- /* 
-   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 
-   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) 
-   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad 
-   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad 
-   
-   Stockfish is free software: you can redistribute it and/or modify 
-   it under the terms of the GNU General Public License as published by 
-   the Free Software Foundation, either version 3 of the License, or 
-   (at your option) any later version. 
-   
-   Stockfish is distributed in the hope that it will be useful, 
-   but WITHOUT ANY WARRANTY; without even the implied warranty of 
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
-   GNU General Public License for more details. 
-   
-   You should have received a copy of the GNU General Public License 
-   along with this program.  If not, see <http://www.gnu.org/licenses/>. 
- */ 
-   
- #include <algorithm> 
- #include <cassert> 
- #include <cmath> 
- #include <cstring>   // For std::memset 
- #include <iostream> 
- #include <sstream> 
-   
- #include "evaluate.h" 
- #include "misc.h" 
- #include "movegen.h" 
- #include "movepick.h" 
- #include "position.h" 
- #include "search.h" 
- #include "timeman.h" 
- #include "thread.h" 
- #include "tt.h" 
- #include "uci.h" 
- #include "syzygy/tbprobe.h" 
-   
- namespace Search { 
-   
-   SignalsType Signals; 
-   LimitsType Limits; 
- } 
-   
- namespace Tablebases { 
-   
-   int Cardinality; 
-   bool RootInTB; 
-   bool UseRule50; 
-   Depth ProbeDepth; 
-   Value Score; 
- } 
-   
- namespace TB = Tablebases; 
-   
- using std::string; 
- using Eval::evaluate; 
- using namespace Search; 
-   
- namespace { 
-   
-   // Different node types, used as a template parameter 
-   enum NodeType { NonPV, PV }; 
-   
-   // Razoring and futility margin based on depth 
-   const int razor_margin[4] = { 483, 570, 603, 554 }; 
-   Value futility_margin(Depth d) { return Value(150 * d / ONE_PLY); } 
-   
-   // Futility and reductions lookup tables, initialized at startup 
-   int FutilityMoveCounts[2][16]; // [improving][depth] 
-   int Reductions[2][2][64][64];  // [pv][improving][depth][moveNumber] 
-   
-   template <bool PvNode> Depth reduction(bool i, Depth d, int mn) { 
-     return Reductions[PvNode][i][std::min(d / ONE_PLY, 63)][std::min(mn, 63)] * ONE_PLY; 
-   } 
-   
-   // Skill structure is used to implement strength limit 
-   struct Skill { 
-     Skill(int l) : level(l) {} 
-     bool enabled() const { return level < 20; } 
-     bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; } 
-     Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); } 
-     Move pick_best(size_t multiPV); 
-   
-     int level; 
-     Move best = MOVE_NONE; 
-   }; 
-   
-   // EasyMoveManager structure is used to detect an 'easy move'. When the PV is 
-   // stable across multiple search iterations, we can quickly return the best move. 
-   struct EasyMoveManager { 
-   
-     void clear() { 
-       stableCnt = 0; 
-       expectedPosKey = 0; 
-       pv[0] = pv[1] = pv[2] = MOVE_NONE; 
-     } 
-   
-     Move get(Key key) const { 
-       return expectedPosKey == key ? pv[2] : MOVE_NONE; 
-     } 
-   
-     void update(Position& pos, const std::vector<Move>& newPv) { 
-   
-       assert(newPv.size() >= 3); 
-   
-       // Keep track of how many times in a row the 3rd ply remains stable 
-       stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0; 
-   
-       if (!std::equal(newPv.begin(), newPv.begin() + 3, pv)) 
-       { 
-           std::copy(newPv.begin(), newPv.begin() + 3, pv); 
-   
-           StateInfo st[2]; 
-           pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0])); 
-           pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1])); 
-           expectedPosKey = pos.key(); 
-           pos.undo_move(newPv[1]); 
-           pos.undo_move(newPv[0]); 
-       } 
-     } 
-   
-     int stableCnt; 
-     Key expectedPosKey; 
-     Move pv[3]; 
-   }; 
-   
-   // Set of rows with half bits set to 1 and half to 0. It is used to allocate 
-   // the search depths across the threads. 
-   typedef std::vector<int> Row; 
-   
-   const Row HalfDensity[] = { 
-     {0, 1}, 
-     {1, 0}, 
-     {0, 0, 1, 1}, 
-     {0, 1, 1, 0}, 
-     {1, 1, 0, 0}, 
-     {1, 0, 0, 1}, 
-     {0, 0, 0, 1, 1, 1}, 
-     {0, 0, 1, 1, 1, 0}, 
-     {0, 1, 1, 1, 0, 0}, 
-     {1, 1, 1, 0, 0, 0}, 
-     {1, 1, 0, 0, 0, 1}, 
-     {1, 0, 0, 0, 1, 1}, 
-     {0, 0, 0, 0, 1, 1, 1, 1}, 
-     {0, 0, 0, 1, 1, 1, 1, 0}, 
-     {0, 0, 1, 1, 1, 1, 0 ,0}, 
-     {0, 1, 1, 1, 1, 0, 0 ,0}, 
-     {1, 1, 1, 1, 0, 0, 0 ,0}, 
-     {1, 1, 1, 0, 0, 0, 0 ,1}, 
-     {1, 1, 0, 0, 0, 0, 1 ,1}, 
-     {1, 0, 0, 0, 0, 1, 1 ,1}, 
-   }; 
-   
-   const size_t HalfDensitySize = std::extent<decltype(HalfDensity)>::value; 
-   
-   EasyMoveManager EasyMove; 
-   Value DrawValue[COLOR_NB]; 
-   
-   template <NodeType NT> 
-   Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); 
-   
-   template <NodeType NT, bool InCheck> 
-   Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); 
-   
-   Value value_to_tt(Value v, int ply); 
-   Value value_from_tt(Value v, int ply); 
-   void update_pv(Move* pv, Move move, Move* childPv); 
-   void update_cm_stats(Stack* ss, Piece pc, Square s, Value bonus); 
-   void update_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietsCnt, Value bonus); 
-   void check_time(); 
-   
- } // namespace 
-   
-   
- /// Search::init() is called during startup to initialize various lookup tables 
-   
- void Search::init() { 
-   
-   for (int imp = 0; imp <= 1; ++imp) 
-       for (int d = 1; d < 64; ++d) 
-           for (int mc = 1; mc < 64; ++mc) 
-           { 
-               double r = log(d) * log(mc) / 2; 
-               if (r < 0.80) 
-                 continue; 
-   
-               Reductions[NonPV][imp][d][mc] = int(std::round(r)); 
-               Reductions[PV][imp][d][mc] = std::max(Reductions[NonPV][imp][d][mc] - 1, 0); 
-   
-               // Increase reduction for non-PV nodes when eval is not improving 
-               if (!imp && Reductions[NonPV][imp][d][mc] >= 2) 
-                 Reductions[NonPV][imp][d][mc]++; 
-           } 
-   
-   for (int d = 0; d < 16; ++d) 
-   { 
-       FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8)); 
-       FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8)); 
-   } 
- } 
-   
-   
- /// Search::clear() resets search state to zero, to obtain reproducible results 
-   
- void Search::clear() { 
-   
-   TT.clear(); 
-   
-   for (Thread* th : Threads) 
-   { 
-       th->history.clear(); 
-       th->counterMoves.clear(); 
-       th->fromTo.clear(); 
-       th->counterMoveHistory.clear(); 
-   } 
-   
-   Threads.main()->previousScore = VALUE_INFINITE; 
- } 
-   
-   
- /// Search::perft() is our utility to verify move generation. All the leaf nodes 
- /// up to the given depth are generated and counted, and the sum is returned. 
- template<bool Root> 
- uint64_t Search::perft(Position& pos, Depth depth) { 
-   
-   StateInfo st; 
-   uint64_t cnt, nodes = 0; 
-   const bool leaf = (depth == 2 * ONE_PLY); 
-   
-   for (const auto& m : MoveList<LEGAL>(pos)) 
-   { 
-       if (Root && depth <= ONE_PLY) 
-           cnt = 1, nodes++; 
-       else 
-       { 
-           pos.do_move(m, st, pos.gives_check(m)); 
-           cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY); 
-           nodes += cnt; 
-           pos.undo_move(m); 
-       } 
-       if (Root) 
-           sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl; 
-   } 
-   return nodes; 
- } 
-   
- template uint64_t Search::perft<true>(Position&, Depth); 
-   
-   
- /// MainThread::search() is called by the main thread when the program receives 
- /// the UCI 'go' command. It searches from the root position and outputs the "bestmove". 
-   
- void MainThread::search() { 
-   
-   Color us = rootPos.side_to_move(); 
-   Time.init(Limits, us, rootPos.game_ply()); 
-   
-   int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns 
-   DrawValue[ us] = VALUE_DRAW - Value(contempt); 
-   DrawValue[~us] = VALUE_DRAW + Value(contempt); 
-   
-   if (rootMoves.empty()) 
-   { 
-       rootMoves.push_back(RootMove(MOVE_NONE)); 
-       sync_cout << "info depth 0 score " 
-                 << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) 
-                 << sync_endl; 
-   } 
-   else 
-   { 
-       for (Thread* th : Threads) 
-           if (th != this) 
-               th->start_searching(); 
-   
-       Thread::search(); // Let's start searching! 
-   } 
-   
-   // When playing in 'nodes as time' mode, subtract the searched nodes from 
-   // the available ones before exiting. 
-   if (Limits.npmsec) 
-       Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); 
-   
-   // When we reach the maximum depth, we can arrive here without a raise of 
-   // Signals.stop. However, if we are pondering or in an infinite search, 
-   // the UCI protocol states that we shouldn't print the best move before the 
-   // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here 
-   // until the GUI sends one of those commands (which also raises Signals.stop). 
-   if (!Signals.stop && (Limits.ponder || Limits.infinite)) 
-   { 
-       Signals.stopOnPonderhit = true; 
-       wait(Signals.stop); 
-   } 
-   
-   // Stop the threads if not already stopped 
-   Signals.stop = true; 
-   
-   // Wait until all threads have finished 
-   for (Thread* th : Threads) 
-       if (th != this) 
-           th->wait_for_search_finished(); 
-   
-   // Check if there are threads with a better score than main thread 
-   Thread* bestThread = this; 
-   if (   !this->easyMovePlayed 
-       &&  Options["MultiPV"] == 1 
-       && !Limits.depth 
-       && !Skill(Options["Skill Level"]).enabled() 
-       &&  rootMoves[0].pv[0] != MOVE_NONE) 
-   { 
-       for (Thread* th : Threads) 
-           if (   th->completedDepth > bestThread->completedDepth 
-               && th->rootMoves[0].score > bestThread->rootMoves[0].score) 
-               bestThread = th; 
-   } 
-   
-   previousScore = bestThread->rootMoves[0].score; 
-   
-   // Send new PV when needed 
-   if (bestThread != this) 
-       sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl; 
-   
-   sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); 
-   
-   if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos)) 
-       std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); 
-   
-   std::cout << sync_endl; 
- } 
-   
-   
- // Thread::search() is the main iterative deepening loop. It calls search() 
- // repeatedly with increasing depth until the allocated thinking time has been 
- // consumed, the user stops the search, or the maximum search depth is reached. 
-   
- void Thread::search() { 
-   
-   Stack stack[MAX_PLY+7], *ss = stack+5; // To allow referencing (ss-5) and (ss+2) 
-   Value bestValue, alpha, beta, delta; 
-   Move easyMove = MOVE_NONE; 
-   MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); 
-   
-   std::memset(ss-5, 0, 8 * sizeof(Stack)); 
-   
-   bestValue = delta = alpha = -VALUE_INFINITE; 
-   beta = VALUE_INFINITE; 
-   completedDepth = DEPTH_ZERO; 
-   
-   if (mainThread) 
-   { 
-       easyMove = EasyMove.get(rootPos.key()); 
-       EasyMove.clear(); 
-       mainThread->easyMovePlayed = mainThread->failedLow = false; 
-       mainThread->bestMoveChanges = 0; 
-       TT.new_search(); 
-   } 
-   
-   size_t multiPV = Options["MultiPV"]; 
-   Skill skill(Options["Skill Level"]); 
-   
-   // When playing with strength handicap enable MultiPV search that we will 
-   // use behind the scenes to retrieve a set of possible moves. 
-   if (skill.enabled()) 
-       multiPV = std::max(multiPV, (size_t)4); 
-   
-   multiPV = std::min(multiPV, rootMoves.size()); 
-   
-   // Iterative deepening loop until requested to stop or the target depth is reached 
-   while (   (rootDepth += ONE_PLY) < DEPTH_MAX 
-          && !Signals.stop 
-          && (!Limits.depth || Threads.main()->rootDepth / ONE_PLY <= Limits.depth)) 
-   { 
-       // Set up the new depths for the helper threads skipping on average every 
-       // 2nd ply (using a half-density matrix). 
-       if (!mainThread) 
-       { 
-           const Row& row = HalfDensity[(idx - 1) % HalfDensitySize]; 
-           if (row[(rootDepth / ONE_PLY + rootPos.game_ply()) % row.size()]) 
-              continue; 
-       } 
-   
-       // Age out PV variability metric 
-       if (mainThread) 
-           mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false; 
-   
-       // Save the last iteration's scores before first PV line is searched and 
-       // all the move scores except the (new) PV are set to -VALUE_INFINITE. 
-       for (RootMove& rm : rootMoves) 
-           rm.previousScore = rm.score; 
-   
-       // MultiPV loop. We perform a full root search for each PV line 
-       for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx) 
-       { 
-           // Reset aspiration window starting size 
-           if (rootDepth >= 5 * ONE_PLY) 
-           { 
-               delta = Value(18); 
-               alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE); 
-               beta  = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE); 
-           } 
-   
-           // Start with a small aspiration window and, in the case of a fail 
-           // high/low, re-search with a bigger window until we're not failing 
-           // high/low anymore. 
-           while (true) 
-           { 
-               bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false); 
-   
-               // Bring the best move to the front. It is critical that sorting 
-               // is done with a stable algorithm because all the values but the 
-               // first and eventually the new best one are set to -VALUE_INFINITE 
-               // and we want to keep the same order for all the moves except the 
-               // new PV that goes to the front. Note that in case of MultiPV 
-               // search the already searched PV lines are preserved. 
-               std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end()); 
-   
-               // If search has been stopped, break immediately. Sorting and 
-               // writing PV back to TT is safe because RootMoves is still 
-               // valid, although it refers to the previous iteration. 
-               if (Signals.stop) 
-                   break; 
-   
-               // When failing high/low give some update (without cluttering 
-               // the UI) before a re-search. 
-               if (   mainThread 
-                   && multiPV == 1 
-                   && (bestValue <= alpha || bestValue >= beta) 
-                   && Time.elapsed() > 3000) 
-                   sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; 
-   
-               // In case of failing low/high increase aspiration window and 
-               // re-search, otherwise exit the loop. 
-               if (bestValue <= alpha) 
-               { 
-                   beta = (alpha + beta) / 2; 
-                   alpha = std::max(bestValue - delta, -VALUE_INFINITE); 
-   
-                   if (mainThread) 
-                   { 
-                       mainThread->failedLow = true; 
-                       Signals.stopOnPonderhit = false; 
-                   } 
-               } 
-               else if (bestValue >= beta) 
-               { 
-                   alpha = (alpha + beta) / 2; 
-                   beta = std::min(bestValue + delta, VALUE_INFINITE); 
-               } 
-               else 
-                   break; 
-   
-               delta += delta / 4 + 5; 
-   
-               assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); 
-           } 
-   
-           // Sort the PV lines searched so far and update the GUI 
-           std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1); 
-   
-           if (!mainThread) 
-               continue; 
-   
-           if (Signals.stop || PVIdx + 1 == multiPV || Time.elapsed() > 3000) 
-               sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; 
-       } 
-   
-       if (!Signals.stop) 
-           completedDepth = rootDepth; 
-   
-       if (!mainThread) 
-           continue; 
-   
-       // If skill level is enabled and time is up, pick a sub-optimal best move 
-       if (skill.enabled() && skill.time_to_pick(rootDepth)) 
-           skill.pick_best(multiPV); 
-   
-       // Have we found a "mate in x"? 
-       if (   Limits.mate 
-           && bestValue >= VALUE_MATE_IN_MAX_PLY 
-           && VALUE_MATE - bestValue <= 2 * Limits.mate) 
-           Signals.stop = true; 
-   
-       // Do we have time for the next iteration? Can we stop searching now? 
-       if (Limits.use_time_management()) 
-       { 
-           if (!Signals.stop && !Signals.stopOnPonderhit) 
-           { 
-               // Stop the search if only one legal move is available, or if all 
-               // of the available time has been used, or if we matched an easyMove 
-               // from the previous search and just did a fast verification. 
-               const int F[] = { mainThread->failedLow, 
-                                 bestValue - mainThread->previousScore }; 
-   
-               int improvingFactor = std::max(229, std::min(715, 357 + 119 * F[0] - 6 * F[1])); 
-               double unstablePvFactor = 1 + mainThread->bestMoveChanges; 
-   
-               bool doEasyMove =   rootMoves[0].pv[0] == easyMove 
-                                && mainThread->bestMoveChanges < 0.03 
-                                && Time.elapsed() > Time.optimum() * 5 / 42; 
-   
-               if (   rootMoves.size() == 1 
-                   || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 628 
-                   || (mainThread->easyMovePlayed = doEasyMove, doEasyMove)) 
-               { 
-                   // If we are allowed to ponder do not stop the search now but 
-                   // keep pondering until the GUI sends "ponderhit" or "stop". 
-                   if (Limits.ponder) 
-                       Signals.stopOnPonderhit = true; 
-                   else 
-                       Signals.stop = true; 
-               } 
-           } 
-   
-           if (rootMoves[0].pv.size() >= 3) 
-               EasyMove.update(rootPos, rootMoves[0].pv); 
-           else 
-               EasyMove.clear(); 
-       } 
-   } 
-   
-   if (!mainThread) 
-       return; 
-   
-   // Clear any candidate easy move that wasn't stable for the last search 
-   // iterations; the second condition prevents consecutive fast moves. 
-   if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed) 
-       EasyMove.clear(); 
-   
-   // If skill level is enabled, swap best PV line with the sub-optimal one 
-   if (skill.enabled()) 
-       std::swap(rootMoves[0], *std::find(rootMoves.begin(), 
-                 rootMoves.end(), skill.best_move(multiPV))); 
- } 
-   
-   
- namespace { 
-   
-   // search<>() is the main search function for both PV and non-PV nodes 
-   
-   template <NodeType NT> 
-   Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { 
-   
-     const bool PvNode = NT == PV; 
-     const bool rootNode = PvNode && (ss-1)->ply == 0; 
-   
-     assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); 
-     assert(PvNode || (alpha == beta - 1)); 
-     assert(DEPTH_ZERO < depth && depth < DEPTH_MAX); 
-     assert(!(PvNode && cutNode)); 
-     assert(depth / ONE_PLY * ONE_PLY == depth); 
-   
-     Move pv[MAX_PLY+1], quietsSearched[64]; 
-     StateInfo st; 
-     TTEntry* tte; 
-     Key posKey; 
-     Move ttMove, move, excludedMove, bestMove; 
-     Depth extension, newDepth; 
-     Value bestValue, value, ttValue, eval, nullValue; 
-     bool ttHit, inCheck, givesCheck, singularExtensionNode, improving; 
-     bool captureOrPromotion, doFullDepthSearch, moveCountPruning; 
-     Piece moved_piece; 
-     int moveCount, quietCount; 
-   
-     // Step 1. Initialize node 
-     Thread* thisThread = pos.this_thread(); 
-     inCheck = pos.checkers(); 
-     moveCount = quietCount =  ss->moveCount = 0; 
-     ss->history = VALUE_ZERO; 
-     bestValue = -VALUE_INFINITE; 
-     ss->ply = (ss-1)->ply + 1; 
-   
-     // Check for the available remaining time 
-     if (thisThread->resetCalls.load(std::memory_order_relaxed)) 
-     { 
-         thisThread->resetCalls = false; 
-         thisThread->callsCnt = 0; 
-     } 
-     if (++thisThread->callsCnt > 4096) 
-     { 
-         for (Thread* th : Threads) 
-             th->resetCalls = true; 
-   
-         check_time(); 
-     } 
-   
-     // Used to send selDepth info to GUI 
-     if (PvNode && thisThread->maxPly < ss->ply) 
-         thisThread->maxPly = ss->ply; 
-   
-     if (!rootNode) 
-     { 
-         // Step 2. Check for aborted search and immediate draw 
-         if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY) 
-             return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos) 
-                                                   : DrawValue[pos.side_to_move()]; 
-   
-         // Step 3. Mate distance pruning. Even if we mate at the next move our score 
-         // would be at best mate_in(ss->ply+1), but if alpha is already bigger because 
-         // a shorter mate was found upward in the tree then there is no need to search 
-         // because we will never beat the current alpha. Same logic but with reversed 
-         // signs applies also in the opposite condition of being mated instead of giving 
-         // mate. In this case return a fail-high score. 
-         alpha = std::max(mated_in(ss->ply), alpha); 
-         beta = std::min(mate_in(ss->ply+1), beta); 
-         if (alpha >= beta) 
-             return alpha; 
-     } 
-   
-     assert(0 <= ss->ply && ss->ply < MAX_PLY); 
-   
-     ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; 
-     ss->counterMoves = nullptr; 
-     (ss+1)->skipEarlyPruning = false; 
-     (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; 
-   
-     // Step 4. Transposition table lookup. We don't want the score of a partial 
-     // search to overwrite a previous full search TT value, so we use a different 
-     // position key in case of an excluded move. 
-     excludedMove = ss->excludedMove; 
-     posKey = pos.key() ^ Key(excludedMove); 
-     tte = TT.probe(posKey, ttHit); 
-     ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; 
-     ttMove =  rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0] 
-             : ttHit    ? tte->move() : MOVE_NONE; 
-   
-     // At non-PV nodes we check for an early TT cutoff 
-     if (  !PvNode 
-         && ttHit 
-         && tte->depth() >= depth 
-         && ttValue != VALUE_NONE // Possible in case of TT access race 
-         && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) 
-                             : (tte->bound() & BOUND_UPPER))) 
-     { 
-         // If ttMove is quiet, update killers, history, counter move on TT hit 
-         if (ttValue >= beta && ttMove) 
-         { 
-             int d = depth / ONE_PLY; 
-   
-             if (!pos.capture_or_promotion(ttMove)) 
-             { 
-                 Value bonus = Value(d * d + 2 * d - 2); 
-                 update_stats(pos, ss, ttMove, nullptr, 0, bonus); 
-             } 
-   
-             // Extra penalty for a quiet TT move in previous ply when it gets refuted 
-             if ((ss-1)->moveCount == 1 && !pos.captured_piece()) 
-             { 
-                 Value penalty = Value(d * d + 4 * d + 1); 
-                 Square prevSq = to_sq((ss-1)->currentMove); 
-                 update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -penalty); 
-             } 
-         } 
-         return ttValue; 
-     } 
-   
-     // Step 4a. Tablebase probe 
-     if (!rootNode && TB::Cardinality) 
-     { 
-         int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK); 
-   
-         if (    piecesCnt <= TB::Cardinality 
-             && (piecesCnt <  TB::Cardinality || depth >= TB::ProbeDepth) 
-             &&  pos.rule50_count() == 0 
-             && !pos.can_castle(ANY_CASTLING)) 
-         { 
-             int found, v = Tablebases::probe_wdl(pos, &found); 
-   
-             if (found) 
-             { 
-                 thisThread->tbHits++; 
-   
-                 int drawScore = TB::UseRule50 ? 1 : 0; 
-   
-                 value =  v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply 
-                        : v >  drawScore ?  VALUE_MATE - MAX_PLY - ss->ply 
-                                         :  VALUE_DRAW + 2 * v * drawScore; 
-   
-                 tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT, 
-                           std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY), 
-                           MOVE_NONE, VALUE_NONE, TT.generation()); 
-   
-                 return value; 
-             } 
-         } 
-     } 
-   
-     // Step 5. Evaluate the position statically 
-     if (inCheck) 
-     { 
-         ss->staticEval = eval = VALUE_NONE; 
-         goto moves_loop; 
-     } 
-   
-     else if (ttHit) 
-     { 
-         // Never assume anything on values stored in TT 
-         if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE) 
-             eval = ss->staticEval = evaluate(pos); 
-   
-         // Can ttValue be used as a better position evaluation? 
-         if (ttValue != VALUE_NONE) 
-             if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)) 
-                 eval = ttValue; 
-     } 
-     else 
-     { 
-         eval = ss->staticEval = 
-         (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) 
-                                          : -(ss-1)->staticEval + 2 * Eval::Tempo; 
-   
-         tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, 
-                   ss->staticEval, TT.generation()); 
-     } 
-   
-     if (ss->skipEarlyPruning) 
-         goto moves_loop; 
-   
-     // Step 6. Razoring (skipped when in check) 
-     if (   !PvNode 
-         &&  depth < 4 * ONE_PLY 
-         &&  ttMove == MOVE_NONE 
-         &&  eval + razor_margin[depth / ONE_PLY] <= alpha) 
-     { 
-         if (depth <= ONE_PLY) 
-             return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO); 
-   
-         Value ralpha = alpha - razor_margin[depth / ONE_PLY]; 
-         Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO); 
-         if (v <= ralpha) 
-             return v; 
-     } 
-   
-     // Step 7. Futility pruning: child node (skipped when in check) 
-     if (   !rootNode 
-         &&  depth < 7 * ONE_PLY 
-         &&  eval - futility_margin(depth) >= beta 
-         &&  eval < VALUE_KNOWN_WIN  // Do not return unproven wins 
-         &&  pos.non_pawn_material(pos.side_to_move())) 
-         return eval; 
-   
-     // Step 8. Null move search with verification search (is omitted in PV nodes) 
-     if (   !PvNode 
-         &&  eval >= beta 
-         && (ss->staticEval >= beta - 35 * (depth / ONE_PLY - 6) || depth >= 13 * ONE_PLY) 
-         &&  pos.non_pawn_material(pos.side_to_move())) 
-     { 
-         ss->currentMove = MOVE_NULL; 
-         ss->counterMoves = nullptr; 
-   
-         assert(eval - beta >= 0); 
-   
-         // Null move dynamic reduction based on depth and value 
-         Depth R = ((823 + 67 * depth / ONE_PLY) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY; 
-   
-         pos.do_null_move(st); 
-         (ss+1)->skipEarlyPruning = true; 
-         nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO) 
-                                       : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); 
-         (ss+1)->skipEarlyPruning = false; 
-         pos.undo_null_move(); 
-   
-         if (nullValue >= beta) 
-         { 
-             // Do not return unproven mate scores 
-             if (nullValue >= VALUE_MATE_IN_MAX_PLY) 
-                 nullValue = beta; 
-   
-             if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN) 
-                 return nullValue; 
-   
-             // Do verification search at high depths 
-             ss->skipEarlyPruning = true; 
-             Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO) 
-                                         :  search<NonPV>(pos, ss, beta-1, beta, depth-R, false); 
-             ss->skipEarlyPruning = false; 
-   
-             if (v >= beta) 
-                 return nullValue; 
-         } 
-     } 
-   
-     // Step 9. ProbCut (skipped when in check) 
-     // If we have a good enough capture and a reduced search returns a value 
-     // much above beta, we can (almost) safely prune the previous move. 
-     if (   !PvNode 
-         &&  depth >= 5 * ONE_PLY 
-         &&  abs(beta) < VALUE_MATE_IN_MAX_PLY) 
-     { 
-         Value rbeta = std::min(beta + 200, VALUE_INFINITE); 
-         Depth rdepth = depth - 4 * ONE_PLY; 
-   
-         assert(rdepth >= ONE_PLY); 
-         assert((ss-1)->currentMove != MOVE_NONE); 
-         assert((ss-1)->currentMove != MOVE_NULL); 
-   
-         MovePicker mp(pos, ttMove, rbeta - ss->staticEval); 
-   
-         while ((move = mp.next_move()) != MOVE_NONE) 
-             if (pos.legal(move)) 
-             { 
-                 ss->currentMove = move; 
-                 ss->counterMoves = &thisThread->counterMoveHistory[pos.moved_piece(move)][to_sq(move)]; 
-                 pos.do_move(move, st, pos.gives_check(move)); 
-                 value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); 
-                 pos.undo_move(move); 
-                 if (value >= rbeta) 
-                     return value; 
-             } 
-     } 
-   
-     // Step 10. Internal iterative deepening (skipped when in check) 
-     if (    depth >= 6 * ONE_PLY 
-         && !ttMove 
-         && (PvNode || ss->staticEval + 256 >= beta)) 
-     { 
-         Depth d = (3 * depth / (4 * ONE_PLY) - 2) * ONE_PLY; 
-         ss->skipEarlyPruning = true; 
-         search<NT>(pos, ss, alpha, beta, d, cutNode); 
-         ss->skipEarlyPruning = false; 
-   
-         tte = TT.probe(posKey, ttHit); 
-         ttMove = ttHit ? tte->move() : MOVE_NONE; 
-     } 
-   
- moves_loop: // When in check search starts from here 
-   
-     const CounterMoveStats* cmh  = (ss-1)->counterMoves; 
-     const CounterMoveStats* fmh  = (ss-2)->counterMoves; 
-     const CounterMoveStats* fmh2 = (ss-4)->counterMoves; 
-   
-     MovePicker mp(pos, ttMove, depth, ss); 
-     value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc 
-     improving =   ss->staticEval >= (ss-2)->staticEval 
-             /* || ss->staticEval == VALUE_NONE Already implicit in the previous condition */ 
-                ||(ss-2)->staticEval == VALUE_NONE; 
-   
-     singularExtensionNode =   !rootNode 
-                            &&  depth >= 8 * ONE_PLY 
-                            &&  ttMove != MOVE_NONE 
-                            &&  ttValue != VALUE_NONE 
-                            && !excludedMove // Recursive singular search is not allowed 
-                            && (tte->bound() & BOUND_LOWER) 
-                            &&  tte->depth() >= depth - 3 * ONE_PLY; 
-   
-     // Step 11. Loop through moves 
-     // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs 
-     while ((move = mp.next_move()) != MOVE_NONE) 
-     { 
-       assert(is_ok(move)); 
-   
-       if (move == excludedMove) 
-           continue; 
-   
-       // At root obey the "searchmoves" option and skip moves not listed in Root 
-       // Move List. As a consequence any illegal move is also skipped. In MultiPV 
-       // mode we also skip PV moves which have been already searched. 
-       if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx, 
-                                   thisThread->rootMoves.end(), move)) 
-           continue; 
-   
-       ss->moveCount = ++moveCount; 
-   
-       if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) 
-           sync_cout << "info depth " << depth / ONE_PLY 
-                     << " currmove " << UCI::move(move, pos.is_chess960()) 
-                     << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl; 
-   
-       if (PvNode) 
-           (ss+1)->pv = nullptr; 
-   
-       extension = DEPTH_ZERO; 
-       captureOrPromotion = pos.capture_or_promotion(move); 
-       moved_piece = pos.moved_piece(move); 
-   
-       givesCheck =  type_of(move) == NORMAL && !pos.discovered_check_candidates() 
-                   ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move) 
-                   : pos.gives_check(move); 
-   
-       moveCountPruning =   depth < 16 * ONE_PLY 
-                         && moveCount >= FutilityMoveCounts[improving][depth / ONE_PLY]; 
-   
-       // Step 12. Extend checks 
-       if (    givesCheck 
-           && !moveCountPruning 
-           &&  pos.see_ge(move, VALUE_ZERO)) 
-           extension = ONE_PLY; 
-   
-       // Singular extension search. If all moves but one fail low on a search of 
-       // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move 
-       // is singular and should be extended. To verify this we do a reduced search 
-       // on all the other moves but the ttMove and if the result is lower than 
-       // ttValue minus a margin then we extend the ttMove. 
-       if (    singularExtensionNode 
-           &&  move == ttMove 
-           && !extension 
-           &&  pos.legal(move)) 
-       { 
-           Value rBeta = std::max(ttValue - 2 * depth / ONE_PLY, -VALUE_MATE); 
-           Depth d = (depth / (2 * ONE_PLY)) * ONE_PLY; 
-           ss->excludedMove = move; 
-           ss->skipEarlyPruning = true; 
-           value = search<NonPV>(pos, ss, rBeta - 1, rBeta, d, cutNode); 
-           ss->skipEarlyPruning = false; 
-           ss->excludedMove = MOVE_NONE; 
-   
-           if (value < rBeta) 
-               extension = ONE_PLY; 
-       } 
-   
-       // Update the current move (this must be done after singular extension search) 
-       newDepth = depth - ONE_PLY + extension; 
-   
-       // Step 13. Pruning at shallow depth 
-       if (  !rootNode 
-           && bestValue > VALUE_MATED_IN_MAX_PLY) 
-       { 
-           if (   !captureOrPromotion 
-               && !givesCheck 
-               && !pos.advanced_pawn_push(move)) 
-           { 
-               // Move count based pruning 
-               if (moveCountPruning) 
-                   continue; 
-   
-               // Reduced depth of the next LMR search 
-               int lmrDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO) / ONE_PLY; 
-   
-               // Countermoves based pruning 
-               if (   lmrDepth < 3 
-                   && (!cmh  || (*cmh )[moved_piece][to_sq(move)] < VALUE_ZERO) 
-                   && (!fmh  || (*fmh )[moved_piece][to_sq(move)] < VALUE_ZERO) 
-                   && (!fmh2 || (*fmh2)[moved_piece][to_sq(move)] < VALUE_ZERO || (cmh && fmh))) 
-                   continue; 
-   
-               // Futility pruning: parent node 
-               if (   lmrDepth < 7 
-                   && !inCheck 
-                   && ss->staticEval + 256 + 200 * lmrDepth <= alpha) 
-                   continue; 
-   
-               // Prune moves with negative SEE 
-               if (   lmrDepth < 8 
-                   && !pos.see_ge(move, Value(-35 * lmrDepth * lmrDepth))) 
-                   continue; 
-           } 
-           else if (   depth < 7 * ONE_PLY 
-                    && !extension 
-                    && !pos.see_ge(move, Value(-35 * depth / ONE_PLY * depth / ONE_PLY))) 
-                   continue; 
-       } 
-   
-       // Speculative prefetch as early as possible 
-       prefetch(TT.first_entry(pos.key_after(move))); 
-   
-       // Check for legality just before making the move 
-       if (!rootNode && !pos.legal(move)) 
-       { 
-           ss->moveCount = --moveCount; 
-           continue; 
-       } 
-   
-       ss->currentMove = move; 
-       ss->counterMoves = &thisThread->counterMoveHistory[moved_piece][to_sq(move)]; 
-   
-       // Step 14. Make the move 
-       pos.do_move(move, st, givesCheck); 
-   
-       // Step 15. Reduced depth search (LMR). If the move fails high it will be 
-       // re-searched at full depth. 
-       if (    depth >= 3 * ONE_PLY 
-           &&  moveCount > 1 
-           && (!captureOrPromotion || moveCountPruning)) 
-       { 
-           Depth r = reduction<PvNode>(improving, depth, moveCount); 
-   
-           if (captureOrPromotion) 
-               r -= r ? ONE_PLY : DEPTH_ZERO; 
-           else 
-           { 
-               // Increase reduction for cut nodes 
-               if (cutNode) 
-                   r += 2 * ONE_PLY; 
-   
-               // Decrease reduction for moves that escape a capture. Filter out 
-               // castling moves, because they are coded as "king captures rook" and 
-               // hence break make_move(). Also use see() instead of see_sign(), 
-               // because the destination square is empty. 
-               else if (   type_of(move) == NORMAL 
-                        && type_of(pos.piece_on(to_sq(move))) != PAWN 
-                        && !pos.see_ge(make_move(to_sq(move), from_sq(move)),  VALUE_ZERO)) 
-                   r -= 2 * ONE_PLY; 
-   
-               ss->history = thisThread->history[moved_piece][to_sq(move)] 
-                            +    (cmh  ? (*cmh )[moved_piece][to_sq(move)] : VALUE_ZERO) 
-                            +    (fmh  ? (*fmh )[moved_piece][to_sq(move)] : VALUE_ZERO) 
-                            +    (fmh2 ? (*fmh2)[moved_piece][to_sq(move)] : VALUE_ZERO) 
-                            +    thisThread->fromTo.get(~pos.side_to_move(), move) 
-                            -    8000; // Correction factor 
-   
-               // Decrease/increase reduction by comparing opponent's stat score 
-               if (ss->history > VALUE_ZERO && (ss-1)->history < VALUE_ZERO) 
-                   r -= ONE_PLY; 
-   
-               else if (ss->history < VALUE_ZERO && (ss-1)->history > VALUE_ZERO) 
-                   r += ONE_PLY; 
-   
-               // Decrease/increase reduction for moves with a good/bad history 
-               r = std::max(DEPTH_ZERO, (r / ONE_PLY - ss->history / 20000) * ONE_PLY); 
-           } 
-   
-           Depth d = std::max(newDepth - r, ONE_PLY); 
-   
-           value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true); 
-   
-           doFullDepthSearch = (value > alpha && d != newDepth); 
-       } 
-       else 
-           doFullDepthSearch = !PvNode || moveCount > 1; 
-   
-       // Step 16. Full depth search when LMR is skipped or fails high 
-       if (doFullDepthSearch) 
-           value = newDepth <   ONE_PLY ? 
-                             givesCheck ? -qsearch<NonPV,  true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) 
-                                        : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) 
-                                        : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); 
-   
-       // For PV nodes only, do a full PV search on the first move or after a fail 
-       // high (in the latter case search only if value < beta), otherwise let the 
-       // parent node fail low with value <= alpha and try another move. 
-       if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) 
-       { 
-           (ss+1)->pv = pv; 
-           (ss+1)->pv[0] = MOVE_NONE; 
-   
-           value = newDepth <   ONE_PLY ? 
-                             givesCheck ? -qsearch<PV,  true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO) 
-                                        : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO) 
-                                        : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false); 
-       } 
-   
-       // Step 17. Undo move 
-       pos.undo_move(move); 
-   
-       assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); 
-   
-       // Step 18. Check for a new best move 
-       // Finished searching the move. If a stop occurred, the return value of 
-       // the search cannot be trusted, and we return immediately without 
-       // updating best move, PV and TT. 
-       if (Signals.stop.load(std::memory_order_relaxed)) 
-           return VALUE_ZERO; 
-   
-       if (rootNode) 
-       { 
-           RootMove& rm = *std::find(thisThread->rootMoves.begin(), 
-                                     thisThread->rootMoves.end(), move); 
-   
-           // PV move or new best move ? 
-           if (moveCount == 1 || value > alpha) 
-           { 
-               rm.score = value; 
-               rm.pv.resize(1); 
-   
-               assert((ss+1)->pv); 
-   
-               for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m) 
-                   rm.pv.push_back(*m); 
-   
-               // We record how often the best move has been changed in each 
-               // iteration. This information is used for time management: When 
-               // the best move changes frequently, we allocate some more time. 
-               if (moveCount > 1 && thisThread == Threads.main()) 
-                   ++static_cast<MainThread*>(thisThread)->bestMoveChanges; 
-           } 
-           else 
-               // All other moves but the PV are set to the lowest value: this is 
-               // not a problem when sorting because the sort is stable and the 
-               // move position in the list is preserved - just the PV is pushed up. 
-               rm.score = -VALUE_INFINITE; 
-       } 
-   
-       if (value > bestValue) 
-       { 
-           bestValue = value; 
-   
-           if (value > alpha) 
-           { 
-               // If there is an easy move for this position, clear it if unstable 
-               if (    PvNode 
-                   &&  thisThread == Threads.main() 
-                   &&  EasyMove.get(pos.key()) 
-                   && (move != EasyMove.get(pos.key()) || moveCount > 1)) 
-                   EasyMove.clear(); 
-   
-               bestMove = move; 
-   
-               if (PvNode && !rootNode) // Update pv even in fail-high case 
-                   update_pv(ss->pv, move, (ss+1)->pv); 
-   
-               if (PvNode && value < beta) // Update alpha! Always alpha < beta 
-                   alpha = value; 
-               else 
-               { 
-                   assert(value >= beta); // Fail high 
-                   break; 
-               } 
-           } 
-       } 
-   
-       if (!captureOrPromotion && move != bestMove && quietCount < 64) 
-           quietsSearched[quietCount++] = move; 
-     } 
-   
-     // The following condition would detect a stop only after move loop has been 
-     // completed. But in this case bestValue is valid because we have fully 
-     // searched our subtree, and we can anyhow save the result in TT. 
-     /* 
-        if (Signals.stop) 
-         return VALUE_DRAW; 
-     */ 
-   
-     // Step 20. Check for mate and stalemate 
-     // All legal moves have been searched and if there are no legal moves, it 
-     // must be a mate or a stalemate. If we are in a singular extension search then 
-     // return a fail low score. 
-   
-     assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size()); 
-   
-     if (!moveCount) 
-         bestValue = excludedMove ? alpha 
-                    :     inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; 
-     else if (bestMove) 
-     { 
-         int d = depth / ONE_PLY; 
-   
-         // Quiet best move: update killers, history and countermoves 
-         if (!pos.capture_or_promotion(bestMove)) 
-         { 
-             Value bonus = Value(d * d + 2 * d - 2); 
-             update_stats(pos, ss, bestMove, quietsSearched, quietCount, bonus); 
-         } 
-   
-         // Extra penalty for a quiet TT move in previous ply when it gets refuted 
-         if ((ss-1)->moveCount == 1 && !pos.captured_piece()) 
-         { 
-             Value penalty = Value(d * d + 4 * d + 1); 
-             Square prevSq = to_sq((ss-1)->currentMove); 
-             update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -penalty); 
-         } 
-     } 
-     // Bonus for prior countermove that caused the fail low 
-     else if (    depth >= 3 * ONE_PLY 
-              && !pos.captured_piece() 
-              && is_ok((ss-1)->currentMove)) 
-     { 
-         int d = depth / ONE_PLY; 
-         Value bonus = Value(d * d + 2 * d - 2); 
-         Square prevSq = to_sq((ss-1)->currentMove); 
-         update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, bonus); 
-     } 
-   
-     tte->save(posKey, value_to_tt(bestValue, ss->ply), 
-               bestValue >= beta ? BOUND_LOWER : 
-               PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, 
-               depth, bestMove, ss->staticEval, TT.generation()); 
-   
-     assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); 
-   
-     return bestValue; 
-   } 
-   
-   
-   // qsearch() is the quiescence search function, which is called by the main 
-   // search function when the remaining depth is zero (or, to be more precise, 
-   // less than ONE_PLY). 
-   
-   template <NodeType NT, bool InCheck> 
-   Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { 
-   
-     const bool PvNode = NT == PV; 
-   
-     assert(InCheck == !!pos.checkers()); 
-     assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); 
-     assert(PvNode || (alpha == beta - 1)); 
-     assert(depth <= DEPTH_ZERO); 
-     assert(depth / ONE_PLY * ONE_PLY == depth); 
-   
-     Move pv[MAX_PLY+1]; 
-     StateInfo st; 
-     TTEntry* tte; 
-     Key posKey; 
-     Move ttMove, move, bestMove; 
-     Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; 
-     bool ttHit, givesCheck, evasionPrunable; 
-     Depth ttDepth; 
-   
-     if (PvNode) 
-     { 
-         oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves 
-         (ss+1)->pv = pv; 
-         ss->pv[0] = MOVE_NONE; 
-     } 
-   
-     ss->currentMove = bestMove = MOVE_NONE; 
-     ss->ply = (ss-1)->ply + 1; 
-   
-     // Check for an instant draw or if the maximum ply has been reached 
-     if (pos.is_draw() || ss->ply >= MAX_PLY) 
-         return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos) 
-                                               : DrawValue[pos.side_to_move()]; 
-   
-     assert(0 <= ss->ply && ss->ply < MAX_PLY); 
-   
-     // Decide whether or not to include checks: this fixes also the type of 
-     // TT entry depth that we are going to use. Note that in qsearch we use 
-     // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. 
-     ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS 
-                                                   : DEPTH_QS_NO_CHECKS; 
-   
-     // Transposition table lookup 
-     posKey = pos.key(); 
-     tte = TT.probe(posKey, ttHit); 
-     ttMove = ttHit ? tte->move() : MOVE_NONE; 
-     ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; 
-   
-     if (  !PvNode 
-         && ttHit 
-         && tte->depth() >= ttDepth 
-         && ttValue != VALUE_NONE // Only in case of TT access race 
-         && (ttValue >= beta ? (tte->bound() &  BOUND_LOWER) 
-                             : (tte->bound() &  BOUND_UPPER))) 
-         return ttValue; 
-   
-     // Evaluate the position statically 
-     if (InCheck) 
-     { 
-         ss->staticEval = VALUE_NONE; 
-         bestValue = futilityBase = -VALUE_INFINITE; 
-     } 
-     else 
-     { 
-         if (ttHit) 
-         { 
-             // Never assume anything on values stored in TT 
-             if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE) 
-                 ss->staticEval = bestValue = evaluate(pos); 
-   
-             // Can ttValue be used as a better position evaluation? 
-             if (ttValue != VALUE_NONE) 
-                 if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)) 
-                     bestValue = ttValue; 
-         } 
-         else 
-             ss->staticEval = bestValue = 
-             (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) 
-                                              : -(ss-1)->staticEval + 2 * Eval::Tempo; 
-   
-         // Stand pat. Return immediately if static value is at least beta 
-         if (bestValue >= beta) 
-         { 
-             if (!ttHit) 
-                 tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER, 
-                           DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation()); 
-   
-             return bestValue; 
-         } 
-   
-         if (PvNode && bestValue > alpha) 
-             alpha = bestValue; 
-   
-         futilityBase = bestValue + 128; 
-     } 
-   
-     // Initialize a MovePicker object for the current position, and prepare 
-     // to search the moves. Because the depth is <= 0 here, only captures, 
-     // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will 
-     // be generated. 
-     MovePicker mp(pos, ttMove, depth, to_sq((ss-1)->currentMove)); 
-   
-     // Loop through the moves until no moves remain or a beta cutoff occurs 
-     while ((move = mp.next_move()) != MOVE_NONE) 
-     { 
-       assert(is_ok(move)); 
-   
-       givesCheck =  type_of(move) == NORMAL && !pos.discovered_check_candidates() 
-                   ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move) 
-                   : pos.gives_check(move); 
-   
-       // Futility pruning 
-       if (   !InCheck 
-           && !givesCheck 
-           &&  futilityBase > -VALUE_KNOWN_WIN 
-           && !pos.advanced_pawn_push(move)) 
-       { 
-           assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push 
-   
-           futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; 
-   
-           if (futilityValue <= alpha) 
-           { 
-               bestValue = std::max(bestValue, futilityValue); 
-               continue; 
-           } 
-   
-           if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) 
-           { 
-               bestValue = std::max(bestValue, futilityBase); 
-               continue; 
-           } 
-       } 
-   
-       // Detect non-capture evasions that are candidates to be pruned 
-       evasionPrunable =    InCheck 
-                        &&  bestValue > VALUE_MATED_IN_MAX_PLY 
-                        && !pos.capture(move); 
-   
-       // Don't search moves with negative SEE values 
-       if (  (!InCheck || evasionPrunable) 
-           &&  type_of(move) != PROMOTION 
-           &&  !pos.see_ge(move, VALUE_ZERO)) 
-           continue; 
-   
-       // Speculative prefetch as early as possible 
-       prefetch(TT.first_entry(pos.key_after(move))); 
-   
-       // Check for legality just before making the move 
-       if (!pos.legal(move)) 
-           continue; 
-   
-       ss->currentMove = move; 
-   
-       // Make and search the move 
-       pos.do_move(move, st, givesCheck); 
-       value = givesCheck ? -qsearch<NT,  true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY) 
-                          : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY); 
-       pos.undo_move(move); 
-   
-       assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); 
-   
-       // Check for a new best move 
-       if (value > bestValue) 
-       { 
-           bestValue = value; 
-   
-           if (value > alpha) 
-           { 
-               if (PvNode) // Update pv even in fail-high case 
-                   update_pv(ss->pv, move, (ss+1)->pv); 
-   
-               if (PvNode && value < beta) // Update alpha here! 
-               { 
-                   alpha = value; 
-                   bestMove = move; 
-               } 
-               else // Fail high 
-               { 
-                   tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER, 
-                             ttDepth, move, ss->staticEval, TT.generation()); 
-   
-                   return value; 
-               } 
-           } 
-        } 
-     } 
-   
-     // All legal moves have been searched. A special case: If we're in check 
-     // and no legal moves were found, it is checkmate. 
-     if (InCheck && bestValue == -VALUE_INFINITE) 
-         return mated_in(ss->ply); // Plies to mate from the root 
-   
-     tte->save(posKey, value_to_tt(bestValue, ss->ply), 
-               PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER, 
-               ttDepth, bestMove, ss->staticEval, TT.generation()); 
-   
-     assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); 
-   
-     return bestValue; 
-   } 
-   
-   
-   // value_to_tt() adjusts a mate score from "plies to mate from the root" to 
-   // "plies to mate from the current position". Non-mate scores are unchanged. 
-   // The function is called before storing a value in the transposition table. 
-   
-   Value value_to_tt(Value v, int ply) { 
-   
-     assert(v != VALUE_NONE); 
-   
-     return  v >= VALUE_MATE_IN_MAX_PLY  ? v + ply 
-           : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v; 
-   } 
-   
-   
-   // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score 
-   // from the transposition table (which refers to the plies to mate/be mated 
-   // from current position) to "plies to mate/be mated from the root". 
-   
-   Value value_from_tt(Value v, int ply) { 
-   
-     return  v == VALUE_NONE             ? VALUE_NONE 
-           : v >= VALUE_MATE_IN_MAX_PLY  ? v - ply 
-           : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v; 
-   } 
-   
-   
-   // update_pv() adds current move and appends child pv[] 
-   
-   void update_pv(Move* pv, Move move, Move* childPv) { 
-   
-     for (*pv++ = move; childPv && *childPv != MOVE_NONE; ) 
-         *pv++ = *childPv++; 
-     *pv = MOVE_NONE; 
-   } 
-   
-   
-   // update_cm_stats() updates countermove and follow-up move history 
-   
-   void update_cm_stats(Stack* ss, Piece pc, Square s, Value bonus) { 
-   
-     CounterMoveStats* cmh  = (ss-1)->counterMoves; 
-     CounterMoveStats* fmh1 = (ss-2)->counterMoves; 
-     CounterMoveStats* fmh2 = (ss-4)->counterMoves; 
-   
-     if (cmh) 
-         cmh->update(pc, s, bonus); 
-   
-     if (fmh1) 
-         fmh1->update(pc, s, bonus); 
-   
-     if (fmh2) 
-         fmh2->update(pc, s, bonus); 
-   } 
-   
-   
-   // update_stats() updates killers, history, countermove and countermove plus 
-   // follow-up move history when a new quiet best move is found. 
-   
-   void update_stats(const Position& pos, Stack* ss, Move move, 
-                     Move* quiets, int quietsCnt, Value bonus) { 
-   
-     if (ss->killers[0] != move) 
-     { 
-         ss->killers[1] = ss->killers[0]; 
-         ss->killers[0] = move; 
-     } 
-   
-     Color c = pos.side_to_move(); 
-     Thread* thisThread = pos.this_thread(); 
-     thisThread->fromTo.update(c, move, bonus); 
-     thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus); 
-     update_cm_stats(ss, pos.moved_piece(move), to_sq(move), bonus); 
-   
-     if ((ss-1)->counterMoves) 
-     { 
-         Square prevSq = to_sq((ss-1)->currentMove); 
-         thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move); 
-     } 
-   
-     // Decrease all the other played quiet moves 
-     for (int i = 0; i < quietsCnt; ++i) 
-     { 
-         thisThread->fromTo.update(c, quiets[i], -bonus); 
-         thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); 
-         update_cm_stats(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); 
-     } 
-   } 
-   
-   
-   // When playing with strength handicap, choose best move among a set of RootMoves 
-   // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. 
-   
-   Move Skill::pick_best(size_t multiPV) { 
-   
-     const RootMoves& rootMoves = Threads.main()->rootMoves; 
-     static PRNG rng(now()); // PRNG sequence should be non-deterministic 
-   
-     // RootMoves are already sorted by score in descending order 
-     Value topScore = rootMoves[0].score; 
-     int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg); 
-     int weakness = 120 - 2 * level; 
-     int maxScore = -VALUE_INFINITE; 
-   
-     // Choose best move. For each move score we add two terms, both dependent on 
-     // weakness. One is deterministic and bigger for weaker levels, and one is 
-     // random. Then we choose the move with the resulting highest score. 
-     for (size_t i = 0; i < multiPV; ++i) 
-     { 
-         // This is our magic formula 
-         int push = (  weakness * int(topScore - rootMoves[i].score) 
-                     + delta * (rng.rand<unsigned>() % weakness)) / 128; 
-   
-         if (rootMoves[i].score + push > maxScore) 
-         { 
-             maxScore = rootMoves[i].score + push; 
-             best = rootMoves[i].pv[0]; 
-         } 
-     } 
-   
-     return best; 
-   } 
-   
-   
-   // check_time() is used to print debug info and, more importantly, to detect 
-   // when we are out of available time and thus stop the search. 
-   
-   void check_time() { 
-   
-     static TimePoint lastInfoTime = now(); 
-   
-     int elapsed = Time.elapsed(); 
-     TimePoint tick = Limits.startTime + elapsed; 
-   
-     if (tick - lastInfoTime >= 1000) 
-     { 
-         lastInfoTime = tick; 
-         dbg_print(); 
-     } 
-   
-     // An engine may not stop pondering until told so by the GUI 
-     if (Limits.ponder) 
-         return; 
-   
-     if (   (Limits.use_time_management() && elapsed > Time.maximum() - 10) 
-         || (Limits.movetime && elapsed >= Limits.movetime) 
-         || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) 
-             Signals.stop = true; 
-   } 
-   
- } // namespace 
-   
-   
- /// UCI::pv() formats PV information according to the UCI protocol. UCI requires 
- /// that all (if any) unsearched PV lines are sent using a previous search score. 
-   
- string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { 
-   
-   std::stringstream ss; 
-   int elapsed = Time.elapsed() + 1; 
-   const RootMoves& rootMoves = pos.this_thread()->rootMoves; 
-   size_t PVIdx = pos.this_thread()->PVIdx; 
-   size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size()); 
-   uint64_t nodesSearched = Threads.nodes_searched(); 
-   uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0); 
-   
-   for (size_t i = 0; i < multiPV; ++i) 
-   { 
-       bool updated = (i <= PVIdx); 
-   
-       if (depth == ONE_PLY && !updated) 
-           continue; 
-   
-       Depth d = updated ? depth : depth - ONE_PLY; 
-       Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore; 
-   
-       bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY; 
-       v = tb ? TB::Score : v; 
-   
-       if (ss.rdbuf()->in_avail()) // Not at first line 
-           ss << "\n"; 
-   
-       ss << "info" 
-          << " depth "    << d / ONE_PLY 
-          << " seldepth " << pos.this_thread()->maxPly 
-          << " multipv "  << i + 1 
-          << " score "    << UCI::value(v); 
-   
-       if (!tb && i == PVIdx) 
-           ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : ""); 
-   
-       ss << " nodes "    << nodesSearched 
-          << " nps "      << nodesSearched * 1000 / elapsed; 
-   
-       if (elapsed > 1000) // Earlier makes little sense 
-           ss << " hashfull " << TT.hashfull(); 
-   
-       ss << " tbhits "   << tbHits 
-          << " time "     << elapsed 
-          << " pv"; 
-   
-       for (Move m : rootMoves[i].pv) 
-           ss << " " << UCI::move(m, pos.is_chess960()); 
-   } 
-   
-   return ss.str(); 
- } 
-   
-   
- /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move 
- /// before exiting the search, for instance, in case we stop the search during a 
- /// fail high at root. We try hard to have a ponder move to return to the GUI, 
- /// otherwise in case of 'ponder on' we have nothing to think on. 
-   
- bool RootMove::extract_ponder_from_tt(Position& pos) { 
-   
-     StateInfo st; 
-     bool ttHit; 
-   
-     assert(pv.size() == 1); 
-   
-     if (!pv[0]) 
-         return false; 
-   
-     pos.do_move(pv[0], st, pos.gives_check(pv[0])); 
-     TTEntry* tte = TT.probe(pos.key(), ttHit); 
-   
-     if (ttHit) 
-     { 
-         Move m = tte->move(); // Local copy to be SMP safe 
-         if (MoveList<LEGAL>(pos).contains(m)) 
-             pv.push_back(m); 
-     } 
-   
-     pos.undo_move(pv[0]); 
-     return pv.size() > 1; 
- } 
-   
- void Tablebases::filter_root_moves(Position& pos, Search::RootMoves& rootMoves) { 
-   
-     RootInTB = false; 
-     UseRule50 = Options["Syzygy50MoveRule"]; 
-     ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY; 
-     Cardinality = Options["SyzygyProbeLimit"]; 
-   
-     // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality 
-     if (Cardinality > MaxCardinality) 
-     { 
-         Cardinality = MaxCardinality; 
-         ProbeDepth = DEPTH_ZERO; 
-     } 
-   
-     if (Cardinality < popcount(pos.pieces()) || pos.can_castle(ANY_CASTLING)) 
-         return; 
-   
-     // If the current root position is in the tablebases, then RootMoves 
-     // contains only moves that preserve the draw or the win. 
-     RootInTB = root_probe(pos, rootMoves, TB::Score); 
-   
-     if (RootInTB) 
-         Cardinality = 0; // Do not probe tablebases during the search 
-   
-     else // If DTZ tables are missing, use WDL tables as a fallback 
-     { 
-         // Filter out moves that do not preserve the draw or the win. 
-         RootInTB = root_probe_wdl(pos, rootMoves, TB::Score); 
-   
-         // Only probe during search if winning 
-         if (RootInTB && TB::Score <= VALUE_DRAW) 
-             Cardinality = 0; 
-     } 
-   
-     if (RootInTB && !UseRule50) 
-         TB::Score =  TB::Score > VALUE_DRAW ?  VALUE_MATE - MAX_PLY - 1 
-                    : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1 
-                                             :  VALUE_DRAW; 
- } 
-