Subversion Repositories Games.Chess Giants

Rev

Rev 96 | Rev 169 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm> // For std::min
  22. #include <cassert>
  23. #include <cstring>   // For std::memset
  24.  
  25. #include "material.h"
  26. #include "thread.h"
  27.  
  28. using namespace std;
  29.  
  30. namespace {
  31.  
  32.   // Polynomial material imbalance parameters
  33.  
  34.   const int QuadraticOurs[][PIECE_TYPE_NB] = {
  35.     //            OUR PIECES
  36.     // pair pawn knight bishop rook queen
  37.     {1667                               }, // Bishop pair
  38.     {  40,    2                         }, // Pawn
  39.     {  32,  255,  -3                    }, // Knight      OUR PIECES
  40.     {   0,  104,   4,    0              }, // Bishop
  41.     { -26,   -2,  47,   105,  -149      }, // Rook
  42.     {-185,   24, 122,   137,  -134,   0 }  // Queen
  43.   };
  44.  
  45.   const int QuadraticTheirs[][PIECE_TYPE_NB] = {
  46.     //           THEIR PIECES
  47.     // pair pawn knight bishop rook queen
  48.     {   0                               }, // Bishop pair
  49.     {  36,    0                         }, // Pawn
  50.     {   9,   63,   0                    }, // Knight      OUR PIECES
  51.     {  59,   65,  42,     0             }, // Bishop
  52.     {  46,   39,  24,   -24,    0       }, // Rook
  53.     { 101,  100, -37,   141,  268,    0 }  // Queen
  54.   };
  55.  
  56.   // Endgame evaluation and scaling functions are accessed directly and not through
  57.   // the function maps because they correspond to more than one material hash key.
  58.   Endgame<KXK>    EvaluateKXK[] = { Endgame<KXK>(WHITE),    Endgame<KXK>(BLACK) };
  59.  
  60.   Endgame<KBPsK>  ScaleKBPsK[]  = { Endgame<KBPsK>(WHITE),  Endgame<KBPsK>(BLACK) };
  61.   Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
  62.   Endgame<KPsK>   ScaleKPsK[]   = { Endgame<KPsK>(WHITE),   Endgame<KPsK>(BLACK) };
  63.   Endgame<KPKP>   ScaleKPKP[]   = { Endgame<KPKP>(WHITE),   Endgame<KPKP>(BLACK) };
  64.  
  65.   // Helper used to detect a given material distribution
  66.   bool is_KXK(const Position& pos, Color us) {
  67.     return  !more_than_one(pos.pieces(~us))
  68.           && pos.non_pawn_material(us) >= RookValueMg;
  69.   }
  70.  
  71.   bool is_KBPsKs(const Position& pos, Color us) {
  72.     return   pos.non_pawn_material(us) == BishopValueMg
  73.           && pos.count<BISHOP>(us) == 1
  74.           && pos.count<PAWN  >(us) >= 1;
  75.   }
  76.  
  77.   bool is_KQKRPs(const Position& pos, Color us) {
  78.     return  !pos.count<PAWN>(us)
  79.           && pos.non_pawn_material(us) == QueenValueMg
  80.           && pos.count<QUEEN>(us)  == 1
  81.           && pos.count<ROOK>(~us) == 1
  82.           && pos.count<PAWN>(~us) >= 1;
  83.   }
  84.  
  85.   /// imbalance() calculates the imbalance by comparing the piece count of each
  86.   /// piece type for both colors.
  87.   template<Color Us>
  88.   int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
  89.  
  90.     const Color Them = (Us == WHITE ? BLACK : WHITE);
  91.  
  92.     int bonus = 0;
  93.  
  94.     // Second-degree polynomial material imbalance by Tord Romstad
  95.     for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
  96.     {
  97.         if (!pieceCount[Us][pt1])
  98.             continue;
  99.  
  100.         int v = 0;
  101.  
  102.         for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
  103.             v +=  QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
  104.                 + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
  105.  
  106.         bonus += pieceCount[Us][pt1] * v;
  107.     }
  108.  
  109.     return bonus;
  110.   }
  111.  
  112. } // namespace
  113.  
  114. namespace Material {
  115.  
  116. /// Material::probe() looks up the current position's material configuration in
  117. /// the material hash table. It returns a pointer to the Entry if the position
  118. /// is found. Otherwise a new Entry is computed and stored there, so we don't
  119. /// have to recompute all when the same material configuration occurs again.
  120.  
  121. Entry* probe(const Position& pos) {
  122.  
  123.   Key key = pos.material_key();
  124.   Entry* e = pos.this_thread()->materialTable[key];
  125.  
  126.   if (e->key == key)
  127.       return e;
  128.  
  129.   std::memset(e, 0, sizeof(Entry));
  130.   e->key = key;
  131.   e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
  132.   e->gamePhase = pos.game_phase();
  133.  
  134.   // Let's look if we have a specialized evaluation function for this particular
  135.   // material configuration. Firstly we look for a fixed configuration one, then
  136.   // for a generic one if the previous search failed.
  137.   if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
  138.       return e;
  139.  
  140.   for (Color c = WHITE; c <= BLACK; ++c)
  141.       if (is_KXK(pos, c))
  142.       {
  143.           e->evaluationFunction = &EvaluateKXK[c];
  144.           return e;
  145.       }
  146.  
  147.   // OK, we didn't find any special evaluation function for the current material
  148.   // configuration. Is there a suitable specialized scaling function?
  149.   EndgameBase<ScaleFactor>* sf;
  150.  
  151.   if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
  152.   {
  153.       e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
  154.       return e;
  155.   }
  156.  
  157.   // We didn't find any specialized scaling function, so fall back on generic
  158.   // ones that refer to more than one material distribution. Note that in this
  159.   // case we don't return after setting the function.
  160.   for (Color c = WHITE; c <= BLACK; ++c)
  161.   {
  162.     if (is_KBPsKs(pos, c))
  163.         e->scalingFunction[c] = &ScaleKBPsK[c];
  164.  
  165.     else if (is_KQKRPs(pos, c))
  166.         e->scalingFunction[c] = &ScaleKQKRPs[c];
  167.   }
  168.  
  169.   Value npm_w = pos.non_pawn_material(WHITE);
  170.   Value npm_b = pos.non_pawn_material(BLACK);
  171.  
  172.   if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
  173.   {
  174.       if (!pos.count<PAWN>(BLACK))
  175.       {
  176.           assert(pos.count<PAWN>(WHITE) >= 2);
  177.  
  178.           e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
  179.       }
  180.       else if (!pos.count<PAWN>(WHITE))
  181.       {
  182.           assert(pos.count<PAWN>(BLACK) >= 2);
  183.  
  184.           e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
  185.       }
  186.       else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
  187.       {
  188.           // This is a special case because we set scaling functions
  189.           // for both colors instead of only one.
  190.           e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
  191.           e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
  192.       }
  193.   }
  194.  
  195.   // Zero or just one pawn makes it difficult to win, even with a small material
  196.   // advantage. This catches some trivial draws like KK, KBK and KNK and gives a
  197.   // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
  198.   if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
  199.       e->factor[WHITE] = uint8_t(npm_w <  RookValueMg   ? SCALE_FACTOR_DRAW :
  200.                                  npm_b <= BishopValueMg ? 4 : 14);
  201.  
  202.   if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
  203.       e->factor[BLACK] = uint8_t(npm_b <  RookValueMg   ? SCALE_FACTOR_DRAW :
  204.                                  npm_w <= BishopValueMg ? 4 : 14);
  205.  
  206.   if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
  207.       e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
  208.  
  209.   if (pos.count<PAWN>(BLACK) == 1 && npm_b - npm_w <= BishopValueMg)
  210.       e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN;
  211.  
  212.   // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
  213.   // for the bishop pair "extended piece", which allows us to be more flexible
  214.   // in defining bishop pair bonuses.
  215.   const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = {
  216.   { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
  217.     pos.count<BISHOP>(WHITE)    , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
  218.   { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
  219.     pos.count<BISHOP>(BLACK)    , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
  220.  
  221.   e->value = int16_t((imbalance<WHITE>(PieceCount) - imbalance<BLACK>(PieceCount)) / 16);
  222.   return e;
  223. }
  224.  
  225. } // namespace Material
  226.