Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm>
  22. #include <cassert>
  23.  
  24. #include "bitboard.h"
  25. #include "bitcount.h"
  26. #include "pawns.h"
  27. #include "position.h"
  28. #include "thread.h"
  29.  
  30. namespace {
  31.  
  32.   #define V Value
  33.   #define S(mg, eg) make_score(mg, eg)
  34.  
  35.   // Isolated pawn penalty by opposed flag and file
  36.   const Score Isolated[2][FILE_NB] = {
  37.     { S(31, 36), S(45, 41), S(50, 41), S(50, 41),
  38.       S(50, 41), S(50, 41), S(45, 41), S(31, 36) },
  39.     { S(21, 24), S(30, 28), S(33, 28), S(33, 28),
  40.       S(33, 28), S(33, 28), S(30, 28), S(21, 24) } };
  41.  
  42.   // Backward pawn penalty by opposed flag
  43.   const Score Backward[2] = { S(56, 33), S(41, 19) };
  44.  
  45.   // Unsupported pawn penalty for pawns which are neither isolated or backward,
  46.   // by number of pawns it supports [less than 2 / exactly 2].
  47.   const Score Unsupported[2] = { S(17, 8), S(21, 12) };
  48.  
  49.   // Connected pawn bonus by opposed, phalanx, twice supported and rank
  50.   Score Connected[2][2][2][RANK_NB];
  51.  
  52.   // Doubled pawn penalty by file
  53.   const Score Doubled[FILE_NB] = {
  54.     S(11, 34), S(17, 38), S(19, 38), S(19, 38),
  55.     S(19, 38), S(19, 38), S(17, 38), S(11, 34) };
  56.  
  57.   // Lever bonus by rank
  58.   const Score Lever[RANK_NB] = {
  59.     S( 0,  0), S( 0,  0), S(0, 0), S(0, 0),
  60.     S(17, 16), S(33, 32), S(0, 0), S(0, 0) };
  61.  
  62.   // Weakness of our pawn shelter in front of the king by [distance from edge][rank]
  63.   const Value ShelterWeakness[][RANK_NB] = {
  64.     { V( 97), V(21), V(26), V(51), V(87), V( 89), V( 99) },
  65.     { V(120), V( 0), V(28), V(76), V(88), V(103), V(104) },
  66.     { V(101), V( 7), V(54), V(78), V(77), V( 92), V(101) },
  67.     { V( 80), V(11), V(44), V(68), V(87), V( 90), V(119) } };
  68.  
  69.   // Danger of enemy pawns moving toward our king by [type][distance from edge][rank]
  70.   const Value StormDanger[][4][RANK_NB] = {
  71.     { { V( 0),  V(  67), V( 134), V(38), V(32) },
  72.       { V( 0),  V(  57), V( 139), V(37), V(22) },
  73.       { V( 0),  V(  43), V( 115), V(43), V(27) },
  74.       { V( 0),  V(  68), V( 124), V(57), V(32) } },
  75.     { { V(20),  V(  43), V( 100), V(56), V(20) },
  76.       { V(23),  V(  20), V(  98), V(40), V(15) },
  77.       { V(23),  V(  39), V( 103), V(36), V(18) },
  78.       { V(28),  V(  19), V( 108), V(42), V(26) } },
  79.     { { V( 0),  V(   0), V(  75), V(14), V( 2) },
  80.       { V( 0),  V(   0), V( 150), V(30), V( 4) },
  81.       { V( 0),  V(   0), V( 160), V(22), V( 5) },
  82.       { V( 0),  V(   0), V( 166), V(24), V(13) } },
  83.     { { V( 0),  V(-283), V(-281), V(57), V(31) },
  84.       { V( 0),  V(  58), V( 141), V(39), V(18) },
  85.       { V( 0),  V(  65), V( 142), V(48), V(32) },
  86.       { V( 0),  V(  60), V( 126), V(51), V(19) } } };
  87.  
  88.   // Max bonus for king safety. Corresponds to start position with all the pawns
  89.   // in front of the king and no enemy pawn on the horizon.
  90.   const Value MaxSafetyBonus = V(258);
  91.  
  92.   #undef S
  93.   #undef V
  94.  
  95.   template<Color Us>
  96.   Score evaluate(const Position& pos, Pawns::Entry* e) {
  97.  
  98.     const Color  Them  = (Us == WHITE ? BLACK    : WHITE);
  99.     const Square Up    = (Us == WHITE ? DELTA_N  : DELTA_S);
  100.     const Square Right = (Us == WHITE ? DELTA_NE : DELTA_SW);
  101.     const Square Left  = (Us == WHITE ? DELTA_NW : DELTA_SE);
  102.  
  103.     Bitboard b, neighbours, doubled, supported, phalanx;
  104.     Square s;
  105.     bool passed, isolated, opposed, backward, lever, connected;
  106.     Score score = SCORE_ZERO;
  107.     const Square* pl = pos.squares<PAWN>(Us);
  108.     const Bitboard* pawnAttacksBB = StepAttacksBB[make_piece(Us, PAWN)];
  109.  
  110.     Bitboard ourPawns   = pos.pieces(Us  , PAWN);
  111.     Bitboard theirPawns = pos.pieces(Them, PAWN);
  112.  
  113.     e->passedPawns[Us] = e->pawnAttacksSpan[Us] = 0;
  114.     e->kingSquares[Us] = SQ_NONE;
  115.     e->semiopenFiles[Us] = 0xFF;
  116.     e->pawnAttacks[Us] = shift_bb<Right>(ourPawns) | shift_bb<Left>(ourPawns);
  117.     e->pawnsOnSquares[Us][BLACK] = popcount<Max15>(ourPawns & DarkSquares);
  118.     e->pawnsOnSquares[Us][WHITE] = pos.count<PAWN>(Us) - e->pawnsOnSquares[Us][BLACK];
  119.  
  120.     // Loop through all pawns of the current color and score each pawn
  121.     while ((s = *pl++) != SQ_NONE)
  122.     {
  123.         assert(pos.piece_on(s) == make_piece(Us, PAWN));
  124.  
  125.         File f = file_of(s);
  126.  
  127.         e->semiopenFiles[Us] &= ~(1 << f);
  128.         e->pawnAttacksSpan[Us] |= pawn_attack_span(Us, s);
  129.  
  130.         // Flag the pawn
  131.         neighbours  =   ourPawns   & adjacent_files_bb(f);
  132.         doubled     =   ourPawns   & forward_bb(Us, s);
  133.         opposed     =   theirPawns & forward_bb(Us, s);
  134.         passed      = !(theirPawns & passed_pawn_mask(Us, s));
  135.         lever       =   theirPawns & pawnAttacksBB[s];
  136.         phalanx     =   neighbours & rank_bb(s);
  137.         supported   =   neighbours & rank_bb(s - Up);
  138.         connected   =   supported | phalanx;
  139.         isolated    =  !neighbours;
  140.  
  141.         // Test for backward pawn.
  142.         // If the pawn is passed, isolated, lever or connected it cannot be
  143.         // backward. If there are friendly pawns behind on adjacent files
  144.         // or if it is sufficiently advanced, it cannot be backward either.
  145.         if (   (passed | isolated | lever | connected)
  146.             || (ourPawns & pawn_attack_span(Them, s))
  147.             || (relative_rank(Us, s) >= RANK_5))
  148.             backward = false;
  149.         else
  150.         {
  151.             // We now know there are no friendly pawns beside or behind this
  152.             // pawn on adjacent files. We now check whether the pawn is
  153.             // backward by looking in the forward direction on the adjacent
  154.             // files, and picking the closest pawn there.
  155.             b = pawn_attack_span(Us, s) & (ourPawns | theirPawns);
  156.             b = pawn_attack_span(Us, s) & rank_bb(backmost_sq(Us, b));
  157.  
  158.             // If we have an enemy pawn in the same or next rank, the pawn is
  159.             // backward because it cannot advance without being captured.
  160.             backward = (b | shift_bb<Up>(b)) & theirPawns;
  161.         }
  162.  
  163.         assert(opposed | passed | (pawn_attack_span(Us, s) & theirPawns));
  164.  
  165.         // Passed pawns will be properly scored in evaluation because we need
  166.         // full attack info to evaluate them. Only the frontmost passed
  167.         // pawn on each file is considered a true passed pawn.
  168.         if (passed && !doubled)
  169.             e->passedPawns[Us] |= s;
  170.  
  171.         // Score this pawn
  172.         if (isolated)
  173.             score -= Isolated[opposed][f];
  174.  
  175.         else if (backward)
  176.             score -= Backward[opposed];
  177.  
  178.         else if (!supported)
  179.             score -= Unsupported[more_than_one(neighbours & rank_bb(s + Up))];
  180.  
  181.         if (connected)
  182.             score += Connected[opposed][!!phalanx][more_than_one(supported)][relative_rank(Us, s)];
  183.  
  184.         if (doubled)
  185.             score -= Doubled[f] / distance<Rank>(s, frontmost_sq(Us, doubled));
  186.  
  187.         if (lever)
  188.             score += Lever[relative_rank(Us, s)];
  189.     }
  190.  
  191.     b = e->semiopenFiles[Us] ^ 0xFF;
  192.     e->pawnSpan[Us] = b ? int(msb(b) - lsb(b)) : 0;
  193.  
  194.     return score;
  195.   }
  196.  
  197. } // namespace
  198.  
  199. namespace Pawns {
  200.  
  201. /// Pawns::init() initializes some tables needed by evaluation. Instead of using
  202. /// hard-coded tables, when makes sense, we prefer to calculate them with a formula
  203. /// to reduce independent parameters and to allow easier tuning and better insight.
  204.  
  205. void init()
  206. {
  207.   static const int Seed[RANK_NB] = { 0, 8, 19, 13, 71, 94, 169, 324 };
  208.  
  209.   for (int opposed = 0; opposed <= 1; ++opposed)
  210.       for (int phalanx = 0; phalanx <= 1; ++phalanx)
  211.           for (int apex = 0; apex <= 1; ++apex)
  212.               for (Rank r = RANK_2; r < RANK_8; ++r)
  213.   {
  214.       int v = (Seed[r] + (phalanx ? (Seed[r + 1] - Seed[r]) / 2 : 0)) >> opposed;
  215.       v += (apex ? v / 2 : 0);
  216.       Connected[opposed][phalanx][apex][r] = make_score(v, v * 5 / 8);
  217.   }
  218. }
  219.  
  220.  
  221. /// Pawns::probe() looks up the current position's pawns configuration in
  222. /// the pawns hash table. It returns a pointer to the Entry if the position
  223. /// is found. Otherwise a new Entry is computed and stored there, so we don't
  224. /// have to recompute all when the same pawns configuration occurs again.
  225.  
  226. Entry* probe(const Position& pos) {
  227.  
  228.   Key key = pos.pawn_key();
  229.   Entry* e = pos.this_thread()->pawnsTable[key];
  230.  
  231.   if (e->key == key)
  232.       return e;
  233.  
  234.   e->key = key;
  235.   e->score = evaluate<WHITE>(pos, e) - evaluate<BLACK>(pos, e);
  236.   e->asymmetry = popcount<Max15>(e->semiopenFiles[WHITE] ^ e->semiopenFiles[BLACK]);
  237.   return e;
  238. }
  239.  
  240.  
  241. /// Entry::shelter_storm() calculates shelter and storm penalties for the file
  242. /// the king is on, as well as the two adjacent files.
  243.  
  244. template<Color Us>
  245. Value Entry::shelter_storm(const Position& pos, Square ksq) {
  246.  
  247.   const Color Them = (Us == WHITE ? BLACK : WHITE);
  248.  
  249.   enum { NoFriendlyPawn, Unblocked, BlockedByPawn, BlockedByKing };
  250.  
  251.   Bitboard b = pos.pieces(PAWN) & (in_front_bb(Us, rank_of(ksq)) | rank_bb(ksq));
  252.   Bitboard ourPawns = b & pos.pieces(Us);
  253.   Bitboard theirPawns = b & pos.pieces(Them);
  254.   Value safety = MaxSafetyBonus;
  255.   File center = std::max(FILE_B, std::min(FILE_G, file_of(ksq)));
  256.  
  257.   for (File f = center - File(1); f <= center + File(1); ++f)
  258.   {
  259.       b = ourPawns & file_bb(f);
  260.       Rank rkUs = b ? relative_rank(Us, backmost_sq(Us, b)) : RANK_1;
  261.  
  262.       b  = theirPawns & file_bb(f);
  263.       Rank rkThem = b ? relative_rank(Us, frontmost_sq(Them, b)) : RANK_1;
  264.  
  265.       safety -=  ShelterWeakness[std::min(f, FILE_H - f)][rkUs]
  266.                + StormDanger
  267.                  [f == file_of(ksq) && rkThem == relative_rank(Us, ksq) + 1 ? BlockedByKing  :
  268.                   rkUs   == RANK_1                                          ? NoFriendlyPawn :
  269.                   rkThem == rkUs + 1                                        ? BlockedByPawn  : Unblocked]
  270.                  [std::min(f, FILE_H - f)][rkThem];
  271.   }
  272.  
  273.   return safety;
  274. }
  275.  
  276.  
  277. /// Entry::do_king_safety() calculates a bonus for king safety. It is called only
  278. /// when king square changes, which is about 20% of total king_safety() calls.
  279.  
  280. template<Color Us>
  281. Score Entry::do_king_safety(const Position& pos, Square ksq) {
  282.  
  283.   kingSquares[Us] = ksq;
  284.   castlingRights[Us] = pos.can_castle(Us);
  285.   int minKingPawnDistance = 0;
  286.  
  287.   Bitboard pawns = pos.pieces(Us, PAWN);
  288.   if (pawns)
  289.       while (!(DistanceRingBB[ksq][minKingPawnDistance++] & pawns)) {}
  290.  
  291.   if (relative_rank(Us, ksq) > RANK_4)
  292.       return make_score(0, -16 * minKingPawnDistance);
  293.  
  294.   Value bonus = shelter_storm<Us>(pos, ksq);
  295.  
  296.   // If we can castle use the bonus after the castling if it is bigger
  297.   if (pos.can_castle(MakeCastling<Us, KING_SIDE>::right))
  298.       bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_G1)));
  299.  
  300.   if (pos.can_castle(MakeCastling<Us, QUEEN_SIDE>::right))
  301.       bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_C1)));
  302.  
  303.   return make_score(bonus, -16 * minKingPawnDistance);
  304. }
  305.  
  306. // Explicit template instantiation
  307. template Score Entry::do_king_safety<WHITE>(const Position& pos, Square ksq);
  308. template Score Entry::do_king_safety<BLACK>(const Position& pos, Square ksq);
  309.  
  310. } // namespace Pawns
  311.