/*
 
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
 
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
 
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
 
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
 
 
 
  Stockfish is free software: you can redistribute it and/or modify
 
  it under the terms of the GNU General Public License as published by
 
  the Free Software Foundation, either version 3 of the License, or
 
  (at your option) any later version.
 
 
 
  Stockfish is distributed in the hope that it will be useful,
 
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  GNU General Public License for more details.
 
 
 
  You should have received a copy of the GNU General Public License
 
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
#include <algorithm>
 
#include <cassert>
 
 
 
#include "bitboard.h"
 
#include "bitcount.h"
 
#include "endgame.h"
 
#include "movegen.h"
 
 
 
using std::string;
 
 
 
namespace {
 
 
 
  // Table used to drive the king towards the edge of the board
 
  // in KX vs K and KQ vs KR endgames.
 
  const int PushToEdges[SQUARE_NB] = {
 
    100, 90, 80, 70, 70, 80, 90, 100,
 
     90, 70, 60, 50, 50, 60, 70,  90,
 
     80, 60, 40, 30, 30, 40, 60,  80,
 
     70, 50, 30, 20, 20, 30, 50,  70,
 
     70, 50, 30, 20, 20, 30, 50,  70,
 
     80, 60, 40, 30, 30, 40, 60,  80,
 
     90, 70, 60, 50, 50, 60, 70,  90,
 
    100, 90, 80, 70, 70, 80, 90, 100
 
  };
 
 
 
  // Table used to drive the king towards a corner square of the
 
  // right color in KBN vs K endgames.
 
  const int PushToCorners[SQUARE_NB] = {
 
    200, 190, 180, 170, 160, 150, 140, 130,
 
    190, 180, 170, 160, 150, 140, 130, 140,
 
    180, 170, 155, 140, 140, 125, 140, 150,
 
    170, 160, 140, 120, 110, 140, 150, 160,
 
    160, 150, 140, 110, 120, 140, 160, 170,
 
    150, 140, 125, 140, 140, 155, 170, 180,
 
    140, 130, 140, 150, 160, 170, 180, 190,
 
    130, 140, 150, 160, 170, 180, 190, 200
 
  };
 
 
 
  // Tables used to drive a piece towards or away from another piece
 
  const int PushClose[8] = { 0, 0, 100, 80, 60, 40, 20, 10 };
 
  const int PushAway [8] = { 0, 5, 20, 40, 60, 80, 90, 100 };
 
 
 
  // Pawn Rank based scaling factors used in KRPPKRP endgame
 
  const int KRPPKRPScaleFactors[RANK_NB] = { 0, 9, 10, 14, 21, 44, 0, 0 };
 
 
 
#ifndef NDEBUG
 
  bool verify_material(const Position& pos, Color c, Value npm, int pawnsCnt) {
 
    return pos.non_pawn_material(c) == npm && pos.count<PAWN>(c) == pawnsCnt;
 
  }
 
#endif
 
 
 
  // Map the square as if strongSide is white and strongSide's only pawn
 
  // is on the left half of the board.
 
  Square normalize(const Position& pos, Color strongSide, Square sq) {
 
 
 
    assert(pos.count<PAWN>(strongSide) == 1);
 
 
 
    if (file_of(pos.square<PAWN>(strongSide)) >= FILE_E)
 
        sq = Square(sq ^ 7); // Mirror SQ_H1 -> SQ_A1
 
 
 
    if (strongSide == BLACK)
 
        sq = ~sq;
 
 
 
    return sq;
 
  }
 
 
 
  // Get the material key of Position out of the given endgame key code
 
  // like "KBPKN". The trick here is to first forge an ad-hoc FEN string
 
  // and then let a Position object do the work for us.
 
  Key key(const string& code, Color c) {
 
 
 
    assert(code.length() > 0 && code.length() < 8);
 
    assert(code[0] == 'K');
 
 
 
    string sides[] = { code.substr(code.find('K', 1)),      // Weak
 
                       code.substr(0, code.find('K', 1)) }; // Strong
 
 
 
    std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower);
 
 
 
    string fen =  sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/8/8/"
 
                + sides[1] + char(8 - sides[1].length() + '0') + " w - - 0 10";
 
 
 
    return Position(fen, false, nullptr).material_key();
 
  }
 
 
 
} // namespace
 
 
 
 
 
/// Endgames members definitions
 
 
 
Endgames::Endgames() {
 
 
 
  add<KPK>("KPK");
 
  add<KNNK>("KNNK");
 
  add<KBNK>("KBNK");
 
  add<KRKP>("KRKP");
 
  add<KRKB>("KRKB");
 
  add<KRKN>("KRKN");
 
  add<KQKP>("KQKP");
 
  add<KQKR>("KQKR");
 
 
 
  add<KNPK>("KNPK");
 
  add<KNPKB>("KNPKB");
 
  add<KRPKR>("KRPKR");
 
  add<KRPKB>("KRPKB");
 
  add<KBPKB>("KBPKB");
 
  add<KBPKN>("KBPKN");
 
  add<KBPPKB>("KBPPKB");
 
  add<KRPPKRP>("KRPPKRP");
 
}
 
 
 
 
 
template<EndgameType E, typename T>
 
void Endgames::add(const string& code) {
 
  map<T>()[key(code, WHITE)] = std::unique_ptr<EndgameBase<T>>(new Endgame<E>(WHITE));
 
  map<T>()[key(code, BLACK)] = std::unique_ptr<EndgameBase<T>>(new Endgame<E>(BLACK));
 
}
 
 
 
 
 
/// Mate with KX vs K. This function is used to evaluate positions with
 
/// king and plenty of material vs a lone king. It simply gives the
 
/// attacking side a bonus for driving the defending king towards the edge
 
/// of the board, and for keeping the distance between the two kings small.
 
template<>
 
Value Endgame<KXK>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
 
  assert(!pos.checkers()); // Eval is never called when in check
 
 
 
  // Stalemate detection with lone king
 
  if (pos.side_to_move() == weakSide && !MoveList<LEGAL>(pos).size())
 
      return VALUE_DRAW;
 
 
 
  Square winnerKSq = pos.square<KING>(strongSide);
 
  Square loserKSq = pos.square<KING>(weakSide);
 
 
 
  Value result =  pos.non_pawn_material(strongSide)
 
                + pos.count<PAWN>(strongSide) * PawnValueEg
 
                + PushToEdges[loserKSq]
 
                + PushClose[distance(winnerKSq, loserKSq)];
 
 
 
  if (   pos.count<QUEEN>(strongSide)
 
      || pos.count<ROOK>(strongSide)
 
      ||(pos.count<BISHOP>(strongSide) && pos.count<KNIGHT>(strongSide))
 
      ||(pos.count<BISHOP>(strongSide) > 1 && opposite_colors(pos.squares<BISHOP>(strongSide)[0],
 
                                                              pos.squares<BISHOP>(strongSide)[1])))
 
      result = std::min(result + VALUE_KNOWN_WIN, VALUE_MATE_IN_MAX_PLY - 1);
 
 
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
 
/// defending king towards a corner square of the right color.
 
template<>
 
Value Endgame<KBNK>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, KnightValueMg + BishopValueMg, 0));
 
  assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
 
 
 
  Square winnerKSq = pos.square<KING>(strongSide);
 
  Square loserKSq = pos.square<KING>(weakSide);
 
  Square bishopSq = pos.square<BISHOP>(strongSide);
 
 
 
  // kbnk_mate_table() tries to drive toward corners A1 or H8. If we have a
 
  // bishop that cannot reach the above squares, we flip the kings in order
 
  // to drive the enemy toward corners A8 or H1.
 
  if (opposite_colors(bishopSq, SQ_A1))
 
  {
 
      winnerKSq = ~winnerKSq;
 
      loserKSq  = ~loserKSq;
 
  }
 
 
 
  Value result =  VALUE_KNOWN_WIN
 
                + PushClose[distance(winnerKSq, loserKSq)]
 
                + PushToCorners[loserKSq];
 
 
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// KP vs K. This endgame is evaluated with the help of a bitbase.
 
template<>
 
Value Endgame<KPK>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, VALUE_ZERO, 1));
 
  assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
 
 
 
  // Assume strongSide is white and the pawn is on files A-D
 
  Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide));
 
  Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide));
 
  Square psq  = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
 
 
 
  Color us = strongSide == pos.side_to_move() ? WHITE : BLACK;
 
 
 
  if (!Bitbases::probe(wksq, psq, bksq, us))
 
      return VALUE_DRAW;
 
 
 
  Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq));
 
 
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without
 
/// a bitbase. The function below returns drawish scores when the pawn is
 
/// far advanced with support of the king, while the attacking king is far
 
/// away.
 
template<>
 
Value Endgame<KRKP>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, RookValueMg, 0));
 
  assert(verify_material(pos, weakSide, VALUE_ZERO, 1));
 
 
 
  Square wksq = relative_square(strongSide, pos.square<KING>(strongSide));
 
  Square bksq = relative_square(strongSide, pos.square<KING>(weakSide));
 
  Square rsq  = relative_square(strongSide, pos.square<ROOK>(strongSide));
 
  Square psq  = relative_square(strongSide, pos.square<PAWN>(weakSide));
 
 
 
  Square queeningSq = make_square(file_of(psq), RANK_1);
 
  Value result;
 
 
 
  // If the stronger side's king is in front of the pawn, it's a win
 
  if (wksq < psq && file_of(wksq) == file_of(psq))
 
      result = RookValueEg - distance(wksq, psq);
 
 
 
  // If the weaker side's king is too far from the pawn and the rook,
 
  // it's a win.
 
  else if (   distance(bksq, psq) >= 3 + (pos.side_to_move() == weakSide)
 
           && distance(bksq, rsq) >= 3)
 
      result = RookValueEg - distance(wksq, psq);
 
 
 
  // If the pawn is far advanced and supported by the defending king,
 
  // the position is drawish
 
  else if (   rank_of(bksq) <= RANK_3
 
           && distance(bksq, psq) == 1
 
           && rank_of(wksq) >= RANK_4
 
           && distance(wksq, psq) > 2 + (pos.side_to_move() == strongSide))
 
      result = Value(80) - 8 * distance(wksq, psq);
 
 
 
  else
 
      result =  Value(200) - 8 * (  distance(wksq, psq + DELTA_S)
 
                                  - distance(bksq, psq + DELTA_S)
 
                                  - distance(psq, queeningSq));
 
 
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// KR vs KB. This is very simple, and always returns drawish scores.  The
 
/// score is slightly bigger when the defending king is close to the edge.
 
template<>
 
Value Endgame<KRKB>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, RookValueMg, 0));
 
  assert(verify_material(pos, weakSide, BishopValueMg, 0));
 
 
 
  Value result = Value(PushToEdges[pos.square<KING>(weakSide)]);
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// KR vs KN. The attacking side has slightly better winning chances than
 
/// in KR vs KB, particularly if the king and the knight are far apart.
 
template<>
 
Value Endgame<KRKN>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, RookValueMg, 0));
 
  assert(verify_material(pos, weakSide, KnightValueMg, 0));
 
 
 
  Square bksq = pos.square<KING>(weakSide);
 
  Square bnsq = pos.square<KNIGHT>(weakSide);
 
  Value result = Value(PushToEdges[bksq] + PushAway[distance(bksq, bnsq)]);
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// KQ vs KP. In general, this is a win for the stronger side, but there are a
 
/// few important exceptions. A pawn on 7th rank and on the A,C,F or H files
 
/// with a king positioned next to it can be a draw, so in that case, we only
 
/// use the distance between the kings.
 
template<>
 
Value Endgame<KQKP>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, QueenValueMg, 0));
 
  assert(verify_material(pos, weakSide, VALUE_ZERO, 1));
 
 
 
  Square winnerKSq = pos.square<KING>(strongSide);
 
  Square loserKSq = pos.square<KING>(weakSide);
 
  Square pawnSq = pos.square<PAWN>(weakSide);
 
 
 
  Value result = Value(PushClose[distance(winnerKSq, loserKSq)]);
 
 
 
  if (   relative_rank(weakSide, pawnSq) != RANK_7
 
      || distance(loserKSq, pawnSq) != 1
 
      || !((FileABB | FileCBB | FileFBB | FileHBB) & pawnSq))
 
      result += QueenValueEg - PawnValueEg;
 
 
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// KQ vs KR.  This is almost identical to KX vs K:  We give the attacking
 
/// king a bonus for having the kings close together, and for forcing the
 
/// defending king towards the edge. If we also take care to avoid null move for
 
/// the defending side in the search, this is usually sufficient to win KQ vs KR.
 
template<>
 
Value Endgame<KQKR>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, QueenValueMg, 0));
 
  assert(verify_material(pos, weakSide, RookValueMg, 0));
 
 
 
  Square winnerKSq = pos.square<KING>(strongSide);
 
  Square loserKSq = pos.square<KING>(weakSide);
 
 
 
  Value result =  QueenValueEg
 
                - RookValueEg
 
                + PushToEdges[loserKSq]
 
                + PushClose[distance(winnerKSq, loserKSq)];
 
 
 
  return strongSide == pos.side_to_move() ? result : -result;
 
}
 
 
 
 
 
/// Some cases of trivial draws
 
template<> Value Endgame<KNNK>::operator()(const Position&) const { return VALUE_DRAW; }
 
 
 
 
 
/// KB and one or more pawns vs K. It checks for draws with rook pawns and
 
/// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW
 
/// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
 
/// will be used.
 
template<>
 
ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const {
 
 
 
  assert(pos.non_pawn_material(strongSide) == BishopValueMg);
 
  assert(pos.count<PAWN>(strongSide) >= 1);
 
 
 
  // No assertions about the material of weakSide, because we want draws to
 
  // be detected even when the weaker side has some pawns.
 
 
 
  Bitboard pawns = pos.pieces(strongSide, PAWN);
 
  File pawnsFile = file_of(lsb(pawns));
 
 
 
  // All pawns are on a single rook file?
 
  if (    (pawnsFile == FILE_A || pawnsFile == FILE_H)
 
      && !(pawns & ~file_bb(pawnsFile)))
 
  {
 
      Square bishopSq = pos.square<BISHOP>(strongSide);
 
      Square queeningSq = relative_square(strongSide, make_square(pawnsFile, RANK_8));
 
      Square kingSq = pos.square<KING>(weakSide);
 
 
 
      if (   opposite_colors(queeningSq, bishopSq)
 
          && distance(queeningSq, kingSq) <= 1)
 
          return SCALE_FACTOR_DRAW;
 
  }
 
 
 
  // If all the pawns are on the same B or G file, then it's potentially a draw
 
  if (    (pawnsFile == FILE_B || pawnsFile == FILE_G)
 
      && !(pos.pieces(PAWN) & ~file_bb(pawnsFile))
 
      && pos.non_pawn_material(weakSide) == 0
 
      && pos.count<PAWN>(weakSide) >= 1)
 
  {
 
      // Get weakSide pawn that is closest to the home rank
 
      Square weakPawnSq = backmost_sq(weakSide, pos.pieces(weakSide, PAWN));
 
 
 
      Square strongKingSq = pos.square<KING>(strongSide);
 
      Square weakKingSq = pos.square<KING>(weakSide);
 
      Square bishopSq = pos.square<BISHOP>(strongSide);
 
 
 
      // There's potential for a draw if our pawn is blocked on the 7th rank,
 
      // the bishop cannot attack it or they only have one pawn left
 
      if (   relative_rank(strongSide, weakPawnSq) == RANK_7
 
          && (pos.pieces(strongSide, PAWN) & (weakPawnSq + pawn_push(weakSide)))
 
          && (opposite_colors(bishopSq, weakPawnSq) || pos.count<PAWN>(strongSide) == 1))
 
      {
 
          int strongKingDist = distance(weakPawnSq, strongKingSq);
 
          int weakKingDist = distance(weakPawnSq, weakKingSq);
 
 
 
          // It's a draw if the weak king is on its back two ranks, within 2
 
          // squares of the blocking pawn and the strong king is not
 
          // closer. (I think this rule only fails in practically
 
          // unreachable positions such as 5k1K/6p1/6P1/8/8/3B4/8/8 w
 
          // and positions where qsearch will immediately correct the
 
          // problem such as 8/4k1p1/6P1/1K6/3B4/8/8/8 w)
 
          if (   relative_rank(strongSide, weakKingSq) >= RANK_7
 
              && weakKingDist <= 2
 
              && weakKingDist <= strongKingDist)
 
              return SCALE_FACTOR_DRAW;
 
      }
 
  }
 
 
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// KQ vs KR and one or more pawns. It tests for fortress draws with a rook on
 
/// the third rank defended by a pawn.
 
template<>
 
ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, QueenValueMg, 0));
 
  assert(pos.count<ROOK>(weakSide) == 1);
 
  assert(pos.count<PAWN>(weakSide) >= 1);
 
 
 
  Square kingSq = pos.square<KING>(weakSide);
 
  Square rsq = pos.square<ROOK>(weakSide);
 
 
 
  if (    relative_rank(weakSide, kingSq) <= RANK_2
 
      &&  relative_rank(weakSide, pos.square<KING>(strongSide)) >= RANK_4
 
      &&  relative_rank(weakSide, rsq) == RANK_3
 
      && (  pos.pieces(weakSide, PAWN)
 
          & pos.attacks_from<KING>(kingSq)
 
          & pos.attacks_from<PAWN>(rsq, strongSide)))
 
          return SCALE_FACTOR_DRAW;
 
 
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// KRP vs KR. This function knows a handful of the most important classes of
 
/// drawn positions, but is far from perfect. It would probably be a good idea
 
/// to add more knowledge in the future.
 
///
 
/// It would also be nice to rewrite the actual code for this function,
 
/// which is mostly copied from Glaurung 1.x, and isn't very pretty.
 
template<>
 
ScaleFactor Endgame<KRPKR>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, RookValueMg, 1));
 
  assert(verify_material(pos, weakSide,   RookValueMg, 0));
 
 
 
  // Assume strongSide is white and the pawn is on files A-D
 
  Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide));
 
  Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide));
 
  Square wrsq = normalize(pos, strongSide, pos.square<ROOK>(strongSide));
 
  Square wpsq = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
 
  Square brsq = normalize(pos, strongSide, pos.square<ROOK>(weakSide));
 
 
 
  File f = file_of(wpsq);
 
  Rank r = rank_of(wpsq);
 
  Square queeningSq = make_square(f, RANK_8);
 
  int tempo = (pos.side_to_move() == strongSide);
 
 
 
  // If the pawn is not too far advanced and the defending king defends the
 
  // queening square, use the third-rank defence.
 
  if (   r <= RANK_5
 
      && distance(bksq, queeningSq) <= 1
 
      && wksq <= SQ_H5
 
      && (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6)))
 
      return SCALE_FACTOR_DRAW;
 
 
 
  // The defending side saves a draw by checking from behind in case the pawn
 
  // has advanced to the 6th rank with the king behind.
 
  if (   r == RANK_6
 
      && distance(bksq, queeningSq) <= 1
 
      && rank_of(wksq) + tempo <= RANK_6
 
      && (rank_of(brsq) == RANK_1 || (!tempo && distance<File>(brsq, wpsq) >= 3)))
 
      return SCALE_FACTOR_DRAW;
 
 
 
  if (   r >= RANK_6
 
      && bksq == queeningSq
 
      && rank_of(brsq) == RANK_1
 
      && (!tempo || distance(wksq, wpsq) >= 2))
 
      return SCALE_FACTOR_DRAW;
 
 
 
  // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
 
  // and the black rook is behind the pawn.
 
  if (   wpsq == SQ_A7
 
      && wrsq == SQ_A8
 
      && (bksq == SQ_H7 || bksq == SQ_G7)
 
      && file_of(brsq) == FILE_A
 
      && (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5))
 
      return SCALE_FACTOR_DRAW;
 
 
 
  // If the defending king blocks the pawn and the attacking king is too far
 
  // away, it's a draw.
 
  if (   r <= RANK_5
 
      && bksq == wpsq + DELTA_N
 
      && distance(wksq, wpsq) - tempo >= 2
 
      && distance(wksq, brsq) - tempo >= 2)
 
      return SCALE_FACTOR_DRAW;
 
 
 
  // Pawn on the 7th rank supported by the rook from behind usually wins if the
 
  // attacking king is closer to the queening square than the defending king,
 
  // and the defending king cannot gain tempi by threatening the attacking rook.
 
  if (   r == RANK_7
 
      && f != FILE_A
 
      && file_of(wrsq) == f
 
      && wrsq != queeningSq
 
      && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo)
 
      && (distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo))
 
      return ScaleFactor(SCALE_FACTOR_MAX - 2 * distance(wksq, queeningSq));
 
 
 
  // Similar to the above, but with the pawn further back
 
  if (   f != FILE_A
 
      && file_of(wrsq) == f
 
      && wrsq < wpsq
 
      && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo)
 
      && (distance(wksq, wpsq + DELTA_N) < distance(bksq, wpsq + DELTA_N) - 2 + tempo)
 
      && (  distance(bksq, wrsq) + tempo >= 3
 
          || (    distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo
 
              && (distance(wksq, wpsq + DELTA_N) < distance(bksq, wrsq) + tempo))))
 
      return ScaleFactor(  SCALE_FACTOR_MAX
 
                         - 8 * distance(wpsq, queeningSq)
 
                         - 2 * distance(wksq, queeningSq));
 
 
 
  // If the pawn is not far advanced and the defending king is somewhere in
 
  // the pawn's path, it's probably a draw.
 
  if (r <= RANK_4 && bksq > wpsq)
 
  {
 
      if (file_of(bksq) == file_of(wpsq))
 
          return ScaleFactor(10);
 
      if (   distance<File>(bksq, wpsq) == 1
 
          && distance(wksq, bksq) > 2)
 
          return ScaleFactor(24 - 2 * distance(wksq, bksq));
 
  }
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
template<>
 
ScaleFactor Endgame<KRPKB>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, RookValueMg, 1));
 
  assert(verify_material(pos, weakSide, BishopValueMg, 0));
 
 
 
  // Test for a rook pawn
 
  if (pos.pieces(PAWN) & (FileABB | FileHBB))
 
  {
 
      Square ksq = pos.square<KING>(weakSide);
 
      Square bsq = pos.square<BISHOP>(weakSide);
 
      Square psq = pos.square<PAWN>(strongSide);
 
      Rank rk = relative_rank(strongSide, psq);
 
      Square push = pawn_push(strongSide);
 
 
 
      // If the pawn is on the 5th rank and the pawn (currently) is on
 
      // the same color square as the bishop then there is a chance of
 
      // a fortress. Depending on the king position give a moderate
 
      // reduction or a stronger one if the defending king is near the
 
      // corner but not trapped there.
 
      if (rk == RANK_5 && !opposite_colors(bsq, psq))
 
      {
 
          int d = distance(psq + 3 * push, ksq);
 
 
 
          if (d <= 2 && !(d == 0 && ksq == pos.square<KING>(strongSide) + 2 * push))
 
              return ScaleFactor(24);
 
          else
 
              return ScaleFactor(48);
 
      }
 
 
 
      // When the pawn has moved to the 6th rank we can be fairly sure
 
      // it's drawn if the bishop attacks the square in front of the
 
      // pawn from a reasonable distance and the defending king is near
 
      // the corner
 
      if (   rk == RANK_6
 
          && distance(psq + 2 * push, ksq) <= 1
 
          && (PseudoAttacks[BISHOP][bsq] & (psq + push))
 
          && distance<File>(bsq, psq) >= 2)
 
          return ScaleFactor(8);
 
  }
 
 
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
/// KRPP vs KRP. There is just a single rule: if the stronger side has no passed
 
/// pawns and the defending king is actively placed, the position is drawish.
 
template<>
 
ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, RookValueMg, 2));
 
  assert(verify_material(pos, weakSide,   RookValueMg, 1));
 
 
 
  Square wpsq1 = pos.squares<PAWN>(strongSide)[0];
 
  Square wpsq2 = pos.squares<PAWN>(strongSide)[1];
 
  Square bksq = pos.square<KING>(weakSide);
 
 
 
  // Does the stronger side have a passed pawn?
 
  if (pos.pawn_passed(strongSide, wpsq1) || pos.pawn_passed(strongSide, wpsq2))
 
      return SCALE_FACTOR_NONE;
 
 
 
  Rank r = std::max(relative_rank(strongSide, wpsq1), relative_rank(strongSide, wpsq2));
 
 
 
  if (   distance<File>(bksq, wpsq1) <= 1
 
      && distance<File>(bksq, wpsq2) <= 1
 
      && relative_rank(strongSide, bksq) > r)
 
  {
 
      assert(r > RANK_1 && r < RANK_7);
 
      return ScaleFactor(KRPPKRPScaleFactors[r]);
 
  }
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// K and two or more pawns vs K. There is just a single rule here: If all pawns
 
/// are on the same rook file and are blocked by the defending king, it's a draw.
 
template<>
 
ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const {
 
 
 
  assert(pos.non_pawn_material(strongSide) == VALUE_ZERO);
 
  assert(pos.count<PAWN>(strongSide) >= 2);
 
  assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
 
 
 
  Square ksq = pos.square<KING>(weakSide);
 
  Bitboard pawns = pos.pieces(strongSide, PAWN);
 
 
 
  // If all pawns are ahead of the king, on a single rook file and
 
  // the king is within one file of the pawns, it's a draw.
 
  if (   !(pawns & ~in_front_bb(weakSide, rank_of(ksq)))
 
      && !((pawns & ~FileABB) && (pawns & ~FileHBB))
 
      &&  distance<File>(ksq, lsb(pawns)) <= 1)
 
      return SCALE_FACTOR_DRAW;
 
 
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// KBP vs KB. There are two rules: if the defending king is somewhere along the
 
/// path of the pawn, and the square of the king is not of the same color as the
 
/// stronger side's bishop, it's a draw. If the two bishops have opposite color,
 
/// it's almost always a draw.
 
template<>
 
ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, BishopValueMg, 1));
 
  assert(verify_material(pos, weakSide,   BishopValueMg, 0));
 
 
 
  Square pawnSq = pos.square<PAWN>(strongSide);
 
  Square strongBishopSq = pos.square<BISHOP>(strongSide);
 
  Square weakBishopSq = pos.square<BISHOP>(weakSide);
 
  Square weakKingSq = pos.square<KING>(weakSide);
 
 
 
  // Case 1: Defending king blocks the pawn, and cannot be driven away
 
  if (   file_of(weakKingSq) == file_of(pawnSq)
 
      && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq)
 
      && (   opposite_colors(weakKingSq, strongBishopSq)
 
          || relative_rank(strongSide, weakKingSq) <= RANK_6))
 
      return SCALE_FACTOR_DRAW;
 
 
 
  // Case 2: Opposite colored bishops
 
  if (opposite_colors(strongBishopSq, weakBishopSq))
 
  {
 
      // We assume that the position is drawn in the following three situations:
 
      //
 
      //   a. The pawn is on rank 5 or further back.
 
      //   b. The defending king is somewhere in the pawn's path.
 
      //   c. The defending bishop attacks some square along the pawn's path,
 
      //      and is at least three squares away from the pawn.
 
      //
 
      // These rules are probably not perfect, but in practice they work
 
      // reasonably well.
 
 
 
      if (relative_rank(strongSide, pawnSq) <= RANK_5)
 
          return SCALE_FACTOR_DRAW;
 
      else
 
      {
 
          Bitboard path = forward_bb(strongSide, pawnSq);
 
 
 
          if (path & pos.pieces(weakSide, KING))
 
              return SCALE_FACTOR_DRAW;
 
 
 
          if (  (pos.attacks_from<BISHOP>(weakBishopSq) & path)
 
              && distance(weakBishopSq, pawnSq) >= 3)
 
              return SCALE_FACTOR_DRAW;
 
      }
 
  }
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// KBPP vs KB. It detects a few basic draws with opposite-colored bishops
 
template<>
 
ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, BishopValueMg, 2));
 
  assert(verify_material(pos, weakSide,   BishopValueMg, 0));
 
 
 
  Square wbsq = pos.square<BISHOP>(strongSide);
 
  Square bbsq = pos.square<BISHOP>(weakSide);
 
 
 
  if (!opposite_colors(wbsq, bbsq))
 
      return SCALE_FACTOR_NONE;
 
 
 
  Square ksq = pos.square<KING>(weakSide);
 
  Square psq1 = pos.squares<PAWN>(strongSide)[0];
 
  Square psq2 = pos.squares<PAWN>(strongSide)[1];
 
  Rank r1 = rank_of(psq1);
 
  Rank r2 = rank_of(psq2);
 
  Square blockSq1, blockSq2;
 
 
 
  if (relative_rank(strongSide, psq1) > relative_rank(strongSide, psq2))
 
  {
 
      blockSq1 = psq1 + pawn_push(strongSide);
 
      blockSq2 = make_square(file_of(psq2), rank_of(psq1));
 
  }
 
  else
 
  {
 
      blockSq1 = psq2 + pawn_push(strongSide);
 
      blockSq2 = make_square(file_of(psq1), rank_of(psq2));
 
  }
 
 
 
  switch (distance<File>(psq1, psq2))
 
  {
 
  case 0:
 
    // Both pawns are on the same file. It's an easy draw if the defender firmly
 
    // controls some square in the frontmost pawn's path.
 
    if (   file_of(ksq) == file_of(blockSq1)
 
        && relative_rank(strongSide, ksq) >= relative_rank(strongSide, blockSq1)
 
        && opposite_colors(ksq, wbsq))
 
        return SCALE_FACTOR_DRAW;
 
    else
 
        return SCALE_FACTOR_NONE;
 
 
 
  case 1:
 
    // Pawns on adjacent files. It's a draw if the defender firmly controls the
 
    // square in front of the frontmost pawn's path, and the square diagonally
 
    // behind this square on the file of the other pawn.
 
    if (   ksq == blockSq1
 
        && opposite_colors(ksq, wbsq)
 
        && (   bbsq == blockSq2
 
            || (pos.attacks_from<BISHOP>(blockSq2) & pos.pieces(weakSide, BISHOP))
 
            || distance(r1, r2) >= 2))
 
        return SCALE_FACTOR_DRAW;
 
 
 
    else if (   ksq == blockSq2
 
             && opposite_colors(ksq, wbsq)
 
             && (   bbsq == blockSq1
 
                 || (pos.attacks_from<BISHOP>(blockSq1) & pos.pieces(weakSide, BISHOP))))
 
        return SCALE_FACTOR_DRAW;
 
    else
 
        return SCALE_FACTOR_NONE;
 
 
 
  default:
 
    // The pawns are not on the same file or adjacent files. No scaling.
 
    return SCALE_FACTOR_NONE;
 
  }
 
}
 
 
 
 
 
/// KBP vs KN. There is a single rule: If the defending king is somewhere along
 
/// the path of the pawn, and the square of the king is not of the same color as
 
/// the stronger side's bishop, it's a draw.
 
template<>
 
ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, BishopValueMg, 1));
 
  assert(verify_material(pos, weakSide, KnightValueMg, 0));
 
 
 
  Square pawnSq = pos.square<PAWN>(strongSide);
 
  Square strongBishopSq = pos.square<BISHOP>(strongSide);
 
  Square weakKingSq = pos.square<KING>(weakSide);
 
 
 
  if (   file_of(weakKingSq) == file_of(pawnSq)
 
      && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq)
 
      && (   opposite_colors(weakKingSq, strongBishopSq)
 
          || relative_rank(strongSide, weakKingSq) <= RANK_6))
 
      return SCALE_FACTOR_DRAW;
 
 
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// KNP vs K. There is a single rule: if the pawn is a rook pawn on the 7th rank
 
/// and the defending king prevents the pawn from advancing, the position is drawn.
 
template<>
 
ScaleFactor Endgame<KNPK>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, KnightValueMg, 1));
 
  assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
 
 
 
  // Assume strongSide is white and the pawn is on files A-D
 
  Square pawnSq     = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
 
  Square weakKingSq = normalize(pos, strongSide, pos.square<KING>(weakSide));
 
 
 
  if (pawnSq == SQ_A7 && distance(SQ_A8, weakKingSq) <= 1)
 
      return SCALE_FACTOR_DRAW;
 
 
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// KNP vs KB. If knight can block bishop from taking pawn, it's a win.
 
/// Otherwise the position is drawn.
 
template<>
 
ScaleFactor Endgame<KNPKB>::operator()(const Position& pos) const {
 
 
 
  Square pawnSq = pos.square<PAWN>(strongSide);
 
  Square bishopSq = pos.square<BISHOP>(weakSide);
 
  Square weakKingSq = pos.square<KING>(weakSide);
 
 
 
  // King needs to get close to promoting pawn to prevent knight from blocking.
 
  // Rules for this are very tricky, so just approximate.
 
  if (forward_bb(strongSide, pawnSq) & pos.attacks_from<BISHOP>(bishopSq))
 
      return ScaleFactor(distance(weakKingSq, pawnSq));
 
 
 
  return SCALE_FACTOR_NONE;
 
}
 
 
 
 
 
/// KP vs KP. This is done by removing the weakest side's pawn and probing the
 
/// KP vs K bitbase: If the weakest side has a draw without the pawn, it probably
 
/// has at least a draw with the pawn as well. The exception is when the stronger
 
/// side's pawn is far advanced and not on a rook file; in this case it is often
 
/// possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
 
template<>
 
ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
 
 
 
  assert(verify_material(pos, strongSide, VALUE_ZERO, 1));
 
  assert(verify_material(pos, weakSide,   VALUE_ZERO, 1));
 
 
 
  // Assume strongSide is white and the pawn is on files A-D
 
  Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide));
 
  Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide));
 
  Square psq  = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
 
 
 
  Color us = strongSide == pos.side_to_move() ? WHITE : BLACK;
 
 
 
  // If the pawn has advanced to the fifth rank or further, and is not a
 
  // rook pawn, it's too dangerous to assume that it's at least a draw.
 
  if (rank_of(psq) >= RANK_5 && file_of(psq) != FILE_A)
 
      return SCALE_FACTOR_NONE;
 
 
 
  // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw,
 
  // it's probably at least a draw even with the pawn.
 
  return Bitbases::probe(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
 
}