Subversion Repositories Games.Chess Giants

Rev

Rev 169 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm>
  22. #include <cassert>
  23. #include <cmath>
  24. #include <cstring>   // For std::memset
  25. #include <iostream>
  26. #include <sstream>
  27.  
  28. #include "evaluate.h"
  29. #include "misc.h"
  30. #include "movegen.h"
  31. #include "movepick.h"
  32. #include "search.h"
  33. #include "timeman.h"
  34. #include "thread.h"
  35. #include "tt.h"
  36. #include "uci.h"
  37. #include "syzygy/tbprobe.h"
  38.  
  39. namespace Search {
  40.  
  41.   SignalsType Signals;
  42.   LimitsType Limits;
  43.   StateStackPtr SetupStates;
  44. }
  45.  
  46. namespace Tablebases {
  47.  
  48.   int Cardinality;
  49.   uint64_t Hits;
  50.   bool RootInTB;
  51.   bool UseRule50;
  52.   Depth ProbeDepth;
  53.   Value Score;
  54. }
  55.  
  56. namespace TB = Tablebases;
  57.  
  58. using std::string;
  59. using Eval::evaluate;
  60. using namespace Search;
  61.  
  62. namespace {
  63.  
  64.   // Different node types, used as a template parameter
  65.   enum NodeType { NonPV, PV };
  66.  
  67.   // Razoring and futility margin based on depth
  68.   const int razor_margin[4] = { 483, 570, 603, 554 };
  69.   Value futility_margin(Depth d) { return Value(200 * d); }
  70.  
  71.   // Futility and reductions lookup tables, initialized at startup
  72.   int FutilityMoveCounts[2][16];  // [improving][depth]
  73.   Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
  74.  
  75.   template <bool PvNode> Depth reduction(bool i, Depth d, int mn) {
  76.     return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)];
  77.   }
  78.  
  79.   // Skill structure is used to implement strength limit
  80.   struct Skill {
  81.     Skill(int l) : level(l) {}
  82.     bool enabled() const { return level < 20; }
  83.     bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
  84.     Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
  85.     Move pick_best(size_t multiPV);
  86.  
  87.     int level;
  88.     Move best = MOVE_NONE;
  89.   };
  90.  
  91.   // EasyMoveManager structure is used to detect an 'easy move'. When the PV is
  92.   // stable across multiple search iterations, we can quickly return the best move.
  93.   struct EasyMoveManager {
  94.  
  95.     void clear() {
  96.       stableCnt = 0;
  97.       expectedPosKey = 0;
  98.       pv[0] = pv[1] = pv[2] = MOVE_NONE;
  99.     }
  100.  
  101.     Move get(Key key) const {
  102.       return expectedPosKey == key ? pv[2] : MOVE_NONE;
  103.     }
  104.  
  105.     void update(Position& pos, const std::vector<Move>& newPv) {
  106.  
  107.       assert(newPv.size() >= 3);
  108.  
  109.       // Keep track of how many times in a row the 3rd ply remains stable
  110.       stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0;
  111.  
  112.       if (!std::equal(newPv.begin(), newPv.begin() + 3, pv))
  113.       {
  114.           std::copy(newPv.begin(), newPv.begin() + 3, pv);
  115.  
  116.           StateInfo st[2];
  117.           pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0], CheckInfo(pos)));
  118.           pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1], CheckInfo(pos)));
  119.           expectedPosKey = pos.key();
  120.           pos.undo_move(newPv[1]);
  121.           pos.undo_move(newPv[0]);
  122.       }
  123.     }
  124.  
  125.     int stableCnt;
  126.     Key expectedPosKey;
  127.     Move pv[3];
  128.   };
  129.  
  130.   // Set of rows with half bits set to 1 and half to 0. It is used to allocate
  131.   // the search depths across the threads.
  132.   typedef std::vector<int> Row;
  133.  
  134.   const Row HalfDensity[] = {
  135.     {0, 1},
  136.     {1, 0},
  137.     {0, 0, 1, 1},
  138.     {0, 1, 1, 0},
  139.     {1, 1, 0, 0},
  140.     {1, 0, 0, 1},
  141.     {0, 0, 0, 1, 1, 1},
  142.     {0, 0, 1, 1, 1, 0},
  143.     {0, 1, 1, 1, 0, 0},
  144.     {1, 1, 1, 0, 0, 0},
  145.     {1, 1, 0, 0, 0, 1},
  146.     {1, 0, 0, 0, 1, 1},
  147.     {0, 0, 0, 0, 1, 1, 1, 1},
  148.     {0, 0, 0, 1, 1, 1, 1, 0},
  149.     {0, 0, 1, 1, 1, 1, 0 ,0},
  150.     {0, 1, 1, 1, 1, 0, 0 ,0},
  151.     {1, 1, 1, 1, 0, 0, 0 ,0},
  152.     {1, 1, 1, 0, 0, 0, 0 ,1},
  153.     {1, 1, 0, 0, 0, 0, 1 ,1},
  154.     {1, 0, 0, 0, 0, 1, 1 ,1},
  155.   };
  156.  
  157.   const size_t HalfDensitySize = std::extent<decltype(HalfDensity)>::value;
  158.  
  159.   EasyMoveManager EasyMove;
  160.   Value DrawValue[COLOR_NB];
  161.   CounterMoveHistoryStats CounterMoveHistory;
  162.  
  163.   template <NodeType NT>
  164.   Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
  165.  
  166.   template <NodeType NT, bool InCheck>
  167.   Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
  168.  
  169.   Value value_to_tt(Value v, int ply);
  170.   Value value_from_tt(Value v, int ply);
  171.   void update_pv(Move* pv, Move move, Move* childPv);
  172.   void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
  173.   void check_time();
  174.  
  175. } // namespace
  176.  
  177.  
  178. /// Search::init() is called during startup to initialize various lookup tables
  179.  
  180. void Search::init() {
  181.  
  182.   const double K[][2] = {{ 0.799, 2.281 }, { 0.484, 3.023 }};
  183.  
  184.   for (int pv = 0; pv <= 1; ++pv)
  185.       for (int imp = 0; imp <= 1; ++imp)
  186.           for (int d = 1; d < 64; ++d)
  187.               for (int mc = 1; mc < 64; ++mc)
  188.               {
  189.                   double r = K[pv][0] + log(d) * log(mc) / K[pv][1];
  190.  
  191.                   if (r >= 1.5)
  192.                       Reductions[pv][imp][d][mc] = int(r) * ONE_PLY;
  193.  
  194.                   // Increase reduction when eval is not improving
  195.                   if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY)
  196.                       Reductions[pv][imp][d][mc] += ONE_PLY;
  197.               }
  198.  
  199.   for (int d = 0; d < 16; ++d)
  200.   {
  201.       FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
  202.       FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8));
  203.   }
  204. }
  205.  
  206.  
  207. /// Search::clear() resets search state to zero, to obtain reproducible results
  208.  
  209. void Search::clear() {
  210.  
  211.   TT.clear();
  212.   CounterMoveHistory.clear();
  213.  
  214.   for (Thread* th : Threads)
  215.   {
  216.       th->history.clear();
  217.       th->counterMoves.clear();
  218.   }
  219.  
  220.   Threads.main()->previousScore = VALUE_INFINITE;
  221. }
  222.  
  223.  
  224. /// Search::perft() is our utility to verify move generation. All the leaf nodes
  225. /// up to the given depth are generated and counted, and the sum is returned.
  226. template<bool Root>
  227. uint64_t Search::perft(Position& pos, Depth depth) {
  228.  
  229.   StateInfo st;
  230.   uint64_t cnt, nodes = 0;
  231.   CheckInfo ci(pos);
  232.   const bool leaf = (depth == 2 * ONE_PLY);
  233.  
  234.   for (const auto& m : MoveList<LEGAL>(pos))
  235.   {
  236.       if (Root && depth <= ONE_PLY)
  237.           cnt = 1, nodes++;
  238.       else
  239.       {
  240.           pos.do_move(m, st, pos.gives_check(m, ci));
  241.           cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
  242.           nodes += cnt;
  243.           pos.undo_move(m);
  244.       }
  245.       if (Root)
  246.           sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
  247.   }
  248.   return nodes;
  249. }
  250.  
  251. template uint64_t Search::perft<true>(Position&, Depth);
  252.  
  253.  
  254. /// MainThread::search() is called by the main thread when the program receives
  255. /// the UCI 'go' command. It searches from the root position and outputs the "bestmove".
  256.  
  257. void MainThread::search() {
  258.  
  259.   Color us = rootPos.side_to_move();
  260.   Time.init(Limits, us, rootPos.game_ply());
  261.  
  262.   int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns
  263.   DrawValue[ us] = VALUE_DRAW - Value(contempt);
  264.   DrawValue[~us] = VALUE_DRAW + Value(contempt);
  265.  
  266.   TB::Hits = 0;
  267.   TB::RootInTB = false;
  268.   TB::UseRule50 = Options["Syzygy50MoveRule"];
  269.   TB::ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY;
  270.   TB::Cardinality = Options["SyzygyProbeLimit"];
  271.  
  272.   // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality
  273.   if (TB::Cardinality > TB::MaxCardinality)
  274.   {
  275.       TB::Cardinality = TB::MaxCardinality;
  276.       TB::ProbeDepth = DEPTH_ZERO;
  277.   }
  278.  
  279.   if (rootMoves.empty())
  280.   {
  281.       rootMoves.push_back(RootMove(MOVE_NONE));
  282.       sync_cout << "info depth 0 score "
  283.                 << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
  284.                 << sync_endl;
  285.   }
  286.   else
  287.   {
  288.       if (    TB::Cardinality >=  rootPos.count<ALL_PIECES>(WHITE)
  289.                                 + rootPos.count<ALL_PIECES>(BLACK)
  290.           && !rootPos.can_castle(ANY_CASTLING))
  291.       {
  292.           // If the current root position is in the tablebases, then RootMoves
  293.           // contains only moves that preserve the draw or the win.
  294.           TB::RootInTB = Tablebases::root_probe(rootPos, rootMoves, TB::Score);
  295.  
  296.           if (TB::RootInTB)
  297.               TB::Cardinality = 0; // Do not probe tablebases during the search
  298.  
  299.           else // If DTZ tables are missing, use WDL tables as a fallback
  300.           {
  301.               // Filter out moves that do not preserve the draw or the win.
  302.               TB::RootInTB = Tablebases::root_probe_wdl(rootPos, rootMoves, TB::Score);
  303.  
  304.               // Only probe during search if winning
  305.               if (TB::Score <= VALUE_DRAW)
  306.                   TB::Cardinality = 0;
  307.           }
  308.  
  309.           if (TB::RootInTB)
  310.           {
  311.               TB::Hits = rootMoves.size();
  312.  
  313.               if (!TB::UseRule50)
  314.                   TB::Score =  TB::Score > VALUE_DRAW ?  VALUE_MATE - MAX_PLY - 1
  315.                              : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1
  316.                                                       :  VALUE_DRAW;
  317.           }
  318.       }
  319.  
  320.       for (Thread* th : Threads)
  321.       {
  322.           th->maxPly = 0;
  323.           th->rootDepth = DEPTH_ZERO;
  324.           if (th != this)
  325.           {
  326.               th->rootPos = Position(rootPos, th);
  327.               th->rootMoves = rootMoves;
  328.               th->start_searching();
  329.           }
  330.       }
  331.  
  332.       Thread::search(); // Let's start searching!
  333.   }
  334.  
  335.   // When playing in 'nodes as time' mode, subtract the searched nodes from
  336.   // the available ones before exiting.
  337.   if (Limits.npmsec)
  338.       Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
  339.  
  340.   // When we reach the maximum depth, we can arrive here without a raise of
  341.   // Signals.stop. However, if we are pondering or in an infinite search,
  342.   // the UCI protocol states that we shouldn't print the best move before the
  343.   // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
  344.   // until the GUI sends one of those commands (which also raises Signals.stop).
  345.   if (!Signals.stop && (Limits.ponder || Limits.infinite))
  346.   {
  347.       Signals.stopOnPonderhit = true;
  348.       wait(Signals.stop);
  349.   }
  350.  
  351.   // Stop the threads if not already stopped
  352.   Signals.stop = true;
  353.  
  354.   // Wait until all threads have finished
  355.   for (Thread* th : Threads)
  356.       if (th != this)
  357.           th->wait_for_search_finished();
  358.  
  359.   // Check if there are threads with a better score than main thread
  360.   Thread* bestThread = this;
  361.   if (   !this->easyMovePlayed
  362.       &&  Options["MultiPV"] == 1
  363.       && !Skill(Options["Skill Level"]).enabled())
  364.   {
  365.       for (Thread* th : Threads)
  366.           if (   th->completedDepth > bestThread->completedDepth
  367.               && th->rootMoves[0].score > bestThread->rootMoves[0].score)
  368.               bestThread = th;
  369.   }
  370.  
  371.   previousScore = bestThread->rootMoves[0].score;
  372.  
  373.   // Send new PV when needed
  374.   if (bestThread != this)
  375.       sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
  376.  
  377.   sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
  378.  
  379.   if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
  380.       std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
  381.  
  382.   std::cout << sync_endl;
  383. }
  384.  
  385.  
  386. // Thread::search() is the main iterative deepening loop. It calls search()
  387. // repeatedly with increasing depth until the allocated thinking time has been
  388. // consumed, the user stops the search, or the maximum search depth is reached.
  389.  
  390. void Thread::search() {
  391.  
  392.   Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2)
  393.   Value bestValue, alpha, beta, delta;
  394.   Move easyMove = MOVE_NONE;
  395.   MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
  396.  
  397.   std::memset(ss-2, 0, 5 * sizeof(Stack));
  398.  
  399.   bestValue = delta = alpha = -VALUE_INFINITE;
  400.   beta = VALUE_INFINITE;
  401.   completedDepth = DEPTH_ZERO;
  402.  
  403.   if (mainThread)
  404.   {
  405.       easyMove = EasyMove.get(rootPos.key());
  406.       EasyMove.clear();
  407.       mainThread->easyMovePlayed = mainThread->failedLow = false;
  408.       mainThread->bestMoveChanges = 0;
  409.       TT.new_search();
  410.   }
  411.  
  412.   size_t multiPV = Options["MultiPV"];
  413.   Skill skill(Options["Skill Level"]);
  414.  
  415.   // When playing with strength handicap enable MultiPV search that we will
  416.   // use behind the scenes to retrieve a set of possible moves.
  417.   if (skill.enabled())
  418.       multiPV = std::max(multiPV, (size_t)4);
  419.  
  420.   multiPV = std::min(multiPV, rootMoves.size());
  421.  
  422.   // Iterative deepening loop until requested to stop or the target depth is reached.
  423.   while (++rootDepth < DEPTH_MAX && !Signals.stop && (!Limits.depth || rootDepth <= Limits.depth))
  424.   {
  425.       // Set up the new depths for the helper threads skipping on average every
  426.       // 2nd ply (using a half-density matrix).
  427.       if (!mainThread)
  428.       {
  429.           const Row& row = HalfDensity[(idx - 1) % HalfDensitySize];
  430.           if (row[(rootDepth + rootPos.game_ply()) % row.size()])
  431.              continue;
  432.       }
  433.  
  434.       // Age out PV variability metric
  435.       if (mainThread)
  436.           mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false;
  437.  
  438.       // Save the last iteration's scores before first PV line is searched and
  439.       // all the move scores except the (new) PV are set to -VALUE_INFINITE.
  440.       for (RootMove& rm : rootMoves)
  441.           rm.previousScore = rm.score;
  442.  
  443.       // MultiPV loop. We perform a full root search for each PV line
  444.       for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx)
  445.       {
  446.           // Reset aspiration window starting size
  447.           if (rootDepth >= 5 * ONE_PLY)
  448.           {
  449.               delta = Value(18);
  450.               alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE);
  451.               beta  = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE);
  452.           }
  453.  
  454.           // Start with a small aspiration window and, in the case of a fail
  455.           // high/low, re-search with a bigger window until we're not failing
  456.           // high/low anymore.
  457.           while (true)
  458.           {
  459.               bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false);
  460.  
  461.               // Bring the best move to the front. It is critical that sorting
  462.               // is done with a stable algorithm because all the values but the
  463.               // first and eventually the new best one are set to -VALUE_INFINITE
  464.               // and we want to keep the same order for all the moves except the
  465.               // new PV that goes to the front. Note that in case of MultiPV
  466.               // search the already searched PV lines are preserved.
  467.               std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end());
  468.  
  469.               // Write PV back to the transposition table in case the relevant
  470.               // entries have been overwritten during the search.
  471.               for (size_t i = 0; i <= PVIdx; ++i)
  472.                   rootMoves[i].insert_pv_in_tt(rootPos);
  473.  
  474.               // If search has been stopped, break immediately. Sorting and
  475.               // writing PV back to TT is safe because RootMoves is still
  476.               // valid, although it refers to the previous iteration.
  477.               if (Signals.stop)
  478.                   break;
  479.  
  480.               // When failing high/low give some update (without cluttering
  481.               // the UI) before a re-search.
  482.               if (   mainThread
  483.                   && multiPV == 1
  484.                   && (bestValue <= alpha || bestValue >= beta)
  485.                   && Time.elapsed() > 3000)
  486.                   sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
  487.  
  488.               // In case of failing low/high increase aspiration window and
  489.               // re-search, otherwise exit the loop.
  490.               if (bestValue <= alpha)
  491.               {
  492.                   beta = (alpha + beta) / 2;
  493.                   alpha = std::max(bestValue - delta, -VALUE_INFINITE);
  494.  
  495.                   if (mainThread)
  496.                   {
  497.                       mainThread->failedLow = true;
  498.                       Signals.stopOnPonderhit = false;
  499.                   }
  500.               }
  501.               else if (bestValue >= beta)
  502.               {
  503.                   alpha = (alpha + beta) / 2;
  504.                   beta = std::min(bestValue + delta, VALUE_INFINITE);
  505.               }
  506.               else
  507.                   break;
  508.  
  509.               delta += delta / 4 + 5;
  510.  
  511.               assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
  512.           }
  513.  
  514.           // Sort the PV lines searched so far and update the GUI
  515.           std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1);
  516.  
  517.           if (!mainThread)
  518.               break;
  519.  
  520.           if (Signals.stop)
  521.               sync_cout << "info nodes " << Threads.nodes_searched()
  522.                         << " time " << Time.elapsed() << sync_endl;
  523.  
  524.           else if (PVIdx + 1 == multiPV || Time.elapsed() > 3000)
  525.               sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
  526.       }
  527.  
  528.       if (!Signals.stop)
  529.           completedDepth = rootDepth;
  530.  
  531.       if (!mainThread)
  532.           continue;
  533.  
  534.       // If skill level is enabled and time is up, pick a sub-optimal best move
  535.       if (skill.enabled() && skill.time_to_pick(rootDepth))
  536.           skill.pick_best(multiPV);
  537.  
  538.       // Have we found a "mate in x"?
  539.       if (   Limits.mate
  540.           && bestValue >= VALUE_MATE_IN_MAX_PLY
  541.           && VALUE_MATE - bestValue <= 2 * Limits.mate)
  542.           Signals.stop = true;
  543.  
  544.       // Do we have time for the next iteration? Can we stop searching now?
  545.       if (Limits.use_time_management())
  546.       {
  547.           if (!Signals.stop && !Signals.stopOnPonderhit)
  548.           {
  549.               // Stop the search if only one legal move is available, or if all
  550.               // of the available time has been used, or if we matched an easyMove
  551.               // from the previous search and just did a fast verification.
  552.               const bool F[] = { !mainThread->failedLow,
  553.                                  bestValue >= mainThread->previousScore };
  554.  
  555.               int improvingFactor = 640 - 160*F[0] - 126*F[1] - 124*F[0]*F[1];
  556.               double unstablePvFactor = 1 + mainThread->bestMoveChanges;
  557.  
  558.               bool doEasyMove =   rootMoves[0].pv[0] == easyMove
  559.                                && mainThread->bestMoveChanges < 0.03
  560.                                && Time.elapsed() > Time.optimum() * 25 / 204;
  561.  
  562.               if (   rootMoves.size() == 1
  563.                   || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 634
  564.                   || (mainThread->easyMovePlayed = doEasyMove))
  565.               {
  566.                   // If we are allowed to ponder do not stop the search now but
  567.                   // keep pondering until the GUI sends "ponderhit" or "stop".
  568.                   if (Limits.ponder)
  569.                       Signals.stopOnPonderhit = true;
  570.                   else
  571.                       Signals.stop = true;
  572.               }
  573.           }
  574.  
  575.           if (rootMoves[0].pv.size() >= 3)
  576.               EasyMove.update(rootPos, rootMoves[0].pv);
  577.           else
  578.               EasyMove.clear();
  579.       }
  580.   }
  581.  
  582.   if (!mainThread)
  583.       return;
  584.  
  585.   // Clear any candidate easy move that wasn't stable for the last search
  586.   // iterations; the second condition prevents consecutive fast moves.
  587.   if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed)
  588.       EasyMove.clear();
  589.  
  590.   // If skill level is enabled, swap best PV line with the sub-optimal one
  591.   if (skill.enabled())
  592.       std::swap(rootMoves[0], *std::find(rootMoves.begin(),
  593.                 rootMoves.end(), skill.best_move(multiPV)));
  594. }
  595.  
  596.  
  597. namespace {
  598.  
  599.   // search<>() is the main search function for both PV and non-PV nodes
  600.  
  601.   template <NodeType NT>
  602.   Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
  603.  
  604.     const bool PvNode = NT == PV;
  605.     const bool rootNode = PvNode && (ss-1)->ply == 0;
  606.  
  607.     assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
  608.     assert(PvNode || (alpha == beta - 1));
  609.     assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
  610.  
  611.     Move pv[MAX_PLY+1], quietsSearched[64];
  612.     StateInfo st;
  613.     TTEntry* tte;
  614.     Key posKey;
  615.     Move ttMove, move, excludedMove, bestMove;
  616.     Depth extension, newDepth, predictedDepth;
  617.     Value bestValue, value, ttValue, eval, nullValue, futilityValue;
  618.     bool ttHit, inCheck, givesCheck, singularExtensionNode, improving;
  619.     bool captureOrPromotion, doFullDepthSearch;
  620.     int moveCount, quietCount;
  621.  
  622.     // Step 1. Initialize node
  623.     Thread* thisThread = pos.this_thread();
  624.     inCheck = pos.checkers();
  625.     moveCount = quietCount =  ss->moveCount = 0;
  626.     bestValue = -VALUE_INFINITE;
  627.     ss->ply = (ss-1)->ply + 1;
  628.  
  629.     // Check for the available remaining time
  630.     if (thisThread->resetCalls.load(std::memory_order_relaxed))
  631.     {
  632.         thisThread->resetCalls = false;
  633.         thisThread->callsCnt = 0;
  634.     }
  635.     if (++thisThread->callsCnt > 4096)
  636.     {
  637.         for (Thread* th : Threads)
  638.             th->resetCalls = true;
  639.  
  640.         check_time();
  641.     }
  642.  
  643.     // Used to send selDepth info to GUI
  644.     if (PvNode && thisThread->maxPly < ss->ply)
  645.         thisThread->maxPly = ss->ply;
  646.  
  647.     if (!rootNode)
  648.     {
  649.         // Step 2. Check for aborted search and immediate draw
  650.         if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY)
  651.             return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos)
  652.                                                   : DrawValue[pos.side_to_move()];
  653.  
  654.         // Step 3. Mate distance pruning. Even if we mate at the next move our score
  655.         // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
  656.         // a shorter mate was found upward in the tree then there is no need to search
  657.         // because we will never beat the current alpha. Same logic but with reversed
  658.         // signs applies also in the opposite condition of being mated instead of giving
  659.         // mate. In this case return a fail-high score.
  660.         alpha = std::max(mated_in(ss->ply), alpha);
  661.         beta = std::min(mate_in(ss->ply+1), beta);
  662.         if (alpha >= beta)
  663.             return alpha;
  664.     }
  665.  
  666.     assert(0 <= ss->ply && ss->ply < MAX_PLY);
  667.  
  668.     ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
  669.     (ss+1)->skipEarlyPruning = false;
  670.     (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
  671.  
  672.     // Step 4. Transposition table lookup. We don't want the score of a partial
  673.     // search to overwrite a previous full search TT value, so we use a different
  674.     // position key in case of an excluded move.
  675.     excludedMove = ss->excludedMove;
  676.     posKey = excludedMove ? pos.exclusion_key() : pos.key();
  677.     tte = TT.probe(posKey, ttHit);
  678.     ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
  679.     ttMove =  rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0]
  680.             : ttHit    ? tte->move() : MOVE_NONE;
  681.  
  682.     // At non-PV nodes we check for an early TT cutoff
  683.     if (  !PvNode
  684.         && ttHit
  685.         && tte->depth() >= depth
  686.         && ttValue != VALUE_NONE // Possible in case of TT access race
  687.         && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
  688.                             : (tte->bound() & BOUND_UPPER)))
  689.     {
  690.         ss->currentMove = ttMove; // Can be MOVE_NONE
  691.  
  692.         // If ttMove is quiet, update killers, history, counter move on TT hit
  693.         if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove))
  694.             update_stats(pos, ss, ttMove, depth, nullptr, 0);
  695.  
  696.         return ttValue;
  697.     }
  698.  
  699.     // Step 4a. Tablebase probe
  700.     if (!rootNode && TB::Cardinality)
  701.     {
  702.         int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK);
  703.  
  704.         if (    piecesCnt <= TB::Cardinality
  705.             && (piecesCnt <  TB::Cardinality || depth >= TB::ProbeDepth)
  706.             &&  pos.rule50_count() == 0
  707.             && !pos.can_castle(ANY_CASTLING))
  708.         {
  709.             int found, v = Tablebases::probe_wdl(pos, &found);
  710.  
  711.             if (found)
  712.             {
  713.                 TB::Hits++;
  714.  
  715.                 int drawScore = TB::UseRule50 ? 1 : 0;
  716.  
  717.                 value =  v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply
  718.                        : v >  drawScore ?  VALUE_MATE - MAX_PLY - ss->ply
  719.                                         :  VALUE_DRAW + 2 * v * drawScore;
  720.  
  721.                 tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT,
  722.                           std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
  723.                           MOVE_NONE, VALUE_NONE, TT.generation());
  724.  
  725.                 return value;
  726.             }
  727.         }
  728.     }
  729.  
  730.     // Step 5. Evaluate the position statically
  731.     if (inCheck)
  732.     {
  733.         ss->staticEval = eval = VALUE_NONE;
  734.         goto moves_loop;
  735.     }
  736.  
  737.     else if (ttHit)
  738.     {
  739.         // Never assume anything on values stored in TT
  740.         if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE)
  741.             eval = ss->staticEval = evaluate(pos);
  742.  
  743.         // Can ttValue be used as a better position evaluation?
  744.         if (ttValue != VALUE_NONE)
  745.             if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
  746.                 eval = ttValue;
  747.     }
  748.     else
  749.     {
  750.         eval = ss->staticEval =
  751.         (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
  752.                                          : -(ss-1)->staticEval + 2 * Eval::Tempo;
  753.  
  754.         tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
  755.                   ss->staticEval, TT.generation());
  756.     }
  757.  
  758.     if (ss->skipEarlyPruning)
  759.         goto moves_loop;
  760.  
  761.     // Step 6. Razoring (skipped when in check)
  762.     if (   !PvNode
  763.         &&  depth < 4 * ONE_PLY
  764.         &&  eval + razor_margin[depth] <= alpha
  765.         &&  ttMove == MOVE_NONE)
  766.     {
  767.         if (   depth <= ONE_PLY
  768.             && eval + razor_margin[3 * ONE_PLY] <= alpha)
  769.             return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
  770.  
  771.         Value ralpha = alpha - razor_margin[depth];
  772.         Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
  773.         if (v <= ralpha)
  774.             return v;
  775.     }
  776.  
  777.     // Step 7. Futility pruning: child node (skipped when in check)
  778.     if (   !rootNode
  779.         &&  depth < 7 * ONE_PLY
  780.         &&  eval - futility_margin(depth) >= beta
  781.         &&  eval < VALUE_KNOWN_WIN  // Do not return unproven wins
  782.         &&  pos.non_pawn_material(pos.side_to_move()))
  783.         return eval - futility_margin(depth);
  784.  
  785.     // Step 8. Null move search with verification search (is omitted in PV nodes)
  786.     if (   !PvNode
  787.         &&  depth >= 2 * ONE_PLY
  788.         &&  eval >= beta
  789.         &&  pos.non_pawn_material(pos.side_to_move()))
  790.     {
  791.         ss->currentMove = MOVE_NULL;
  792.  
  793.         assert(eval - beta >= 0);
  794.  
  795.         // Null move dynamic reduction based on depth and value
  796.         Depth R = ((823 + 67 * depth) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY;
  797.  
  798.         pos.do_null_move(st);
  799.         (ss+1)->skipEarlyPruning = true;
  800.         nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
  801.                                       : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
  802.         (ss+1)->skipEarlyPruning = false;
  803.         pos.undo_null_move();
  804.  
  805.         if (nullValue >= beta)
  806.         {
  807.             // Do not return unproven mate scores
  808.             if (nullValue >= VALUE_MATE_IN_MAX_PLY)
  809.                 nullValue = beta;
  810.  
  811.             if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
  812.                 return nullValue;
  813.  
  814.             // Do verification search at high depths
  815.             ss->skipEarlyPruning = true;
  816.             Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
  817.                                         :  search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
  818.             ss->skipEarlyPruning = false;
  819.  
  820.             if (v >= beta)
  821.                 return nullValue;
  822.         }
  823.     }
  824.  
  825.     // Step 9. ProbCut (skipped when in check)
  826.     // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
  827.     // and a reduced search returns a value much above beta, we can (almost)
  828.     // safely prune the previous move.
  829.     if (   !PvNode
  830.         &&  depth >= 5 * ONE_PLY
  831.         &&  abs(beta) < VALUE_MATE_IN_MAX_PLY)
  832.     {
  833.         Value rbeta = std::min(beta + 200, VALUE_INFINITE);
  834.         Depth rdepth = depth - 4 * ONE_PLY;
  835.  
  836.         assert(rdepth >= ONE_PLY);
  837.         assert((ss-1)->currentMove != MOVE_NONE);
  838.         assert((ss-1)->currentMove != MOVE_NULL);
  839.  
  840.         MovePicker mp(pos, ttMove, thisThread->history, PieceValue[MG][pos.captured_piece_type()]);
  841.         CheckInfo ci(pos);
  842.  
  843.         while ((move = mp.next_move()) != MOVE_NONE)
  844.             if (pos.legal(move, ci.pinned))
  845.             {
  846.                 ss->currentMove = move;
  847.                 pos.do_move(move, st, pos.gives_check(move, ci));
  848.                 value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
  849.                 pos.undo_move(move);
  850.                 if (value >= rbeta)
  851.                     return value;
  852.             }
  853.     }
  854.  
  855.     // Step 10. Internal iterative deepening (skipped when in check)
  856.     if (    depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
  857.         && !ttMove
  858.         && (PvNode || ss->staticEval + 256 >= beta))
  859.     {
  860.         Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
  861.         ss->skipEarlyPruning = true;
  862.         search<NT>(pos, ss, alpha, beta, d, true);
  863.         ss->skipEarlyPruning = false;
  864.  
  865.         tte = TT.probe(posKey, ttHit);
  866.         ttMove = ttHit ? tte->move() : MOVE_NONE;
  867.     }
  868.  
  869. moves_loop: // When in check search starts from here
  870.  
  871.     Square prevSq = to_sq((ss-1)->currentMove);
  872.     Move cm = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
  873.     const CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq];
  874.  
  875.     MovePicker mp(pos, ttMove, depth, thisThread->history, cmh, cm, ss);
  876.     CheckInfo ci(pos);
  877.     value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
  878.     improving =   ss->staticEval >= (ss-2)->staticEval
  879.                || ss->staticEval == VALUE_NONE
  880.                ||(ss-2)->staticEval == VALUE_NONE;
  881.  
  882.     singularExtensionNode =   !rootNode
  883.                            &&  depth >= 8 * ONE_PLY
  884.                            &&  ttMove != MOVE_NONE
  885.                        /*  &&  ttValue != VALUE_NONE Already implicit in the next condition */
  886.                            &&  abs(ttValue) < VALUE_KNOWN_WIN
  887.                            && !excludedMove // Recursive singular search is not allowed
  888.                            && (tte->bound() & BOUND_LOWER)
  889.                            &&  tte->depth() >= depth - 3 * ONE_PLY;
  890.  
  891.     // Step 11. Loop through moves
  892.     // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
  893.     while ((move = mp.next_move()) != MOVE_NONE)
  894.     {
  895.       assert(is_ok(move));
  896.  
  897.       if (move == excludedMove)
  898.           continue;
  899.  
  900.       // At root obey the "searchmoves" option and skip moves not listed in Root
  901.       // Move List. As a consequence any illegal move is also skipped. In MultiPV
  902.       // mode we also skip PV moves which have been already searched.
  903.       if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx,
  904.                                   thisThread->rootMoves.end(), move))
  905.           continue;
  906.  
  907.       ss->moveCount = ++moveCount;
  908.  
  909.       if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
  910.           sync_cout << "info depth " << depth / ONE_PLY
  911.                     << " currmove " << UCI::move(move, pos.is_chess960())
  912.                     << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl;
  913.  
  914.       if (PvNode)
  915.           (ss+1)->pv = nullptr;
  916.  
  917.       extension = DEPTH_ZERO;
  918.       captureOrPromotion = pos.capture_or_promotion(move);
  919.  
  920.       givesCheck =  type_of(move) == NORMAL && !ci.dcCandidates
  921.                   ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
  922.                   : pos.gives_check(move, ci);
  923.  
  924.       // Step 12. Extend checks
  925.       if (givesCheck && pos.see_sign(move) >= VALUE_ZERO)
  926.           extension = ONE_PLY;
  927.  
  928.       // Singular extension search. If all moves but one fail low on a search of
  929.       // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
  930.       // is singular and should be extended. To verify this we do a reduced search
  931.       // on all the other moves but the ttMove and if the result is lower than
  932.       // ttValue minus a margin then we extend the ttMove.
  933.       if (    singularExtensionNode
  934.           &&  move == ttMove
  935.           && !extension
  936.           &&  pos.legal(move, ci.pinned))
  937.       {
  938.           Value rBeta = ttValue - 2 * depth / ONE_PLY;
  939.           ss->excludedMove = move;
  940.           ss->skipEarlyPruning = true;
  941.           value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
  942.           ss->skipEarlyPruning = false;
  943.           ss->excludedMove = MOVE_NONE;
  944.  
  945.           if (value < rBeta)
  946.               extension = ONE_PLY;
  947.       }
  948.  
  949.       // Update the current move (this must be done after singular extension search)
  950.       newDepth = depth - ONE_PLY + extension;
  951.  
  952.       // Step 13. Pruning at shallow depth
  953.       if (   !rootNode
  954.           && !captureOrPromotion
  955.           && !inCheck
  956.           && !givesCheck
  957.           && !pos.advanced_pawn_push(move)
  958.           &&  bestValue > VALUE_MATED_IN_MAX_PLY)
  959.       {
  960.           // Move count based pruning
  961.           if (   depth < 16 * ONE_PLY
  962.               && moveCount >= FutilityMoveCounts[improving][depth])
  963.               continue;
  964.  
  965.           // History based pruning
  966.           if (   depth <= 4 * ONE_PLY
  967.               && move != ss->killers[0]
  968.               && thisThread->history[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO
  969.               && cmh[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO)
  970.               continue;
  971.  
  972.           predictedDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO);
  973.  
  974.           // Futility pruning: parent node
  975.           if (predictedDepth < 7 * ONE_PLY)
  976.           {
  977.               futilityValue = ss->staticEval + futility_margin(predictedDepth) + 256;
  978.  
  979.               if (futilityValue <= alpha)
  980.               {
  981.                   bestValue = std::max(bestValue, futilityValue);
  982.                   continue;
  983.               }
  984.           }
  985.  
  986.           // Prune moves with negative SEE at low depths
  987.           if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
  988.               continue;
  989.       }
  990.  
  991.       // Speculative prefetch as early as possible
  992.       prefetch(TT.first_entry(pos.key_after(move)));
  993.  
  994.       // Check for legality just before making the move
  995.       if (!rootNode && !pos.legal(move, ci.pinned))
  996.       {
  997.           ss->moveCount = --moveCount;
  998.           continue;
  999.       }
  1000.  
  1001.       ss->currentMove = move;
  1002.  
  1003.       // Step 14. Make the move
  1004.       pos.do_move(move, st, givesCheck);
  1005.  
  1006.       // Step 15. Reduced depth search (LMR). If the move fails high it will be
  1007.       // re-searched at full depth.
  1008.       if (    depth >= 3 * ONE_PLY
  1009.           &&  moveCount > 1
  1010.           && !captureOrPromotion)
  1011.       {
  1012.           Depth r = reduction<PvNode>(improving, depth, moveCount);
  1013.  
  1014.           // Increase reduction for cut nodes and moves with a bad history
  1015.           if (   (!PvNode && cutNode)
  1016.               || (   thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] < VALUE_ZERO
  1017.                   && cmh[pos.piece_on(to_sq(move))][to_sq(move)] <= VALUE_ZERO))
  1018.               r += ONE_PLY;
  1019.  
  1020.           // Decrease/increase reduction for moves with a good/bad history
  1021.           int rHist = (  thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)]
  1022.                        + cmh[pos.piece_on(to_sq(move))][to_sq(move)]) / 14980;
  1023.           r = std::max(DEPTH_ZERO, r - rHist * ONE_PLY);
  1024.  
  1025.           // Decrease reduction for moves that escape a capture. Filter out
  1026.           // castling moves, because they are coded as "king captures rook" and
  1027.           // hence break make_move(). Also use see() instead of see_sign(),
  1028.           // because the destination square is empty.
  1029.           if (   r
  1030.               && type_of(move) == NORMAL
  1031.               && type_of(pos.piece_on(to_sq(move))) != PAWN
  1032.               && pos.see(make_move(to_sq(move), from_sq(move))) < VALUE_ZERO)
  1033.               r = std::max(DEPTH_ZERO, r - ONE_PLY);
  1034.  
  1035.           Depth d = std::max(newDepth - r, ONE_PLY);
  1036.  
  1037.           value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
  1038.  
  1039.           doFullDepthSearch = (value > alpha && r != DEPTH_ZERO);
  1040.       }
  1041.       else
  1042.           doFullDepthSearch = !PvNode || moveCount > 1;
  1043.  
  1044.       // Step 16. Full depth search when LMR is skipped or fails high
  1045.       if (doFullDepthSearch)
  1046.           value = newDepth <   ONE_PLY ?
  1047.                             givesCheck ? -qsearch<NonPV,  true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
  1048.                                        : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
  1049.                                        : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
  1050.  
  1051.       // For PV nodes only, do a full PV search on the first move or after a fail
  1052.       // high (in the latter case search only if value < beta), otherwise let the
  1053.       // parent node fail low with value <= alpha and try another move.
  1054.       if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
  1055.       {
  1056.           (ss+1)->pv = pv;
  1057.           (ss+1)->pv[0] = MOVE_NONE;
  1058.  
  1059.           value = newDepth <   ONE_PLY ?
  1060.                             givesCheck ? -qsearch<PV,  true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
  1061.                                        : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
  1062.                                        : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
  1063.       }
  1064.  
  1065.       // Step 17. Undo move
  1066.       pos.undo_move(move);
  1067.  
  1068.       assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
  1069.  
  1070.       // Step 18. Check for a new best move
  1071.       // Finished searching the move. If a stop occurred, the return value of
  1072.       // the search cannot be trusted, and we return immediately without
  1073.       // updating best move, PV and TT.
  1074.       if (Signals.stop.load(std::memory_order_relaxed))
  1075.           return VALUE_ZERO;
  1076.  
  1077.       if (rootNode)
  1078.       {
  1079.           RootMove& rm = *std::find(thisThread->rootMoves.begin(),
  1080.                                     thisThread->rootMoves.end(), move);
  1081.  
  1082.           // PV move or new best move ?
  1083.           if (moveCount == 1 || value > alpha)
  1084.           {
  1085.               rm.score = value;
  1086.               rm.pv.resize(1);
  1087.  
  1088.               assert((ss+1)->pv);
  1089.  
  1090.               for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
  1091.                   rm.pv.push_back(*m);
  1092.  
  1093.               // We record how often the best move has been changed in each
  1094.               // iteration. This information is used for time management: When
  1095.               // the best move changes frequently, we allocate some more time.
  1096.               if (moveCount > 1 && thisThread == Threads.main())
  1097.                   ++static_cast<MainThread*>(thisThread)->bestMoveChanges;
  1098.           }
  1099.           else
  1100.               // All other moves but the PV are set to the lowest value: this is
  1101.               // not a problem when sorting because the sort is stable and the
  1102.               // move position in the list is preserved - just the PV is pushed up.
  1103.               rm.score = -VALUE_INFINITE;
  1104.       }
  1105.  
  1106.       if (value > bestValue)
  1107.       {
  1108.           bestValue = value;
  1109.  
  1110.           if (value > alpha)
  1111.           {
  1112.               // If there is an easy move for this position, clear it if unstable
  1113.               if (    PvNode
  1114.                   &&  thisThread == Threads.main()
  1115.                   &&  EasyMove.get(pos.key())
  1116.                   && (move != EasyMove.get(pos.key()) || moveCount > 1))
  1117.                   EasyMove.clear();
  1118.  
  1119.               bestMove = move;
  1120.  
  1121.               if (PvNode && !rootNode) // Update pv even in fail-high case
  1122.                   update_pv(ss->pv, move, (ss+1)->pv);
  1123.  
  1124.               if (PvNode && value < beta) // Update alpha! Always alpha < beta
  1125.                   alpha = value;
  1126.               else
  1127.               {
  1128.                   assert(value >= beta); // Fail high
  1129.                   break;
  1130.               }
  1131.           }
  1132.       }
  1133.  
  1134.       if (!captureOrPromotion && move != bestMove && quietCount < 64)
  1135.           quietsSearched[quietCount++] = move;
  1136.     }
  1137.  
  1138.     // The following condition would detect a stop only after move loop has been
  1139.     // completed. But in this case bestValue is valid because we have fully
  1140.     // searched our subtree, and we can anyhow save the result in TT.
  1141.     /*
  1142.        if (Signals.stop)
  1143.         return VALUE_DRAW;
  1144.     */
  1145.  
  1146.     // Step 20. Check for mate and stalemate
  1147.     // All legal moves have been searched and if there are no legal moves, it
  1148.     // must be a mate or a stalemate. If we are in a singular extension search then
  1149.     // return a fail low score.
  1150.     if (!moveCount)
  1151.         bestValue = excludedMove ? alpha
  1152.                    :     inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
  1153.  
  1154.     // Quiet best move: update killers, history and countermoves
  1155.     else if (bestMove && !pos.capture_or_promotion(bestMove))
  1156.         update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount);
  1157.  
  1158.     // Bonus for prior countermove that caused the fail low
  1159.     else if (    depth >= 3 * ONE_PLY
  1160.              && !bestMove
  1161.              && !inCheck
  1162.              && !pos.captured_piece_type()
  1163.              && is_ok((ss - 1)->currentMove)
  1164.              && is_ok((ss - 2)->currentMove))
  1165.     {
  1166.         Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
  1167.         Square prevPrevSq = to_sq((ss - 2)->currentMove);
  1168.         CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
  1169.         prevCmh.update(pos.piece_on(prevSq), prevSq, bonus);
  1170.     }
  1171.  
  1172.     tte->save(posKey, value_to_tt(bestValue, ss->ply),
  1173.               bestValue >= beta ? BOUND_LOWER :
  1174.               PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
  1175.               depth, bestMove, ss->staticEval, TT.generation());
  1176.  
  1177.     assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
  1178.  
  1179.     return bestValue;
  1180.   }
  1181.  
  1182.  
  1183.   // qsearch() is the quiescence search function, which is called by the main
  1184.   // search function when the remaining depth is zero (or, to be more precise,
  1185.   // less than ONE_PLY).
  1186.  
  1187.   template <NodeType NT, bool InCheck>
  1188.   Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
  1189.  
  1190.     const bool PvNode = NT == PV;
  1191.  
  1192.     assert(InCheck == !!pos.checkers());
  1193.     assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
  1194.     assert(PvNode || (alpha == beta - 1));
  1195.     assert(depth <= DEPTH_ZERO);
  1196.  
  1197.     Move pv[MAX_PLY+1];
  1198.     StateInfo st;
  1199.     TTEntry* tte;
  1200.     Key posKey;
  1201.     Move ttMove, move, bestMove;
  1202.     Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
  1203.     bool ttHit, givesCheck, evasionPrunable;
  1204.     Depth ttDepth;
  1205.  
  1206.     if (PvNode)
  1207.     {
  1208.         oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
  1209.         (ss+1)->pv = pv;
  1210.         ss->pv[0] = MOVE_NONE;
  1211.     }
  1212.  
  1213.     ss->currentMove = bestMove = MOVE_NONE;
  1214.     ss->ply = (ss-1)->ply + 1;
  1215.  
  1216.     // Check for an instant draw or if the maximum ply has been reached
  1217.     if (pos.is_draw() || ss->ply >= MAX_PLY)
  1218.         return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos)
  1219.                                               : DrawValue[pos.side_to_move()];
  1220.  
  1221.     assert(0 <= ss->ply && ss->ply < MAX_PLY);
  1222.  
  1223.     // Decide whether or not to include checks: this fixes also the type of
  1224.     // TT entry depth that we are going to use. Note that in qsearch we use
  1225.     // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
  1226.     ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
  1227.                                                   : DEPTH_QS_NO_CHECKS;
  1228.  
  1229.     // Transposition table lookup
  1230.     posKey = pos.key();
  1231.     tte = TT.probe(posKey, ttHit);
  1232.     ttMove = ttHit ? tte->move() : MOVE_NONE;
  1233.     ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
  1234.  
  1235.     if (  !PvNode
  1236.         && ttHit
  1237.         && tte->depth() >= ttDepth
  1238.         && ttValue != VALUE_NONE // Only in case of TT access race
  1239.         && (ttValue >= beta ? (tte->bound() &  BOUND_LOWER)
  1240.                             : (tte->bound() &  BOUND_UPPER)))
  1241.     {
  1242.         ss->currentMove = ttMove; // Can be MOVE_NONE
  1243.         return ttValue;
  1244.     }
  1245.  
  1246.     // Evaluate the position statically
  1247.     if (InCheck)
  1248.     {
  1249.         ss->staticEval = VALUE_NONE;
  1250.         bestValue = futilityBase = -VALUE_INFINITE;
  1251.     }
  1252.     else
  1253.     {
  1254.         if (ttHit)
  1255.         {
  1256.             // Never assume anything on values stored in TT
  1257.             if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
  1258.                 ss->staticEval = bestValue = evaluate(pos);
  1259.  
  1260.             // Can ttValue be used as a better position evaluation?
  1261.             if (ttValue != VALUE_NONE)
  1262.                 if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
  1263.                     bestValue = ttValue;
  1264.         }
  1265.         else
  1266.             ss->staticEval = bestValue =
  1267.             (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
  1268.                                              : -(ss-1)->staticEval + 2 * Eval::Tempo;
  1269.  
  1270.         // Stand pat. Return immediately if static value is at least beta
  1271.         if (bestValue >= beta)
  1272.         {
  1273.             if (!ttHit)
  1274.                 tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
  1275.                           DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation());
  1276.  
  1277.             return bestValue;
  1278.         }
  1279.  
  1280.         if (PvNode && bestValue > alpha)
  1281.             alpha = bestValue;
  1282.  
  1283.         futilityBase = bestValue + 128;
  1284.     }
  1285.  
  1286.     // Initialize a MovePicker object for the current position, and prepare
  1287.     // to search the moves. Because the depth is <= 0 here, only captures,
  1288.     // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
  1289.     // be generated.
  1290.     MovePicker mp(pos, ttMove, depth, pos.this_thread()->history, to_sq((ss-1)->currentMove));
  1291.     CheckInfo ci(pos);
  1292.  
  1293.     // Loop through the moves until no moves remain or a beta cutoff occurs
  1294.     while ((move = mp.next_move()) != MOVE_NONE)
  1295.     {
  1296.       assert(is_ok(move));
  1297.  
  1298.       givesCheck =  type_of(move) == NORMAL && !ci.dcCandidates
  1299.                   ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
  1300.                   : pos.gives_check(move, ci);
  1301.  
  1302.       // Futility pruning
  1303.       if (   !InCheck
  1304.           && !givesCheck
  1305.           &&  futilityBase > -VALUE_KNOWN_WIN
  1306.           && !pos.advanced_pawn_push(move))
  1307.       {
  1308.           assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
  1309.  
  1310.           futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
  1311.  
  1312.           if (futilityValue <= alpha)
  1313.           {
  1314.               bestValue = std::max(bestValue, futilityValue);
  1315.               continue;
  1316.           }
  1317.  
  1318.           if (futilityBase <= alpha && pos.see(move) <= VALUE_ZERO)
  1319.           {
  1320.               bestValue = std::max(bestValue, futilityBase);
  1321.               continue;
  1322.           }
  1323.       }
  1324.  
  1325.       // Detect non-capture evasions that are candidates to be pruned
  1326.       evasionPrunable =    InCheck
  1327.                        &&  bestValue > VALUE_MATED_IN_MAX_PLY
  1328.                        && !pos.capture(move);
  1329.  
  1330.       // Don't search moves with negative SEE values
  1331.       if (  (!InCheck || evasionPrunable)
  1332.           &&  type_of(move) != PROMOTION
  1333.           &&  pos.see_sign(move) < VALUE_ZERO)
  1334.           continue;
  1335.  
  1336.       // Speculative prefetch as early as possible
  1337.       prefetch(TT.first_entry(pos.key_after(move)));
  1338.  
  1339.       // Check for legality just before making the move
  1340.       if (!pos.legal(move, ci.pinned))
  1341.           continue;
  1342.  
  1343.       ss->currentMove = move;
  1344.  
  1345.       // Make and search the move
  1346.       pos.do_move(move, st, givesCheck);
  1347.       value = givesCheck ? -qsearch<NT,  true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
  1348.                          : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
  1349.       pos.undo_move(move);
  1350.  
  1351.       assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
  1352.  
  1353.       // Check for a new best move
  1354.       if (value > bestValue)
  1355.       {
  1356.           bestValue = value;
  1357.  
  1358.           if (value > alpha)
  1359.           {
  1360.               if (PvNode) // Update pv even in fail-high case
  1361.                   update_pv(ss->pv, move, (ss+1)->pv);
  1362.  
  1363.               if (PvNode && value < beta) // Update alpha here!
  1364.               {
  1365.                   alpha = value;
  1366.                   bestMove = move;
  1367.               }
  1368.               else // Fail high
  1369.               {
  1370.                   tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
  1371.                             ttDepth, move, ss->staticEval, TT.generation());
  1372.  
  1373.                   return value;
  1374.               }
  1375.           }
  1376.        }
  1377.     }
  1378.  
  1379.     // All legal moves have been searched. A special case: If we're in check
  1380.     // and no legal moves were found, it is checkmate.
  1381.     if (InCheck && bestValue == -VALUE_INFINITE)
  1382.         return mated_in(ss->ply); // Plies to mate from the root
  1383.  
  1384.     tte->save(posKey, value_to_tt(bestValue, ss->ply),
  1385.               PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
  1386.               ttDepth, bestMove, ss->staticEval, TT.generation());
  1387.  
  1388.     assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
  1389.  
  1390.     return bestValue;
  1391.   }
  1392.  
  1393.  
  1394.   // value_to_tt() adjusts a mate score from "plies to mate from the root" to
  1395.   // "plies to mate from the current position". Non-mate scores are unchanged.
  1396.   // The function is called before storing a value in the transposition table.
  1397.  
  1398.   Value value_to_tt(Value v, int ply) {
  1399.  
  1400.     assert(v != VALUE_NONE);
  1401.  
  1402.     return  v >= VALUE_MATE_IN_MAX_PLY  ? v + ply
  1403.           : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
  1404.   }
  1405.  
  1406.  
  1407.   // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
  1408.   // from the transposition table (which refers to the plies to mate/be mated
  1409.   // from current position) to "plies to mate/be mated from the root".
  1410.  
  1411.   Value value_from_tt(Value v, int ply) {
  1412.  
  1413.     return  v == VALUE_NONE             ? VALUE_NONE
  1414.           : v >= VALUE_MATE_IN_MAX_PLY  ? v - ply
  1415.           : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
  1416.   }
  1417.  
  1418.  
  1419.   // update_pv() adds current move and appends child pv[]
  1420.  
  1421.   void update_pv(Move* pv, Move move, Move* childPv) {
  1422.  
  1423.     for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
  1424.         *pv++ = *childPv++;
  1425.     *pv = MOVE_NONE;
  1426.   }
  1427.  
  1428.  
  1429.   // update_stats() updates killers, history, countermove and countermove
  1430.   // history when a new quiet best move is found.
  1431.  
  1432.   void update_stats(const Position& pos, Stack* ss, Move move,
  1433.                     Depth depth, Move* quiets, int quietsCnt) {
  1434.  
  1435.     if (ss->killers[0] != move)
  1436.     {
  1437.         ss->killers[1] = ss->killers[0];
  1438.         ss->killers[0] = move;
  1439.     }
  1440.  
  1441.     Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
  1442.  
  1443.     Square prevSq = to_sq((ss-1)->currentMove);
  1444.     CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq];
  1445.     Thread* thisThread = pos.this_thread();
  1446.  
  1447.     thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus);
  1448.  
  1449.     if (is_ok((ss-1)->currentMove))
  1450.     {
  1451.         thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move);
  1452.         cmh.update(pos.moved_piece(move), to_sq(move), bonus);
  1453.     }
  1454.  
  1455.     // Decrease all the other played quiet moves
  1456.     for (int i = 0; i < quietsCnt; ++i)
  1457.     {
  1458.         thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
  1459.  
  1460.         if (is_ok((ss-1)->currentMove))
  1461.             cmh.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
  1462.     }
  1463.  
  1464.     // Extra penalty for a quiet TT move in previous ply when it gets refuted
  1465.     if (   (ss-1)->moveCount == 1
  1466.         && !pos.captured_piece_type()
  1467.         && is_ok((ss-2)->currentMove))
  1468.     {
  1469.         Square prevPrevSq = to_sq((ss-2)->currentMove);
  1470.         CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
  1471.         prevCmh.update(pos.piece_on(prevSq), prevSq, -bonus - 2 * (depth + 1) / ONE_PLY);
  1472.     }
  1473.   }
  1474.  
  1475.  
  1476.   // When playing with strength handicap, choose best move among a set of RootMoves
  1477.   // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
  1478.  
  1479.   Move Skill::pick_best(size_t multiPV) {
  1480.  
  1481.     const Search::RootMoveVector& rootMoves = Threads.main()->rootMoves;
  1482.     static PRNG rng(now()); // PRNG sequence should be non-deterministic
  1483.  
  1484.     // RootMoves are already sorted by score in descending order
  1485.     Value topScore = rootMoves[0].score;
  1486.     int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
  1487.     int weakness = 120 - 2 * level;
  1488.     int maxScore = -VALUE_INFINITE;
  1489.  
  1490.     // Choose best move. For each move score we add two terms, both dependent on
  1491.     // weakness. One is deterministic and bigger for weaker levels, and one is
  1492.     // random. Then we choose the move with the resulting highest score.
  1493.     for (size_t i = 0; i < multiPV; ++i)
  1494.     {
  1495.         // This is our magic formula
  1496.         int push = (  weakness * int(topScore - rootMoves[i].score)
  1497.                     + delta * (rng.rand<unsigned>() % weakness)) / 128;
  1498.  
  1499.         if (rootMoves[i].score + push > maxScore)
  1500.         {
  1501.             maxScore = rootMoves[i].score + push;
  1502.             best = rootMoves[i].pv[0];
  1503.         }
  1504.     }
  1505.  
  1506.     return best;
  1507.   }
  1508.  
  1509.  
  1510.   // check_time() is used to print debug info and, more importantly, to detect
  1511.   // when we are out of available time and thus stop the search.
  1512.  
  1513.   void check_time() {
  1514.  
  1515.     static TimePoint lastInfoTime = now();
  1516.  
  1517.     int elapsed = Time.elapsed();
  1518.     TimePoint tick = Limits.startTime + elapsed;
  1519.  
  1520.     if (tick - lastInfoTime >= 1000)
  1521.     {
  1522.         lastInfoTime = tick;
  1523.         dbg_print();
  1524.     }
  1525.  
  1526.     // An engine may not stop pondering until told so by the GUI
  1527.     if (Limits.ponder)
  1528.         return;
  1529.  
  1530.     if (   (Limits.use_time_management() && elapsed > Time.maximum() - 10)
  1531.         || (Limits.movetime && elapsed >= Limits.movetime)
  1532.         || (Limits.nodes && Threads.nodes_searched() >= Limits.nodes))
  1533.             Signals.stop = true;
  1534.   }
  1535.  
  1536. } // namespace
  1537.  
  1538.  
  1539. /// UCI::pv() formats PV information according to the UCI protocol. UCI requires
  1540. /// that all (if any) unsearched PV lines are sent using a previous search score.
  1541.  
  1542. string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
  1543.  
  1544.   std::stringstream ss;
  1545.   int elapsed = Time.elapsed() + 1;
  1546.   const Search::RootMoveVector& rootMoves = pos.this_thread()->rootMoves;
  1547.   size_t PVIdx = pos.this_thread()->PVIdx;
  1548.   size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
  1549.   uint64_t nodes_searched = Threads.nodes_searched();
  1550.  
  1551.   for (size_t i = 0; i < multiPV; ++i)
  1552.   {
  1553.       bool updated = (i <= PVIdx);
  1554.  
  1555.       if (depth == ONE_PLY && !updated)
  1556.           continue;
  1557.  
  1558.       Depth d = updated ? depth : depth - ONE_PLY;
  1559.       Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
  1560.  
  1561.       bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
  1562.       v = tb ? TB::Score : v;
  1563.  
  1564.       if (ss.rdbuf()->in_avail()) // Not at first line
  1565.           ss << "\n";
  1566.  
  1567.       ss << "info"
  1568.          << " depth "    << d / ONE_PLY
  1569.          << " seldepth " << pos.this_thread()->maxPly
  1570.          << " multipv "  << i + 1
  1571.          << " score "    << UCI::value(v);
  1572.  
  1573.       if (!tb && i == PVIdx)
  1574.           ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
  1575.  
  1576.       ss << " nodes "    << nodes_searched
  1577.          << " nps "      << nodes_searched * 1000 / elapsed;
  1578.  
  1579.       if (elapsed > 1000) // Earlier makes little sense
  1580.           ss << " hashfull " << TT.hashfull();
  1581.  
  1582.       ss << " tbhits "   << TB::Hits
  1583.          << " time "     << elapsed
  1584.          << " pv";
  1585.  
  1586.       for (Move m : rootMoves[i].pv)
  1587.           ss << " " << UCI::move(m, pos.is_chess960());
  1588.   }
  1589.  
  1590.   return ss.str();
  1591. }
  1592.  
  1593.  
  1594. /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
  1595. /// inserts the PV back into the TT. This makes sure the old PV moves are searched
  1596. /// first, even if the old TT entries have been overwritten.
  1597.  
  1598. void RootMove::insert_pv_in_tt(Position& pos) {
  1599.  
  1600.   StateInfo state[MAX_PLY], *st = state;
  1601.   bool ttHit;
  1602.  
  1603.   for (Move m : pv)
  1604.   {
  1605.       assert(MoveList<LEGAL>(pos).contains(m));
  1606.  
  1607.       TTEntry* tte = TT.probe(pos.key(), ttHit);
  1608.  
  1609.       if (!ttHit || tte->move() != m) // Don't overwrite correct entries
  1610.           tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE,
  1611.                     m, VALUE_NONE, TT.generation());
  1612.  
  1613.       pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos)));
  1614.   }
  1615.  
  1616.   for (size_t i = pv.size(); i > 0; )
  1617.       pos.undo_move(pv[--i]);
  1618. }
  1619.  
  1620.  
  1621. /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
  1622. /// before exiting the search, for instance, in case we stop the search during a
  1623. /// fail high at root. We try hard to have a ponder move to return to the GUI,
  1624. /// otherwise in case of 'ponder on' we have nothing to think on.
  1625.  
  1626. bool RootMove::extract_ponder_from_tt(Position& pos)
  1627. {
  1628.     StateInfo st;
  1629.     bool ttHit;
  1630.  
  1631.     assert(pv.size() == 1);
  1632.  
  1633.     pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos)));
  1634.     TTEntry* tte = TT.probe(pos.key(), ttHit);
  1635.     pos.undo_move(pv[0]);
  1636.  
  1637.     if (ttHit)
  1638.     {
  1639.         Move m = tte->move(); // Local copy to be SMP safe
  1640.         if (MoveList<LEGAL>(pos).contains(m))
  1641.            return pv.push_back(m), true;
  1642.     }
  1643.  
  1644.     return false;
  1645. }
  1646.