Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm> // For std::min
  22. #include <cassert>
  23. #include <cstring>   // For std::memset
  24.  
  25. #include "material.h"
  26. #include "thread.h"
  27.  
  28. using namespace std;
  29.  
  30. namespace {
  31.  
  32.   // Polynomial material imbalance parameters
  33.  
  34.   //                      pair  pawn knight bishop rook queen
  35.   const int Linear[6] = { 1667, -168, -1027, -166,  238, -138 };
  36.  
  37.   const int QuadraticOurs[][PIECE_TYPE_NB] = {
  38.     //            OUR PIECES
  39.     // pair pawn knight bishop rook queen
  40.     {   0                               }, // Bishop pair
  41.     {  40,    2                         }, // Pawn
  42.     {  32,  255,  -3                    }, // Knight      OUR PIECES
  43.     {   0,  104,   4,    0              }, // Bishop
  44.     { -26,   -2,  47,   105,  -149      }, // Rook
  45.     {-185,   24, 122,   137,  -134,   0 }  // Queen
  46.   };
  47.  
  48.   const int QuadraticTheirs[][PIECE_TYPE_NB] = {
  49.     //           THEIR PIECES
  50.     // pair pawn knight bishop rook queen
  51.     {   0                               }, // Bishop pair
  52.     {  36,    0                         }, // Pawn
  53.     {   9,   63,   0                    }, // Knight      OUR PIECES
  54.     {  59,   65,  42,     0             }, // Bishop
  55.     {  46,   39,  24,   -24,    0       }, // Rook
  56.     { 101,  100, -37,   141,  268,    0 }  // Queen
  57.   };
  58.  
  59.   // Endgame evaluation and scaling functions are accessed directly and not through
  60.   // the function maps because they correspond to more than one material hash key.
  61.   Endgame<KXK>    EvaluateKXK[] = { Endgame<KXK>(WHITE),    Endgame<KXK>(BLACK) };
  62.  
  63.   Endgame<KBPsK>  ScaleKBPsK[]  = { Endgame<KBPsK>(WHITE),  Endgame<KBPsK>(BLACK) };
  64.   Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
  65.   Endgame<KPsK>   ScaleKPsK[]   = { Endgame<KPsK>(WHITE),   Endgame<KPsK>(BLACK) };
  66.   Endgame<KPKP>   ScaleKPKP[]   = { Endgame<KPKP>(WHITE),   Endgame<KPKP>(BLACK) };
  67.  
  68.   // Helper used to detect a given material distribution
  69.   bool is_KXK(const Position& pos, Color us) {
  70.     return  !more_than_one(pos.pieces(~us))
  71.           && pos.non_pawn_material(us) >= RookValueMg;
  72.   }
  73.  
  74.   bool is_KBPsKs(const Position& pos, Color us) {
  75.     return   pos.non_pawn_material(us) == BishopValueMg
  76.           && pos.count<BISHOP>(us) == 1
  77.           && pos.count<PAWN  >(us) >= 1;
  78.   }
  79.  
  80.   bool is_KQKRPs(const Position& pos, Color us) {
  81.     return  !pos.count<PAWN>(us)
  82.           && pos.non_pawn_material(us) == QueenValueMg
  83.           && pos.count<QUEEN>(us)  == 1
  84.           && pos.count<ROOK>(~us) == 1
  85.           && pos.count<PAWN>(~us) >= 1;
  86.   }
  87.  
  88.   /// imbalance() calculates the imbalance by comparing the piece count of each
  89.   /// piece type for both colors.
  90.   template<Color Us>
  91.   int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
  92.  
  93.     const Color Them = (Us == WHITE ? BLACK : WHITE);
  94.  
  95.     int bonus = 0;
  96.  
  97.     // Second-degree polynomial material imbalance by Tord Romstad
  98.     for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
  99.     {
  100.         if (!pieceCount[Us][pt1])
  101.             continue;
  102.  
  103.         int v = Linear[pt1];
  104.  
  105.         for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
  106.             v +=  QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
  107.                 + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
  108.  
  109.         bonus += pieceCount[Us][pt1] * v;
  110.     }
  111.  
  112.     return bonus;
  113.   }
  114.  
  115. } // namespace
  116.  
  117. namespace Material {
  118.  
  119. /// Material::probe() looks up the current position's material configuration in
  120. /// the material hash table. It returns a pointer to the Entry if the position
  121. /// is found. Otherwise a new Entry is computed and stored there, so we don't
  122. /// have to recompute all when the same material configuration occurs again.
  123.  
  124. Entry* probe(const Position& pos) {
  125.  
  126.   Key key = pos.material_key();
  127.   Entry* e = pos.this_thread()->materialTable[key];
  128.  
  129.   if (e->key == key)
  130.       return e;
  131.  
  132.   std::memset(e, 0, sizeof(Entry));
  133.   e->key = key;
  134.   e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
  135.   e->gamePhase = pos.game_phase();
  136.  
  137.   // Let's look if we have a specialized evaluation function for this particular
  138.   // material configuration. Firstly we look for a fixed configuration one, then
  139.   // for a generic one if the previous search failed.
  140.   if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
  141.       return e;
  142.  
  143.   for (Color c = WHITE; c <= BLACK; ++c)
  144.       if (is_KXK(pos, c))
  145.       {
  146.           e->evaluationFunction = &EvaluateKXK[c];
  147.           return e;
  148.       }
  149.  
  150.   // OK, we didn't find any special evaluation function for the current material
  151.   // configuration. Is there a suitable specialized scaling function?
  152.   EndgameBase<ScaleFactor>* sf;
  153.  
  154.   if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
  155.   {
  156.       e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
  157.       return e;
  158.   }
  159.  
  160.   // We didn't find any specialized scaling function, so fall back on generic
  161.   // ones that refer to more than one material distribution. Note that in this
  162.   // case we don't return after setting the function.
  163.   for (Color c = WHITE; c <= BLACK; ++c)
  164.   {
  165.     if (is_KBPsKs(pos, c))
  166.         e->scalingFunction[c] = &ScaleKBPsK[c];
  167.  
  168.     else if (is_KQKRPs(pos, c))
  169.         e->scalingFunction[c] = &ScaleKQKRPs[c];
  170.   }
  171.  
  172.   Value npm_w = pos.non_pawn_material(WHITE);
  173.   Value npm_b = pos.non_pawn_material(BLACK);
  174.  
  175.   if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
  176.   {
  177.       if (!pos.count<PAWN>(BLACK))
  178.       {
  179.           assert(pos.count<PAWN>(WHITE) >= 2);
  180.  
  181.           e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
  182.       }
  183.       else if (!pos.count<PAWN>(WHITE))
  184.       {
  185.           assert(pos.count<PAWN>(BLACK) >= 2);
  186.  
  187.           e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
  188.       }
  189.       else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
  190.       {
  191.           // This is a special case because we set scaling functions
  192.           // for both colors instead of only one.
  193.           e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
  194.           e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
  195.       }
  196.   }
  197.  
  198.   // Zero or just one pawn makes it difficult to win, even with a small material
  199.   // advantage. This catches some trivial draws like KK, KBK and KNK and gives a
  200.   // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
  201.   if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
  202.       e->factor[WHITE] = uint8_t(npm_w <  RookValueMg   ? SCALE_FACTOR_DRAW :
  203.                                  npm_b <= BishopValueMg ? 4 : 14);
  204.  
  205.   if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
  206.       e->factor[BLACK] = uint8_t(npm_b <  RookValueMg   ? SCALE_FACTOR_DRAW :
  207.                                  npm_w <= BishopValueMg ? 4 : 14);
  208.  
  209.   if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
  210.       e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
  211.  
  212.   if (pos.count<PAWN>(BLACK) == 1 && npm_b - npm_w <= BishopValueMg)
  213.       e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN;
  214.  
  215.   // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
  216.   // for the bishop pair "extended piece", which allows us to be more flexible
  217.   // in defining bishop pair bonuses.
  218.   const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = {
  219.   { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
  220.     pos.count<BISHOP>(WHITE)    , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
  221.   { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
  222.     pos.count<BISHOP>(BLACK)    , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
  223.  
  224.   e->value = int16_t((imbalance<WHITE>(PieceCount) - imbalance<BLACK>(PieceCount)) / 16);
  225.   return e;
  226. }
  227.  
  228. } // namespace Material
  229.