Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm>
  22. #include <cassert>
  23.  
  24. #include "bitboard.h"
  25. #include "pawns.h"
  26. #include "position.h"
  27. #include "thread.h"
  28.  
  29. namespace {
  30.  
  31.   #define V Value
  32.   #define S(mg, eg) make_score(mg, eg)
  33.  
  34.   // Isolated pawn penalty
  35.   const Score Isolated = S(13, 18);
  36.  
  37.   // Backward pawn penalty
  38.   const Score Backward = S(24, 12);
  39.  
  40.   // Connected pawn bonus by opposed, phalanx, #support and rank
  41.   Score Connected[2][2][3][RANK_NB];
  42.  
  43.   // Doubled pawn penalty
  44.   const Score Doubled = S(18, 38);
  45.  
  46.   // Weakness of our pawn shelter in front of the king by [isKingFile][distance from edge][rank].
  47.   // RANK_1 = 0 is used for files where we have no pawns or our pawn is behind our king.
  48.   const Value ShelterWeakness[][int(FILE_NB) / 2][RANK_NB] = {
  49.     { { V( 97), V(17), V( 9), V(44), V( 84), V( 87), V( 99) }, // Not On King file
  50.       { V(106), V( 6), V(33), V(86), V( 87), V(104), V(112) },
  51.       { V(101), V( 2), V(65), V(98), V( 58), V( 89), V(115) },
  52.       { V( 73), V( 7), V(54), V(73), V( 84), V( 83), V(111) } },
  53.     { { V(104), V(20), V( 6), V(27), V( 86), V( 93), V( 82) }, // On King file
  54.       { V(123), V( 9), V(34), V(96), V(112), V( 88), V( 75) },
  55.       { V(120), V(25), V(65), V(91), V( 66), V( 78), V(117) },
  56.       { V( 81), V( 2), V(47), V(63), V( 94), V( 93), V(104) } }
  57.   };
  58.  
  59.   // Danger of enemy pawns moving toward our king by [type][distance from edge][rank].
  60.   // For the unopposed and unblocked cases, RANK_1 = 0 is used when opponent has
  61.   // no pawn on the given file, or their pawn is behind our king.
  62.   const Value StormDanger[][4][RANK_NB] = {
  63.     { { V( 0),  V(-290), V(-274), V(57), V(41) },  // BlockedByKing
  64.       { V( 0),  V(  60), V( 144), V(39), V(13) },
  65.       { V( 0),  V(  65), V( 141), V(41), V(34) },
  66.       { V( 0),  V(  53), V( 127), V(56), V(14) } },
  67.     { { V( 4),  V(  73), V( 132), V(46), V(31) },  // Unopposed
  68.       { V( 1),  V(  64), V( 143), V(26), V(13) },
  69.       { V( 1),  V(  47), V( 110), V(44), V(24) },
  70.       { V( 0),  V(  72), V( 127), V(50), V(31) } },
  71.     { { V( 0),  V(   0), V(  79), V(23), V( 1) },  // BlockedByPawn
  72.       { V( 0),  V(   0), V( 148), V(27), V( 2) },
  73.       { V( 0),  V(   0), V( 161), V(16), V( 1) },
  74.       { V( 0),  V(   0), V( 171), V(22), V(15) } },
  75.     { { V(22),  V(  45), V( 104), V(62), V( 6) },  // Unblocked
  76.       { V(31),  V(  30), V(  99), V(39), V(19) },
  77.       { V(23),  V(  29), V(  96), V(41), V(15) },
  78.       { V(21),  V(  23), V( 116), V(41), V(15) } }
  79.   };
  80.  
  81.   // Max bonus for king safety. Corresponds to start position with all the pawns
  82.   // in front of the king and no enemy pawn on the horizon.
  83.   const Value MaxSafetyBonus = V(258);
  84.  
  85.   #undef S
  86.   #undef V
  87.  
  88.   template<Color Us>
  89.   Score evaluate(const Position& pos, Pawns::Entry* e) {
  90.  
  91.     const Color     Them  = (Us == WHITE ? BLACK      : WHITE);
  92.     const Direction Up    = (Us == WHITE ? NORTH      : SOUTH);
  93.     const Direction Right = (Us == WHITE ? NORTH_EAST : SOUTH_WEST);
  94.     const Direction Left  = (Us == WHITE ? NORTH_WEST : SOUTH_EAST);
  95.  
  96.     Bitboard b, neighbours, stoppers, doubled, supported, phalanx;
  97.     Bitboard lever, leverPush;
  98.     Square s;
  99.     bool opposed, backward;
  100.     Score score = SCORE_ZERO;
  101.     const Square* pl = pos.squares<PAWN>(Us);
  102.  
  103.     Bitboard ourPawns   = pos.pieces(  Us, PAWN);
  104.     Bitboard theirPawns = pos.pieces(Them, PAWN);
  105.  
  106.     e->passedPawns[Us] = e->pawnAttacksSpan[Us] = e->weakUnopposed[Us] = 0;
  107.     e->semiopenFiles[Us] = 0xFF;
  108.     e->kingSquares[Us]   = SQ_NONE;
  109.     e->pawnAttacks[Us]   = shift<Right>(ourPawns) | shift<Left>(ourPawns);
  110.     e->pawnsOnSquares[Us][BLACK] = popcount(ourPawns & DarkSquares);
  111.     e->pawnsOnSquares[Us][WHITE] = pos.count<PAWN>(Us) - e->pawnsOnSquares[Us][BLACK];
  112.  
  113.     // Loop through all pawns of the current color and score each pawn
  114.     while ((s = *pl++) != SQ_NONE)
  115.     {
  116.         assert(pos.piece_on(s) == make_piece(Us, PAWN));
  117.  
  118.         File f = file_of(s);
  119.  
  120.         e->semiopenFiles[Us]   &= ~(1 << f);
  121.         e->pawnAttacksSpan[Us] |= pawn_attack_span(Us, s);
  122.  
  123.         // Flag the pawn
  124.         opposed    = theirPawns & forward_file_bb(Us, s);
  125.         stoppers   = theirPawns & passed_pawn_mask(Us, s);
  126.         lever      = theirPawns & PawnAttacks[Us][s];
  127.         leverPush  = theirPawns & PawnAttacks[Us][s + Up];
  128.         doubled    = ourPawns   & (s - Up);
  129.         neighbours = ourPawns   & adjacent_files_bb(f);
  130.         phalanx    = neighbours & rank_bb(s);
  131.         supported  = neighbours & rank_bb(s - Up);
  132.  
  133.         // A pawn is backward when it is behind all pawns of the same color on the
  134.         // adjacent files and cannot be safely advanced.
  135.         if (!neighbours || lever || relative_rank(Us, s) >= RANK_5)
  136.             backward = false;
  137.         else
  138.         {
  139.             // Find the backmost rank with neighbours or stoppers
  140.             b = rank_bb(backmost_sq(Us, neighbours | stoppers));
  141.  
  142.             // The pawn is backward when it cannot safely progress to that rank:
  143.             // either there is a stopper in the way on this rank, or there is a
  144.             // stopper on adjacent file which controls the way to that rank.
  145.             backward = (b | shift<Up>(b & adjacent_files_bb(f))) & stoppers;
  146.  
  147.             assert(!(backward && (forward_ranks_bb(Them, s + Up) & neighbours)));
  148.         }
  149.  
  150.         // Passed pawns will be properly scored in evaluation because we need
  151.         // full attack info to evaluate them. Include also not passed pawns
  152.         // which could become passed after one or two pawn pushes when are
  153.         // not attacked more times than defended.
  154.         if (   !(stoppers ^ lever ^ leverPush)
  155.             && !(ourPawns & forward_file_bb(Us, s))
  156.             && popcount(supported) >= popcount(lever)
  157.             && popcount(phalanx)   >= popcount(leverPush))
  158.             e->passedPawns[Us] |= s;
  159.  
  160.         else if (   stoppers == SquareBB[s + Up]
  161.                  && relative_rank(Us, s) >= RANK_5)
  162.         {
  163.             b = shift<Up>(supported) & ~theirPawns;
  164.             while (b)
  165.                 if (!more_than_one(theirPawns & PawnAttacks[Us][pop_lsb(&b)]))
  166.                     e->passedPawns[Us] |= s;
  167.         }
  168.  
  169.         // Score this pawn
  170.         if (supported | phalanx)
  171.             score += Connected[opposed][bool(phalanx)][popcount(supported)][relative_rank(Us, s)];
  172.  
  173.         else if (!neighbours)
  174.             score -= Isolated, e->weakUnopposed[Us] += !opposed;
  175.  
  176.         else if (backward)
  177.             score -= Backward, e->weakUnopposed[Us] += !opposed;
  178.  
  179.         if (doubled && !supported)
  180.             score -= Doubled;
  181.     }
  182.  
  183.     return score;
  184.   }
  185.  
  186. } // namespace
  187.  
  188. namespace Pawns {
  189.  
  190. /// Pawns::init() initializes some tables needed by evaluation. Instead of using
  191. /// hard-coded tables, when makes sense, we prefer to calculate them with a formula
  192. /// to reduce independent parameters and to allow easier tuning and better insight.
  193.  
  194. void init() {
  195.  
  196.   static const int Seed[RANK_NB] = { 0, 13, 24, 18, 76, 100, 175, 330 };
  197.  
  198.   for (int opposed = 0; opposed <= 1; ++opposed)
  199.       for (int phalanx = 0; phalanx <= 1; ++phalanx)
  200.           for (int support = 0; support <= 2; ++support)
  201.               for (Rank r = RANK_2; r < RANK_8; ++r)
  202.   {
  203.       int v = 17 * support;
  204.       v += (Seed[r] + (phalanx ? (Seed[r + 1] - Seed[r]) / 2 : 0)) >> opposed;
  205.  
  206.       Connected[opposed][phalanx][support][r] = make_score(v, v * (r - 2) / 4);
  207.   }
  208. }
  209.  
  210.  
  211. /// Pawns::probe() looks up the current position's pawns configuration in
  212. /// the pawns hash table. It returns a pointer to the Entry if the position
  213. /// is found. Otherwise a new Entry is computed and stored there, so we don't
  214. /// have to recompute all when the same pawns configuration occurs again.
  215.  
  216. Entry* probe(const Position& pos) {
  217.  
  218.   Key key = pos.pawn_key();
  219.   Entry* e = pos.this_thread()->pawnsTable[key];
  220.  
  221.   if (e->key == key)
  222.       return e;
  223.  
  224.   e->key = key;
  225.   e->score = evaluate<WHITE>(pos, e) - evaluate<BLACK>(pos, e);
  226.   e->asymmetry = popcount(e->semiopenFiles[WHITE] ^ e->semiopenFiles[BLACK]);
  227.   e->openFiles = popcount(e->semiopenFiles[WHITE] & e->semiopenFiles[BLACK]);
  228.   return e;
  229. }
  230.  
  231.  
  232. /// Entry::shelter_storm() calculates shelter and storm penalties for the file
  233. /// the king is on, as well as the two closest files.
  234.  
  235. template<Color Us>
  236. Value Entry::shelter_storm(const Position& pos, Square ksq) {
  237.  
  238.   const Color Them = (Us == WHITE ? BLACK : WHITE);
  239.  
  240.   enum { BlockedByKing, Unopposed, BlockedByPawn, Unblocked };
  241.  
  242.   Bitboard b = pos.pieces(PAWN) & (forward_ranks_bb(Us, ksq) | rank_bb(ksq));
  243.   Bitboard ourPawns = b & pos.pieces(Us);
  244.   Bitboard theirPawns = b & pos.pieces(Them);
  245.   Value safety = MaxSafetyBonus;
  246.   File center = std::max(FILE_B, std::min(FILE_G, file_of(ksq)));
  247.  
  248.   for (File f = File(center - 1); f <= File(center + 1); ++f)
  249.   {
  250.       b = ourPawns & file_bb(f);
  251.       Rank rkUs = b ? relative_rank(Us, backmost_sq(Us, b)) : RANK_1;
  252.  
  253.       b = theirPawns & file_bb(f);
  254.       Rank rkThem = b ? relative_rank(Us, frontmost_sq(Them, b)) : RANK_1;
  255.  
  256.       int d = std::min(f, ~f);
  257.       safety -=  ShelterWeakness[f == file_of(ksq)][d][rkUs]
  258.                + StormDanger
  259.                  [f == file_of(ksq) && rkThem == relative_rank(Us, ksq) + 1 ? BlockedByKing  :
  260.                   rkUs   == RANK_1                                          ? Unopposed :
  261.                   rkThem == rkUs + 1                                        ? BlockedByPawn  : Unblocked]
  262.                  [d][rkThem];
  263.   }
  264.  
  265.   return safety;
  266. }
  267.  
  268.  
  269. /// Entry::do_king_safety() calculates a bonus for king safety. It is called only
  270. /// when king square changes, which is about 20% of total king_safety() calls.
  271.  
  272. template<Color Us>
  273. Score Entry::do_king_safety(const Position& pos, Square ksq) {
  274.  
  275.   kingSquares[Us] = ksq;
  276.   castlingRights[Us] = pos.can_castle(Us);
  277.   int minKingPawnDistance = 0;
  278.  
  279.   Bitboard pawns = pos.pieces(Us, PAWN);
  280.   if (pawns)
  281.       while (!(DistanceRingBB[ksq][minKingPawnDistance++] & pawns)) {}
  282.  
  283.   Value bonus = shelter_storm<Us>(pos, ksq);
  284.  
  285.   // If we can castle use the bonus after the castling if it is bigger
  286.   if (pos.can_castle(MakeCastling<Us, KING_SIDE>::right))
  287.       bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_G1)));
  288.  
  289.   if (pos.can_castle(MakeCastling<Us, QUEEN_SIDE>::right))
  290.       bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_C1)));
  291.  
  292.   return make_score(bonus, -16 * minKingPawnDistance);
  293. }
  294.  
  295. // Explicit template instantiation
  296. template Score Entry::do_king_safety<WHITE>(const Position& pos, Square ksq);
  297. template Score Entry::do_king_safety<BLACK>(const Position& pos, Square ksq);
  298.  
  299. } // namespace Pawns
  300.