/* LzmaEnc.c -- LZMA Encoder
 
2009-02-02 : Igor Pavlov : Public domain */
 
 
 
#include <string.h>
 
 
 
/* #define SHOW_STAT */
 
/* #define SHOW_STAT2 */
 
 
 
#if defined(SHOW_STAT) || defined(SHOW_STAT2)
 
#include <stdio.h>
 
#endif
 
 
 
#include "LzmaEnc.h"
 
 
 
#include "LzFind.h"
 
#ifdef COMPRESS_MF_MT
 
#include "LzFindMt.h"
 
#endif
 
 
 
#ifdef SHOW_STAT
 
static int ttt = 0;
 
#endif
 
 
 
#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
 
 
 
#define kBlockSize (9 << 10)
 
#define kUnpackBlockSize (1 << 18)
 
#define kMatchArraySize (1 << 21)
 
#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
 
 
 
#define kNumMaxDirectBits (31)
 
 
 
#define kNumTopBits 24
 
#define kTopValue ((UInt32)1 << kNumTopBits)
 
 
 
#define kNumBitModelTotalBits 11
 
#define kBitModelTotal (1 << kNumBitModelTotalBits)
 
#define kNumMoveBits 5
 
#define kProbInitValue (kBitModelTotal >> 1)
 
 
 
#define kNumMoveReducingBits 4
 
#define kNumBitPriceShiftBits 4
 
#define kBitPrice (1 << kNumBitPriceShiftBits)
 
 
 
void LzmaEncProps_Init(CLzmaEncProps *p)
 
{
 
  p->level = 5;
 
  p->dictSize = p->mc = 0;
 
  p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
 
  p->writeEndMark = 0;
 
}
 
 
 
void LzmaEncProps_Normalize(CLzmaEncProps *p)
 
{
 
  int level = p->level;
 
  if (level < 0) level = 5;
 
  p->level = level;
 
  if (p->dictSize == 0) p->dictSize = (UInt32) ((level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)))); /*MAB casts UInt32 */
 
  if (p->lc < 0) p->lc = 3;
 
  if (p->lp < 0) p->lp = 0;
 
  if (p->pb < 0) p->pb = 2;
 
  if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
 
  if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
 
  if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
 
  if (p->numHashBytes < 0) p->numHashBytes = 4;
 
  if (p->mc == 0)  p->mc = (UInt32) ((16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1)); /*MAB casts UInt32 */
 
  if (p->numThreads < 0)
 
    p->numThreads =
 
      #ifdef COMPRESS_MF_MT
 
      ((p->btMode && p->algo) ? 2 : 1);
 
      #else
 
      1;
 
      #endif
 
}
 
 
 
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
 
{
 
  CLzmaEncProps props = *props2;
 
  LzmaEncProps_Normalize(&props);
 
  return props.dictSize;
 
}
 
 
 
/* #define LZMA_LOG_BSR */
 
/* Define it for Intel's CPU */
 
 
 
 
 
#ifdef LZMA_LOG_BSR
 
 
 
#define kDicLogSizeMaxCompress 30
 
 
 
/*MAB: i changed to i__ to avoid possible hiding of a variable */
 
#define BSR2_RET(pos, res) { unsigned long i__; _BitScanReverse(&i__, (pos)); res = (i__ + i__) + ((pos >> (i__ - 1)) & 1); }
 
 
 
UInt32 GetPosSlot1(UInt32 pos)
 
{
 
  UInt32 res;
 
  BSR2_RET(pos, res);
 
  return res;
 
}
 
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
 
#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
 
 
 
#else
 
 
 
#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
 
#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
 
 
 
/*MAB: static added */
 
static
 
void LzmaEnc_FastPosInit(Byte *g_FastPos)
 
{
 
  int c = 2, slotFast;
 
  g_FastPos[0] = 0;
 
  g_FastPos[1] = 1;
 
 
 
  for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
 
  {
 
    UInt32 k = (UInt32) ((1 << ((slotFast >> 1) - 1))); /*MAB casts */
 
    UInt32 j;
 
    for (j = 0; j < k; j++, c++)
 
      g_FastPos[c] = (Byte)slotFast;
 
  }
 
}
 
 
 
/*MAB: i changed to i__ to avoid hiding a variable */
 
#define BSR2_RET(pos, res) { UInt32 i__ = 6 + ((kNumLogBits - 1) & \
 
  (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
 
  res = p->g_FastPos[pos >> i__] + (i__ * 2); }
 
 
 
/*
 
#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
 
  p->g_FastPos[pos >> 6] + 12 : \
 
  p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
 
*/
 
 
 
#define GetPosSlot1(pos) p->g_FastPos[pos]
 
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
 
#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
 
 
 
#endif
 
 
 
 
 
#define LZMA_NUM_REPS 4
 
 
 
typedef unsigned CState;
 
 
 
typedef struct _COptimal
 
{
 
  UInt32 price;
 
 
 
  CState state;
 
  int prev1IsChar;
 
  int prev2;
 
 
 
  UInt32 posPrev2;
 
  UInt32 backPrev2;
 
 
 
  UInt32 posPrev;
 
  UInt32 backPrev;
 
  UInt32 backs[LZMA_NUM_REPS];
 
} COptimal;
 
 
 
#define kNumOpts (1 << 12)
 
 
 
#define kNumLenToPosStates 4
 
#define kNumPosSlotBits 6
 
#define kDicLogSizeMin 0
 
#define kDicLogSizeMax 32
 
#define kDistTableSizeMax (kDicLogSizeMax * 2)
 
 
 
 
 
#define kNumAlignBits 4
 
#define kAlignTableSize (1 << kNumAlignBits)
 
#define kAlignMask (kAlignTableSize - 1)
 
 
 
#define kStartPosModelIndex 4
 
#define kEndPosModelIndex 14
 
#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
 
 
 
#define kNumFullDistances (1 << (kEndPosModelIndex / 2))
 
 
 
#ifdef _LZMA_PROB32
 
#define CLzmaProb UInt32
 
#else
 
#define CLzmaProb UInt16
 
#endif
 
 
 
#define LZMA_PB_MAX 4
 
#define LZMA_LC_MAX 8
 
#define LZMA_LP_MAX 4
 
 
 
#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
 
 
 
 
 
#define kLenNumLowBits 3
 
#define kLenNumLowSymbols (1 << kLenNumLowBits)
 
#define kLenNumMidBits 3
 
#define kLenNumMidSymbols (1 << kLenNumMidBits)
 
#define kLenNumHighBits 8
 
#define kLenNumHighSymbols (1 << kLenNumHighBits)
 
 
 
#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
 
 
 
#define LZMA_MATCH_LEN_MIN 2
 
#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
 
 
 
#define kNumStates 12
 
 
 
typedef struct CLenEnc
 
{
 
  CLzmaProb choice;
 
  CLzmaProb choice2;
 
  CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
 
  CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
 
  CLzmaProb high[kLenNumHighSymbols];
 
} CLenEnc;
 
 
 
typedef struct CLenPriceEnc
 
{
 
  CLenEnc p;
 
  UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
 
  UInt32 tableSize;
 
  UInt32 counters[LZMA_NUM_PB_STATES_MAX];
 
} CLenPriceEnc;
 
 
 
typedef struct _CRangeEnc
 
{
 
  UInt32 range;
 
  Byte cache;
 
  UInt64 low;
 
  UInt64 cacheSize;
 
  Byte *buf;
 
  Byte *bufLim;
 
  Byte *bufBase;
 
  ISeqOutStream *outStream;
 
  UInt64 processed;
 
  SRes res;
 
} CRangeEnc;
 
 
 
typedef struct _CSeqInStreamBuf
 
{
 
  ISeqInStream funcTable;
 
  const Byte *data;
 
  SizeT rem;
 
} CSeqInStreamBuf;
 
 
 
static SRes MyRead(void *pp, void *data, size_t *size)
 
{
 
  size_t curSize = *size;
 
  CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
 
  if (p->rem < curSize)
 
    curSize = p->rem;
 
  memcpy(data
, p
->data
, curSize
);  
  p->rem -= curSize;
 
  p->data += curSize;
 
  *size = curSize;
 
  return SZ_OK;
 
}
 
 
 
typedef struct CSaveState
 
{
 
  CLzmaProb *litProbs;
 
 
 
  CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
 
  CLzmaProb isRep[kNumStates];
 
  CLzmaProb isRepG0[kNumStates];
 
  CLzmaProb isRepG1[kNumStates];
 
  CLzmaProb isRepG2[kNumStates];
 
  CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
 
 
 
  CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
 
  CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
 
  CLzmaProb posAlignEncoder[1 << kNumAlignBits];
 
 
 
  CLenPriceEnc lenEnc;
 
  CLenPriceEnc repLenEnc;
 
 
 
  UInt32 reps[LZMA_NUM_REPS];
 
  UInt32 state;
 
} CSaveState;
 
 
 
typedef struct _CLzmaEnc
 
{
 
  IMatchFinder matchFinder;
 
  void *matchFinderObj;
 
 
 
  #ifdef COMPRESS_MF_MT
 
  Bool mtMode;
 
  CMatchFinderMt matchFinderMt;
 
  #endif
 
 
 
  CMatchFinder matchFinderBase;
 
 
 
  #ifdef COMPRESS_MF_MT
 
  Byte pad[128];
 
  #endif
 
 
 
  UInt32 optimumEndIndex;
 
  UInt32 optimumCurrentIndex;
 
 
 
  UInt32 longestMatchLength;
 
  UInt32 numPairs;
 
  UInt32 numAvail;
 
  COptimal opt[kNumOpts];
 
 
 
  #ifndef LZMA_LOG_BSR
 
  Byte g_FastPos[1 << kNumLogBits];
 
  #endif
 
 
 
  UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
 
  UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
 
  UInt32 numFastBytes;
 
  UInt32 additionalOffset;
 
  UInt32 reps[LZMA_NUM_REPS];
 
  UInt32 state;
 
 
 
  UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
 
  UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
 
  UInt32 alignPrices[kAlignTableSize];
 
  UInt32 alignPriceCount;
 
 
 
  UInt32 distTableSize;
 
 
 
  unsigned lc, lp, pb;
 
  unsigned lpMask, pbMask;
 
 
 
  CLzmaProb *litProbs;
 
 
 
  CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
 
  CLzmaProb isRep[kNumStates];
 
  CLzmaProb isRepG0[kNumStates];
 
  CLzmaProb isRepG1[kNumStates];
 
  CLzmaProb isRepG2[kNumStates];
 
  CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
 
 
 
  CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
 
  CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
 
  CLzmaProb posAlignEncoder[1 << kNumAlignBits];
 
 
 
  CLenPriceEnc lenEnc;
 
  CLenPriceEnc repLenEnc;
 
 
 
  unsigned lclp;
 
 
 
  Bool fastMode;
 
 
 
  CRangeEnc rc;
 
 
 
  Bool writeEndMark;
 
  UInt64 nowPos64;
 
  UInt32 matchPriceCount;
 
  Bool finished;
 
  Bool multiThread;
 
 
 
  SRes result;
 
  UInt32 dictSize;
 
  UInt32 matchFinderCycles;
 
 
 
  ISeqInStream *inStream;
 
  CSeqInStreamBuf seqBufInStream;
 
 
 
  CSaveState saveState;
 
} CLzmaEnc;
 
 
 
 
 
#if defined(USE_UNUSED_CODE)
 
/*MAB: static added */
 
static
 
void LzmaEnc_SaveState(CLzmaEncHandle pp)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  CSaveState *dest = &p->saveState;
 
  int i;
 
  dest->lenEnc = p->lenEnc;
 
  dest->repLenEnc = p->repLenEnc;
 
  dest->state = p->state;
 
 
 
  for (i = 0; i < kNumStates; i++)
 
  {
 
    memcpy(dest
->isMatch
[i
], p
->isMatch
[i
], sizeof(p
->isMatch
[i
]));  
    memcpy(dest
->isRep0Long
[i
], p
->isRep0Long
[i
], sizeof(p
->isRep0Long
[i
]));  
  }
 
  for (i = 0; i < kNumLenToPosStates; i++)
 
    memcpy(dest
->posSlotEncoder
[i
], p
->posSlotEncoder
[i
], sizeof(p
->posSlotEncoder
[i
]));  
  memcpy(dest
->isRep
, p
->isRep
, sizeof(p
->isRep
));  
  memcpy(dest
->isRepG0
, p
->isRepG0
, sizeof(p
->isRepG0
));  
  memcpy(dest
->isRepG1
, p
->isRepG1
, sizeof(p
->isRepG1
));  
  memcpy(dest
->isRepG2
, p
->isRepG2
, sizeof(p
->isRepG2
));  
  memcpy(dest
->posEncoders
, p
->posEncoders
, sizeof(p
->posEncoders
));  
  memcpy(dest
->posAlignEncoder
, p
->posAlignEncoder
, sizeof(p
->posAlignEncoder
));  
  memcpy(dest
->reps
, p
->reps
, sizeof(p
->reps
));  
  memcpy(dest
->litProbs
, p
->litProbs
, (0x300 << p
->lclp
) * sizeof(CLzmaProb
));  
}
 
 
 
/*MAB: static added */
 
static void LzmaEnc_RestoreState(CLzmaEncHandle pp)
 
{
 
  CLzmaEnc *dest = (CLzmaEnc *)pp;
 
  const CSaveState *p = &dest->saveState;
 
  int i;
 
  dest->lenEnc = p->lenEnc;
 
  dest->repLenEnc = p->repLenEnc;
 
  dest->state = p->state;
 
 
 
  for (i = 0; i < kNumStates; i++)
 
  {
 
    memcpy(dest
->isMatch
[i
], p
->isMatch
[i
], sizeof(p
->isMatch
[i
]));  
    memcpy(dest
->isRep0Long
[i
], p
->isRep0Long
[i
], sizeof(p
->isRep0Long
[i
]));  
  }
 
  for (i = 0; i < kNumLenToPosStates; i++)
 
    memcpy(dest
->posSlotEncoder
[i
], p
->posSlotEncoder
[i
], sizeof(p
->posSlotEncoder
[i
]));  
  memcpy(dest
->isRep
, p
->isRep
, sizeof(p
->isRep
));  
  memcpy(dest
->isRepG0
, p
->isRepG0
, sizeof(p
->isRepG0
));  
  memcpy(dest
->isRepG1
, p
->isRepG1
, sizeof(p
->isRepG1
));  
  memcpy(dest
->isRepG2
, p
->isRepG2
, sizeof(p
->isRepG2
));  
  memcpy(dest
->posEncoders
, p
->posEncoders
, sizeof(p
->posEncoders
));  
  memcpy(dest
->posAlignEncoder
, p
->posAlignEncoder
, sizeof(p
->posAlignEncoder
));  
  memcpy(dest
->reps
, p
->reps
, sizeof(p
->reps
));  
  memcpy(dest
->litProbs
, p
->litProbs
, (0x300 << dest
->lclp
) * sizeof(CLzmaProb
));  
}
 
#endif
 
 
 
SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  CLzmaEncProps props = *props2;
 
  LzmaEncProps_Normalize(&props);
 
 
 
  if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
 
      props.dictSize > (1u << kDicLogSizeMaxCompress) || props.dictSize > (1u << 30)) /*MAB: 1u to silence warnings */
 
    return SZ_ERROR_PARAM;
 
  p->dictSize = props.dictSize;
 
  p->matchFinderCycles = props.mc;
 
  {
 
    unsigned fb = (unsigned) props.fb; /*MAB casts */
 
    if (fb < 5)
 
      fb = 5;
 
    if (fb > LZMA_MATCH_LEN_MAX)
 
      fb = LZMA_MATCH_LEN_MAX;
 
    p->numFastBytes = fb;
 
  }
 
  p->lc = (unsigned) props.lc;
 
  p->lp = (unsigned) props.lp;
 
  p->pb = (unsigned) props.pb;
 
  p->fastMode = (props.algo == 0);
 
  p->matchFinderBase.btMode = props.btMode;
 
  {
 
    UInt32 numHashBytes = 4;
 
    if (props.btMode)
 
    {
 
      if (props.numHashBytes < 2)
 
        numHashBytes = 2;
 
      else if (props.numHashBytes < 4)
 
        numHashBytes = (UInt32) props.numHashBytes; /*MAB casts */
 
    }
 
    p->matchFinderBase.numHashBytes = numHashBytes;
 
  }
 
 
 
  p->matchFinderBase.cutValue = props.mc;
 
 
 
  p->writeEndMark = (Bool) props.writeEndMark; /*MAB casts */
 
 
 
  #ifdef COMPRESS_MF_MT
 
  /*
 
  if (newMultiThread != _multiThread)
 
  {
 
    ReleaseMatchFinder();
 
    _multiThread = newMultiThread;
 
  }
 
  */
 
  p->multiThread = (props.numThreads > 1);
 
  #endif
 
 
 
  return SZ_OK;
 
}
 
 
 
static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
 
static const int kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
 
static const int kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
 
static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
 
 
 
#define IsCharState(s) ((s) < 7)
 
 
 
#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
 
 
 
#define kInfinityPrice (1 << 30)
 
 
 
static void RangeEnc_Construct(CRangeEnc *p)
 
{
 
  p->outStream = 0;
 
  p->bufBase = 0;
 
}
 
 
 
#define RangeEnc_GetProcessed(p) ((p)->processed + (UInt64) ((p)->buf - (p)->bufBase) + (p)->cacheSize) /*MAB casts */
 
 
 
#define RC_BUF_SIZE (1 << 16)
 
static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
 
{
 
  if (p->bufBase == 0)
 
  {
 
    p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
 
    if (p->bufBase == 0)
 
      return 0;
 
    p->bufLim = p->bufBase + RC_BUF_SIZE;
 
  }
 
  return 1;
 
}
 
 
 
static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
 
{
 
  alloc->Free(alloc, p->bufBase);
 
  p->bufBase = 0;
 
}
 
 
 
static void RangeEnc_Init(CRangeEnc *p)
 
{
 
  /* Stream.Init(); */
 
  p->low = 0;
 
  p->range = 0xFFFFFFFF;
 
  p->cacheSize = 1;
 
  p->cache = 0;
 
 
 
  p->buf = p->bufBase;
 
 
 
  p->processed = 0;
 
  p->res = SZ_OK;
 
}
 
 
 
static void RangeEnc_FlushStream(CRangeEnc *p)
 
{
 
  size_t num;
 
  if (p->res != SZ_OK)
 
    return;
 
  num = (size_t)(p->buf - p->bufBase); /*MAB casts */
 
  if (num != p->outStream->Write(p->outStream, p->bufBase, num))
 
    p->res = SZ_ERROR_WRITE;
 
  p->processed += num;
 
  p->buf = p->bufBase;
 
}
 
 
 
static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
 
{
 
  if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
 
  {
 
    Byte temp = p->cache;
 
    do
 
    {
 
      Byte *buf = p->buf;
 
      *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
 
      p->buf = buf;
 
      if (buf == p->bufLim)
 
        RangeEnc_FlushStream(p);
 
      temp = 0xFF;
 
    }
 
    while (--p->cacheSize != 0);
 
    p->cache = (Byte)((UInt32)p->low >> 24);
 
  }
 
  p->cacheSize++;
 
  p->low = (UInt32)p->low << 8;
 
}
 
 
 
static void RangeEnc_FlushData(CRangeEnc *p)
 
{
 
  int i;
 
  for (i = 0; i < 5; i++)
 
    RangeEnc_ShiftLow(p);
 
}
 
 
 
static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
 
{
 
  do
 
  {
 
    p->range >>= 1;
 
    p->low += p->range & (0 - ((value >> --numBits) & 1));
 
    if (p->range < kTopValue)
 
    {
 
      p->range <<= 8;
 
      RangeEnc_ShiftLow(p);
 
    }
 
  }
 
  while (numBits != 0);
 
}
 
 
 
static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
 
{
 
  UInt32 ttt = *prob;
 
  UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
 
  if (symbol == 0)
 
  {
 
    p->range = newBound;
 
    ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
 
  }
 
  else
 
  {
 
    p->low += newBound;
 
    p->range -= newBound;
 
    ttt -= ttt >> kNumMoveBits;
 
  }
 
  *prob = (CLzmaProb)ttt;
 
  if (p->range < kTopValue)
 
  {
 
    p->range <<= 8;
 
    RangeEnc_ShiftLow(p);
 
  }
 
}
 
 
 
static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
 
{
 
  symbol |= 0x100;
 
  do
 
  {
 
    RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
 
    symbol <<= 1;
 
  }
 
  while (symbol < 0x10000);
 
}
 
 
 
static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
 
{
 
  UInt32 offs = 0x100;
 
  symbol |= 0x100;
 
  do
 
  {
 
    matchByte <<= 1;
 
    RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
 
    symbol <<= 1;
 
    offs &= ~(matchByte ^ symbol);
 
  }
 
  while (symbol < 0x10000);
 
}
 
 
 
/*MAB: static added */
 
static void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
 
{
 
  UInt32 i;
 
  for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
 
  {
 
    const int kCyclesBits = kNumBitPriceShiftBits;
 
    UInt32 w = i;
 
    UInt32 bitCount = 0;
 
    int j;
 
    for (j = 0; j < kCyclesBits; j++)
 
    {
 
      w = w * w;
 
      bitCount <<= 1;
 
      while (w >= ((UInt32)1 << 16))
 
      {
 
        w >>= 1;
 
        bitCount++;
 
      }
 
    }
 
    ProbPrices[i >> kNumMoveReducingBits] = (/*MAB: cast to silence*/(UInt32)(kNumBitModelTotalBits << kCyclesBits) - /*MAB: cast to silence*/(UInt32)15 - bitCount);
 
  }
 
}
 
 
 
 
 
#define GET_PRICE(prob, symbol) \
 
  p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
 
 
 
#define GET_PRICEa(prob, symbol) \
 
  ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
 
 
 
#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
 
#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
 
 
 
#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
 
#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
 
 
 
static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
 
{
 
  UInt32 price = 0;
 
  symbol |= 0x100;
 
  do
 
  {
 
    price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
 
    symbol <<= 1;
 
  }
 
  while (symbol < 0x10000);
 
  return price;
 
}
 
 
 
static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
 
{
 
  UInt32 price = 0;
 
  UInt32 offs = 0x100;
 
  symbol |= 0x100;
 
  do
 
  {
 
    matchByte <<= 1;
 
    price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
 
    symbol <<= 1;
 
    offs &= ~(matchByte ^ symbol);
 
  }
 
  while (symbol < 0x10000);
 
  return price;
 
}
 
 
 
 
 
static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
 
{
 
  UInt32 m = 1;
 
  int i;
 
  for (i = numBitLevels; i != 0;)
 
  {
 
    UInt32 bit;
 
    i--;
 
    bit = (symbol >> i) & 1;
 
    RangeEnc_EncodeBit(rc, probs + m, bit);
 
    m = (m << 1) | bit;
 
  }
 
}
 
 
 
static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
 
{
 
  UInt32 m = 1;
 
  int i;
 
  for (i = 0; i < numBitLevels; i++)
 
  {
 
    UInt32 bit = symbol & 1;
 
    RangeEnc_EncodeBit(rc, probs + m, bit);
 
    m = (m << 1) | bit;
 
    symbol >>= 1;
 
  }
 
}
 
 
 
static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
 
{
 
  UInt32 price = 0;
 
  symbol |= (1u << numBitLevels); /*MAB 1u */
 
  while (symbol != 1)
 
  {
 
    price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
 
    symbol >>= 1;
 
  }
 
  return price;
 
}
 
 
 
static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
 
{
 
  UInt32 price = 0;
 
  UInt32 m = 1;
 
  int i;
 
  for (i = numBitLevels; i != 0; i--)
 
  {
 
    UInt32 bit = symbol & 1;
 
    symbol >>= 1;
 
    price += GET_PRICEa(probs[m], bit);
 
    m = (m << 1) | bit;
 
  }
 
  return price;
 
}
 
 
 
 
 
static void LenEnc_Init(CLenEnc *p)
 
{
 
  unsigned i;
 
  p->choice = p->choice2 = kProbInitValue;
 
  for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
 
    p->low[i] = kProbInitValue;
 
  for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
 
    p->mid[i] = kProbInitValue;
 
  for (i = 0; i < kLenNumHighSymbols; i++)
 
    p->high[i] = kProbInitValue;
 
}
 
 
 
static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
 
{
 
  if (symbol < kLenNumLowSymbols)
 
  {
 
    RangeEnc_EncodeBit(rc, &p->choice, 0);
 
    RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
 
  }
 
  else
 
  {
 
    RangeEnc_EncodeBit(rc, &p->choice, 1);
 
    if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
 
    {
 
      RangeEnc_EncodeBit(rc, &p->choice2, 0);
 
      RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
 
    }
 
    else
 
    {
 
      RangeEnc_EncodeBit(rc, &p->choice2, 1);
 
      RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
 
    }
 
  }
 
}
 
 
 
static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
 
{
 
  UInt32 a0 = GET_PRICE_0a(p->choice);
 
  UInt32 a1 = GET_PRICE_1a(p->choice);
 
  UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
 
  UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
 
  UInt32 i = 0;
 
  for (i = 0; i < kLenNumLowSymbols; i++)
 
  {
 
    if (i >= numSymbols)
 
      return;
 
    prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
 
  }
 
  for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
 
  {
 
    if (i >= numSymbols)
 
      return;
 
    prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
 
  }
 
  for (; i < numSymbols; i++)
 
    prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
 
}
 
 
 
static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
 
{
 
  LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
 
  p->counters[posState] = p->tableSize;
 
}
 
 
 
static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
 
{
 
  UInt32 posState;
 
  for (posState = 0; posState < numPosStates; posState++)
 
    LenPriceEnc_UpdateTable(p, posState, ProbPrices);
 
}
 
 
 
static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
 
{
 
  LenEnc_Encode(&p->p, rc, symbol, posState);
 
  if (updatePrice)
 
    if (--p->counters[posState] == 0)
 
      LenPriceEnc_UpdateTable(p, posState, ProbPrices);
 
}
 
 
 
 
 
 
 
 
 
static void MovePos(CLzmaEnc *p, UInt32 num)
 
{
 
  #ifdef SHOW_STAT
 
  ttt += num;
 
  #endif
 
  if (num != 0)
 
  {
 
    p->additionalOffset += num;
 
    p->matchFinder.Skip(p->matchFinderObj, num);
 
  }
 
}
 
 
 
static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
 
{
 
  UInt32 lenRes = 0, numPairs;
 
  p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
 
  numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
 
  #ifdef SHOW_STAT
 
  printf("\n i = %d numPairs = %d    ", ttt
, numPairs 
/ 2);  
  ttt++;
 
  {
 
    UInt32 i;
 
    for (i = 0; i < numPairs; i += 2)
 
      printf("%2d %6d   | ", p
->matches
[i
], p
->matches
[i 
+ 1]);  
  }
 
  #endif
 
  if (numPairs > 0)
 
  {
 
    lenRes = p->matches[numPairs - 2];
 
    if (lenRes == p->numFastBytes)
 
    {
 
      const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 
      UInt32 distance = p->matches[numPairs - 1] + 1;
 
      UInt32 numAvail = p->numAvail;
 
      if (numAvail > LZMA_MATCH_LEN_MAX)
 
        numAvail = LZMA_MATCH_LEN_MAX;
 
      {
 
        const Byte *pby2 = pby - distance;
 
        for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
 
      }
 
    }
 
  }
 
  p->additionalOffset++;
 
  *numDistancePairsRes = numPairs;
 
  return lenRes;
 
}
 
 
 
 
 
#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
 
#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
 
#define IsShortRep(p) ((p)->backPrev == 0)
 
 
 
static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
 
{
 
  return
 
    GET_PRICE_0(p->isRepG0[state]) +
 
    GET_PRICE_0(p->isRep0Long[state][posState]);
 
}
 
 
 
static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
 
{
 
  UInt32 price;
 
  if (repIndex == 0)
 
  {
 
    price = GET_PRICE_0(p->isRepG0[state]);
 
    price += GET_PRICE_1(p->isRep0Long[state][posState]);
 
  }
 
  else
 
  {
 
    price = GET_PRICE_1(p->isRepG0[state]);
 
    if (repIndex == 1)
 
      price += GET_PRICE_0(p->isRepG1[state]);
 
    else
 
    {
 
      price += GET_PRICE_1(p->isRepG1[state]);
 
      price += GET_PRICE(p->isRepG2[state], repIndex - 2);
 
    }
 
  }
 
  return price;
 
}
 
 
 
static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
 
{
 
  return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
 
    GetPureRepPrice(p, repIndex, state, posState);
 
}
 
 
 
static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
 
{
 
  UInt32 posMem = p->opt[cur].posPrev;
 
  UInt32 backMem = p->opt[cur].backPrev;
 
  p->optimumEndIndex = cur;
 
  do
 
  {
 
    if (p->opt[cur].prev1IsChar)
 
    {
 
      MakeAsChar(&p->opt[posMem])
 
      p->opt[posMem].posPrev = posMem - 1;
 
      if (p->opt[cur].prev2)
 
      {
 
        p->opt[posMem - 1].prev1IsChar = False;
 
        p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
 
        p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
 
      }
 
    }
 
    {
 
      UInt32 posPrev = posMem;
 
      UInt32 backCur = backMem;
 
 
 
      backMem = p->opt[posPrev].backPrev;
 
      posMem = p->opt[posPrev].posPrev;
 
 
 
      p->opt[posPrev].backPrev = backCur;
 
      p->opt[posPrev].posPrev = cur;
 
      cur = posPrev;
 
    }
 
  }
 
  while (cur != 0);
 
  *backRes = p->opt[0].backPrev;
 
  p->optimumCurrentIndex  = p->opt[0].posPrev;
 
  return p->optimumCurrentIndex;
 
}
 
 
 
#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + (UInt32) ((prevByte) >> (8 - p->lc))) * 0x300) /*MAB cast UInt32 */
 
 
 
static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
 
{
 
  UInt32 numAvail, mainLen, repMaxIndex, i, lenEnd, len, cur;
 
  /*MAB: Changed numPairs_, posState_ avoid hiding a variable later */
 
  UInt32 numPairs_, posState_;
 
  /*MAB: Changed matchPrice_, repMatchPrice_ avoid hiding a variable later */
 
  UInt32 matchPrice_, repMatchPrice_,
 
                        normalMatchPrice;
 
  UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
 
  UInt32 *matches;
 
  /*MAB: Changed from data to avoid hiding a variable later */
 
  const Byte *data_;
 
  /*MAB: Changed from matchByte to avoid hiding a variable later */
 
  Byte curByte_, matchByte_;
 
  if (p->optimumEndIndex != p->optimumCurrentIndex)
 
  {
 
    const COptimal *opt = &p->opt[p->optimumCurrentIndex];
 
    UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
 
    *backRes = opt->backPrev;
 
    p->optimumCurrentIndex = opt->posPrev;
 
    return lenRes;
 
  }
 
  p->optimumCurrentIndex = p->optimumEndIndex = 0;
 
 
 
  if (p->additionalOffset == 0)
 
    mainLen = ReadMatchDistances(p, &numPairs_);
 
  else
 
  {
 
    mainLen = p->longestMatchLength;
 
    numPairs_ = p->numPairs;
 
  }
 
 
 
  numAvail = p->numAvail;
 
  if (numAvail < 2)
 
  {
 
    *backRes = (UInt32)(-1);
 
    return 1;
 
  }
 
  if (numAvail > LZMA_MATCH_LEN_MAX)
 
    numAvail = LZMA_MATCH_LEN_MAX;
 
 
 
  data_ = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 
  repMaxIndex = 0;
 
  for (i = 0; i < LZMA_NUM_REPS; i++)
 
  {
 
    UInt32 lenTest;
 
    const Byte *data2;
 
    reps[i] = p->reps[i];
 
    data2 = data_ - (reps[i] + 1);
 
    if (data_[0] != data2[0] || data_[1] != data2[1])
 
    {
 
      repLens[i] = 0;
 
      continue;
 
    }
 
    for (lenTest = 2; lenTest < numAvail && data_[lenTest] == data2[lenTest]; lenTest++);
 
    repLens[i] = lenTest;
 
    if (lenTest > repLens[repMaxIndex])
 
      repMaxIndex = i;
 
  }
 
  if (repLens[repMaxIndex] >= p->numFastBytes)
 
  {
 
    UInt32 lenRes;
 
    *backRes = repMaxIndex;
 
    lenRes = repLens[repMaxIndex];
 
    MovePos(p, lenRes - 1);
 
    return lenRes;
 
  }
 
 
 
  matches = p->matches;
 
  if (mainLen >= p->numFastBytes)
 
  {
 
    *backRes = matches[numPairs_ - 1] + LZMA_NUM_REPS;
 
    MovePos(p, mainLen - 1);
 
    return mainLen;
 
  }
 
  curByte_ = *data_;
 
  matchByte_ = *(data_ - (reps[0] + 1));
 
 
 
  if (mainLen < 2 && curByte_ != matchByte_ && repLens[repMaxIndex] < 2)
 
  {
 
    *backRes = (UInt32)-1;
 
    return 1;
 
  }
 
 
 
  p->opt[0].state = (CState)p->state;
 
 
 
  posState_ = (position & p->pbMask);
 
 
 
  {
 
    const CLzmaProb *probs = LIT_PROBS(position, *(data_ - 1));
 
    p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState_]) +
 
        (!IsCharState(p->state) ?
 
          LitEnc_GetPriceMatched(probs, curByte_, matchByte_, p->ProbPrices) :
 
          LitEnc_GetPrice(probs, curByte_, p->ProbPrices));
 
  }
 
 
 
  MakeAsChar(&p->opt[1]);
 
 
 
  matchPrice_ = GET_PRICE_1(p->isMatch[p->state][posState_]);
 
  repMatchPrice_ = matchPrice_ + GET_PRICE_1(p->isRep[p->state]);
 
 
 
  if (matchByte_ == curByte_)
 
  {
 
    UInt32 shortRepPrice = repMatchPrice_ + GetRepLen1Price(p, p->state, posState_);
 
    if (shortRepPrice < p->opt[1].price)
 
    {
 
      p->opt[1].price = shortRepPrice;
 
      MakeAsShortRep(&p->opt[1]);
 
    }
 
  }
 
  lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
 
 
 
  if (lenEnd < 2)
 
  {
 
    *backRes = p->opt[1].backPrev;
 
    return 1;
 
  }
 
 
 
  p->opt[1].posPrev = 0;
 
  for (i = 0; i < LZMA_NUM_REPS; i++)
 
    p->opt[0].backs[i] = reps[i];
 
 
 
  len = lenEnd;
 
  do
 
    p->opt[len--].price = kInfinityPrice;
 
  while (len >= 2);
 
 
 
  for (i = 0; i < LZMA_NUM_REPS; i++)
 
  {
 
    UInt32 repLen = repLens[i];
 
    UInt32 price;
 
    if (repLen < 2)
 
      continue;
 
    price = repMatchPrice_ + GetPureRepPrice(p, i, p->state, posState_);
 
    do
 
    {
 
      UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState_][repLen - 2];
 
      COptimal *opt = &p->opt[repLen];
 
      if (curAndLenPrice < opt->price)
 
      {
 
        opt->price = curAndLenPrice;
 
        opt->posPrev = 0;
 
        opt->backPrev = i;
 
        opt->prev1IsChar = False;
 
      }
 
    }
 
    while (--repLen >= 2);
 
  }
 
 
 
  normalMatchPrice = matchPrice_ + GET_PRICE_0(p->isRep[p->state]);
 
 
 
  len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
 
  if (len <= mainLen)
 
  {
 
    UInt32 offs = 0;
 
    while (len > matches[offs])
 
      offs += 2;
 
    for (; ; len++)
 
    {
 
      COptimal *opt;
 
      UInt32 distance = matches[offs + 1];
 
 
 
      UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState_][len - LZMA_MATCH_LEN_MIN];
 
      UInt32 lenToPosState = GetLenToPosState(len);
 
      if (distance < kNumFullDistances)
 
        curAndLenPrice += p->distancesPrices[lenToPosState][distance];
 
      else
 
      {
 
        UInt32 slot;
 
        GetPosSlot2(distance, slot);
 
        curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
 
      }
 
      opt = &p->opt[len];
 
      if (curAndLenPrice < opt->price)
 
      {
 
        opt->price = curAndLenPrice;
 
        opt->posPrev = 0;
 
        opt->backPrev = distance + LZMA_NUM_REPS;
 
        opt->prev1IsChar = False;
 
      }
 
      if (len == matches[offs])
 
      {
 
        offs += 2;
 
        if (offs == numPairs_)
 
          break;
 
      }
 
    }
 
  }
 
 
 
  cur = 0;
 
 
 
    #ifdef SHOW_STAT2
 
    if (position >= 0)
 
    {
 
      unsigned i__;
 
      printf("\n pos = %4X", position
);  
      for (i__ = cur; i__ <= lenEnd; i__++)
 
      printf("\nprice[%4X] = %d", position 
- cur 
+ i__
, p
->opt
[i__
].
price);  
    }
 
    #endif
 
 
 
  for (;;)
 
  {
 
    UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
 
    UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
 
    Bool nextIsChar;
 
    Byte curByte, matchByte;
 
    const Byte *data;
 
    COptimal *curOpt;
 
    COptimal *nextOpt;
 
 
 
    cur++;
 
    if (cur == lenEnd)
 
      return Backward(p, backRes, cur);
 
 
 
    newLen = ReadMatchDistances(p, &numPairs);
 
    if (newLen >= p->numFastBytes)
 
    {
 
      p->numPairs = numPairs;
 
      p->longestMatchLength = newLen;
 
      return Backward(p, backRes, cur);
 
    }
 
    position++;
 
    curOpt = &p->opt[cur];
 
    posPrev = curOpt->posPrev;
 
    if (curOpt->prev1IsChar)
 
    {
 
      posPrev--;
 
      if (curOpt->prev2)
 
      {
 
        state = p->opt[curOpt->posPrev2].state;
 
        if (curOpt->backPrev2 < LZMA_NUM_REPS)
 
          state = (UInt32) kRepNextStates[state]; /*MAB casts */
 
        else
 
          state = (UInt32) kMatchNextStates[state]; /*MAB casts */
 
      }
 
      else
 
        state = p->opt[posPrev].state;
 
      state = (UInt32) kLiteralNextStates[state]; /*MAB casts */
 
    }
 
    else
 
      state = p->opt[posPrev].state;
 
    if (posPrev == cur - 1)
 
    {
 
      if (IsShortRep(curOpt))
 
        state = (UInt32) kShortRepNextStates[state]; /*MAB casts */
 
      else
 
        state = (UInt32) kLiteralNextStates[state]; /*MAB casts */
 
    }
 
    else
 
    {
 
      UInt32 pos;
 
      const COptimal *prevOpt;
 
      if (curOpt->prev1IsChar && curOpt->prev2)
 
      {
 
        posPrev = curOpt->posPrev2;
 
        pos = curOpt->backPrev2;
 
        state = (UInt32) kRepNextStates[state]; /*MAB casts */
 
      }
 
      else
 
      {
 
        pos = curOpt->backPrev;
 
        if (pos < LZMA_NUM_REPS)
 
          state = (UInt32) kRepNextStates[state]; /*MAB casts */
 
        else
 
          state = (UInt32) kMatchNextStates[state]; /*MAB casts */
 
      }
 
      prevOpt = &p->opt[posPrev];
 
      if (pos < LZMA_NUM_REPS)
 
      {
 
                /*MAB: i changed to i__ to avoid hiding a variable */
 
        UInt32 i__;
 
        reps[0] = prevOpt->backs[pos];
 
        for (i__ = 1; i__ <= pos; i__++)
 
          reps[i__] = prevOpt->backs[i__ - 1];
 
        for (; i__ < LZMA_NUM_REPS;  i__++)
 
          reps[i__] = prevOpt->backs[i__];
 
      }
 
      else
 
      {
 
                /*MAB: i changed to i__ to avoid hiding a variable */
 
        UInt32 i__;
 
        reps[0] = (pos - LZMA_NUM_REPS);
 
        for (i__ = 1; i__ < LZMA_NUM_REPS; i__++)
 
          reps[i__] = prevOpt->backs[i__ - 1];
 
      }
 
    }
 
    curOpt->state = (CState)state;
 
 
 
    curOpt->backs[0] = reps[0];
 
    curOpt->backs[1] = reps[1];
 
    curOpt->backs[2] = reps[2];
 
    curOpt->backs[3] = reps[3];
 
 
 
    curPrice = curOpt->price;
 
    nextIsChar = False;
 
    data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 
    curByte = *data;
 
    matchByte = *(data - (reps[0] + 1));
 
 
 
    posState = (position & p->pbMask);
 
 
 
    curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
 
    {
 
      const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
 
      curAnd1Price +=
 
        (!IsCharState(state) ?
 
          LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
 
          LitEnc_GetPrice(probs, curByte, p->ProbPrices));
 
    }
 
 
 
    nextOpt = &p->opt[cur + 1];
 
 
 
    if (curAnd1Price < nextOpt->price)
 
    {
 
      nextOpt->price = curAnd1Price;
 
      nextOpt->posPrev = cur;
 
      MakeAsChar(nextOpt);
 
      nextIsChar = True;
 
    }
 
 
 
    matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
 
    repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
 
 
 
    if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
 
    {
 
      UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
 
      if (shortRepPrice <= nextOpt->price)
 
      {
 
        nextOpt->price = shortRepPrice;
 
        nextOpt->posPrev = cur;
 
        MakeAsShortRep(nextOpt);
 
        nextIsChar = True;
 
      }
 
    }
 
    numAvailFull = p->numAvail;
 
    {
 
      UInt32 temp = kNumOpts - 1 - cur;
 
      if (temp < numAvailFull)
 
        numAvailFull = temp;
 
    }
 
 
 
    if (numAvailFull < 2)
 
      continue;
 
    numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
 
 
 
    if (!nextIsChar && matchByte != curByte) /* speed optimization */
 
    {
 
      /* try Literal + rep0 */
 
      UInt32 temp;
 
      UInt32 lenTest2;
 
      const Byte *data2 = data - (reps[0] + 1);
 
      UInt32 limit = p->numFastBytes + 1;
 
      if (limit > numAvailFull)
 
        limit = numAvailFull;
 
 
 
      for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
 
      lenTest2 = temp - 1;
 
      if (lenTest2 >= 2)
 
      {
 
        UInt32 state2 = (UInt32) kLiteralNextStates[state]; /*MAB casts */
 
        UInt32 posStateNext = (position + 1) & p->pbMask;
 
        UInt32 nextRepMatchPrice = curAnd1Price +
 
            GET_PRICE_1(p->isMatch[state2][posStateNext]) +
 
            GET_PRICE_1(p->isRep[state2]);
 
        /* for (; lenTest2 >= 2; lenTest2--) */
 
        {
 
          UInt32 curAndLenPrice;
 
          COptimal *opt;
 
          UInt32 offset = cur + 1 + lenTest2;
 
          while (lenEnd < offset)
 
            p->opt[++lenEnd].price = kInfinityPrice;
 
          curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
 
          opt = &p->opt[offset];
 
          if (curAndLenPrice < opt->price)
 
          {
 
            opt->price = curAndLenPrice;
 
            opt->posPrev = cur + 1;
 
            opt->backPrev = 0;
 
            opt->prev1IsChar = True;
 
            opt->prev2 = False;
 
          }
 
        }
 
      }
 
    }
 
 
 
    startLen = 2; /* speed optimization */
 
    {
 
    UInt32 repIndex;
 
    for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
 
    {
 
      UInt32 lenTest;
 
      UInt32 lenTestTemp;
 
      UInt32 price;
 
      const Byte *data2 = data - (reps[repIndex] + 1);
 
      if (data[0] != data2[0] || data[1] != data2[1])
 
        continue;
 
      for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
 
      while (lenEnd < cur + lenTest)
 
        p->opt[++lenEnd].price = kInfinityPrice;
 
      lenTestTemp = lenTest;
 
      price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
 
      do
 
      {
 
        UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
 
        COptimal *opt = &p->opt[cur + lenTest];
 
        if (curAndLenPrice < opt->price)
 
        {
 
          opt->price = curAndLenPrice;
 
          opt->posPrev = cur;
 
          opt->backPrev = repIndex;
 
          opt->prev1IsChar = False;
 
        }
 
      }
 
      while (--lenTest >= 2);
 
      lenTest = lenTestTemp;
 
 
 
      if (repIndex == 0)
 
        startLen = lenTest + 1;
 
 
 
      /* if (_maxMode) */
 
        {
 
          UInt32 lenTest2 = lenTest + 1;
 
          UInt32 limit = lenTest2 + p->numFastBytes;
 
          UInt32 nextRepMatchPrice;
 
          if (limit > numAvailFull)
 
            limit = numAvailFull;
 
          for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
 
          lenTest2 -= lenTest + 1;
 
          if (lenTest2 >= 2)
 
          {
 
            UInt32 state2 = (UInt32) kRepNextStates[state]; /*MAB casts */
 
            UInt32 posStateNext = (position + lenTest) & p->pbMask;
 
            UInt32 curAndLenCharPrice =
 
                price + p->repLenEnc.prices[posState][lenTest - 2] +
 
                GET_PRICE_0(p->isMatch[state2][posStateNext]) +
 
                LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
 
                    data[lenTest], data2[lenTest], p->ProbPrices);
 
            state2 = (UInt32) kLiteralNextStates[state2]; /*MAB casts */
 
            posStateNext = (position + lenTest + 1) & p->pbMask;
 
            nextRepMatchPrice = curAndLenCharPrice +
 
                GET_PRICE_1(p->isMatch[state2][posStateNext]) +
 
                GET_PRICE_1(p->isRep[state2]);
 
 
 
            /* for (; lenTest2 >= 2; lenTest2--) */
 
            {
 
              UInt32 curAndLenPrice;
 
              COptimal *opt;
 
              UInt32 offset = cur + lenTest + 1 + lenTest2;
 
              while (lenEnd < offset)
 
                p->opt[++lenEnd].price = kInfinityPrice;
 
              curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
 
              opt = &p->opt[offset];
 
              if (curAndLenPrice < opt->price)
 
              {
 
                opt->price = curAndLenPrice;
 
                opt->posPrev = cur + lenTest + 1;
 
                opt->backPrev = 0;
 
                opt->prev1IsChar = True;
 
                opt->prev2 = True;
 
                opt->posPrev2 = cur;
 
                opt->backPrev2 = repIndex;
 
              }
 
            }
 
          }
 
        }
 
    }
 
    }
 
    /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
 
    if (newLen > numAvail)
 
    {
 
      newLen = numAvail;
 
      for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
 
      matches[numPairs] = newLen;
 
      numPairs += 2;
 
    }
 
    if (newLen >= startLen)
 
    {
 
      /*MAB: normalMatchPrice changed to normalMatchPrice__ not to hide a variable later */
 
      UInt32 normalMatchPrice__ = matchPrice + GET_PRICE_0(p->isRep[state]);
 
      UInt32 offs, curBack, posSlot;
 
      UInt32 lenTest;
 
      while (lenEnd < cur + newLen)
 
        p->opt[++lenEnd].price = kInfinityPrice;
 
 
 
      offs = 0;
 
      while (startLen > matches[offs])
 
        offs += 2;
 
      curBack = matches[offs + 1];
 
      GetPosSlot2(curBack, posSlot);
 
      for (lenTest = /*2*/ startLen; ; lenTest++)
 
      {
 
                /*MAB: curAndLenPrice changed to curAndLenPrice__ not to hide a variable later */
 
        UInt32 curAndLenPrice__ = normalMatchPrice__ + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
 
        UInt32 lenToPosState = GetLenToPosState(lenTest);
 
                /*MAB: opt changed to opt__ not to hide a variable later */
 
        COptimal *opt__;
 
        if (curBack < kNumFullDistances)
 
          curAndLenPrice__ += p->distancesPrices[lenToPosState][curBack];
 
        else
 
          curAndLenPrice__ += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
 
 
 
        opt__ = &p->opt[cur + lenTest];
 
        if (curAndLenPrice__ < opt__->price)
 
        {
 
          opt__->price = curAndLenPrice__;
 
          opt__->posPrev = cur;
 
          opt__->backPrev = curBack + LZMA_NUM_REPS;
 
          opt__->prev1IsChar = False;
 
        }
 
 
 
        if (/*_maxMode && */lenTest == matches[offs])
 
        {
 
          /* Try Match + Literal + Rep0 */
 
          const Byte *data2 = data - (curBack + 1);
 
          UInt32 lenTest2 = lenTest + 1;
 
          UInt32 limit = lenTest2 + p->numFastBytes;
 
          UInt32 nextRepMatchPrice;
 
          if (limit > numAvailFull)
 
            limit = numAvailFull;
 
          for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
 
          lenTest2 -= lenTest + 1;
 
          if (lenTest2 >= 2)
 
          {
 
            UInt32 state2 = (UInt32) kMatchNextStates[state]; /*MAB casts */
 
            UInt32 posStateNext = (position + lenTest) & p->pbMask;
 
            UInt32 curAndLenCharPrice = curAndLenPrice__ +
 
                GET_PRICE_0(p->isMatch[state2][posStateNext]) +
 
                LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
 
                    data[lenTest], data2[lenTest], p->ProbPrices);
 
            state2 = (UInt32) kLiteralNextStates[state2]; /*MAB casts */
 
            posStateNext = (posStateNext + 1) & p->pbMask;
 
            nextRepMatchPrice = curAndLenCharPrice +
 
                GET_PRICE_1(p->isMatch[state2][posStateNext]) +
 
                GET_PRICE_1(p->isRep[state2]);
 
 
 
            /* for (; lenTest2 >= 2; lenTest2--) */
 
            {
 
              UInt32 offset = cur + lenTest + 1 + lenTest2;
 
              UInt32 curAndLenPrice;
 
              COptimal *opt;
 
              while (lenEnd < offset)
 
                p->opt[++lenEnd].price = kInfinityPrice;
 
              curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
 
              opt = &p->opt[offset];
 
              if (curAndLenPrice < opt->price)
 
              {
 
                opt->price = curAndLenPrice;
 
                opt->posPrev = cur + lenTest + 1;
 
                opt->backPrev = 0;
 
                opt->prev1IsChar = True;
 
                opt->prev2 = True;
 
                opt->posPrev2 = cur;
 
                opt->backPrev2 = curBack + LZMA_NUM_REPS;
 
              }
 
            }
 
          }
 
          offs += 2;
 
          if (offs == numPairs)
 
            break;
 
          curBack = matches[offs + 1];
 
          if (curBack >= kNumFullDistances)
 
            GetPosSlot2(curBack, posSlot);
 
        }
 
      }
 
    }
 
  }
 
}
 
 
 
#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
 
 
 
static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
 
{
 
  UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
 
  const Byte *data;
 
  const UInt32 *matches;
 
 
 
  if (p->additionalOffset == 0)
 
    mainLen = ReadMatchDistances(p, &numPairs);
 
  else
 
  {
 
    mainLen = p->longestMatchLength;
 
    numPairs = p->numPairs;
 
  }
 
 
 
  numAvail = p->numAvail;
 
  *backRes = (UInt32)-1;
 
  if (numAvail < 2)
 
    return 1;
 
  if (numAvail > LZMA_MATCH_LEN_MAX)
 
    numAvail = LZMA_MATCH_LEN_MAX;
 
  data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 
 
 
  repLen = repIndex = 0;
 
  for (i = 0; i < LZMA_NUM_REPS; i++)
 
  {
 
    UInt32 len;
 
    const Byte *data2 = data - (p->reps[i] + 1);
 
    if (data[0] != data2[0] || data[1] != data2[1])
 
      continue;
 
    for (len = 2; len < numAvail && data[len] == data2[len]; len++);
 
    if (len >= p->numFastBytes)
 
    {
 
      *backRes = i;
 
      MovePos(p, len - 1);
 
      return len;
 
    }
 
    if (len > repLen)
 
    {
 
      repIndex = i;
 
      repLen = len;
 
    }
 
  }
 
 
 
  matches = p->matches;
 
  if (mainLen >= p->numFastBytes)
 
  {
 
    *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
 
    MovePos(p, mainLen - 1);
 
    return mainLen;
 
  }
 
 
 
  mainDist = 0; /* for GCC */
 
  if (mainLen >= 2)
 
  {
 
    mainDist = matches[numPairs - 1];
 
    while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
 
    {
 
      if (!ChangePair(matches[numPairs - 3], mainDist))
 
        break;
 
      numPairs -= 2;
 
      mainLen = matches[numPairs - 2];
 
      mainDist = matches[numPairs - 1];
 
    }
 
    if (mainLen == 2 && mainDist >= 0x80)
 
      mainLen = 1;
 
  }
 
 
 
  if (repLen >= 2 && (
 
        (repLen + 1 >= mainLen) ||
 
        (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
 
        (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
 
  {
 
    *backRes = repIndex;
 
    MovePos(p, repLen - 1);
 
    return repLen;
 
  }
 
 
 
  if (mainLen < 2 || numAvail <= 2)
 
    return 1;
 
 
 
  p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
 
  if (p->longestMatchLength >= 2)
 
  {
 
    UInt32 newDistance = matches[p->numPairs - 1];
 
    if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
 
        (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
 
        (p->longestMatchLength > mainLen + 1) ||
 
        (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
 
      return 1;
 
  }
 
 
 
  data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 
  for (i = 0; i < LZMA_NUM_REPS; i++)
 
  {
 
    UInt32 len, limit;
 
    const Byte *data2 = data - (p->reps[i] + 1);
 
    if (data[0] != data2[0] || data[1] != data2[1])
 
      continue;
 
    limit = mainLen - 1;
 
    for (len = 2; len < limit && data[len] == data2[len]; len++);
 
    if (len >= limit)
 
      return 1;
 
  }
 
  *backRes = mainDist + LZMA_NUM_REPS;
 
  MovePos(p, mainLen - 2);
 
  return mainLen;
 
}
 
 
 
static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
 
{
 
  UInt32 len;
 
  RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
 
  RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
 
  p->state = (UInt32) kMatchNextStates[p->state]; /*MAB casts */
 
  len = LZMA_MATCH_LEN_MIN;
 
  LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
 
  RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
 
  RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
 
  RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
 
}
 
 
 
static SRes CheckErrors(CLzmaEnc *p)
 
{
 
  if (p->result != SZ_OK)
 
    return p->result;
 
  if (p->rc.res != SZ_OK)
 
    p->result = SZ_ERROR_WRITE;
 
  if (p->matchFinderBase.result != SZ_OK)
 
    p->result = SZ_ERROR_READ;
 
  if (p->result != SZ_OK)
 
    p->finished = True;
 
  return p->result;
 
}
 
 
 
static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
 
{
 
  /* ReleaseMFStream(); */
 
  p->finished = True;
 
  if (p->writeEndMark)
 
    WriteEndMarker(p, nowPos & p->pbMask);
 
  RangeEnc_FlushData(&p->rc);
 
  RangeEnc_FlushStream(&p->rc);
 
  return CheckErrors(p);
 
}
 
 
 
static void FillAlignPrices(CLzmaEnc *p)
 
{
 
  UInt32 i;
 
  for (i = 0; i < kAlignTableSize; i++)
 
    p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
 
  p->alignPriceCount = 0;
 
}
 
 
 
static void FillDistancesPrices(CLzmaEnc *p)
 
{
 
  UInt32 tempPrices[kNumFullDistances];
 
  /*MAB: i changed to j to avoid warnings later of hiding i */
 
  UInt32 j, lenToPosState;
 
  for (j = kStartPosModelIndex; j < kNumFullDistances; j++)
 
  {
 
    UInt32 posSlot = GetPosSlot1(j);
 
    UInt32 footerBits = ((posSlot >> 1) - 1);
 
    UInt32 base = ((2 | (posSlot & 1)) << footerBits);
 
    tempPrices[j] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, (int)footerBits, j - base, p->ProbPrices); /*MAB casts */
 
  }
 
 
 
  for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
 
  {
 
    UInt32 posSlot;
 
    const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
 
    UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
 
    for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
 
      posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
 
    for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
 
      posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
 
 
 
    {
 
      UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
 
          /*MAB: i changed to i__ to avoid hiding a variable */
 
      UInt32 i__;
 
      for (i__ = 0; i__ < kStartPosModelIndex; i__++)
 
        distancesPrices[i__] = posSlotPrices[i__];
 
      for (; i__ < kNumFullDistances; i__++)
 
        distancesPrices[i__] = posSlotPrices[GetPosSlot1(i__)] + tempPrices[i__];
 
    }
 
  }
 
  p->matchPriceCount = 0;
 
}
 
 
 
/*MAB: static added */
 
static void LzmaEnc_Construct(CLzmaEnc *p)
 
{
 
  RangeEnc_Construct(&p->rc);
 
  MatchFinder_Construct(&p->matchFinderBase);
 
  #ifdef COMPRESS_MF_MT
 
  MatchFinderMt_Construct(&p->matchFinderMt);
 
  p->matchFinderMt.MatchFinder = &p->matchFinderBase;
 
  #endif
 
 
 
  {
 
    CLzmaEncProps props;
 
    LzmaEncProps_Init(&props);
 
    LzmaEnc_SetProps(p, &props);
 
  }
 
 
 
  #ifndef LZMA_LOG_BSR
 
  LzmaEnc_FastPosInit(p->g_FastPos);
 
  #endif
 
 
 
  LzmaEnc_InitPriceTables(p->ProbPrices);
 
  p->litProbs = 0;
 
  p->saveState.litProbs = 0;
 
}
 
 
 
CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
 
{
 
  void *p;
 
  p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
 
  if (p != 0)
 
    LzmaEnc_Construct((CLzmaEnc *)p);
 
  return p;
 
}
 
 
 
/*MAB: static added */
 
static void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
 
{
 
  alloc->Free(alloc, p->litProbs);
 
  alloc->Free(alloc, p->saveState.litProbs);
 
  p->litProbs = 0;
 
  p->saveState.litProbs = 0;
 
}
 
 
 
/*MAB: static added */
 
static void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  #ifdef COMPRESS_MF_MT
 
  MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
 
  #endif
 
  MatchFinder_Free(&p->matchFinderBase, allocBig);
 
  LzmaEnc_FreeLits(p, alloc);
 
  RangeEnc_Free(&p->rc, alloc);
 
}
 
 
 
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
 
  alloc->Free(alloc, p);
 
}
 
 
 
static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
 
{
 
  UInt32 nowPos32, startPos32;
 
  if (p->inStream != 0)
 
  {
 
    p->matchFinderBase.stream = p->inStream;
 
    p->matchFinder.Init(p->matchFinderObj);
 
    p->inStream = 0;
 
  }
 
 
 
  if (p->finished)
 
    return p->result;
 
  RINOK(CheckErrors(p));
 
 
 
  nowPos32 = (UInt32)p->nowPos64;
 
  startPos32 = nowPos32;
 
 
 
  if (p->nowPos64 == 0)
 
  {
 
    UInt32 numPairs;
 
    Byte curByte;
 
    if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
 
      return Flush(p, nowPos32);
 
    ReadMatchDistances(p, &numPairs);
 
    RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
 
    p->state = (UInt32) kLiteralNextStates[p->state]; /*MAB casts */
 
    curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, (Int32)(0 - p->additionalOffset)); /*MAB casts */
 
    LitEnc_Encode(&p->rc, p->litProbs, curByte);
 
    p->additionalOffset--;
 
    nowPos32++;
 
  }
 
 
 
  if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
 
  for (;;)
 
  {
 
    UInt32 pos, len, posState;
 
 
 
    if (p->fastMode)
 
      len = GetOptimumFast(p, &pos);
 
    else
 
      len = GetOptimum(p, nowPos32, &pos);
 
 
 
    #ifdef SHOW_STAT2
 
    printf("\n pos = %4X,   len = %d   pos = %d", nowPos32
, len
, pos
);  
    #endif
 
 
 
    posState = nowPos32 & p->pbMask;
 
    if (len == 1 && pos == (UInt32)-1)
 
    {
 
      Byte curByte;
 
      CLzmaProb *probs;
 
      const Byte *data;
 
 
 
      RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
 
      data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
 
      curByte = *data;
 
      probs = LIT_PROBS(nowPos32, *(data - 1));
 
      if (IsCharState(p->state))
 
        LitEnc_Encode(&p->rc, probs, curByte);
 
      else
 
        LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
 
      p->state = (UInt32) kLiteralNextStates[p->state]; /*MAB casts */
 
    }
 
    else
 
    {
 
      RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
 
      if (pos < LZMA_NUM_REPS)
 
      {
 
        RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
 
        if (pos == 0)
 
        {
 
          RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
 
          RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
 
        }
 
        else
 
        {
 
          UInt32 distance = p->reps[pos];
 
          RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
 
          if (pos == 1)
 
            RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
 
          else
 
          {
 
            RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
 
            RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
 
            if (pos == 3)
 
              p->reps[3] = p->reps[2];
 
            p->reps[2] = p->reps[1];
 
          }
 
          p->reps[1] = p->reps[0];
 
          p->reps[0] = distance;
 
        }
 
        if (len == 1)
 
          p->state = (UInt32) kShortRepNextStates[p->state]; /*MAB casts */
 
        else
 
        {
 
          LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
 
          p->state = (UInt32) kRepNextStates[p->state]; /*MAB casts */
 
        }
 
      }
 
      else
 
      {
 
        UInt32 posSlot;
 
        RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
 
        p->state = (UInt32) kMatchNextStates[p->state]; /*MAB casts */
 
        LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
 
        pos -= LZMA_NUM_REPS;
 
        GetPosSlot(pos, posSlot);
 
        RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
 
 
 
        if (posSlot >= kStartPosModelIndex)
 
        {
 
          UInt32 footerBits = ((posSlot >> 1) - 1);
 
          UInt32 base = ((2 | (posSlot & 1)) << footerBits);
 
          UInt32 posReduced = pos - base;
 
 
 
          if (posSlot < kEndPosModelIndex)
 
            RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, (int)footerBits, posReduced); /*MAB casts */
 
          else
 
          {
 
            RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, (int)footerBits - kNumAlignBits); /*MAB casts */
 
            RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
 
            p->alignPriceCount++;
 
          }
 
        }
 
        p->reps[3] = p->reps[2];
 
        p->reps[2] = p->reps[1];
 
        p->reps[1] = p->reps[0];
 
        p->reps[0] = pos;
 
        p->matchPriceCount++;
 
      }
 
    }
 
    p->additionalOffset -= len;
 
    nowPos32 += len;
 
    if (p->additionalOffset == 0)
 
    {
 
      UInt32 processed;
 
      if (!p->fastMode)
 
      {
 
        if (p->matchPriceCount >= (1 << 7))
 
          FillDistancesPrices(p);
 
        if (p->alignPriceCount >= kAlignTableSize)
 
          FillAlignPrices(p);
 
      }
 
      if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
 
        break;
 
      processed = nowPos32 - startPos32;
 
 
 
      if (useLimits)
 
      {
 
        if (processed + kNumOpts + 300 >= maxUnpackSize ||
 
            RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
 
          break;
 
      }
 
      else if (processed >= (1 << 15))
 
      {
 
        p->nowPos64 += nowPos32 - startPos32;
 
        return CheckErrors(p);
 
      }
 
    }
 
  }
 
  p->nowPos64 += nowPos32 - startPos32;
 
  return Flush(p, nowPos32);
 
}
 
 
 
#define kBigHashDicLimit ((UInt32)1 << 24)
 
 
 
static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  UInt32 beforeSize = kNumOpts;
 
 #ifdef COMPRESS_MF_MT
 
  Bool btMode; /*MAB: this line wrap inside the compilation ifdef, btMode not used without it */
 
 #endif
 
 
 
  if (!RangeEnc_Alloc(&p->rc, alloc))
 
    return SZ_ERROR_MEM;
 
 
 
 #ifdef COMPRESS_MF_MT
 
  btMode = (p->matchFinderBase.btMode != 0); /*MAB: this line moved inside the compilation ifdef, btMode not used without it */
 
 
 
  p->mtMode = (p->multiThread && !p->fastMode && btMode);
 
  #endif
 
 
 
  {
 
    unsigned lclp = p->lc + p->lp;
 
    if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
 
    {
 
      LzmaEnc_FreeLits(p, alloc);
 
      p->litProbs           = (CLzmaProb *)alloc->Alloc(alloc, (0x300u << lclp) * sizeof(CLzmaProb)); /*MAB 0x300 vs 0x300u*/
 
      p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300u << lclp) * sizeof(CLzmaProb)); /*MAB 0x300 vs 0x300u*/
 
      if (p->litProbs == 0 || p->saveState.litProbs == 0)
 
      {
 
        LzmaEnc_FreeLits(p, alloc);
 
        return SZ_ERROR_MEM;
 
      }
 
      p->lclp = lclp;
 
    }
 
  }
 
 
 
  p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
 
 
 
  if (beforeSize + p->dictSize < keepWindowSize)
 
    beforeSize = keepWindowSize - p->dictSize;
 
 
 
  #ifdef COMPRESS_MF_MT
 
  if (p->mtMode)
 
  {
 
    RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
 
    p->matchFinderObj = &p->matchFinderMt;
 
    MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
 
  }
 
  else
 
  #endif
 
  {
 
    if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
 
      return SZ_ERROR_MEM;
 
    p->matchFinderObj = &p->matchFinderBase;
 
    MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
 
  }
 
  return SZ_OK;
 
}
 
 
 
/*MAB: static added */
 
static void LzmaEnc_Init(CLzmaEnc *p)
 
{
 
  UInt32 i;
 
  p->state = 0;
 
  for (i = 0 ; i < LZMA_NUM_REPS; i++)
 
    p->reps[i] = 0;
 
 
 
  RangeEnc_Init(&p->rc);
 
 
 
 
 
  for (i = 0; i < kNumStates; i++)
 
  {
 
    UInt32 j;
 
    for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
 
    {
 
      p->isMatch[i][j] = kProbInitValue;
 
      p->isRep0Long[i][j] = kProbInitValue;
 
    }
 
    p->isRep[i] = kProbInitValue;
 
    p->isRepG0[i] = kProbInitValue;
 
    p->isRepG1[i] = kProbInitValue;
 
    p->isRepG2[i] = kProbInitValue;
 
  }
 
 
 
  {
 
    UInt32 num = (UInt32) (0x300 << (p->lp + p->lc)); /*MAB casts */
 
    for (i = 0; i < num; i++)
 
      p->litProbs[i] = kProbInitValue;
 
  }
 
 
 
  {
 
    for (i = 0; i < kNumLenToPosStates; i++)
 
    {
 
      CLzmaProb *probs = p->posSlotEncoder[i];
 
      UInt32 j;
 
      for (j = 0; j < (1 << kNumPosSlotBits); j++)
 
        probs[j] = kProbInitValue;
 
    }
 
  }
 
  {
 
    for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
 
      p->posEncoders[i] = kProbInitValue;
 
  }
 
 
 
  LenEnc_Init(&p->lenEnc.p);
 
  LenEnc_Init(&p->repLenEnc.p);
 
 
 
  for (i = 0; i < (1 << kNumAlignBits); i++)
 
    p->posAlignEncoder[i] = kProbInitValue;
 
 
 
  p->optimumEndIndex = 0;
 
  p->optimumCurrentIndex = 0;
 
  p->additionalOffset = 0;
 
 
 
  p->pbMask = (1u << p->pb) - 1u; /*MAB 1u */
 
  p->lpMask = (1u << p->lp) - 1u; /*MAB 1u */
 
}
 
 
 
/*MAB: static added */
 
static void LzmaEnc_InitPrices(CLzmaEnc *p)
 
{
 
  if (!p->fastMode)
 
  {
 
    FillDistancesPrices(p);
 
    FillAlignPrices(p);
 
  }
 
 
 
  p->lenEnc.tableSize =
 
  p->repLenEnc.tableSize =
 
      p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
 
  LenPriceEnc_UpdateTables(&p->lenEnc,    1u << p->pb, p->ProbPrices); /*MAB 1u */
 
  LenPriceEnc_UpdateTables(&p->repLenEnc, 1u << p->pb, p->ProbPrices); /*MAB 1u */
 
}
 
 
 
static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  UInt32 i;
 
  for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
 
    if (p->dictSize <= ((UInt32)1 << i))
 
      break;
 
  p->distTableSize = i * 2;
 
 
 
  p->finished = False;
 
  p->result = SZ_OK;
 
  RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
 
  LzmaEnc_Init(p);
 
  LzmaEnc_InitPrices(p);
 
  p->nowPos64 = 0;
 
  return SZ_OK;
 
}
 
 
 
static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
 
    ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  p->inStream = inStream;
 
  p->rc.outStream = outStream;
 
  return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
 
}
 
 
 
#if defined(USE_UNUSED_CODE)
 
/*MAB: static added */
 
static SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
 
    ISeqInStream *inStream, UInt32 keepWindowSize,
 
    ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  p->inStream = inStream;
 
  return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
 
}
 
#endif
 
 
 
static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
 
{
 
  p->seqBufInStream.funcTable.Read = MyRead;
 
  p->seqBufInStream.data = src;
 
  p->seqBufInStream.rem = srcLen;
 
}
 
 
 
#if defined(USE_UNUSED_CODE)
 
/*MAB: static added */
 
static SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
 
    UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  LzmaEnc_SetInputBuf(p, src, srcLen);
 
  p->inStream = &p->seqBufInStream.funcTable;
 
  return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
 
}
 
#endif
 
 
 
/*MAB: static added */
 
static void LzmaEnc_Finish(CLzmaEncHandle pp)
 
{
 
  #ifdef COMPRESS_MF_MT
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  if (p->mtMode)
 
    MatchFinderMt_ReleaseStream(&p->matchFinderMt);
 
  #endif
 
}
 
 
 
typedef struct _CSeqOutStreamBuf
 
{
 
  ISeqOutStream funcTable;
 
  Byte *data;
 
  SizeT rem;
 
  Bool overflow;
 
} CSeqOutStreamBuf;
 
 
 
static size_t MyWrite(void *pp, const void *data, size_t size)
 
{
 
  CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
 
  if (p->rem < size)
 
  {
 
    size = p->rem;
 
    p->overflow = True;
 
  }
 
  p->rem -= size;
 
  p->data += size;
 
  return size;
 
}
 
 
 
#if defined(USE_UNUSED_CODE)
 
/*MAB: static added */
 
static UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
 
{
 
  const CLzmaEnc *p = (CLzmaEnc *)pp;
 
  return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
 
}
 
 
 
/*MAB: static added */
 
static
 
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
 
{
 
  const CLzmaEnc *p = (CLzmaEnc *)pp;
 
  return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
 
}
 
 
 
/*MAB: static added */
 
static
 
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
 
    Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  UInt64 nowPos64;
 
  SRes res;
 
  CSeqOutStreamBuf outStream;
 
 
 
  outStream.funcTable.Write = MyWrite;
 
  outStream.data = dest;
 
  outStream.rem = *destLen;
 
  outStream.overflow = False;
 
 
 
  p->writeEndMark = False;
 
  p->finished = False;
 
  p->result = SZ_OK;
 
 
 
  if (reInit)
 
    LzmaEnc_Init(p);
 
  LzmaEnc_InitPrices(p);
 
  nowPos64 = p->nowPos64;
 
  RangeEnc_Init(&p->rc);
 
  p->rc.outStream = &outStream.funcTable;
 
 
 
  res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
 
 
 
  *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
 
  *destLen -= outStream.rem;
 
  if (outStream.overflow)
 
    return SZ_ERROR_OUTPUT_EOF;
 
 
 
  return res;
 
}
 
#endif
 
 
 
SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
 
    ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  SRes res = SZ_OK;
 
 
 
  #ifdef COMPRESS_MF_MT
 
  Byte allocaDummy[0x300];
 
  int i = 0;
 
  for (i = 0; i < 16; i++)
 
    allocaDummy[i] = (Byte)i;
 
  #endif
 
 
 
  RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
 
 
 
  for (;;)
 
  {
 
    res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
 
    if (res != SZ_OK || p->finished != 0)
 
      break;
 
    if (progress != 0)
 
    {
 
      res = progress->Progress(progress, p->nowPos64, (UInt64) RangeEnc_GetProcessed(&p->rc)); /*MAB casts */
 
      if (res != SZ_OK)
 
      {
 
        res = SZ_ERROR_PROGRESS;
 
        break;
 
      }
 
    }
 
  }
 
  LzmaEnc_Finish(pp);
 
  return res;
 
}
 
 
 
SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
  int i;
 
  UInt32 dictSize = p->dictSize;
 
  if (*size < LZMA_PROPS_SIZE)
 
    return SZ_ERROR_PARAM;
 
  *size = LZMA_PROPS_SIZE;
 
  props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
 
 
 
  for (i = 11; i <= 30; i++)
 
  {
 
    if (dictSize <= ((UInt32)2 << i))
 
    {
 
      dictSize = (UInt32)(2 << i); /*MAB casts */
 
      break;
 
    }
 
    if (dictSize <= ((UInt32)3 << i))
 
    {
 
      dictSize = (UInt32)(3 << i); /*MAB casts */
 
      break;
 
    }
 
  }
 
 
 
  for (i = 0; i < 4; i++)
 
    props[1 + i] = (Byte)(dictSize >> (8 * i));
 
  return SZ_OK;
 
}
 
 
 
SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
 
    int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  SRes res;
 
  CLzmaEnc *p = (CLzmaEnc *)pp;
 
 
 
  CSeqOutStreamBuf outStream;
 
 
 
  LzmaEnc_SetInputBuf(p, src, srcLen);
 
 
 
  outStream.funcTable.Write = MyWrite;
 
  outStream.data = dest;
 
  outStream.rem = *destLen;
 
  outStream.overflow = False;
 
 
 
  p->writeEndMark = writeEndMark;
 
  res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
 
      progress, alloc, allocBig);
 
 
 
  *destLen -= outStream.rem;
 
  if (outStream.overflow)
 
    return SZ_ERROR_OUTPUT_EOF;
 
  return res;
 
}
 
 
 
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
 
    const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
 
    ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
 
{
 
  CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
 
  SRes res;
 
  if (p == 0)
 
    return SZ_ERROR_MEM;
 
 
 
  res = LzmaEnc_SetProps(p, props);
 
  if (res == SZ_OK)
 
  {
 
    res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
 
    if (res == SZ_OK)
 
      res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
 
          writeEndMark, progress, alloc, allocBig);
 
  }
 
 
 
  LzmaEnc_Destroy(p, alloc, allocBig);
 
  return res;
 
}