_pathname, ".", &entry_parms.data) == NULL)
  2091.                {
  2092.                   fprintf (stderr, "fatal error: unable to read precompiled kernel file \"%s\" specified in --kernelfile argument\n", kernelfile_pathname);
  2093.                   exit (1);
  2094.                }
  2095. #else // nonworking
  2096.                strcpy (path_on_buildhost, "procnto-smp-instr");
  2097. #endif // nonworking
  2098.  
  2099.                should_discard_inline_contents = true; // remember we already have data (so as to discard the inline block's contents)
  2100.             }
  2101.             else if (strncmp (token, "mtime=", 6) == 0) { REACH_TOKEN_VALUE (); if (strcmp (value, "*") == 0) entry_parms.mtime = UINT32_MAX; else {
  2102.                   // value *must* be "YYYY-MM-DD-HH:MM:SS" by specification
  2103.                   memset (&utc_time, 0, sizeof (utc_time));
  2104.                   if (sscanf (value, "%u-%u-%u-%u:%u:%u", &utc_time.tm_year, &utc_time.tm_mon, &utc_time.tm_mday, &utc_time.tm_hour, &utc_time.tm_min, &utc_time.tm_sec) != 6)
  2105.                   {
  2106.                      fprintf (stderr, "warning: syntax error in \"%s\" line %d: mtime specification not in YYYY-MM-DD-HH:MM:SS format (skipping)\n", buildfile_pathname, lineno);
  2107.                      continue; // invalid attribute block, skip line
  2108.                   }
  2109.                   utc_time.tm_mon--; // convert month from [1-12] to [0-11]
  2110.                   entry_parms.mtime = (uint32_t) mktime (&utc_time);
  2111.                }
  2112.             }
  2113.             else if (strcmp (token, "+script")     == 0) {
  2114.                entry_parms.is_compiled_bootscript = true;
  2115.                entry_parms.data.bytes = malloc (sizeof (INITIAL_STARTUP_SCRIPT) - 1);
  2116.                WELLMANNERED_ASSERT (entry_parms.data.bytes, "out of memory");
  2117.                memcpy (entry_parms.data.bytes, INITIAL_STARTUP_SCRIPT, sizeof (INITIAL_STARTUP_SCRIPT) - 1); // FIXME: HACK until the script compiler is implemented
  2118.                entry_parms.data.len = sizeof (INITIAL_STARTUP_SCRIPT) - 1;
  2119.                should_discard_inline_contents = true; // remember we already have data (so as to discard the inline block's contents)
  2120.             }
  2121.             else if (strcmp (token, "-script")     == 0) entry_parms.is_compiled_bootscript = false;
  2122.             else if (strcmp (token, "+followlink") == 0) entry_parms.should_follow_symlinks = true;
  2123.             else if (strcmp (token, "-followlink") == 0) entry_parms.should_follow_symlinks = false;
  2124.             else if (strcmp (token, "+autolink")   == 0) entry_parms.should_autosymlink_dylib = true;
  2125.             else if (strcmp (token, "-autolink")   == 0) entry_parms.should_autosymlink_dylib = false;
  2126.             else fprintf (stderr, "warning: unimplemented attribute in \"%s\" line %d: '%s'\n", buildfile_pathname, lineno, token);
  2127.             #undef REACH_TOKEN_VALUE
  2128.  
  2129.             token = strtok (NULL, RECORD_SEP_STR); // proceed to next attribute token
  2130.          }
  2131.  
  2132.          line_ptr++; // reach the next character
  2133.          while ((*line_ptr != 0) && isspace (*line_ptr))
  2134.             line_ptr++; // skip leading spaces
  2135.  
  2136.          // are we at the end of the line ? if so, it means the attribute values that are set should become the default
  2137.          if ((*line_ptr == 0) || (*line_ptr == '#'))
  2138.          {
  2139.             #define APPLY_DEFAULT_ATTR_NUM(attr,descr,fmt) do { if (entry_parms.attr != default_parms.attr) { \
  2140.                   fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
  2141.                   default_parms.attr = entry_parms.attr; \
  2142.                } } while (0)
  2143.             #define APPLY_DEFAULT_ATTR_STR(attr,descr,fmt) do { if (strcmp (entry_parms.attr, default_parms.attr) != 0) { \
  2144.                   fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
  2145.                   strcpy (default_parms.attr, entry_parms.attr); \
  2146.                } } while (0)
  2147.             APPLY_DEFAULT_ATTR_NUM (dperms,                   "directory permissions",           "0%o");
  2148.             APPLY_DEFAULT_ATTR_NUM (perms,                    "file permissions",                "0%o");
  2149.             APPLY_DEFAULT_ATTR_NUM (uid,                      "owner ID",                        "%d");
  2150.             APPLY_DEFAULT_ATTR_NUM (gid,                      "group ID",                        "%d");
  2151.             APPLY_DEFAULT_ATTR_NUM (st_mode,                  "inode type",                      "0%o");
  2152.             APPLY_DEFAULT_ATTR_STR (prefix,                   "prefix",                          "\"%s\"");
  2153.             APPLY_DEFAULT_ATTR_NUM (is_compiled_bootscript,   "compiled script state",           "%d");
  2154.             APPLY_DEFAULT_ATTR_NUM (should_follow_symlinks,   "symlink resolution",              "%d");
  2155.             APPLY_DEFAULT_ATTR_NUM (should_autosymlink_dylib, "dylib canonical name symlinking", "%d");
  2156.             #undef APPLY_DEFAULT_ATTR_STR
  2157.             #undef APPLY_DEFAULT_ATTR_NUM
  2158.             continue; // end of line reached, proceed to the next line
  2159.          }
  2160.          // end of attributes parsing
  2161.       } // end of "this line starts with an attributes block"
  2162.  
  2163.       // there's data in this line. We expect a filename in the IFS. Read it and unescape escaped characters
  2164.       string_len = sprintf (path_in_ifs, "%s", entry_parms.prefix);
  2165.       while ((string_len > 0) && (path_in_ifs[string_len - 1] == '/'))
  2166.          string_len--; // chop off any trailing slashes from prefix
  2167.       write_ptr = &path_in_ifs[string_len];
  2168.       *write_ptr++ = '/'; // add ONE trailing slash
  2169.       specifiedpathname_start = write_ptr; // remember the specified pathname will start here
  2170.       is_quoted_context = (*line_ptr == '"');
  2171.       if (is_quoted_context)
  2172.          line_ptr++; // skip a possible initial quote
  2173.       if (*line_ptr == '/')
  2174.       {
  2175.          fprintf (stderr, "warning: paths in the IFS file should not begin with a leading '/' in \"%s\" line %d\n", buildfile_pathname, lineno);
  2176.          line_ptr++; // consistency check: paths in the IFS should not begin with a '/'
  2177.       }
  2178.       while ((*line_ptr != 0) && ((!is_quoted_context && (*line_ptr != '=') && !isspace (*line_ptr)) || (is_quoted_context && (*line_ptr == '"'))))
  2179.       {
  2180.          if (*line_ptr == '\\')
  2181.          {
  2182.             line_ptr++;
  2183.             *write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
  2184.          }
  2185.          else
  2186.             *write_ptr++ = *line_ptr;
  2187.          line_ptr++;
  2188.       }
  2189.       *write_ptr = 0; // terminate the string
  2190.       if (is_quoted_context && (*line_ptr == '"'))
  2191.          line_ptr++; // skip a possible final quote
  2192.  
  2193.       // we reached a space OR an equal sign
  2194.       while ((*line_ptr != 0) && isspace (*line_ptr))
  2195.          line_ptr++; // skip optional spaces after the filename in the IFS
  2196.  
  2197.       // do we have an equal sign ?
  2198.       if (*line_ptr == '=') // we must be creating either a directory or a file, do we have an equal sign ?
  2199.       {
  2200.          line_ptr++; // skip the equal sign
  2201.          while ((*line_ptr != 0) && isspace (*line_ptr))
  2202.             line_ptr++; // skip optional spaces after the equal sign
  2203.  
  2204.          if (*line_ptr == 0)
  2205.          {
  2206.             fprintf (stderr, "warning: syntax error in \"%s\" line %d: missing data specification after equal sign (skipping)\n", buildfile_pathname, lineno);
  2207.             continue; // invalid symlink specification, skip line
  2208.          }
  2209.  
  2210.          // read the host system's path, it may be either a path or a contents definition. Is it a content definition ?
  2211.          if (*line_ptr == '{')
  2212.          {
  2213.             allocated_size = 0;
  2214.  
  2215.             line_ptr++; // skip the leading content definition
  2216.             is_escaped_char = false;
  2217.             for (;;)
  2218.             {
  2219.                read_char = fgetc (buildfile_fp);
  2220.                if (read_char == EOF)
  2221.                {
  2222.                   fprintf (stderr, "fatal error: syntax error in \"%s\" line %d: unterminated contents block (end of file reached)\n", buildfile_pathname, lineno);
  2223.                   exit (1); // invalid contents block
  2224.                }
  2225.                else if ((read_char == '\\') && !is_escaped_char)
  2226.                   is_escaped_char = true; // remember the next char is escaped
  2227.                else if ((read_char == '}') && !is_escaped_char)
  2228.                   break; // found an unescaped closing bracked, stop parsing
  2229.                else
  2230.                {
  2231.                   is_escaped_char = false; // any other char, meaning the next one will not be escaped
  2232.                   if (!should_discard_inline_contents) // only store the contents if we do NOT know the data yet
  2233.                   {
  2234.                      if (entry_parms.data.len == allocated_size) // reallocate in 4 kb blocks
  2235.                      {
  2236.                         reallocated_ptr = realloc (entry_parms.data.bytes, allocated_size + 4096);
  2237.                         WELLMANNERED_ASSERT (reallocated_ptr != NULL, "out of memory");
  2238.                         entry_parms.data.bytes = reallocated_ptr;
  2239.                         allocated_size += 4096;
  2240.                      }
  2241.                      entry_parms.data.bytes[entry_parms.data.len++] = read_char;
  2242.                   }
  2243.                   if (read_char == '\n')
  2244.                      lineno++; // update line counter as we parse the inline content
  2245.                }
  2246.             } // end for
  2247.          }
  2248.          else // not a content definition between { brackets }, must be either a pathname on the build host, or the target of a symlink
  2249.          {
  2250.             is_quoted_context = (*line_ptr == '"');
  2251.             if (is_quoted_context)
  2252.                line_ptr++; // skip a possible initial quote
  2253.             specifiedpathname_start = line_ptr; // remember where the specified pathname starts
  2254.             write_ptr = line_ptr; // now unescape all characters
  2255.             while ((*line_ptr != 0) && ((!is_quoted_context && !isspace (*line_ptr)) || (is_quoted_context && (*line_ptr == '"'))))
  2256.             {
  2257.                if (*line_ptr == '\\')
  2258.                {
  2259.                   line_ptr++;
  2260.                   *write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
  2261.                }
  2262.                else
  2263.                   *write_ptr++ = *line_ptr;
  2264.                line_ptr++;
  2265.             }
  2266.             *write_ptr = 0; // terminate the string
  2267.             if (is_quoted_context && (*line_ptr == '"'))
  2268.                line_ptr++; // skip a possible final quote
  2269.  
  2270.             if (S_ISLNK (entry_parms.st_mode)) // are we storing a symlink ?
  2271.             {
  2272.                entry_parms.data.bytes = strdup (specifiedpathname_start); // if so, store the symlink target as the dirent's blob data
  2273.                WELLMANNERED_ASSERT (entry_parms.data.bytes != NULL, "out of memory");
  2274.                entry_parms.data.len = strlen (specifiedpathname_start);
  2275.             }
  2276.             else // it's a build host filesystem path
  2277.                strcpy (path_on_buildhost, line_ptr); // the path on the build host is given after the equal sign
  2278.          }
  2279.       }
  2280.       else // no equal sign, meaning the file will have the same name on the build host filesystem
  2281.       {
  2282.          // consistency check: symlinks MUST have an equal sign
  2283.          if (entry_parms.st_mode == S_IFLNK)
  2284.          {
  2285.             fprintf (stderr, "warning: syntax error in \"%s\" line %d: missing equal sign and symlink target (skipping)\n", buildfile_pathname, lineno);
  2286.             continue; // invalid symlink specification, skip line
  2287.          }
  2288.  
  2289.          strcpy (path_on_buildhost, specifiedpathname_start); // the path on the build host is the one specified
  2290.          sep = strrchr (specifiedpathname_start, '/');
  2291.          if (sep != NULL)
  2292.             memmove (specifiedpathname_start, sep + 1, strlen (sep + 1) + 1); // the path in the IFS will be the BASENAME of the path specified (after the prefix)
  2293.       }
  2294.  
  2295.       // now add this entry to the image filesystem
  2296.       if (S_ISDIR (entry_parms.st_mode))
  2297.          entry_parms.st_mode |= entry_parms.dperms;
  2298.       else if (S_ISLNK (entry_parms.st_mode))
  2299.          entry_parms.st_mode |= 0777; // NOTE: mkifs sets symlink permissions to rwxrwxrwx !?
  2300.       else // file or device node
  2301.          entry_parms.st_mode |= entry_parms.perms;
  2302.  
  2303.       add_fsentry (&fsentries, &fsentry_count, &entry_parms, path_in_ifs, path_on_buildhost); // and add filesystem entry
  2304.  
  2305.       if (entry_parms.data.bytes != NULL)
  2306.          free (entry_parms.data.bytes); // if blob data was allocated, free it
  2307.    }
  2308.  
  2309.    // write IFS file
  2310.    fp = fopen (ifs_pathname, "w+b");
  2311.    if (fp == NULL)
  2312.    {
  2313.       fprintf (stderr, "error: failed to open \"%s\" for writing (%s)\n", ifs_pathname, strerror (errno));
  2314.       exit (1);
  2315.    }
  2316.  
  2317.    // do we have a startup file ? if so, this is a bootable image
  2318.    if (startupfile_pathname != NULL)
  2319.    {
  2320.       // write boot prefix
  2321.       // ######################################################################################################################################################################################################################################
  2322.       // # FIXME: figure out how to re-create it
  2323.       // ######################################################################################################################################################################################################################################
  2324.       fwrite_filecontents (bootfile_pathname, fp);
  2325.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2326.  
  2327.       startupheader_offset = ftell (fp); // save startup header offset
  2328.       memset (&startup_header, 0, sizeof (startup_header)); // prepare startup header
  2329.       memcpy (startup_header.signature, "\xeb\x7e\xff\x00", 4); // startup header signature, i.e. 0xff7eeb
  2330.       startup_header.version       = 1;
  2331.       startup_header.flags1        = STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2; // flags, 0x21 (STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2)
  2332.       startup_header.header_size   = sizeof (startup_header); // 256
  2333.       if (strcmp (image_processor, "x86_64") == 0)
  2334.          startup_header.machine = ELF_MACHINE_X86_64; // EM_X86_64
  2335.       else if (strcmp (image_processor, "aarch64le") == 0)
  2336.          startup_header.machine = ELF_MACHINE_AARCH64; // EM_AARCH64
  2337.       else
  2338.       {
  2339.          fprintf (stderr, "fatal error: unsupported processor type '%s' found in build file \"%s\"\n", image_processor, buildfile_pathname);
  2340.          exit (1);
  2341.       }
  2342.       startup_header.startup_vaddr = image_base + (uint32_t) startupfile_ep_from_imagebase; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
  2343.       startup_header.image_paddr   = image_base + (uint32_t) bootfile_size;                 // F[IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
  2344.       startup_header.ram_paddr     = startup_header.image_paddr;                            // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
  2345.       startup_header.ram_size      = WILL_BE_FILLED_LATER;                                  // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee (40686)
  2346.       startup_header.startup_size  = WILL_BE_FILLED_LATER;                                  // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
  2347.       startup_header.stored_size   = WILL_BE_FILLED_LATER;                                  // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
  2348.       startup_header.imagefs_size  = WILL_BE_FILLED_LATER;                                  // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
  2349.       startup_header.preboot_size  = (uint16_t) bootfile_size;                              // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
  2350.       fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
  2351.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2352.  
  2353.       // ######################################################################################################################################################################################################################################
  2354.       // # FIXME: figure out how to re-create it:
  2355.       // first: open "startup-x86" ELF file,
  2356.       //        lookup section headers table (there is no program headers table in this one)
  2357.       //        FIXME: figure out something in there where the result is 0x1401030 !!!
  2358.       // then: call the linker: ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0x1401030 --no-relax ${QNX_TARGET}/x86_64/boot/sys/startup-x86 -o startup.bin.UNSTRIPPED
  2359.       // then: parse resulting ELF file, take all program segments and concatenate them --> this is the blob (FIXME: wrong?)
  2360.       // ######################################################################################################################################################################################################################################
  2361. #if 0 // nonworking
  2362.       {
  2363.          buffer_t startupfile;
  2364.          elf_section_header_t *shdr_text;
  2365.          size_t segment_len;
  2366. FILE *control_fp = fopen ("startup.bin.MYSTRIPPED", "wb");
  2367.  
  2368.          if (read_filecontents ("startup.bin.UNSTRIPPED", MKIFS_PATH, &startupfile) == NULL)
  2369.          {
  2370.             fprintf (stderr, "fatal error: couldn't read startup-x86\n");
  2371.             exit (1);
  2372.          }
  2373.          elf = (elf_header_t *) startupfile.bytes; // quick access to ELF header
  2374.          table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
  2375.          for (table_index = 0; table_index < table_count; table_index++) // cycle through program headers
  2376.          {
  2377.             phdr = (elf_program_header_t *) &startupfile.bytes[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
  2378.             segment_len = ELF_GET_NUMERIC (elf, phdr, size_in_file);
  2379.             fwrite_or_die (&startupfile.bytes[ELF_GET_NUMERIC (elf, phdr, file_offset)], 1, segment_len, fp); // dump program segment
  2380. fwrite_or_die (&startupfile.bytes[ELF_GET_NUMERIC (elf, phdr, file_offset)], 1, segment_len, control_fp); // dump program segment
  2381. while (segment_len % 4096 > 0)
  2382. {
  2383.    fputc (0, control_fp);
  2384.    segment_len++;
  2385. }
  2386.          }
  2387.  
  2388. fclose (control_fp);
  2389.          free (startupfile.bytes);
  2390.       }
  2391. #else // working
  2392.       fwrite_filecontents (startupfile_pathname, fp); // write startup code from blob file
  2393. #endif // working
  2394.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2395.  
  2396.       startuptrailer_offset = ftell (fp); // save startup trailer offset
  2397.       fwrite_or_die (&startup_trailer, 1, sizeof (startup_trailer), fp); // write startup trailer
  2398.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2399.    }
  2400.  
  2401.    imageheader_offset = ftell (fp); // save image header offset
  2402.    memset (&image_header, 0, sizeof (image_header)); // prepare image header
  2403.    memcpy (&image_header.signature, "imagefs", 7); // image filesystem signature, i.e. "imagefs"
  2404.    image_header.flags         = IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS; // endian neutral flags, 0x1c (IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS)
  2405.    image_header.image_size    = WILL_BE_FILLED_LATER; // size from header to end of trailer (here 0xca6fe0 or 13 266 912)
  2406.    image_header.hdr_dir_size  = WILL_BE_FILLED_LATER; // size from header to last dirent (here 0x12b8 or 4792)
  2407.    image_header.dir_offset    = sizeof (image_header); // offset from header to first dirent (here 0x5c or 92)
  2408.    image_header.boot_ino[0]   = image_kernel_ino; // inode of files for bootstrap p[ro?]g[ra?]ms (here 0xa0000002, 0, 0, 0)
  2409.    image_header.script_ino    = image_bootscript_ino; // inode of file for script (here 3)
  2410.    image_header.mountpoint[0] = '/'; // default mountpoint for image ("/" + "\0\0\0")
  2411.    fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
  2412.    PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2413.  
  2414.    // write image directory (with the wrong file offsets)
  2415.    imgdir_offset = ftell (fp);
  2416.    imgdir_size = 0; // measure image dir size on the fly
  2417.    for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
  2418.       imgdir_size += fwrite_fsentry (&fsentries[fsentry_index], fp); // NOTE: padding is handled in this function
  2419.  
  2420.    fwrite_or_die ("\0\0\0\0", 1, 4, fp); // there seems to be 4 bytes of padding after the image directory
  2421.    imgdir_size += 4;
  2422.  
  2423.    // is it a bootable image with a kernel file ?
  2424.    if ((startupfile_pathname != NULL) && (kernelfile_pathname != NULL))
  2425.    {
  2426.       // start by writing the startup script data blob, if we have one
  2427.       for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  2428.          if (fsentries[fsentry_index].header.ino == image_bootscript_ino)
  2429.             break; // locate the startup script directory entry
  2430.       if (fsentry_index < fsentry_count) // found it ?
  2431.       {
  2432.          curr_offset = ftell (fp);
  2433.          if (curr_offset + fsentries[fsentry_index].u.file.size >= kernelfile_offset)
  2434.          {
  2435.             fprintf (stderr, "error: the compiled startup script is too big (%zd bytes, max is %zd) to fit at current offset %zd\n", (size_t) fsentries[fsentry_index].u.file.size, kernelfile_offset - curr_offset, curr_offset);
  2436.             exit (1);
  2437.          }
  2438.          fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2439.          fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
  2440.          fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2441.       }
  2442.  
  2443.       // now write the filesystem entries that may fit before the kernel
  2444.       for (;;)
  2445.       {
  2446.          curr_offset = ftell (fp); // see where we are
  2447.          available_space = kernelfile_offset - curr_offset; // measure the available space
  2448.  
  2449.          // look for the biggest one that can fit
  2450.          largest_index = 0;
  2451.          largest_size = 0;
  2452.          for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  2453.          {
  2454.             if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written || (fsentries[fsentry_index].u.file.size > available_space))
  2455.                continue; // skip all entries that don't have a separate data block, those who were written already and those that wouldn't fit
  2456.             if (fsentries[fsentry_index].u.file.size > largest_size)
  2457.             {
  2458.                largest_size = fsentries[fsentry_index].u.file.size;
  2459.                largest_index = fsentry_index;
  2460.             }
  2461.          }
  2462.          if (largest_size == 0)
  2463.             break; // found none ? if so, stop searching
  2464.  
  2465.          fsentries[largest_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2466.  
  2467.          // is the file we're storing a preprocessed ELF file ?
  2468.          if (fsentries[largest_index].header.ino & IFS_INO_PROCESSED_ELF)
  2469.          {
  2470.             elf = (elf_header_t *) fsentries[largest_index].u.file.UNSAVED_databuf; // quick access to ELF header
  2471.             table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
  2472.             for (table_index = 0; table_index < table_count; table_index++)
  2473.             {
  2474.                phdr = (elf_program_header_t *) &fsentries[largest_index].u.file.UNSAVED_databuf[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
  2475.                corrective_offset = ELF_GET_NUMERIC (elf, phdr, virtual_addr) - ELF_GET_NUMERIC (elf, phdr, file_offset);
  2476.                if (ELF_GET_NUMERIC (elf, phdr, size_in_memory) != 0) // only patch the physical address of segments that have an actual size in memory
  2477.                   ELF_SET_NUMERIC (elf, phdr, physical_addr, ELF_GET_NUMERIC (elf, phdr, physical_addr) + 0x1400000 + curr_offset - corrective_offset); // patch the physical address member of the program header table
  2478.             }
  2479.          }
  2480.  
  2481.          fwrite_or_die (fsentries[largest_index].u.file.UNSAVED_databuf, 1, fsentries[largest_index].u.file.size, fp); // write file data blob
  2482.          fsentries[largest_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2483.       }
  2484.       fprintf (stderr, "Current offset: 0x%zx\n", curr_offset);
  2485.       fprintf (stderr, "Kernel file offset: 0x%zx\n", kernelfile_offset);
  2486.       PAD_OUTFILE_TO (kernelfile_offset); // reach the kernel offset
  2487.  
  2488.       // now write the QNX kernel
  2489.       for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  2490.          if (fsentries[fsentry_index].header.ino == image_kernel_ino)
  2491.             break; // locate the kernel directory entry (can't fail)
  2492.       curr_offset = ftell (fp); // see where we are
  2493.       fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2494.       fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write kernel file data blob
  2495.       PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2496.       fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2497.    }
  2498.  
  2499.    // then write all the other files by increasing inode number: ELF files first
  2500.    for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
  2501.    {
  2502.       if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written // filter out anything that's not a file, and anything that's been already written
  2503.           || (fsentries[fsentry_index].u.file.size < 4) || (memcmp (fsentries[fsentry_index].u.file.UNSAVED_databuf, ELF_MAGIC_STR, 4) != 0)) // filter out anything that's not an ELF file
  2504.          continue; // skip all entries that don't have a separate data block and those who were written already
  2505.       curr_offset = ftell (fp);
  2506.       fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2507.  
  2508.       // is the file we're storing a preprocessed ELF file ?
  2509.       if (fsentries[fsentry_index].header.ino & IFS_INO_PROCESSED_ELF)
  2510.       {
  2511.          elf = (elf_header_t *) fsentries[fsentry_index].u.file.UNSAVED_databuf; // quick access to ELF header
  2512.          table_count = ELF_GET_NUMERIC (elf, elf, program_header_table_len); // get the number of program headers
  2513.          for (table_index = 0; table_index < table_count; table_index++)
  2514.          {
  2515.             phdr = (elf_program_header_t *) &fsentries[fsentry_index].u.file.UNSAVED_databuf[ELF_GET_NUMERIC (elf, elf, program_header_table_offset) + (size_t) ELF_GET_NUMERIC (elf, elf, program_header_item_size) * table_index]; // quick access to program header
  2516.             corrective_offset = ELF_GET_NUMERIC (elf, phdr, virtual_addr) - ELF_GET_NUMERIC (elf, phdr, file_offset);
  2517.             if (ELF_GET_NUMERIC (elf, phdr, size_in_memory) != 0) // only patch the physical address of segments that have an actual size in memory
  2518.                ELF_SET_NUMERIC (elf, phdr, physical_addr, ELF_GET_NUMERIC (elf, phdr, physical_addr) + 0x1400000 + curr_offset - corrective_offset); // patch the physical address member of the program header table
  2519.          }
  2520.       }
  2521.  
  2522.       fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
  2523.       fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2524.    }
  2525.    for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++) // other files (non-ELF, e.g. scripts and data files) last
  2526.    {
  2527.       if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written) // filter out anything that's not a file, and anything that's been already written
  2528.          continue; // skip all entries that don't have a separate data block and those who were written already
  2529.       curr_offset = ftell (fp);
  2530.       fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
  2531.       fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
  2532.       fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
  2533.    }
  2534.    PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2535.  
  2536.    // finally, write trailer (including empty checksum)
  2537.    imagetrailer_offset = ftell (fp); // save image trailer offset
  2538.    fwrite_or_die (&image_trailer, 1, sizeof (image_trailer), fp); // write image trailer
  2539.    PAD_OUTFILE_TO (ROUND_TO_UPPER_MULTIPLE (ftell (fp), image_align)); // pad as necessary
  2540.  
  2541.    // if we need to pad it to a specific length, do so
  2542.    PAD_OUTFILE_TO (image_totalsize);
  2543.    final_size = ftell (fp);
  2544.  
  2545.    // see if we are past the image max size, in which case it's an error
  2546.    if (final_size > image_maxsize)
  2547.    {
  2548.       fprintf (stderr, "error: image file \"%s\" size %zd exceeds max size (%zd)\n", ifs_pathname, final_size, (size_t) image_maxsize);
  2549.       exit (1);
  2550.    }
  2551.  
  2552.    // do we have a startup file ? if so, this is a bootable image
  2553.    if (startupfile_pathname != NULL)
  2554.    {
  2555.       // rewrite startup header with final values
  2556.       fseek_or_die (fp, startupheader_offset, SEEK_SET);
  2557.       startup_header.startup_size = (uint32_t) (imageheader_offset - startupheader_offset); // size of startup header up to image header
  2558.       startup_header.imagefs_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
  2559.       startup_header.ram_size     = (uint32_t) (final_size - startupheader_offset);
  2560.       startup_header.stored_size  = (uint32_t) (final_size - startupheader_offset);
  2561.       fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
  2562.    }
  2563.  
  2564.    // rewrite image header with final values
  2565.    fseek_or_die (fp, imageheader_offset, SEEK_SET);
  2566.    image_header.image_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
  2567.    image_header.hdr_dir_size = sizeof (image_header) + (uint32_t) imgdir_size; // size from start of image header to last dirent
  2568.    fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
  2569.  
  2570.    // rewrite image directory with final offset values
  2571.    fseek_or_die (fp, imgdir_offset, SEEK_SET);
  2572.    if (image_header.flags & IMAGE_FLAGS_SORTED)
  2573.       qsort (&fsentries[1], fsentry_count - 1, sizeof (fsentry_t), fsentry_compare_pathnames_cb); // sort the filesystem entries by pathname
  2574.    for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
  2575.       fwrite_fsentry (&fsentries[fsentry_index], fp);
  2576.  
  2577.    fclose (fp); // ensure everything is flushed
  2578.  
  2579.    // ALL CHECKSUMS AT THE VERY END
  2580.  
  2581.    read_filecontents (ifs_pathname, ".", &blob);
  2582.    WELLMANNERED_ASSERT (blob.bytes != NULL, "failed to open IFS file for checksumming: %s", strerror (errno));
  2583.  
  2584.    // do we have a startup file ? if so, this is a bootable image
  2585.    if (startupfile_pathname != NULL)
  2586.    {
  2587.       // compute SHA-512 checksum and V1 checksum of startup block
  2588.       if (   ( (startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2589.           || (!(startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2590.          is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2591.       else
  2592.          is_foreign_endianness = false; // else this header is for the same endianness as us
  2593.  
  2594.       SHA512 (&blob.bytes[startupheader_offset], startuptrailer_offset - startupheader_offset, &blob.bytes[startuptrailer_offset]); // compute SHA512 checksum and write it in place in blob data
  2595.       checksum = update_checksum (&blob.bytes[startupheader_offset], startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness); // compute old checksum
  2596.       memcpy (&blob.bytes[startuptrailer_offset + SHA512_DIGEST_LENGTH], &checksum, 4); // and write it in place
  2597.    }
  2598.  
  2599.    // compute SHA-512 checksum and V1 checksum of image block
  2600.    if (   ( (image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2601.        || (!(image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2602.       is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2603.    else
  2604.       is_foreign_endianness = false; // else this header is for the same endianness as us
  2605.  
  2606.    SHA512 (&blob.bytes[imageheader_offset], imagetrailer_offset - imageheader_offset, &blob.bytes[imagetrailer_offset]); // compute SHA512 checksum and write it in place in blob data
  2607.    checksum = update_checksum (&blob.bytes[imageheader_offset], imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness); // compute old checksum
  2608.    memcpy (&blob.bytes[imagetrailer_offset + SHA512_DIGEST_LENGTH], &checksum, 4); // and write it in place
  2609.  
  2610.    // now rewrite IFS with the correct checksums
  2611.    fp = fopen (ifs_pathname, "wb");
  2612.    WELLMANNERED_ASSERT (fp, "failed to reopen IFS file for checksumming: %s", strerror (errno));
  2613.    fwrite_or_die (blob.bytes, 1, blob.len, fp);
  2614.    fclose (fp);
  2615.    free (blob.bytes);
  2616.  
  2617.    // finished, exit with a success code
  2618.    fprintf (stdout, "Success\n");
  2619.    exit (0);
  2620. }
  2621.  
  2622.  
  2623. static int dump_ifs_info (const char *ifs_pathname, bool want_everything)
  2624. {
  2625.    #define hex_printf(buf,size,...) do { \
  2626.       if (want_everything || ((size) <= 16 * 1024)) /* only print when it's not too big (up to 16 kb) */\
  2627.          hex_fprintf (stdout, (buf), (size), 16, __VA_ARGS__); /* use 16 columns in hex output to stdout */ \
  2628.       else { \
  2629.          printf (__VA_ARGS__); \
  2630.          hex_fprintf (stdout, (buf), 1024, 16, "   first kilobyte:\n"); \
  2631.       } \
  2632.    } while (0)
  2633.    #define BINARY(x) binary ((x), '-', 'x')
  2634.  
  2635.    static const char *startupheader_flags1_strings[8] = {
  2636.       "VIRTUAL", // bit 0
  2637.       "BIGENDIAN", // bit 1
  2638.       "COMPRESS_BIT1", // bit 2
  2639.       "COMPRESS_BIT2", // bit 3
  2640.       "COMPRESS_BIT3", // bit 4
  2641.       "TRAILER_V2", // bit 5
  2642.       "", // bit 6
  2643.       "", // bit 7
  2644.    };
  2645.    static const char *imageheader_flags_strings[8] = {
  2646.       "BIGENDIAN", // bit 0
  2647.       "READONLY", // bit 1
  2648.       "INO_BITS", // bit 2
  2649.       "SORTED", // bit 3
  2650.       "TRAILER_V2", // bit 4
  2651.       "", // bit 5
  2652.       "", // bit 6
  2653.       "", // bit 7
  2654.    };
  2655.  
  2656.    startup_header_t *startup_header = NULL;
  2657.    size_t startupheader_offset = 0;
  2658.    startup_trailer_v1_t *startup_trailer_v1 = NULL;
  2659.    startup_trailer_v2_t *startup_trailer_v2 = NULL;
  2660.    size_t startuptrailer_offset = 0;
  2661.    image_header_t *image_header = NULL;
  2662.    size_t imageheader_offset = 0;
  2663.    image_trailer_v1_t *image_trailer_v1 = NULL;
  2664.    image_trailer_v2_t *image_trailer_v2 = NULL;
  2665.    size_t imagetrailer_offset = 0;
  2666.    fsentry_t **fsentries = NULL; // mallocated
  2667.    size_t fsentry_count = 0;
  2668.    fsentry_t *current_fsentry = NULL;
  2669.    char recorded_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
  2670.    char computed_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
  2671.    size_t startupfile_blobsize = 0;
  2672.    void *reallocated_ptr;
  2673.    bool is_foreign_endianness;
  2674.    size_t bootfile_blobsize = 0;
  2675.    size_t current_offset;
  2676.    size_t fsentry_index;
  2677.    size_t nearest_distance;
  2678.    size_t nearest_index;
  2679.    size_t byte_index;
  2680.    uint32_t recorded_checksum;
  2681.    uint32_t computed_checksum;
  2682.    buffer_t file;
  2683.    time_t mtime;
  2684.  
  2685.    // open and read IFS file
  2686.    if (read_filecontents (ifs_pathname, ".", &file) == NULL)
  2687.    {
  2688.       fprintf (stderr, "error: can't open \"%s\" for reading: %s\n", ifs_pathname, strerror (errno));
  2689.       return (1);
  2690.    }
  2691.  
  2692.    printf ("QNX In-kernel Filesystem analysis produced by ifstool version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
  2693.    printf ("IFS file \"%s\" - size 0x%zx (%zd) bytes\n", ifs_pathname, file.len, file.len);
  2694.  
  2695.    // parse file from start to end
  2696.    current_offset = 0;
  2697.    for (;;)
  2698.    {
  2699.       // does a startup header start here ?
  2700.       if ((current_offset + sizeof (startup_header_t) < file.len) && (memcmp (&file.bytes[current_offset], "\xeb\x7e\xff\x00", 4) == 0))
  2701.       {
  2702.          startupheader_offset = current_offset;
  2703.          startup_header = (startup_header_t *) &file.bytes[startupheader_offset];
  2704.  
  2705.          // layout:
  2706.          // [STARTUP HEADER]
  2707.          // (startup file blob)
  2708.          // [STARTUP TRAILER v1 or v2]
  2709.  
  2710.          printf ("\n");
  2711.          printf ("Startup header at offset 0x%zx (%zd):\n", current_offset, current_offset);
  2712.          printf ("   signature     = %02x %02x %02x %02x - good\n", startup_header->signature[0], startup_header->signature[1], startup_header->signature[2], startup_header->signature[3]);
  2713.          printf ("   version       = 0x%04x (%d) - %s\n", startup_header->version, startup_header->version, (startup_header->version == 1 ? "looks good" : "???"));
  2714.          printf ("   flags1        = 0x%02x (%s)\n", startup_header->flags1, describe_uint8 (startup_header->flags1, startupheader_flags1_strings));
  2715.          printf ("   flags2        = 0x%02x (%s) - %s\n", startup_header->flags2, BINARY (startup_header->flags2), (startup_header->flags2 == 0 ? "looks good" : "???"));
  2716.          printf ("   header_size   = 0x%04x (%d) - %s\n", startup_header->header_size, startup_header->header_size, (startup_header->header_size == sizeof (startup_header_t) ? "looks good" : "BAD"));
  2717.          printf ("   machine       = 0x%04x (%d) - %s\n", startup_header->machine, startup_header->machine, (startup_header->machine == ELF_MACHINE_X86_64 ? "x86_64" : (startup_header->machine == ELF_MACHINE_AARCH64 ? "aarch64" : "unknown")));
  2718.          printf ("   startup_vaddr = 0x%08x (%d) - virtual address to transfer to after IPL is done\n", startup_header->startup_vaddr, startup_header->startup_vaddr);
  2719.          printf ("   paddr_bias    = 0x%08x (%d) - value to add to physical addresses to get an indirectable pointer value\n", startup_header->paddr_bias, startup_header->paddr_bias);
  2720.          printf ("   image_paddr   = 0x%08x (%d) - physical address of image\n", startup_header->image_paddr, startup_header->image_paddr);
  2721.          printf ("   ram_paddr     = 0x%08x (%d) - physical address of RAM to copy image to (startup_size bytes copied)\n", startup_header->ram_paddr, startup_header->ram_paddr);
  2722.          printf ("   ram_size      = 0x%08x (%d) - amount of RAM used by the startup program and executables in the fs\n", startup_header->ram_size, startup_header->ram_size);
  2723.          printf ("   startup_size  = 0x%08x (%d) - size of startup (never compressed) - %s\n", startup_header->startup_size, startup_header->startup_size, (current_offset + sizeof (image_header_t) + startup_header->startup_size + (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? sizeof (image_trailer_v2_t) : sizeof (image_trailer_v1_t)) < file.len ? "looks good" : "BAD (IFS file too short)"));
  2724.          printf ("   stored_size   = 0x%08x (%d) - size of entire image - %s\n", startup_header->stored_size, startup_header->stored_size, (startup_header->stored_size == startup_header->ram_size ? "looks good" : "???"));
  2725.          printf ("   imagefs_paddr = 0x%08x (%d) - set by IPL when startup runs - %s\n", startup_header->imagefs_paddr, startup_header->imagefs_paddr, (startup_header->imagefs_paddr == 0 ? "looks good" : "??? should be zero"));
  2726.          printf ("   imagefs_size  = 0x%08x (%d) - size of uncompressed imagefs\n", startup_header->imagefs_size, startup_header->imagefs_size);
  2727.          printf ("   preboot_size  = 0x%04x (%d) - size of loaded before header - %s\n", startup_header->preboot_size, startup_header->preboot_size, (startup_header->preboot_size == current_offset ? "looks good" : "???"));
  2728.          printf ("   zero0         = 0x%04x (%d) - zeros - %s\n", startup_header->zero0, startup_header->zero0, (startup_header->zero0 == 0 ? "looks good" : "??? should be zero"));
  2729.          printf ("   zero[0]       = 0x%08x (%d) - zeros - %s\n", startup_header->zero[0], startup_header->zero[0], (startup_header->zero[0] == 0 ? "looks good" : "??? should be zero"));
  2730.          printf ("   addr_off      = 0x%016llx (%lld) - offset for startup_vaddr and [image|ram|imagefs]_paddr - %s\n", startup_header->addr_off, startup_header->addr_off, (startup_header->addr_off == 0 ? "looks good" : "??? should be zero"));
  2731.          hex_printf ((uint8_t *) &startup_header->info[0], sizeof (startup_header->info), "   info[48] =\n");
  2732.  
  2733.          // validate that the file can contain up to the startup trailer
  2734.          if (current_offset + startup_header->startup_size > file.len)
  2735.          {
  2736.             printf ("WARNING: this IFS file is corrupted (startup trailer extends past end of file)\n");
  2737.             goto endofdata;
  2738.          }
  2739.  
  2740.          // check if this endianness is ours
  2741.          if (   ( (startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2742.              || (!(startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2743.             is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2744.          else
  2745.             is_foreign_endianness = false; // else this header is for the same endianness as us
  2746.  
  2747.          // locate the right startup trailer at the right offset
  2748.          if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
  2749.          {
  2750.             startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v2_t);
  2751.             startup_trailer_v2 = (startup_trailer_v2_t *) &file.bytes[startuptrailer_offset];
  2752.             startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v2_t);
  2753.          }
  2754.          else // old V1 trailer
  2755.          {
  2756.             startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v1_t);
  2757.             startup_trailer_v1 = (startup_trailer_v1_t *) &file.bytes[startuptrailer_offset];
  2758.             startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v1_t);
  2759.          }
  2760.  
  2761.          current_offset += sizeof (startup_header_t); // jump over the startup header and reach the startup blob
  2762.          printf ("\n");
  2763.          printf ("Startup blob at offset 0x%zx (%zd):\n", current_offset, current_offset);
  2764.          printf ("   size 0x%zx (%zd) bytes\n", startupfile_blobsize, startupfile_blobsize);
  2765.          printf ("   checksum %d\n", update_checksum (&file.bytes[current_offset], startupfile_blobsize, is_foreign_endianness));
  2766.  
  2767.          current_offset += startupfile_blobsize; // jump over the startup blob and reach the startup trailer
  2768.          printf ("\n");
  2769.          printf ("Startup trailer at offset 0x%zx (%zd) - version %d:\n", current_offset, current_offset, (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? 2 : 1));
  2770.          if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
  2771.          {
  2772.             for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
  2773.                sprintf (&recorded_sha512[2 * byte_index], "%02x", startup_trailer_v2->sha512[byte_index]);
  2774.             strcpy (computed_sha512, SHA512 (startup_header, startuptrailer_offset - startupheader_offset, NULL));
  2775.             recorded_checksum = startup_trailer_v2->cksum;
  2776.             computed_checksum = update_checksum (startup_header, startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness);
  2777.             printf ("    sha512([0x%zx-0x%zx[) = %s - %s\n", startupheader_offset, startuptrailer_offset, recorded_sha512, (strcasecmp (computed_sha512, recorded_sha512) == 0 ? "GOOD" : "BAD"));
  2778.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset, startuptrailer_offset + SHA512_DIGEST_LENGTH, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2779.             if (strcasecmp (computed_sha512, recorded_sha512) != 0)
  2780.                printf ("Computed SHA-512: %s\n", computed_sha512);
  2781.             if (computed_checksum != recorded_checksum)
  2782.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2783.          }
  2784.          else // old v1 trailer
  2785.          {
  2786.             recorded_checksum = startup_trailer_v1->cksum;
  2787.             computed_checksum = update_checksum (startup_header, sizeof (startup_header) + startupfile_blobsize, is_foreign_endianness);
  2788.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset, startuptrailer_offset, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2789.             if (computed_checksum != recorded_checksum)
  2790.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2791.          }
  2792.  
  2793.          current_offset += (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? sizeof (startup_trailer_v2_t) : sizeof (startup_trailer_v1_t)); // now reach the next segment
  2794.       }
  2795.  
  2796.       // else does an image header start here ?
  2797.       else if ((current_offset + sizeof (image_header_t) < file.len) && (memcmp (&file.bytes[current_offset], "imagefs", 7) == 0))
  2798.       {
  2799.          imageheader_offset = current_offset;
  2800.          image_header = (image_header_t *) &file.bytes[imageheader_offset];
  2801.  
  2802.          // layout:
  2803.          // [IMAGE HEADER]
  2804.          // [image directory entries]
  2805.          // [smallest file blobs up to KERNEL]
  2806.          // [padding]
  2807.          // [KERNEL]
  2808.          // [rest of file blobs]
  2809.          // [IMAGE FOOTER]
  2810.  
  2811.          printf ("\n");
  2812.          printf ("Image header at offset %zx (%zd):\n", current_offset, current_offset);
  2813.          printf ("   signature    = %02x %02x %02x %02x %02x %02x %02x (\"%.7s\") - good\n", image_header->signature[0], image_header->signature[1], image_header->signature[2], image_header->signature[3], image_header->signature[4], image_header->signature[5], image_header->signature[6], image_header->signature);
  2814.          printf ("   flags        = 0x%02x (%s)\n", image_header->flags, describe_uint8 (image_header->flags, imageheader_flags_strings));
  2815.          printf ("   image_size   = 0x%08x (%d) - size from header to end of trailer - %s\n", image_header->image_size, image_header->image_size, (current_offset + image_header->image_size <= file.len ? "looks good" : "BAD (IFS file too short)"));
  2816.          printf ("   hdr_dir_size = 0x%08x (%d) - size from header to last dirent - %s\n", image_header->hdr_dir_size, image_header->hdr_dir_size, (current_offset + image_header->hdr_dir_size < file.len ? "looks good" : "BAD (IFS file too short)"));
  2817.          printf ("   dir_offset   = 0x%08x (%d) - offset from header to first dirent - %s\n", image_header->dir_offset, image_header->dir_offset, (current_offset + image_header->dir_offset >= file.len ? "BAD (IFS file too short)" : (image_header->dir_offset > image_header->hdr_dir_size ? "BAD" : "looks good")));
  2818.          printf ("   boot_ino[4]  = { 0x%08x, 0x%08x, 0x%08x, 0x%08x }\n", image_header->boot_ino[0], image_header->boot_ino[1], image_header->boot_ino[2], image_header->boot_ino[3]);
  2819.          printf ("   script_ino   = 0x%08x (%d) - inode of compiled bootscript\n", image_header->script_ino, image_header->script_ino);
  2820.          printf ("   chain_paddr  = 0x%08x (%d) - offset to next fs signature\n", image_header->chain_paddr, image_header->chain_paddr);
  2821.          hex_printf ((uint8_t *) &image_header->spare[0], sizeof (image_header->spare), "   spare[10] =\n");
  2822.          printf ("   mountflags   = 0x%08x (%s %s %s %s)\n", image_header->mountflags, BINARY (((uint8_t *) &image_header->mountflags)[0]), BINARY (((uint8_t *) &image_header->mountflags)[1]), BINARY (((uint8_t *) &image_header->mountflags)[2]), BINARY (((uint8_t *) &image_header->mountflags)[3]));
  2823.          printf ("   mountpoint   = \"%s\"\n", image_header->mountpoint);
  2824.  
  2825.          // validate that the file can contain up to the image trailer
  2826.          if (current_offset + image_header->image_size > file.len)
  2827.          {
  2828.             printf ("WARNING: this IFS file is corrupted (image trailer extends past end of file)\n");
  2829.             goto endofdata;
  2830.          }
  2831.  
  2832.          // check if this endianness is ours
  2833.          if (   ( (image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
  2834.              || (!(image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
  2835.             is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
  2836.          else
  2837.             is_foreign_endianness = false; // else this header is for the same endianness as us
  2838.  
  2839.          // locate the image trailer at the right offset
  2840.          if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
  2841.          {
  2842.             imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v2_t);
  2843.             image_trailer_v2 = (image_trailer_v2_t *) &file.bytes[imagetrailer_offset];
  2844.          }
  2845.          else // old V1 trailer
  2846.          {
  2847.             imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v1_t);
  2848.             image_trailer_v1 = (image_trailer_v1_t *) &file.bytes[imagetrailer_offset];
  2849.          }
  2850.  
  2851.          current_offset += sizeof (image_header_t); // jump over the image header and reach the first directory entry
  2852.  
  2853.          // there may be padding before the first directory entry
  2854.          if (image_header->dir_offset - sizeof (image_header_t) > 0)
  2855.             hex_printf (&file.bytes[current_offset], image_header->dir_offset - sizeof (image_header_t), "\n" "%zd padding bytes at offset 0x%zd (%zd):\n", image_header->dir_offset - sizeof (image_header_t), current_offset, current_offset);
  2856.          current_offset += image_header->dir_offset - sizeof (image_header_t); // padding was processed, jump over it
  2857.  
  2858.          // dump all directory entries until the last one included
  2859.          fsentries = NULL;
  2860.          fsentry_count = 0;
  2861.          while (current_offset < imageheader_offset + image_header->hdr_dir_size)
  2862.          {
  2863.             current_fsentry = (fsentry_t *) &file.bytes[current_offset];
  2864.  
  2865.             if (imageheader_offset + image_header->hdr_dir_size - current_offset < sizeof (current_fsentry->header))
  2866.                break; // end padding reached
  2867.  
  2868.             // stack up the filesystem entry pointers in an array while we read them
  2869.             reallocated_ptr = realloc (fsentries, (fsentry_count + 1) * sizeof (fsentry_t *));
  2870.             WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
  2871.             fsentries = reallocated_ptr;
  2872.             fsentries[fsentry_count] = current_fsentry;
  2873.             fsentry_count++;
  2874.  
  2875.             printf ("\n");
  2876.             printf ("Filesystem entry at offset 0x%zx (%zd) - last one at 0x%zd (%zd):\n", current_offset, current_offset, imageheader_offset + image_header->hdr_dir_size, imageheader_offset + image_header->hdr_dir_size);
  2877.             printf ("   size           = 0x%04x (%d) - size of dirent - %s\n", current_fsentry->header.size, current_fsentry->header.size, ((current_fsentry->header.size > 0) && (current_offset + current_fsentry->header.size < file.len) ? "looks good" : "BAD"));
  2878.             printf ("   extattr_offset = 0x%04x (%d) - %s\n", current_fsentry->header.extattr_offset, current_fsentry->header.extattr_offset, (current_fsentry->header.extattr_offset == 0 ? "no extattr" : "has extattr"));
  2879.             printf ("   ino            = 0x%08x (%d) - inode number (%s%s%s%s)\n", current_fsentry->header.ino, current_fsentry->header.ino, (current_fsentry->header.ino & 0xE0000000 ? "is" : "nothing special"), (current_fsentry->header.ino & IFS_INO_PROCESSED_ELF ? " PROCESSED_ELF" : ""), (current_fsentry->header.ino & IFS_INO_RUNONCE_ELF ? " RUNONCE_ELF" : ""), (current_fsentry->header.ino & IFS_INO_BOOTSTRAP_EXE ? " BOOTSTRAP_EXE" : ""));
  2880.             printf ("   mode           = 0x%08x (%d) - %s (0%o), POSIX permissions 0%o\n", current_fsentry->header.mode, current_fsentry->header.mode, (S_ISDIR (current_fsentry->header.mode) ? "directory" : (S_ISREG (current_fsentry->header.mode) ? "file" : (S_ISLNK (current_fsentry->header.mode) ? "symlink" : "device"))), (current_fsentry->header.mode & 0xF000) >> 12, current_fsentry->header.mode & 0xFFF);
  2881.             printf ("   gid            = 0x%08x (%d) - owner group ID%s\n", current_fsentry->header.gid, current_fsentry->header.gid, (current_fsentry->header.gid == 0 ? " (root)" : ""));
  2882.             printf ("   uid            = 0x%08x (%d) - owner user ID%s\n", current_fsentry->header.uid, current_fsentry->header.uid, (current_fsentry->header.uid == 0 ? " (root)" : ""));
  2883.             mtime = (time_t) current_fsentry->header.mtime;
  2884.             printf ("   mtime          = 0x%08x (%d) - POSIX timestamp: %s", current_fsentry->header.mtime, current_fsentry->header.mtime, asctime (localtime (&mtime))); // NOTE: asctime() provides the newline
  2885.             if (S_ISDIR (current_fsentry->header.mode))
  2886.                printf ("   [DIRECTORY] path = \"%s\"\n", (char *) &current_fsentry->u.dir.path); // convert from pointer to char array
  2887.             else if (S_ISREG (current_fsentry->header.mode))
  2888.             {
  2889.                printf ("   [FILE] offset = 0x%08x (%d) - %s\n", current_fsentry->u.file.offset, current_fsentry->u.file.offset, (imageheader_offset + current_fsentry->u.file.offset < file.len ? "looks good" : "BAD (IFS file too short)"));
  2890.                printf ("   [FILE] size   = 0x%08x (%d) - %s\n", current_fsentry->u.file.size, current_fsentry->u.file.size, (imageheader_offset + current_fsentry->u.file.offset + current_fsentry->u.file.size < file.len ? "looks good" : "BAD (IFS file too short)"));
  2891.                printf ("   [FILE] path   = \"%s\"\n", (char *) &current_fsentry->u.file.path); // convert from pointer to char array
  2892.             }
  2893.             else if (S_ISLNK (current_fsentry->header.mode))
  2894.             {
  2895.                printf ("   [SYMLINK] sym_offset = 0x%04x (%d) - %s\n", current_fsentry->u.symlink.sym_offset, current_fsentry->u.symlink.sym_offset, (sizeof (current_fsentry->header) + 2 * sizeof (uint16_t) + current_fsentry->u.symlink.sym_offset <= current_fsentry->header.size ? "looks good" : "BAD (dirent too short)"));
  2896.                printf ("   [SYMLINK] sym_size   = 0x%04x (%d) - %s\n", current_fsentry->u.symlink.sym_size, current_fsentry->u.symlink.sym_size, (sizeof (current_fsentry->header) + 2 * sizeof (uint16_t) + current_fsentry->u.symlink.sym_offset + current_fsentry->u.symlink.sym_size <= current_fsentry->header.size ? "looks good" : "BAD (dirent too short)"));
  2897.                printf ("   [SYMLINK] path       = \"%s\"\n", (char *) &current_fsentry->u.symlink.path); // convert from pointer to char array
  2898.                printf ("   [SYMLINK] contents   = \"%s\"\n", ((char *) &current_fsentry->u.symlink.path) + current_fsentry->u.symlink.sym_offset); // convert from pointer to char array
  2899.             }
  2900.             else // can only be a device
  2901.             {
  2902.                printf ("   [DEVICE] dev  = 0x%08x (%d)\n", current_fsentry->u.device.dev, current_fsentry->u.device.dev);
  2903.                printf ("   [DEVICE] rdev = 0x%08x (%d)\n", current_fsentry->u.device.rdev, current_fsentry->u.device.rdev);
  2904.                printf ("   [DEVICE] path = \"%s\"\n", (char *) &current_fsentry->u.device.path); // convert from pointer to char array
  2905.             }
  2906.  
  2907.             if ((current_fsentry->header.size == 0) || (current_offset + current_fsentry->header.size >= file.len))
  2908.             {
  2909.                printf ("WARNING: this IFS file is corrupted (the size of this directory entry is invalid)\n");
  2910.                goto endofdata;
  2911.             }
  2912.  
  2913.             current_offset += current_fsentry->header.size;
  2914.          }
  2915.          if (imageheader_offset + image_header->hdr_dir_size < current_offset + sizeof (current_fsentry->header))
  2916.             hex_printf (&file.bytes[current_offset], imageheader_offset + image_header->hdr_dir_size - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + image_header->hdr_dir_size - current_offset, current_offset, current_offset);
  2917.          current_offset += imageheader_offset + image_header->hdr_dir_size - current_offset; // padding was processed, jump over it
  2918.  
  2919.          // at this point we are past the directory entries; what is stored now, up to and until the image trailer, is the files' data
  2920.          if (fsentry_count > 0)
  2921.          {
  2922.             while (current_offset < imagetrailer_offset) // and parse data up to the trailer
  2923.             {
  2924.                nearest_distance = SIZE_MAX;
  2925.                nearest_index = SIZE_MAX;
  2926.                for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
  2927.                   if (S_ISREG (fsentries[fsentry_index]->header.mode) // if this directory entry a file (i.e. it has a data blob)...
  2928.                       && (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset >= current_offset) // ... AND its data blob is still ahead of our current pointer ...
  2929.                       && (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset < nearest_distance)) // ... AND it's the closest to us we've found so far
  2930.                   {
  2931.                      nearest_distance = imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset; // then remember it
  2932.                      nearest_index = fsentry_index;
  2933.                   }
  2934.                if (nearest_index == SIZE_MAX)
  2935.                   break; // found no file ahead, which means we've parsed the whole file data area, so stop the loop so as to proceed to the image trailer
  2936.  
  2937.                fsentry_index = nearest_index;
  2938.                current_fsentry = fsentries[fsentry_index]; // quick access to closest fsentry
  2939.  
  2940.                // there may be padding before the file data
  2941.                if (imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset > 0)
  2942.                   hex_printf (&file.bytes[current_offset], imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, current_offset, current_offset);
  2943.                current_offset += imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset; // padding was processed, jump over it
  2944.  
  2945.                printf ("\n");
  2946.                printf ("File data blob at offset 0x%zx (%zd):\n", current_offset, current_offset);
  2947.                printf ("   corresponding dirent index: %zd/%zd\n", fsentry_index, fsentry_count);
  2948.                printf ("   corresponding inode 0x%08x (%d) -%s%s%s%s\n", current_fsentry->header.ino, current_fsentry->header.ino, (current_fsentry->header.ino & 0xE0000000 ? "" : " nothing special"), (current_fsentry->header.ino & IFS_INO_PROCESSED_ELF ? " PROCESSED_ELF" : ""), (current_fsentry->header.ino & IFS_INO_RUNONCE_ELF ? " RUNONCE_ELF" : ""), (current_fsentry->header.ino & IFS_INO_BOOTSTRAP_EXE ? " BOOTSTRAP_EXE" : ""));
  2949.                printf ("   corresponding path: \"%s\"\n", (char *) &current_fsentry->u.file.path); // convert from pointer to char array
  2950.                printf ("   size 0x%zx (%zd) bytes\n", (size_t) current_fsentry->u.file.size, (size_t) current_fsentry->u.file.size);
  2951.                if (current_offset + 4 < file.len)
  2952.                   hex_printf (&file.bytes[current_offset], current_fsentry->u.file.size, "   data:\n");
  2953.                if (current_offset + current_fsentry->u.file.size < file.len)
  2954.                   printf ("   checksum %d\n", update_checksum (&file.bytes[current_offset], current_fsentry->u.file.size, is_foreign_endianness));
  2955.                else
  2956.                {
  2957.                   printf ("WARNING: this IFS file is corrupted (the size of this file data extends past the IFS size)\n");
  2958.                   goto endofdata;
  2959.                }
  2960.  
  2961.                current_offset += current_fsentry->u.file.size; // now jump over this file's data
  2962.             }
  2963.          }
  2964.  
  2965.          // ad this point we're past the last file data, there may be padding before the image trailer
  2966.          if (imagetrailer_offset - current_offset > 0)
  2967.             hex_printf (&file.bytes[current_offset], imagetrailer_offset - current_offset, "\n" "%zd padding bytes at offset %zx (%zd):\n", imagetrailer_offset - current_offset, current_offset, current_offset);
  2968.          current_offset += imagetrailer_offset - current_offset; // padding was processed, jump over it
  2969.  
  2970.          printf ("\n");
  2971.          printf ("Image trailer at offset 0x%zx (%zd) - version %d:\n", current_offset, current_offset, (image_header->flags & IMAGE_FLAGS_TRAILER_V2 ? 2 : 1));
  2972.          if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
  2973.          {
  2974.             for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
  2975.                sprintf (&recorded_sha512[2 * byte_index], "%02x", image_trailer_v2->sha512[byte_index]);
  2976.             strcpy (computed_sha512, SHA512 (image_header, imagetrailer_offset - imageheader_offset, NULL));
  2977.             recorded_checksum = image_trailer_v2->cksum;
  2978.             computed_checksum = update_checksum (image_header, imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness);
  2979.             printf ("    sha512([0x%zx-0x%zx[) = %s - %s\n", imageheader_offset, imagetrailer_offset, recorded_sha512, (strcasecmp (computed_sha512, recorded_sha512) == 0 ? "GOOD" : "BAD"));
  2980.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset, imagetrailer_offset + SHA512_DIGEST_LENGTH, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2981.             if (strcasecmp (computed_sha512, recorded_sha512) != 0)
  2982.                printf ("Computed SHA-512: %s\n", computed_sha512);
  2983.             if (computed_checksum != recorded_checksum)
  2984.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2985.          }
  2986.          else // old v1 trailer
  2987.          {
  2988.             recorded_checksum = image_trailer_v1->cksum;
  2989.             computed_checksum = update_checksum (image_header, image_header->image_size - sizeof (image_trailer_v1_t), is_foreign_endianness);
  2990.             printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset, imagetrailer_offset, recorded_checksum, (computed_checksum == recorded_checksum ? "GOOD" : "BAD"));
  2991.             if (computed_checksum != recorded_checksum)
  2992.                printf ("Computed cksum: 0x%08x\n", computed_checksum);
  2993.          }
  2994.  
  2995.          current_offset += (image_header->flags & IMAGE_FLAGS_TRAILER_V2 ? sizeof (image_trailer_v2_t) : sizeof (image_trailer_v1_t)); // now reach the next segment (typically end of file)
  2996.       }
  2997.  
  2998.       // else it has to be a boot blob, of which we don't know the size, except that it has to fit in 0xffff bytes and be immediately followed by a startup header
  2999.       else
  3000.       {
  3001.          // so scan for the first startup header magic and version (which makes us 6 bytes to scan for, i.e. "\xeb\x7e\xff\x00" for the magic and "\x01\x00" (LSB) for the version 1)
  3002.          for (byte_index = current_offset; byte_index < file.len - 6; byte_index++)
  3003.             if (memcmp (&file.bytes[byte_index], "\xeb\x7e\xff\x00" "\x01\x00", 4 + 2) == 0)
  3004.                break; // stop as soon as we find it
  3005.  
  3006.          if (byte_index >= file.len - 6)
  3007.             break; // if not found, stop scanning
  3008.  
  3009.          bootfile_blobsize = byte_index - current_offset;
  3010.          printf ("Boot blob at offset 0x%zx (%zd):\n", current_offset, current_offset);
  3011.          printf ("   size 0x%zx (%zd) bytes\n", bootfile_blobsize, bootfile_blobsize);
  3012.          printf ("   checksum 0x%08x\n", update_checksum (&file.bytes[current_offset], bootfile_blobsize, false)); // NOTE: endianness is not known yet -- assume same
  3013.  
  3014.          current_offset = byte_index; // now reach the next segment
  3015.       }
  3016.    }
  3017.  
  3018. endofdata:
  3019.    // at this point there's nothing left we're able to parse
  3020.    if (current_offset < file.len)
  3021.    {
  3022.       printf ("End of identifiable data reached.\n");
  3023.       hex_printf (&file.bytes[current_offset], file.len - current_offset, "\n" "%zd extra bytes at offset %zx (%zd):\n", file.len - current_offset, current_offset, current_offset);
  3024.    }
  3025.  
  3026.    printf ("End of file reached at offset 0x%zx (%zd)\n", file.len, file.len);
  3027.    printf ("IFS dissecation complete.\n");
  3028.    return (0);
  3029. }
  3030.