Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Rev 176 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (c) 2013 Ronald de Man
  4.   Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch
  5.  
  6.   Stockfish is free software: you can redistribute it and/or modify
  7.   it under the terms of the GNU General Public License as published by
  8.   the Free Software Foundation, either version 3 of the License, or
  9.   (at your option) any later version.
  10.  
  11.   Stockfish is distributed in the hope that it will be useful,
  12.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  13.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14.   GNU General Public License for more details.
  15.  
  16.   You should have received a copy of the GNU General Public License
  17.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18. */
  19.  
  20. #include <algorithm>
  21. #include <atomic>
  22. #include <cstdint>
  23. #include <cstring>   // For std::memset
  24. #include <deque>
  25. #include <fstream>
  26. #include <iostream>
  27. #include <list>
  28. #include <sstream>
  29. #include <type_traits>
  30.  
  31. #include "../bitboard.h"
  32. #include "../movegen.h"
  33. #include "../position.h"
  34. #include "../search.h"
  35. #include "../thread_win32.h"
  36. #include "../types.h"
  37.  
  38. #include "tbprobe.h"
  39.  
  40. #ifndef _WIN32
  41. #include <fcntl.h>
  42. #include <unistd.h>
  43. #include <sys/mman.h>
  44. #include <sys/stat.h>
  45. #else
  46. #define WIN32_LEAN_AND_MEAN
  47. #define NOMINMAX
  48. #include <windows.h>
  49. #endif
  50.  
  51. using namespace Tablebases;
  52.  
  53. int Tablebases::MaxCardinality;
  54.  
  55. namespace {
  56.  
  57. // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
  58. enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 };
  59.  
  60. inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); }
  61. inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); }
  62. inline Square operator^(Square s, int i) { return Square(int(s) ^ i); }
  63.  
  64. // DTZ tables don't store valid scores for moves that reset the rule50 counter
  65. // like captures and pawn moves but we can easily recover the correct dtz of the
  66. // previous move if we know the position's WDL score.
  67. int dtz_before_zeroing(WDLScore wdl) {
  68.     return wdl == WDLWin         ?  1   :
  69.            wdl == WDLCursedWin   ?  101 :
  70.            wdl == WDLBlessedLoss ? -101 :
  71.            wdl == WDLLoss        ? -1   : 0;
  72. }
  73.  
  74. // Return the sign of a number (-1, 0, 1)
  75. template <typename T> int sign_of(T val) {
  76.     return (T(0) < val) - (val < T(0));
  77. }
  78.  
  79. // Numbers in little endian used by sparseIndex[] to point into blockLength[]
  80. struct SparseEntry {
  81.     char block[4];   // Number of block
  82.     char offset[2];  // Offset within the block
  83. };
  84.  
  85. static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes");
  86.  
  87. typedef uint16_t Sym; // Huffman symbol
  88.  
  89. struct LR {
  90.     enum Side { Left, Right, Value };
  91.  
  92.     uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12
  93.                    // bits is the right-hand symbol. If symbol has length 1,
  94.                    // then the first byte is the stored value.
  95.     template<Side S>
  96.     Sym get() {
  97.         return S == Left  ? ((lr[1] & 0xF) << 8) | lr[0] :
  98.                S == Right ?  (lr[2] << 4) | (lr[1] >> 4) :
  99.                S == Value ?   lr[0] : (assert(false), Sym(-1));
  100.     }
  101. };
  102.  
  103. static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes");
  104.  
  105. const int TBPIECES = 6;
  106.  
  107. struct PairsData {
  108.     int flags;
  109.     size_t sizeofBlock;            // Block size in bytes
  110.     size_t span;                   // About every span values there is a SparseIndex[] entry
  111.     int blocksNum;                 // Number of blocks in the TB file
  112.     int maxSymLen;                 // Maximum length in bits of the Huffman symbols
  113.     int minSymLen;                 // Minimum length in bits of the Huffman symbols
  114.     Sym* lowestSym;                // lowestSym[l] is the symbol of length l with the lowest value
  115.     LR* btree;                     // btree[sym] stores the left and right symbols that expand sym
  116.     uint16_t* blockLength;         // Number of stored positions (minus one) for each block: 1..65536
  117.     int blockLengthSize;           // Size of blockLength[] table: padded so it's bigger than blocksNum
  118.     SparseEntry* sparseIndex;      // Partial indices into blockLength[]
  119.     size_t sparseIndexSize;        // Size of SparseIndex[] table
  120.     uint8_t* data;                 // Start of Huffman compressed data
  121.     std::vector<uint64_t> base64;  // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l
  122.     std::vector<uint8_t> symlen;   // Number of values (-1) represented by a given Huffman symbol: 1..256
  123.     Piece pieces[TBPIECES];        // Position pieces: the order of pieces defines the groups
  124.     uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces
  125.     int groupLen[TBPIECES+1];      // Number of pieces in a given group: KRKN -> (3, 1)
  126. };
  127.  
  128. // Helper struct to avoid manually defining entry copy constructor as we
  129. // should because the default one is not compatible with std::atomic_bool.
  130. struct Atomic {
  131.     Atomic() = default;
  132.     Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body
  133.     std::atomic_bool ready;
  134. };
  135.  
  136. // We define types for the different parts of the WDLEntry and DTZEntry with
  137. // corresponding specializations for pieces or pawns.
  138.  
  139. struct WDLEntryPiece {
  140.     PairsData* precomp;
  141. };
  142.  
  143. struct WDLEntryPawn {
  144.     uint8_t pawnCount[2];     // [Lead color / other color]
  145.     WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D]
  146. };
  147.  
  148. struct DTZEntryPiece {
  149.     PairsData* precomp;
  150.     uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss
  151.     uint8_t* map;
  152. };
  153.  
  154. struct DTZEntryPawn {
  155.     uint8_t pawnCount[2];
  156.     DTZEntryPiece file[4];
  157.     uint8_t* map;
  158. };
  159.  
  160. struct TBEntry : public Atomic {
  161.     void* baseAddress;
  162.     uint64_t mapping;
  163.     Key key;
  164.     Key key2;
  165.     int pieceCount;
  166.     bool hasPawns;
  167.     bool hasUniquePieces;
  168. };
  169.  
  170. // Now the main types: WDLEntry and DTZEntry
  171. struct WDLEntry : public TBEntry {
  172.     WDLEntry(const std::string& code);
  173.    ~WDLEntry();
  174.     union {
  175.         WDLEntryPiece pieceTable[2]; // [wtm / btm]
  176.         WDLEntryPawn  pawnTable;
  177.     };
  178. };
  179.  
  180. struct DTZEntry : public TBEntry {
  181.     DTZEntry(const WDLEntry& wdl);
  182.    ~DTZEntry();
  183.     union {
  184.         DTZEntryPiece pieceTable;
  185.         DTZEntryPawn  pawnTable;
  186.     };
  187. };
  188.  
  189. typedef decltype(WDLEntry::pieceTable) WDLPieceTable;
  190. typedef decltype(DTZEntry::pieceTable) DTZPieceTable;
  191. typedef decltype(WDLEntry::pawnTable ) WDLPawnTable;
  192. typedef decltype(DTZEntry::pawnTable ) DTZPawnTable;
  193.  
  194. auto item(WDLPieceTable& e, int stm, int  ) -> decltype(e[stm])& { return e[stm]; }
  195. auto item(DTZPieceTable& e, int    , int  ) -> decltype(e)& { return e; }
  196. auto item(WDLPawnTable&  e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; }
  197. auto item(DTZPawnTable&  e, int    , int f) -> decltype(e.file[f])& { return e.file[f]; }
  198.  
  199. template<typename E> struct Ret { typedef int type; };
  200. template<> struct Ret<WDLEntry> { typedef WDLScore type; };
  201.  
  202. int MapPawns[SQUARE_NB];
  203. int MapB1H1H7[SQUARE_NB];
  204. int MapA1D1D4[SQUARE_NB];
  205. int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB]
  206.  
  207. // Comparison function to sort leading pawns in ascending MapPawns[] order
  208. bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; }
  209. int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); }
  210.  
  211. const Value WDL_to_value[] = {
  212.    -VALUE_MATE + MAX_PLY + 1,
  213.     VALUE_DRAW - 2,
  214.     VALUE_DRAW,
  215.     VALUE_DRAW + 2,
  216.     VALUE_MATE - MAX_PLY - 1
  217. };
  218.  
  219. const std::string PieceToChar = " PNBRQK  pnbrqk";
  220.  
  221. int Binomial[6][SQUARE_NB];    // [k][n] k elements from a set of n elements
  222. int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB]
  223. int LeadPawnsSize[5][4];       // [leadPawnsCnt][FILE_A..FILE_D]
  224.  
  225. enum { BigEndian, LittleEndian };
  226.  
  227. template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1>
  228. inline void swap_byte(T& x)
  229. {
  230.     char tmp, *c = (char*)&x;
  231.     for (int i = 0; i < Half; ++i)
  232.         tmp = c[i], c[i] = c[End - i], c[End - i] = tmp;
  233. }
  234. template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {}
  235.  
  236. template<typename T, int LE> T number(void* addr)
  237. {
  238.     const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
  239.     const bool IsLittleEndian = (Le.c[0] == 4);
  240.  
  241.     T v;
  242.  
  243.     if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare)
  244.         std::memcpy(&v, addr, sizeof(T));
  245.     else
  246.         v = *((T*)addr);
  247.  
  248.     if (LE != IsLittleEndian)
  249.         swap_byte(v);
  250.     return v;
  251. }
  252.  
  253. class HashTable {
  254.  
  255.     typedef std::pair<WDLEntry*, DTZEntry*> EntryPair;
  256.     typedef std::pair<Key, EntryPair> Entry;
  257.  
  258.     static const int TBHASHBITS = 10;
  259.     static const int HSHMAX     = 5;
  260.  
  261.     Entry hashTable[1 << TBHASHBITS][HSHMAX];
  262.  
  263.     std::deque<WDLEntry> wdlTable;
  264.     std::deque<DTZEntry> dtzTable;
  265.  
  266.     void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) {
  267.         Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
  268.  
  269.         for (int i = 0; i < HSHMAX; ++i, ++entry)
  270.             if (!entry->second.first || entry->first == key) {
  271.                 *entry = std::make_pair(key, std::make_pair(wdl, dtz));
  272.                 return;
  273.             }
  274.  
  275.         std::cerr << "HSHMAX too low!" << std::endl;
  276.         exit(1);
  277.     }
  278.  
  279. public:
  280.     template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1>
  281.     E* get(Key key) {
  282.       Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
  283.  
  284.       for (int i = 0; i < HSHMAX; ++i, ++entry)
  285.           if (entry->first == key)
  286.               return std::get<I>(entry->second);
  287.  
  288.       return nullptr;
  289.   }
  290.  
  291.   void clear() {
  292.       std::memset(hashTable, 0, sizeof(hashTable));
  293.       wdlTable.clear();
  294.       dtzTable.clear();
  295.   }
  296.   size_t size() const { return wdlTable.size(); }
  297.   void insert(const std::vector<PieceType>& pieces);
  298. };
  299.  
  300. HashTable EntryTable;
  301.  
  302. class TBFile : public std::ifstream {
  303.  
  304.     std::string fname;
  305.  
  306. public:
  307.     // Look for and open the file among the Paths directories where the .rtbw
  308.     // and .rtbz files can be found. Multiple directories are separated by ";"
  309.     // on Windows and by ":" on Unix-based operating systems.
  310.     //
  311.     // Example:
  312.     // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6
  313.     static std::string Paths;
  314.  
  315.     TBFile(const std::string& f) {
  316.  
  317. #ifndef _WIN32
  318.         const char SepChar = ':';
  319. #else
  320.         const char SepChar = ';';
  321. #endif
  322.         std::stringstream ss(Paths);
  323.         std::string path;
  324.  
  325.         while (std::getline(ss, path, SepChar)) {
  326.             fname = path + "/" + f;
  327.             std::ifstream::open(fname);
  328.             if (is_open())
  329.                 return;
  330.         }
  331.     }
  332.  
  333.     // Memory map the file and check it. File should be already open and will be
  334.     // closed after mapping.
  335.     uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) {
  336.  
  337.         assert(is_open());
  338.  
  339.         close(); // Need to re-open to get native file descriptor
  340.  
  341. #ifndef _WIN32
  342.         struct stat statbuf;
  343.         int fd = ::open(fname.c_str(), O_RDONLY);
  344.  
  345.         if (fd == -1)
  346.             return *baseAddress = nullptr, nullptr;
  347.  
  348.         fstat(fd, &statbuf);
  349.         *mapping = statbuf.st_size;
  350.         *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);
  351.         ::close(fd);
  352.  
  353.         if (*baseAddress == MAP_FAILED) {
  354.             std::cerr << "Could not mmap() " << fname << std::endl;
  355.             exit(1);
  356.         }
  357. #else
  358.         HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr,
  359.                                OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
  360.  
  361.         if (fd == INVALID_HANDLE_VALUE)
  362.             return *baseAddress = nullptr, nullptr;
  363.  
  364.         DWORD size_high;
  365.         DWORD size_low = GetFileSize(fd, &size_high);
  366.         HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr);
  367.         CloseHandle(fd);
  368.  
  369.         if (!mmap) {
  370.             std::cerr << "CreateFileMapping() failed" << std::endl;
  371.             exit(1);
  372.         }
  373.  
  374.         *mapping = (uint64_t)mmap;
  375.         *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0);
  376.  
  377.         if (!*baseAddress) {
  378.             std::cerr << "MapViewOfFile() failed, name = " << fname
  379.                       << ", error = " << GetLastError() << std::endl;
  380.             exit(1);
  381.         }
  382. #endif
  383.         uint8_t* data = (uint8_t*)*baseAddress;
  384.  
  385.         if (   *data++ != *TB_MAGIC++
  386.             || *data++ != *TB_MAGIC++
  387.             || *data++ != *TB_MAGIC++
  388.             || *data++ != *TB_MAGIC) {
  389.             std::cerr << "Corrupted table in file " << fname << std::endl;
  390.             unmap(*baseAddress, *mapping);
  391.             return *baseAddress = nullptr, nullptr;
  392.         }
  393.  
  394.         return data;
  395.     }
  396.  
  397.     static void unmap(void* baseAddress, uint64_t mapping) {
  398.  
  399. #ifndef _WIN32
  400.         munmap(baseAddress, mapping);
  401. #else
  402.         UnmapViewOfFile(baseAddress);
  403.         CloseHandle((HANDLE)mapping);
  404. #endif
  405.     }
  406. };
  407.  
  408. std::string TBFile::Paths;
  409.  
  410. WDLEntry::WDLEntry(const std::string& code) {
  411.  
  412.     StateInfo st;
  413.     Position pos;
  414.  
  415.     memset(this, 0, sizeof(WDLEntry));
  416.  
  417.     ready = false;
  418.     key = pos.set(code, WHITE, &st).material_key();
  419.     pieceCount = popcount(pos.pieces());
  420.     hasPawns = pos.pieces(PAWN);
  421.  
  422.     for (Color c = WHITE; c <= BLACK; ++c)
  423.         for (PieceType pt = PAWN; pt < KING; ++pt)
  424.             if (popcount(pos.pieces(c, pt)) == 1)
  425.                 hasUniquePieces = true;
  426.  
  427.     if (hasPawns) {
  428.         // Set the leading color. In case both sides have pawns the leading color
  429.         // is the side with less pawns because this leads to better compression.
  430.         bool c =   !pos.count<PAWN>(BLACK)
  431.                 || (   pos.count<PAWN>(WHITE)
  432.                     && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
  433.  
  434.         pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK);
  435.         pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE);
  436.     }
  437.  
  438.     key2 = pos.set(code, BLACK, &st).material_key();
  439. }
  440.  
  441. WDLEntry::~WDLEntry() {
  442.  
  443.     if (baseAddress)
  444.         TBFile::unmap(baseAddress, mapping);
  445.  
  446.     for (int i = 0; i < 2; ++i)
  447.         if (hasPawns)
  448.             for (File f = FILE_A; f <= FILE_D; ++f)
  449.                 delete pawnTable.file[i][f].precomp;
  450.         else
  451.             delete pieceTable[i].precomp;
  452. }
  453.  
  454. DTZEntry::DTZEntry(const WDLEntry& wdl) {
  455.  
  456.     memset(this, 0, sizeof(DTZEntry));
  457.  
  458.     ready = false;
  459.     key = wdl.key;
  460.     key2 = wdl.key2;
  461.     pieceCount = wdl.pieceCount;
  462.     hasPawns = wdl.hasPawns;
  463.     hasUniquePieces = wdl.hasUniquePieces;
  464.  
  465.     if (hasPawns) {
  466.         pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0];
  467.         pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1];
  468.     }
  469. }
  470.  
  471. DTZEntry::~DTZEntry() {
  472.  
  473.     if (baseAddress)
  474.         TBFile::unmap(baseAddress, mapping);
  475.  
  476.     if (hasPawns)
  477.         for (File f = FILE_A; f <= FILE_D; ++f)
  478.             delete pawnTable.file[f].precomp;
  479.     else
  480.         delete pieceTable.precomp;
  481. }
  482.  
  483. void HashTable::insert(const std::vector<PieceType>& pieces) {
  484.  
  485.     std::string code;
  486.  
  487.     for (PieceType pt : pieces)
  488.         code += PieceToChar[pt];
  489.  
  490.     TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK
  491.  
  492.     if (!file.is_open()) // Only WDL file is checked
  493.         return;
  494.  
  495.     file.close();
  496.  
  497.     MaxCardinality = std::max((int)pieces.size(), MaxCardinality);
  498.  
  499.     wdlTable.emplace_back(code);
  500.     dtzTable.emplace_back(wdlTable.back());
  501.  
  502.     insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back());
  503.     insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back());
  504. }
  505.  
  506. // TB tables are compressed with canonical Huffman code. The compressed data is divided into
  507. // blocks of size d->sizeofBlock, and each block stores a variable number of symbols.
  508. // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols
  509. // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536
  510. // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after
  511. // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most
  512. // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly
  513. // of draws or mostly of wins, but such tables are actually quite common. In principle, the
  514. // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for
  515. // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so
  516. // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long.
  517. // The generator picks the size that leads to the smallest table. The "book" of symbols and
  518. // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file
  519. // will have one table for wtm and one for btm, a TB file with pawns will have tables per
  520. // file a,b,c,d also in this case one set for wtm and one for btm.
  521. int decompress_pairs(PairsData* d, uint64_t idx) {
  522.  
  523.     // Special case where all table positions store the same value
  524.     if (d->flags & TBFlag::SingleValue)
  525.         return d->minSymLen;
  526.  
  527.     // First we need to locate the right block that stores the value at index "idx".
  528.     // Because each block n stores blockLength[n] + 1 values, the index i of the block
  529.     // that contains the value at position idx is:
  530.     //
  531.     //                    for (i = -1, sum = 0; sum <= idx; i++)
  532.     //                        sum += blockLength[i + 1] + 1;
  533.     //
  534.     // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that
  535.     // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry
  536.     // that stores the blockLength[] index and the offset within that block of the value
  537.     // with index I(k), where:
  538.     //
  539.     //       I(k) = k * d->span + d->span / 2      (1)
  540.  
  541.     // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1)
  542.     uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast
  543.  
  544.     // Then we read the corresponding SparseIndex[] entry
  545.     uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block);
  546.     int offset     = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset);
  547.  
  548.     // Now compute the difference idx - I(k). From definition of k we know that
  549.     //
  550.     //       idx = k * d->span + idx % d->span    (2)
  551.     //
  552.     // So from (1) and (2) we can compute idx - I(K):
  553.     int diff = idx % d->span - d->span / 2;
  554.  
  555.     // Sum the above to offset to find the offset corresponding to our idx
  556.     offset += diff;
  557.  
  558.     // Move to previous/next block, until we reach the correct block that contains idx,
  559.     // that is when 0 <= offset <= d->blockLength[block]
  560.     while (offset < 0)
  561.         offset += d->blockLength[--block] + 1;
  562.  
  563.     while (offset > d->blockLength[block])
  564.         offset -= d->blockLength[block++] + 1;
  565.  
  566.     // Finally, we find the start address of our block of canonical Huffman symbols
  567.     uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock);
  568.  
  569.     // Read the first 64 bits in our block, this is a (truncated) sequence of
  570.     // unknown number of symbols of unknown length but we know the first one
  571.     // is at the beginning of this 64 bits sequence.
  572.     uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2;
  573.     int buf64Size = 64;
  574.     Sym sym;
  575.  
  576.     while (true) {
  577.         int len = 0; // This is the symbol length - d->min_sym_len
  578.  
  579.         // Now get the symbol length. For any symbol s64 of length l right-padded
  580.         // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we
  581.         // can find the symbol length iterating through base64[].
  582.         while (buf64 < d->base64[len])
  583.             ++len;
  584.  
  585.         // All the symbols of a given length are consecutive integers (numerical
  586.         // sequence property), so we can compute the offset of our symbol of
  587.         // length len, stored at the beginning of buf64.
  588.         sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast
  589.  
  590.         // Now add the value of the lowest symbol of length len to get our symbol
  591.         sym += number<Sym, LittleEndian>(&d->lowestSym[len]);
  592.  
  593.         // If our offset is within the number of values represented by symbol sym
  594.         // we are done...
  595.         if (offset < d->symlen[sym] + 1)
  596.             break;
  597.  
  598.         // ...otherwise update the offset and continue to iterate
  599.         offset -= d->symlen[sym] + 1;
  600.         len += d->minSymLen; // Get the real length
  601.         buf64 <<= len;       // Consume the just processed symbol
  602.         buf64Size -= len;
  603.  
  604.         if (buf64Size <= 32) { // Refill the buffer
  605.             buf64Size += 32;
  606.             buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size);
  607.         }
  608.     }
  609.  
  610.     // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols.
  611.     // We binary-search for our value recursively expanding into the left and
  612.     // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1
  613.     // that will store the value we need.
  614.     while (d->symlen[sym]) {
  615.  
  616.         Sym left = d->btree[sym].get<LR::Left>();
  617.  
  618.         // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and
  619.         // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then
  620.         // we know that, for instance the ten-th value (offset = 10) will be on
  621.         // the left side because in Recursive Pairing child symbols are adjacent.
  622.         if (offset < d->symlen[left] + 1)
  623.             sym = left;
  624.         else {
  625.             offset -= d->symlen[left] + 1;
  626.             sym = d->btree[sym].get<LR::Right>();
  627.         }
  628.     }
  629.  
  630.     return d->btree[sym].get<LR::Value>();
  631. }
  632.  
  633. bool check_dtz_stm(WDLEntry*, int, File) { return true; }
  634.  
  635. bool check_dtz_stm(DTZEntry* entry, int stm, File f) {
  636.  
  637.     int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
  638.                                 : entry->pieceTable.precomp->flags;
  639.  
  640.     return   (flags & TBFlag::STM) == stm
  641.           || ((entry->key == entry->key2) && !entry->hasPawns);
  642. }
  643.  
  644. // DTZ scores are sorted by frequency of occurrence and then assigned the
  645. // values 0, 1, 2, ... in order of decreasing frequency. This is done for each
  646. // of the four WDLScore values. The mapping information necessary to reconstruct
  647. // the original values is stored in the TB file and read during map[] init.
  648. WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); }
  649.  
  650. int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) {
  651.  
  652.     const int WDLMap[] = { 1, 3, 0, 2, 0 };
  653.  
  654.     int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
  655.                                 : entry->pieceTable.precomp->flags;
  656.  
  657.     uint8_t* map = entry->hasPawns ? entry->pawnTable.map
  658.                                    : entry->pieceTable.map;
  659.  
  660.     uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx
  661.                                     : entry->pieceTable.map_idx;
  662.     if (flags & TBFlag::Mapped)
  663.         value = map[idx[WDLMap[wdl + 2]] + value];
  664.  
  665.     // DTZ tables store distance to zero in number of moves or plies. We
  666.     // want to return plies, so we have convert to plies when needed.
  667.     if (   (wdl == WDLWin  && !(flags & TBFlag::WinPlies))
  668.         || (wdl == WDLLoss && !(flags & TBFlag::LossPlies))
  669.         ||  wdl == WDLCursedWin
  670.         ||  wdl == WDLBlessedLoss)
  671.         value *= 2;
  672.  
  673.     return value + 1;
  674. }
  675.  
  676. // Compute a unique index out of a position and use it to probe the TB file. To
  677. // encode k pieces of same type and color, first sort the pieces by square in
  678. // ascending order s1 <= s2 <= ... <= sk then compute the unique index as:
  679. //
  680. //      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
  681. //
  682. template<typename Entry, typename T = typename Ret<Entry>::type>
  683. T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) {
  684.  
  685.     const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
  686.  
  687.     Square squares[TBPIECES];
  688.     Piece pieces[TBPIECES];
  689.     uint64_t idx;
  690.     int next = 0, size = 0, leadPawnsCnt = 0;
  691.     PairsData* d;
  692.     Bitboard b, leadPawns = 0;
  693.     File tbFile = FILE_A;
  694.  
  695.     // A given TB entry like KRK has associated two material keys: KRvk and Kvkr.
  696.     // If both sides have the same pieces keys are equal. In this case TB tables
  697.     // only store the 'white to move' case, so if the position to lookup has black
  698.     // to move, we need to switch the color and flip the squares before to lookup.
  699.     bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move());
  700.  
  701.     // TB files are calculated for white as stronger side. For instance we have
  702.     // KRvK, not KvKR. A position where stronger side is white will have its
  703.     // material key == entry->key, otherwise we have to switch the color and
  704.     // flip the squares before to lookup.
  705.     bool blackStronger = (pos.material_key() != entry->key);
  706.  
  707.     int flipColor   = (symmetricBlackToMove || blackStronger) * 8;
  708.     int flipSquares = (symmetricBlackToMove || blackStronger) * 070;
  709.     int stm         = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move();
  710.  
  711.     // For pawns, TB files store 4 separate tables according if leading pawn is on
  712.     // file a, b, c or d after reordering. The leading pawn is the one with maximum
  713.     // MapPawns[] value, that is the one most toward the edges and with lowest rank.
  714.     if (entry->hasPawns) {
  715.  
  716.         // In all the 4 tables, pawns are at the beginning of the piece sequence and
  717.         // their color is the reference one. So we just pick the first one.
  718.         Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor);
  719.  
  720.         assert(type_of(pc) == PAWN);
  721.  
  722.         leadPawns = b = pos.pieces(color_of(pc), PAWN);
  723.         do
  724.             squares[size++] = pop_lsb(&b) ^ flipSquares;
  725.         while (b);
  726.  
  727.         leadPawnsCnt = size;
  728.  
  729.         std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp));
  730.  
  731.         tbFile = file_of(squares[0]);
  732.         if (tbFile > FILE_D)
  733.             tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1
  734.  
  735.         d = item(entry->pawnTable , stm, tbFile).precomp;
  736.     } else
  737.         d = item(entry->pieceTable, stm, tbFile).precomp;
  738.  
  739.     // DTZ tables are one-sided, i.e. they store positions only for white to
  740.     // move or only for black to move, so check for side to move to be stm,
  741.     // early exit otherwise.
  742.     if (!IsWDL && !check_dtz_stm(entry, stm, tbFile))
  743.         return *result = CHANGE_STM, T();
  744.  
  745.     // Now we are ready to get all the position pieces (but the lead pawns) and
  746.     // directly map them to the correct color and square.
  747.     b = pos.pieces() ^ leadPawns;
  748.     do {
  749.         Square s = pop_lsb(&b);
  750.         squares[size] = s ^ flipSquares;
  751.         pieces[size++] = Piece(pos.piece_on(s) ^ flipColor);
  752.     } while (b);
  753.  
  754.     assert(size >= 2);
  755.  
  756.     // Then we reorder the pieces to have the same sequence as the one stored
  757.     // in precomp->pieces[i]: the sequence that ensures the best compression.
  758.     for (int i = leadPawnsCnt; i < size; ++i)
  759.         for (int j = i; j < size; ++j)
  760.             if (d->pieces[i] == pieces[j])
  761.             {
  762.                 std::swap(pieces[i], pieces[j]);
  763.                 std::swap(squares[i], squares[j]);
  764.                 break;
  765.             }
  766.  
  767.     // Now we map again the squares so that the square of the lead piece is in
  768.     // the triangle A1-D1-D4.
  769.     if (file_of(squares[0]) > FILE_D)
  770.         for (int i = 0; i < size; ++i)
  771.             squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1
  772.  
  773.     // Encode leading pawns starting with the one with minimum MapPawns[] and
  774.     // proceeding in ascending order.
  775.     if (entry->hasPawns) {
  776.         idx = LeadPawnIdx[leadPawnsCnt][squares[0]];
  777.  
  778.         std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp);
  779.  
  780.         for (int i = 1; i < leadPawnsCnt; ++i)
  781.             idx += Binomial[i][MapPawns[squares[i]]];
  782.  
  783.         goto encode_remaining; // With pawns we have finished special treatments
  784.     }
  785.  
  786.     // In positions withouth pawns, we further flip the squares to ensure leading
  787.     // piece is below RANK_5.
  788.     if (rank_of(squares[0]) > RANK_4)
  789.         for (int i = 0; i < size; ++i)
  790.             squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1
  791.  
  792.     // Look for the first piece of the leading group not on the A1-D4 diagonal
  793.     // and ensure it is mapped below the diagonal.
  794.     for (int i = 0; i < d->groupLen[0]; ++i) {
  795.         if (!off_A1H8(squares[i]))
  796.             continue;
  797.  
  798.         if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3
  799.             for (int j = i; j < size; ++j)
  800.                 squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63);
  801.         break;
  802.     }
  803.  
  804.     // Encode the leading group.
  805.     //
  806.     // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR
  807.     // and bK (each 0...63). The simplest way to map this position to an index
  808.     // is like this:
  809.     //
  810.     //   index = wK * 64 * 64 + wR * 64 + bK;
  811.     //
  812.     // But this way the TB is going to have 64*64*64 = 262144 positions, with
  813.     // lots of positions being equivalent (because they are mirrors of each
  814.     // other) and lots of positions being invalid (two pieces on one square,
  815.     // adjacent kings, etc.).
  816.     // Usually the first step is to take the wK and bK together. There are just
  817.     // 462 ways legal and not-mirrored ways to place the wK and bK on the board.
  818.     // Once we have placed the wK and bK, there are 62 squares left for the wR
  819.     // Mapping its square from 0..63 to available squares 0..61 can be done like:
  820.     //
  821.     //   wR -= (wR > wK) + (wR > bK);
  822.     //
  823.     // In words: if wR "comes later" than wK, we deduct 1, and the same if wR
  824.     // "comes later" than bK. In case of two same pieces like KRRvK we want to
  825.     // place the two Rs "together". If we have 62 squares left, we can place two
  826.     // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be
  827.     // swapped and still get the same position.)
  828.     //
  829.     // In case we have at least 3 unique pieces (inlcuded kings) we encode them
  830.     // together.
  831.     if (entry->hasUniquePieces) {
  832.  
  833.         int adjust1 =  squares[1] > squares[0];
  834.         int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]);
  835.  
  836.         // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3
  837.         // triangle to 0...5. There are 63 squares for second piece and and 62
  838.         // (mapped to 0...61) for the third.
  839.         if (off_A1H8(squares[0]))
  840.             idx = (   MapA1D1D4[squares[0]]  * 63
  841.                    + (squares[1] - adjust1)) * 62
  842.                    +  squares[2] - adjust2;
  843.  
  844.         // First piece is on a1-h8 diagonal, second below: map this occurence to
  845.         // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal
  846.         // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27.
  847.         else if (off_A1H8(squares[1]))
  848.             idx = (  6 * 63 + rank_of(squares[0]) * 28
  849.                    + MapB1H1H7[squares[1]])       * 62
  850.                    + squares[2] - adjust2;
  851.  
  852.         // First two pieces are on a1-h8 diagonal, third below
  853.         else if (off_A1H8(squares[2]))
  854.             idx =  6 * 63 * 62 + 4 * 28 * 62
  855.                  +  rank_of(squares[0])        * 7 * 28
  856.                  + (rank_of(squares[1]) - adjust1) * 28
  857.                  +  MapB1H1H7[squares[2]];
  858.  
  859.         // All 3 pieces on the diagonal a1-h8
  860.         else
  861.             idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28
  862.                  +  rank_of(squares[0])         * 7 * 6
  863.                  + (rank_of(squares[1]) - adjust1)  * 6
  864.                  + (rank_of(squares[2]) - adjust2);
  865.     } else
  866.         // We don't have at least 3 unique pieces, like in KRRvKBB, just map
  867.         // the kings.
  868.         idx = MapKK[MapA1D1D4[squares[0]]][squares[1]];
  869.  
  870. encode_remaining:
  871.     idx *= d->groupIdx[0];
  872.     Square* groupSq = squares + d->groupLen[0];
  873.  
  874.     // Encode remainig pawns then pieces according to square, in ascending order
  875.     bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1];
  876.  
  877.     while (d->groupLen[++next])
  878.     {
  879.         std::sort(groupSq, groupSq + d->groupLen[next]);
  880.         uint64_t n = 0;
  881.  
  882.         // Map down a square if "comes later" than a square in the previous
  883.         // groups (similar to what done earlier for leading group pieces).
  884.         for (int i = 0; i < d->groupLen[next]; ++i)
  885.         {
  886.             auto f = [&](Square s) { return groupSq[i] > s; };
  887.             auto adjust = std::count_if(squares, groupSq, f);
  888.             n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns];
  889.         }
  890.  
  891.         remainingPawns = false;
  892.         idx += n * d->groupIdx[next];
  893.         groupSq += d->groupLen[next];
  894.     }
  895.  
  896.     // Now that we have the index, decompress the pair and get the score
  897.     return map_score(entry, tbFile, decompress_pairs(d, idx), wdl);
  898. }
  899.  
  900. // Group together pieces that will be encoded together. The general rule is that
  901. // a group contains pieces of same type and color. The exception is the leading
  902. // group that, in case of positions withouth pawns, can be formed by 3 different
  903. // pieces (default) or by the king pair when there is not a unique piece apart
  904. // from the kings. When there are pawns, pawns are always first in pieces[].
  905. //
  906. // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K
  907. //
  908. // The actual grouping depends on the TB generator and can be inferred from the
  909. // sequence of pieces in piece[] array.
  910. template<typename T>
  911. void set_groups(T& e, PairsData* d, int order[], File f) {
  912.  
  913.     int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2;
  914.     d->groupLen[n] = 1;
  915.  
  916.     // Number of pieces per group is stored in groupLen[], for instance in KRKN
  917.     // the encoder will default on '111', so groupLen[] will be (3, 1).
  918.     for (int i = 1; i < e.pieceCount; ++i)
  919.         if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1])
  920.             d->groupLen[n]++;
  921.         else
  922.             d->groupLen[++n] = 1;
  923.  
  924.     d->groupLen[++n] = 0; // Zero-terminated
  925.  
  926.     // The sequence in pieces[] defines the groups, but not the order in which
  927.     // they are encoded. If the pieces in a group g can be combined on the board
  928.     // in N(g) different ways, then the position encoding will be of the form:
  929.     //
  930.     //           g1 * N(g2) * N(g3) + g2 * N(g3) + g3
  931.     //
  932.     // This ensures unique encoding for the whole position. The order of the
  933.     // groups is a per-table parameter and could not follow the canonical leading
  934.     // pawns/pieces -> remainig pawns -> remaining pieces. In particular the
  935.     // first group is at order[0] position and the remaining pawns, when present,
  936.     // are at order[1] position.
  937.     bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
  938.     int next = pp ? 2 : 1;
  939.     int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0);
  940.     uint64_t idx = 1;
  941.  
  942.     for (int k = 0; next < n || k == order[0] || k == order[1]; ++k)
  943.         if (k == order[0]) // Leading pawns or pieces
  944.         {
  945.             d->groupIdx[0] = idx;
  946.             idx *=         e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f]
  947.                   : e.hasUniquePieces ? 31332 : 462;
  948.         }
  949.         else if (k == order[1]) // Remaining pawns
  950.         {
  951.             d->groupIdx[1] = idx;
  952.             idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]];
  953.         }
  954.         else // Remainig pieces
  955.         {
  956.             d->groupIdx[next] = idx;
  957.             idx *= Binomial[d->groupLen[next]][freeSquares];
  958.             freeSquares -= d->groupLen[next++];
  959.         }
  960.  
  961.     d->groupIdx[n] = idx;
  962. }
  963.  
  964. // In Recursive Pairing each symbol represents a pair of childern symbols. So
  965. // read d->btree[] symbols data and expand each one in his left and right child
  966. // symbol until reaching the leafs that represent the symbol value.
  967. uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) {
  968.  
  969.     visited[s] = true; // We can set it now because tree is acyclic
  970.     Sym sr = d->btree[s].get<LR::Right>();
  971.  
  972.     if (sr == 0xFFF)
  973.         return 0;
  974.  
  975.     Sym sl = d->btree[s].get<LR::Left>();
  976.  
  977.     if (!visited[sl])
  978.         d->symlen[sl] = set_symlen(d, sl, visited);
  979.  
  980.     if (!visited[sr])
  981.         d->symlen[sr] = set_symlen(d, sr, visited);
  982.  
  983.     return d->symlen[sl] + d->symlen[sr] + 1;
  984. }
  985.  
  986. uint8_t* set_sizes(PairsData* d, uint8_t* data) {
  987.  
  988.     d->flags = *data++;
  989.  
  990.     if (d->flags & TBFlag::SingleValue) {
  991.         d->blocksNum = d->blockLengthSize = 0;
  992.         d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init
  993.         d->minSymLen = *data++; // Here we store the single value
  994.         return data;
  995.     }
  996.  
  997.     // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[]
  998.     // element stores the biggest index that is the tb size.
  999.     uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen];
  1000.  
  1001.     d->sizeofBlock = 1ULL << *data++;
  1002.     d->span = 1ULL << *data++;
  1003.     d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast
  1004.     int padding = number<uint8_t, LittleEndian>(data++);
  1005.     d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t);
  1006.     d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[]
  1007.                                                  // does not point out of range.
  1008.     d->maxSymLen = *data++;
  1009.     d->minSymLen = *data++;
  1010.     d->lowestSym = (Sym*)data;
  1011.     d->base64.resize(d->maxSymLen - d->minSymLen + 1);
  1012.  
  1013.     // The canonical code is ordered such that longer symbols (in terms of
  1014.     // the number of bits of their Huffman code) have lower numeric value,
  1015.     // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian).
  1016.     // Starting from this we compute a base64[] table indexed by symbol length
  1017.     // and containing 64 bit values so that d->base64[i] >= d->base64[i+1].
  1018.     // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf
  1019.     for (int i = d->base64.size() - 2; i >= 0; --i) {
  1020.         d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i])
  1021.                                          - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2;
  1022.  
  1023.         assert(d->base64[i] * 2 >= d->base64[i+1]);
  1024.     }
  1025.  
  1026.     // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more
  1027.     // than d->base64[i+1] and given the above assert condition, we ensure that
  1028.     // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i
  1029.     // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i].
  1030.     for (size_t i = 0; i < d->base64.size(); ++i)
  1031.         d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits
  1032.  
  1033.     data += d->base64.size() * sizeof(Sym);
  1034.     d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t);
  1035.     d->btree = (LR*)data;
  1036.  
  1037.     // The comrpession scheme used is "Recursive Pairing", that replaces the most
  1038.     // frequent adjacent pair of symbols in the source message by a new symbol,
  1039.     // reevaluating the frequencies of all of the symbol pairs with respect to
  1040.     // the extended alphabet, and then repeating the process.
  1041.     // See http://www.larsson.dogma.net/dcc99.pdf
  1042.     std::vector<bool> visited(d->symlen.size());
  1043.  
  1044.     for (Sym sym = 0; sym < d->symlen.size(); ++sym)
  1045.         if (!visited[sym])
  1046.             d->symlen[sym] = set_symlen(d, sym, visited);
  1047.  
  1048.     return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1);
  1049. }
  1050.  
  1051. template<typename T>
  1052. uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; }
  1053.  
  1054. template<typename T>
  1055. uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) {
  1056.  
  1057.     p.map = data;
  1058.  
  1059.     for (File f = FILE_A; f <= maxFile; ++f) {
  1060.         if (item(p, 0, f).precomp->flags & TBFlag::Mapped)
  1061.             for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x
  1062.                 item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1);
  1063.                 data += *data + 1;
  1064.             }
  1065.     }
  1066.  
  1067.     return data += (uintptr_t)data & 1; // Word alignment
  1068. }
  1069.  
  1070. template<typename Entry, typename T>
  1071. void do_init(Entry& e, T& p, uint8_t* data) {
  1072.  
  1073.     const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
  1074.  
  1075.     PairsData* d;
  1076.  
  1077.     enum { Split = 1, HasPawns = 2 };
  1078.  
  1079.     assert(e.hasPawns        == !!(*data & HasPawns));
  1080.     assert((e.key != e.key2) == !!(*data & Split));
  1081.  
  1082.     data++; // First byte stores flags
  1083.  
  1084.     const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1;
  1085.     const File MaxFile = e.hasPawns ? FILE_D : FILE_A;
  1086.  
  1087.     bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
  1088.  
  1089.     assert(!pp || e.pawnTable.pawnCount[0]);
  1090.  
  1091.     for (File f = FILE_A; f <= MaxFile; ++f) {
  1092.  
  1093.         for (int i = 0; i < Sides; i++)
  1094.             item(p, i, f).precomp = new PairsData();
  1095.  
  1096.         int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF },
  1097.                            { *data >>  4, pp ? *(data + 1) >>  4 : 0xF } };
  1098.         data += 1 + pp;
  1099.  
  1100.         for (int k = 0; k < e.pieceCount; ++k, ++data)
  1101.             for (int i = 0; i < Sides; i++)
  1102.                 item(p, i, f).precomp->pieces[k] = Piece(i ? *data >>  4 : *data & 0xF);
  1103.  
  1104.         for (int i = 0; i < Sides; ++i)
  1105.             set_groups(e, item(p, i, f).precomp, order[i], f);
  1106.     }
  1107.  
  1108.     data += (uintptr_t)data & 1; // Word alignment
  1109.  
  1110.     for (File f = FILE_A; f <= MaxFile; ++f)
  1111.         for (int i = 0; i < Sides; i++)
  1112.             data = set_sizes(item(p, i, f).precomp, data);
  1113.  
  1114.     if (!IsWDL)
  1115.         data = set_dtz_map(e, p, data, MaxFile);
  1116.  
  1117.     for (File f = FILE_A; f <= MaxFile; ++f)
  1118.         for (int i = 0; i < Sides; i++) {
  1119.             (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data;
  1120.             data += d->sparseIndexSize * sizeof(SparseEntry);
  1121.         }
  1122.  
  1123.     for (File f = FILE_A; f <= MaxFile; ++f)
  1124.         for (int i = 0; i < Sides; i++) {
  1125.             (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data;
  1126.             data += d->blockLengthSize * sizeof(uint16_t);
  1127.         }
  1128.  
  1129.     for (File f = FILE_A; f <= MaxFile; ++f)
  1130.         for (int i = 0; i < Sides; i++) {
  1131.             data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment
  1132.             (d = item(p, i, f).precomp)->data = data;
  1133.             data += d->blocksNum * d->sizeofBlock;
  1134.         }
  1135. }
  1136.  
  1137. template<typename Entry>
  1138. void* init(Entry& e, const Position& pos) {
  1139.  
  1140.     const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
  1141.  
  1142.     static Mutex mutex;
  1143.  
  1144.     // Avoid a thread reads 'ready' == true while another is still in do_init(),
  1145.     // this could happen due to compiler reordering.
  1146.     if (e.ready.load(std::memory_order_acquire))
  1147.         return e.baseAddress;
  1148.  
  1149.     std::unique_lock<Mutex> lk(mutex);
  1150.  
  1151.     if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock
  1152.         return e.baseAddress;
  1153.  
  1154.     // Pieces strings in decreasing order for each color, like ("KPP","KR")
  1155.     std::string fname, w, b;
  1156.     for (PieceType pt = KING; pt >= PAWN; --pt) {
  1157.         w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]);
  1158.         b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]);
  1159.     }
  1160.  
  1161.     const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 },
  1162.                                     { 0x71, 0xE8, 0x23, 0x5D } };
  1163.  
  1164.     fname =  (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w)
  1165.            + (IsWDL ? ".rtbw" : ".rtbz");
  1166.  
  1167.     uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]);
  1168.     if (data)
  1169.         e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data);
  1170.  
  1171.     e.ready.store(true, std::memory_order_release);
  1172.     return e.baseAddress;
  1173. }
  1174.  
  1175. template<typename E, typename T = typename Ret<E>::type>
  1176. T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) {
  1177.  
  1178.     if (!(pos.pieces() ^ pos.pieces(KING)))
  1179.         return T(WDLDraw); // KvK
  1180.  
  1181.     E* entry = EntryTable.get<E>(pos.material_key());
  1182.  
  1183.     if (!entry || !init(*entry, pos))
  1184.         return *result = FAIL, T();
  1185.  
  1186.     return do_probe_table(pos, entry, wdl, result);
  1187. }
  1188.  
  1189. // For a position where the side to move has a winning capture it is not necessary
  1190. // to store a winning value so the generator treats such positions as "don't cares"
  1191. // and tries to assign to it a value that improves the compression ratio. Similarly,
  1192. // if the side to move has a drawing capture, then the position is at least drawn.
  1193. // If the position is won, then the TB needs to store a win value. But if the
  1194. // position is drawn, the TB may store a loss value if that is better for compression.
  1195. // All of this means that during probing, the engine must look at captures and probe
  1196. // their results and must probe the position itself. The "best" result of these
  1197. // probes is the correct result for the position.
  1198. // DTZ table don't store values when a following move is a zeroing winning move
  1199. // (winning capture or winning pawn move). Also DTZ store wrong values for positions
  1200. // where the best move is an ep-move (even if losing). So in all these cases set
  1201. // the state to ZEROING_BEST_MOVE.
  1202. template<bool CheckZeroingMoves = false>
  1203. WDLScore search(Position& pos, ProbeState* result) {
  1204.  
  1205.     WDLScore value, bestValue = WDLLoss;
  1206.     StateInfo st;
  1207.  
  1208.     auto moveList = MoveList<LEGAL>(pos);
  1209.     size_t totalCount = moveList.size(), moveCount = 0;
  1210.  
  1211.     for (const Move& move : moveList)
  1212.     {
  1213.         if (   !pos.capture(move)
  1214.             && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN))
  1215.             continue;
  1216.  
  1217.         moveCount++;
  1218.  
  1219.         pos.do_move(move, st);
  1220.         value = -search(pos, result);
  1221.         pos.undo_move(move);
  1222.  
  1223.         if (*result == FAIL)
  1224.             return WDLDraw;
  1225.  
  1226.         if (value > bestValue)
  1227.         {
  1228.             bestValue = value;
  1229.  
  1230.             if (value >= WDLWin)
  1231.             {
  1232.                 *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move
  1233.                 return value;
  1234.             }
  1235.         }
  1236.     }
  1237.  
  1238.     // In case we have already searched all the legal moves we don't have to probe
  1239.     // the TB because the stored score could be wrong. For instance TB tables
  1240.     // do not contain information on position with ep rights, so in this case
  1241.     // the result of probe_wdl_table is wrong. Also in case of only capture
  1242.     // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to
  1243.     // return with ZEROING_BEST_MOVE set.
  1244.     bool noMoreMoves = (moveCount && moveCount == totalCount);
  1245.  
  1246.     if (noMoreMoves)
  1247.         value = bestValue;
  1248.     else
  1249.     {
  1250.         value = probe_table<WDLEntry>(pos, result);
  1251.  
  1252.         if (*result == FAIL)
  1253.             return WDLDraw;
  1254.     }
  1255.  
  1256.     // DTZ stores a "don't care" value if bestValue is a win
  1257.     if (bestValue >= value)
  1258.         return *result = (   bestValue > WDLDraw
  1259.                           || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue;
  1260.  
  1261.     return *result = OK, value;
  1262. }
  1263.  
  1264. } // namespace
  1265.  
  1266. void Tablebases::init(const std::string& paths) {
  1267.  
  1268.     EntryTable.clear();
  1269.     MaxCardinality = 0;
  1270.     TBFile::Paths = paths;
  1271.  
  1272.     if (paths.empty() || paths == "<empty>")
  1273.         return;
  1274.  
  1275.     // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27
  1276.     int code = 0;
  1277.     for (Square s = SQ_A1; s <= SQ_H8; ++s)
  1278.         if (off_A1H8(s) < 0)
  1279.             MapB1H1H7[s] = code++;
  1280.  
  1281.     // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9
  1282.     std::vector<Square> diagonal;
  1283.     code = 0;
  1284.     for (Square s = SQ_A1; s <= SQ_D4; ++s)
  1285.         if (off_A1H8(s) < 0 && file_of(s) <= FILE_D)
  1286.             MapA1D1D4[s] = code++;
  1287.  
  1288.         else if (!off_A1H8(s) && file_of(s) <= FILE_D)
  1289.             diagonal.push_back(s);
  1290.  
  1291.     // Diagonal squares are encoded as last ones
  1292.     for (auto s : diagonal)
  1293.         MapA1D1D4[s] = code++;
  1294.  
  1295.     // MapKK[] encodes all the 461 possible legal positions of two kings where
  1296.     // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4
  1297.     // diagonal, the other one shall not to be above the a1-h8 diagonal.
  1298.     std::vector<std::pair<int, Square>> bothOnDiagonal;
  1299.     code = 0;
  1300.     for (int idx = 0; idx < 10; idx++)
  1301.         for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1)
  1302.             if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0
  1303.             {
  1304.                 for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
  1305.                     if ((PseudoAttacks[KING][s1] | s1) & s2)
  1306.                         continue; // Illegal position
  1307.  
  1308.                     else if (!off_A1H8(s1) && off_A1H8(s2) > 0)
  1309.                         continue; // First on diagonal, second above
  1310.  
  1311.                     else if (!off_A1H8(s1) && !off_A1H8(s2))
  1312.                         bothOnDiagonal.push_back(std::make_pair(idx, s2));
  1313.  
  1314.                     else
  1315.                         MapKK[idx][s2] = code++;
  1316.             }
  1317.  
  1318.     // Legal positions with both kings on diagonal are encoded as last ones
  1319.     for (auto p : bothOnDiagonal)
  1320.         MapKK[p.first][p.second] = code++;
  1321.  
  1322.     // Binomial[] stores the Binomial Coefficents using Pascal rule. There
  1323.     // are Binomial[k][n] ways to choose k elements from a set of n elements.
  1324.     Binomial[0][0] = 1;
  1325.  
  1326.     for (int n = 1; n < 64; n++) // Squares
  1327.         for (int k = 0; k < 6 && k <= n; ++k) // Pieces
  1328.             Binomial[k][n] =  (k > 0 ? Binomial[k - 1][n - 1] : 0)
  1329.                             + (k < n ? Binomial[k    ][n - 1] : 0);
  1330.  
  1331.     // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible
  1332.     // available squares when the leading one is in 's'. Moreover the pawn with
  1333.     // highest MapPawns[] is the leading pawn, the one nearest the edge and,
  1334.     // among pawns with same file, the one with lowest rank.
  1335.     int availableSquares = 47; // Available squares when lead pawn is in a2
  1336.  
  1337.     // Init the tables for the encoding of leading pawns group: with 6-men TB we
  1338.     // can have up to 4 leading pawns (KPPPPK).
  1339.     for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt)
  1340.         for (File f = FILE_A; f <= FILE_D; ++f)
  1341.         {
  1342.             // Restart the index at every file because TB table is splitted
  1343.             // by file, so we can reuse the same index for different files.
  1344.             int idx = 0;
  1345.  
  1346.             // Sum all possible combinations for a given file, starting with
  1347.             // the leading pawn on rank 2 and increasing the rank.
  1348.             for (Rank r = RANK_2; r <= RANK_7; ++r)
  1349.             {
  1350.                 Square sq = make_square(f, r);
  1351.  
  1352.                 // Compute MapPawns[] at first pass.
  1353.                 // If sq is the leading pawn square, any other pawn cannot be
  1354.                 // below or more toward the edge of sq. There are 47 available
  1355.                 // squares when sq = a2 and reduced by 2 for any rank increase
  1356.                 // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45
  1357.                 if (leadPawnsCnt == 1)
  1358.                 {
  1359.                     MapPawns[sq] = availableSquares--;
  1360.                     MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip
  1361.                 }
  1362.                 LeadPawnIdx[leadPawnsCnt][sq] = idx;
  1363.                 idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]];
  1364.             }
  1365.             // After a file is traversed, store the cumulated per-file index
  1366.             LeadPawnsSize[leadPawnsCnt][f] = idx;
  1367.         }
  1368.  
  1369.     for (PieceType p1 = PAWN; p1 < KING; ++p1) {
  1370.         EntryTable.insert({KING, p1, KING});
  1371.  
  1372.         for (PieceType p2 = PAWN; p2 <= p1; ++p2) {
  1373.             EntryTable.insert({KING, p1, p2, KING});
  1374.             EntryTable.insert({KING, p1, KING, p2});
  1375.  
  1376.             for (PieceType p3 = PAWN; p3 < KING; ++p3)
  1377.                 EntryTable.insert({KING, p1, p2, KING, p3});
  1378.  
  1379.             for (PieceType p3 = PAWN; p3 <= p2; ++p3) {
  1380.                 EntryTable.insert({KING, p1, p2, p3, KING});
  1381.  
  1382.                 for (PieceType p4 = PAWN; p4 <= p3; ++p4)
  1383.                     EntryTable.insert({KING, p1, p2, p3, p4, KING});
  1384.  
  1385.                 for (PieceType p4 = PAWN; p4 < KING; ++p4)
  1386.                     EntryTable.insert({KING, p1, p2, p3, KING, p4});
  1387.             }
  1388.  
  1389.             for (PieceType p3 = PAWN; p3 <= p1; ++p3)
  1390.                 for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4)
  1391.                     EntryTable.insert({KING, p1, p2, KING, p3, p4});
  1392.         }
  1393.     }
  1394.  
  1395.     sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl;
  1396. }
  1397.  
  1398. // Probe the WDL table for a particular position.
  1399. // If *result != FAIL, the probe was successful.
  1400. // The return value is from the point of view of the side to move:
  1401. // -2 : loss
  1402. // -1 : loss, but draw under 50-move rule
  1403. //  0 : draw
  1404. //  1 : win, but draw under 50-move rule
  1405. //  2 : win
  1406. WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) {
  1407.  
  1408.     *result = OK;
  1409.     return search(pos, result);
  1410. }
  1411.  
  1412. // Probe the DTZ table for a particular position.
  1413. // If *result != FAIL, the probe was successful.
  1414. // The return value is from the point of view of the side to move:
  1415. //         n < -100 : loss, but draw under 50-move rule
  1416. // -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0)
  1417. //         0        : draw
  1418. //     1 < n <= 100 : win in n ply (assuming 50-move counter == 0)
  1419. //   100 < n        : win, but draw under 50-move rule
  1420. //
  1421. // The return value n can be off by 1: a return value -n can mean a loss
  1422. // in n+1 ply and a return value +n can mean a win in n+1 ply. This
  1423. // cannot happen for tables with positions exactly on the "edge" of
  1424. // the 50-move rule.
  1425. //
  1426. // This implies that if dtz > 0 is returned, the position is certainly
  1427. // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine
  1428. // picks moves that preserve dtz + 50-move-counter <= 99.
  1429. //
  1430. // If n = 100 immediately after a capture or pawn move, then the position
  1431. // is also certainly a win, and during the whole phase until the next
  1432. // capture or pawn move, the inequality to be preserved is
  1433. // dtz + 50-movecounter <= 100.
  1434. //
  1435. // In short, if a move is available resulting in dtz + 50-move-counter <= 99,
  1436. // then do not accept moves leading to dtz + 50-move-counter == 100.
  1437. int Tablebases::probe_dtz(Position& pos, ProbeState* result) {
  1438.  
  1439.     *result = OK;
  1440.     WDLScore wdl = search<true>(pos, result);
  1441.  
  1442.     if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws
  1443.         return 0;
  1444.  
  1445.     // DTZ stores a 'don't care' value in this case, or even a plain wrong
  1446.     // one as in case the best move is a losing ep, so it cannot be probed.
  1447.     if (*result == ZEROING_BEST_MOVE)
  1448.         return dtz_before_zeroing(wdl);
  1449.  
  1450.     int dtz = probe_table<DTZEntry>(pos, result, wdl);
  1451.  
  1452.     if (*result == FAIL)
  1453.         return 0;
  1454.  
  1455.     if (*result != CHANGE_STM)
  1456.         return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl);
  1457.  
  1458.     // DTZ stores results for the other side, so we need to do a 1-ply search and
  1459.     // find the winning move that minimizes DTZ.
  1460.     StateInfo st;
  1461.     int minDTZ = 0xFFFF;
  1462.  
  1463.     for (const Move& move : MoveList<LEGAL>(pos))
  1464.     {
  1465.         bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN;
  1466.  
  1467.         pos.do_move(move, st);
  1468.  
  1469.         // For zeroing moves we want the dtz of the move _before_ doing it,
  1470.         // otherwise we will get the dtz of the next move sequence. Search the
  1471.         // position after the move to get the score sign (because even in a
  1472.         // winning position we could make a losing capture or going for a draw).
  1473.         dtz = zeroing ? -dtz_before_zeroing(search(pos, result))
  1474.                       : -probe_dtz(pos, result);
  1475.  
  1476.         pos.undo_move(move);
  1477.  
  1478.         if (*result == FAIL)
  1479.             return 0;
  1480.  
  1481.         // Convert result from 1-ply search. Zeroing moves are already accounted
  1482.         // by dtz_before_zeroing() that returns the DTZ of the previous move.
  1483.         if (!zeroing)
  1484.             dtz += sign_of(dtz);
  1485.  
  1486.         // Skip the draws and if we are winning only pick positive dtz
  1487.         if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl))
  1488.             minDTZ = dtz;
  1489.     }
  1490.  
  1491.     // Special handle a mate position, when there are no legal moves, in this
  1492.     // case return value is somewhat arbitrary, so stick to the original TB code
  1493.     // that returns -1 in this case.
  1494.     return minDTZ == 0xFFFF ? -1 : minDTZ;
  1495. }
  1496.  
  1497. // Check whether there has been at least one repetition of positions
  1498. // since the last capture or pawn move.
  1499. static int has_repeated(StateInfo *st)
  1500. {
  1501.     while (1) {
  1502.         int i = 4, e = std::min(st->rule50, st->pliesFromNull);
  1503.  
  1504.         if (e < i)
  1505.             return 0;
  1506.  
  1507.         StateInfo *stp = st->previous->previous;
  1508.  
  1509.         do {
  1510.             stp = stp->previous->previous;
  1511.  
  1512.             if (stp->key == st->key)
  1513.                 return 1;
  1514.  
  1515.             i += 2;
  1516.         } while (i <= e);
  1517.  
  1518.         st = st->previous;
  1519.     }
  1520. }
  1521.  
  1522. // Use the DTZ tables to filter out moves that don't preserve the win or draw.
  1523. // If the position is lost, but DTZ is fairly high, only keep moves that
  1524. // maximise DTZ.
  1525. //
  1526. // A return value false indicates that not all probes were successful and that
  1527. // no moves were filtered out.
  1528. bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score)
  1529. {
  1530.     assert(rootMoves.size());
  1531.  
  1532.     ProbeState result;
  1533.     int dtz = probe_dtz(pos, &result);
  1534.  
  1535.     if (result == FAIL)
  1536.         return false;
  1537.  
  1538.     StateInfo st;
  1539.  
  1540.     // Probe each move
  1541.     for (size_t i = 0; i < rootMoves.size(); ++i) {
  1542.         Move move = rootMoves[i].pv[0];
  1543.         pos.do_move(move, st);
  1544.         int v = 0;
  1545.  
  1546.         if (pos.checkers() && dtz > 0) {
  1547.             ExtMove s[MAX_MOVES];
  1548.  
  1549.             if (generate<LEGAL>(pos, s) == s)
  1550.                 v = 1;
  1551.         }
  1552.  
  1553.         if (!v) {
  1554.             if (st.rule50 != 0) {
  1555.                 v = -probe_dtz(pos, &result);
  1556.  
  1557.                 if (v > 0)
  1558.                     ++v;
  1559.                 else if (v < 0)
  1560.                     --v;
  1561.             } else {
  1562.                 v = -probe_wdl(pos, &result);
  1563.                 v = dtz_before_zeroing(WDLScore(v));
  1564.             }
  1565.         }
  1566.  
  1567.         pos.undo_move(move);
  1568.  
  1569.         if (result == FAIL)
  1570.             return false;
  1571.  
  1572.         rootMoves[i].score = (Value)v;
  1573.     }
  1574.  
  1575.     // Obtain 50-move counter for the root position.
  1576.     // In Stockfish there seems to be no clean way, so we do it like this:
  1577.     int cnt50 = st.previous ? st.previous->rule50 : 0;
  1578.  
  1579.     // Use 50-move counter to determine whether the root position is
  1580.     // won, lost or drawn.
  1581.     WDLScore wdl = WDLDraw;
  1582.  
  1583.     if (dtz > 0)
  1584.         wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin;
  1585.     else if (dtz < 0)
  1586.         wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss;
  1587.  
  1588.     // Determine the score to report to the user.
  1589.     score = WDL_to_value[wdl + 2];
  1590.  
  1591.     // If the position is winning or losing, but too few moves left, adjust the
  1592.     // score to show how close it is to winning or losing.
  1593.     // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci().
  1594.     if (wdl == WDLCursedWin && dtz <= 100)
  1595.         score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200);
  1596.     else if (wdl == WDLBlessedLoss && dtz >= -100)
  1597.         score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200);
  1598.  
  1599.     // Now be a bit smart about filtering out moves.
  1600.     size_t j = 0;
  1601.  
  1602.     if (dtz > 0) { // winning (or 50-move rule draw)
  1603.         int best = 0xffff;
  1604.  
  1605.         for (size_t i = 0; i < rootMoves.size(); ++i) {
  1606.             int v = rootMoves[i].score;
  1607.  
  1608.             if (v > 0 && v < best)
  1609.                 best = v;
  1610.         }
  1611.  
  1612.         int max = best;
  1613.  
  1614.         // If the current phase has not seen repetitions, then try all moves
  1615.         // that stay safely within the 50-move budget, if there are any.
  1616.         if (!has_repeated(st.previous) && best + cnt50 <= 99)
  1617.             max = 99 - cnt50;
  1618.  
  1619.         for (size_t i = 0; i < rootMoves.size(); ++i) {
  1620.             int v = rootMoves[i].score;
  1621.  
  1622.             if (v > 0 && v <= max)
  1623.                 rootMoves[j++] = rootMoves[i];
  1624.         }
  1625.     } else if (dtz < 0) { // losing (or 50-move rule draw)
  1626.         int best = 0;
  1627.  
  1628.         for (size_t i = 0; i < rootMoves.size(); ++i) {
  1629.             int v = rootMoves[i].score;
  1630.  
  1631.             if (v < best)
  1632.                 best = v;
  1633.         }
  1634.  
  1635.         // Try all moves, unless we approach or have a 50-move rule draw.
  1636.         if (-best * 2 + cnt50 < 100)
  1637.             return true;
  1638.  
  1639.         for (size_t i = 0; i < rootMoves.size(); ++i) {
  1640.             if (rootMoves[i].score == best)
  1641.                 rootMoves[j++] = rootMoves[i];
  1642.         }
  1643.     } else { // drawing
  1644.         // Try all moves that preserve the draw.
  1645.         for (size_t i = 0; i < rootMoves.size(); ++i) {
  1646.             if (rootMoves[i].score == 0)
  1647.                 rootMoves[j++] = rootMoves[i];
  1648.         }
  1649.     }
  1650.  
  1651.     rootMoves.resize(j, Search::RootMove(MOVE_NONE));
  1652.  
  1653.     return true;
  1654. }
  1655.  
  1656. // Use the WDL tables to filter out moves that don't preserve the win or draw.
  1657. // This is a fallback for the case that some or all DTZ tables are missing.
  1658. //
  1659. // A return value false indicates that not all probes were successful and that
  1660. // no moves were filtered out.
  1661. bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score)
  1662. {
  1663.     ProbeState result;
  1664.  
  1665.     WDLScore wdl = Tablebases::probe_wdl(pos, &result);
  1666.  
  1667.     if (result == FAIL)
  1668.         return false;
  1669.  
  1670.     score = WDL_to_value[wdl + 2];
  1671.  
  1672.     StateInfo st;
  1673.  
  1674.     int best = WDLLoss;
  1675.  
  1676.     // Probe each move
  1677.     for (size_t i = 0; i < rootMoves.size(); ++i) {
  1678.         Move move = rootMoves[i].pv[0];
  1679.         pos.do_move(move, st);
  1680.         WDLScore v = -Tablebases::probe_wdl(pos, &result);
  1681.         pos.undo_move(move);
  1682.  
  1683.         if (result == FAIL)
  1684.             return false;
  1685.  
  1686.         rootMoves[i].score = (Value)v;
  1687.  
  1688.         if (v > best)
  1689.             best = v;
  1690.     }
  1691.  
  1692.     size_t j = 0;
  1693.  
  1694.     for (size_t i = 0; i < rootMoves.size(); ++i) {
  1695.         if (rootMoves[i].score == best)
  1696.             rootMoves[j++] = rootMoves[i];
  1697.     }
  1698.  
  1699.     rootMoves.resize(j, Search::RootMove(MOVE_NONE));
  1700.  
  1701.     return true;
  1702. }
  1703.