Subversion Repositories Games.Chess Giants

Rev

Rev 169 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #ifndef BITBOARD_H_INCLUDED
  22. #define BITBOARD_H_INCLUDED
  23.  
  24. #include <string>
  25.  
  26. #include "types.h"
  27.  
  28. namespace Bitbases {
  29.  
  30. void init();
  31. bool probe(Square wksq, Square wpsq, Square bksq, Color us);
  32.  
  33. }
  34.  
  35. namespace Bitboards {
  36.  
  37. void init();
  38. const std::string pretty(Bitboard b);
  39.  
  40. }
  41.  
  42. constexpr Bitboard AllSquares = ~Bitboard(0);
  43. constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
  44.  
  45. constexpr Bitboard FileABB = 0x0101010101010101ULL;
  46. constexpr Bitboard FileBBB = FileABB << 1;
  47. constexpr Bitboard FileCBB = FileABB << 2;
  48. constexpr Bitboard FileDBB = FileABB << 3;
  49. constexpr Bitboard FileEBB = FileABB << 4;
  50. constexpr Bitboard FileFBB = FileABB << 5;
  51. constexpr Bitboard FileGBB = FileABB << 6;
  52. constexpr Bitboard FileHBB = FileABB << 7;
  53.  
  54. constexpr Bitboard Rank1BB = 0xFF;
  55. constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
  56. constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
  57. constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
  58. constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
  59. constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
  60. constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
  61. constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
  62.  
  63. extern int SquareDistance[SQUARE_NB][SQUARE_NB];
  64.  
  65. extern Bitboard SquareBB[SQUARE_NB];
  66. extern Bitboard FileBB[FILE_NB];
  67. extern Bitboard RankBB[RANK_NB];
  68. extern Bitboard AdjacentFilesBB[FILE_NB];
  69. extern Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
  70. extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
  71. extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
  72. extern Bitboard DistanceRingBB[SQUARE_NB][8];
  73. extern Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
  74. extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
  75. extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
  76. extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
  77. extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
  78.  
  79.  
  80. /// Magic holds all magic bitboards relevant data for a single square
  81. struct Magic {
  82.   Bitboard  mask;
  83.   Bitboard  magic;
  84.   Bitboard* attacks;
  85.   unsigned  shift;
  86.  
  87.   // Compute the attack's index using the 'magic bitboards' approach
  88.   unsigned index(Bitboard occupied) const {
  89.  
  90.     if (HasPext)
  91.         return unsigned(pext(occupied, mask));
  92.  
  93.     if (Is64Bit)
  94.         return unsigned(((occupied & mask) * magic) >> shift);
  95.  
  96.     unsigned lo = unsigned(occupied) & unsigned(mask);
  97.     unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
  98.     return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
  99.   }
  100. };
  101.  
  102. extern Magic RookMagics[SQUARE_NB];
  103. extern Magic BishopMagics[SQUARE_NB];
  104.  
  105.  
  106. /// Overloads of bitwise operators between a Bitboard and a Square for testing
  107. /// whether a given bit is set in a bitboard, and for setting and clearing bits.
  108.  
  109. inline Bitboard operator&(Bitboard b, Square s) {
  110.   assert(s >= SQ_A1 && s <= SQ_H8);
  111.   return b & SquareBB[s];
  112. }
  113.  
  114. inline Bitboard operator|(Bitboard b, Square s) {
  115.   assert(s >= SQ_A1 && s <= SQ_H8);
  116.   return b | SquareBB[s];
  117. }
  118.  
  119. inline Bitboard operator^(Bitboard b, Square s) {
  120.   assert(s >= SQ_A1 && s <= SQ_H8);
  121.   return b ^ SquareBB[s];
  122. }
  123.  
  124. inline Bitboard& operator|=(Bitboard& b, Square s) {
  125.   assert(s >= SQ_A1 && s <= SQ_H8);
  126.   return b |= SquareBB[s];
  127. }
  128.  
  129. inline Bitboard& operator^=(Bitboard& b, Square s) {
  130.   assert(s >= SQ_A1 && s <= SQ_H8);
  131.   return b ^= SquareBB[s];
  132. }
  133.  
  134. constexpr bool more_than_one(Bitboard b) {
  135.   return b & (b - 1);
  136. }
  137.  
  138. /// rank_bb() and file_bb() return a bitboard representing all the squares on
  139. /// the given file or rank.
  140.  
  141. inline Bitboard rank_bb(Rank r) {
  142.   return RankBB[r];
  143. }
  144.  
  145. inline Bitboard rank_bb(Square s) {
  146.   return RankBB[rank_of(s)];
  147. }
  148.  
  149. inline Bitboard file_bb(File f) {
  150.   return FileBB[f];
  151. }
  152.  
  153. inline Bitboard file_bb(Square s) {
  154.   return FileBB[file_of(s)];
  155. }
  156.  
  157.  
  158. /// shift() moves a bitboard one step along direction D (mainly for pawns)
  159.  
  160. template<Direction D>
  161. constexpr Bitboard shift(Bitboard b) {
  162.   return  D == NORTH      ?  b             << 8 : D == SOUTH      ?  b             >> 8
  163.         : D == EAST       ? (b & ~FileHBB) << 1 : D == WEST       ? (b & ~FileABB) >> 1
  164.         : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7
  165.         : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
  166.         : 0;
  167. }
  168.  
  169.  
  170. /// pawn_attacks_bb() returns the pawn attacks for the given color from the
  171. /// squares in the given bitboard.
  172.  
  173. template<Color C>
  174. constexpr Bitboard pawn_attacks_bb(Bitboard b) {
  175.   return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
  176.                     : shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
  177. }
  178.  
  179.  
  180. /// adjacent_files_bb() returns a bitboard representing all the squares on the
  181. /// adjacent files of the given one.
  182.  
  183. inline Bitboard adjacent_files_bb(File f) {
  184.   return AdjacentFilesBB[f];
  185. }
  186.  
  187.  
  188. /// between_bb() returns a bitboard representing all the squares between the two
  189. /// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
  190. /// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
  191. /// or diagonal, 0 is returned.
  192.  
  193. inline Bitboard between_bb(Square s1, Square s2) {
  194.   return BetweenBB[s1][s2];
  195. }
  196.  
  197.  
  198. /// forward_ranks_bb() returns a bitboard representing the squares on all the ranks
  199. /// in front of the given one, from the point of view of the given color. For instance,
  200. /// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
  201.  
  202. inline Bitboard forward_ranks_bb(Color c, Square s) {
  203.   return ForwardRanksBB[c][rank_of(s)];
  204. }
  205.  
  206.  
  207. /// forward_file_bb() returns a bitboard representing all the squares along the line
  208. /// in front of the given one, from the point of view of the given color:
  209. ///      ForwardFileBB[c][s] = forward_ranks_bb(c, s) & file_bb(s)
  210.  
  211. inline Bitboard forward_file_bb(Color c, Square s) {
  212.   return ForwardFileBB[c][s];
  213. }
  214.  
  215.  
  216. /// pawn_attack_span() returns a bitboard representing all the squares that can be
  217. /// attacked by a pawn of the given color when it moves along its file, starting
  218. /// from the given square:
  219. ///      PawnAttackSpan[c][s] = forward_ranks_bb(c, s) & adjacent_files_bb(file_of(s));
  220.  
  221. inline Bitboard pawn_attack_span(Color c, Square s) {
  222.   return PawnAttackSpan[c][s];
  223. }
  224.  
  225.  
  226. /// passed_pawn_mask() returns a bitboard mask which can be used to test if a
  227. /// pawn of the given color and on the given square is a passed pawn:
  228. ///      PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_file_bb(c, s)
  229.  
  230. inline Bitboard passed_pawn_mask(Color c, Square s) {
  231.   return PassedPawnMask[c][s];
  232. }
  233.  
  234.  
  235. /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
  236. /// straight or on a diagonal line.
  237.  
  238. inline bool aligned(Square s1, Square s2, Square s3) {
  239.   return LineBB[s1][s2] & s3;
  240. }
  241.  
  242.  
  243. /// distance() functions return the distance between x and y, defined as the
  244. /// number of steps for a king in x to reach y. Works with squares, ranks, files.
  245.  
  246. template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
  247. template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
  248.  
  249. template<typename T1, typename T2> inline int distance(T2 x, T2 y);
  250. template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
  251. template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
  252.  
  253.  
  254. /// attacks_bb() returns a bitboard representing all the squares attacked by a
  255. /// piece of type Pt (bishop or rook) placed on 's'.
  256.  
  257. template<PieceType Pt>
  258. inline Bitboard attacks_bb(Square s, Bitboard occupied) {
  259.  
  260.   const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s];
  261.   return m.attacks[m.index(occupied)];
  262. }
  263.  
  264. inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
  265.  
  266.   assert(pt != PAWN);
  267.  
  268.   switch (pt)
  269.   {
  270.   case BISHOP: return attacks_bb<BISHOP>(s, occupied);
  271.   case ROOK  : return attacks_bb<  ROOK>(s, occupied);
  272.   case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
  273.   default    : return PseudoAttacks[pt][s];
  274.   }
  275. }
  276.  
  277.  
  278. /// popcount() counts the number of non-zero bits in a bitboard
  279.  
  280. inline int popcount(Bitboard b) {
  281.  
  282. #ifndef USE_POPCNT
  283.  
  284.   extern uint8_t PopCnt16[1 << 16];
  285.   union { Bitboard bb; uint16_t u[4]; } v = { b };
  286.   return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
  287.  
  288. #elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
  289.  
  290.   return (int)_mm_popcnt_u64(b);
  291.  
  292. #else // Assumed gcc or compatible compiler
  293.  
  294.   return __builtin_popcountll(b);
  295.  
  296. #endif
  297. }
  298.  
  299.  
  300. /// lsb() and msb() return the least/most significant bit in a non-zero bitboard
  301.  
  302. #if defined(__GNUC__)  // GCC, Clang, ICC
  303.  
  304. inline Square lsb(Bitboard b) {
  305.   assert(b);
  306.   return Square(__builtin_ctzll(b));
  307. }
  308.  
  309. inline Square msb(Bitboard b) {
  310.   assert(b);
  311.   return Square(63 ^ __builtin_clzll(b));
  312. }
  313.  
  314. #elif defined(_MSC_VER)  // MSVC
  315.  
  316. #ifdef _WIN64  // MSVC, WIN64
  317.  
  318. inline Square lsb(Bitboard b) {
  319.   assert(b);
  320.   unsigned long idx;
  321.   _BitScanForward64(&idx, b);
  322.   return (Square) idx;
  323. }
  324.  
  325. inline Square msb(Bitboard b) {
  326.   assert(b);
  327.   unsigned long idx;
  328.   _BitScanReverse64(&idx, b);
  329.   return (Square) idx;
  330. }
  331.  
  332. #else  // MSVC, WIN32
  333.  
  334. inline Square lsb(Bitboard b) {
  335.   assert(b);
  336.   unsigned long idx;
  337.  
  338.   if (b & 0xffffffff) {
  339.       _BitScanForward(&idx, int32_t(b));
  340.       return Square(idx);
  341.   } else {
  342.       _BitScanForward(&idx, int32_t(b >> 32));
  343.       return Square(idx + 32);
  344.   }
  345. }
  346.  
  347. inline Square msb(Bitboard b) {
  348.   assert(b);
  349.   unsigned long idx;
  350.  
  351.   if (b >> 32) {
  352.       _BitScanReverse(&idx, int32_t(b >> 32));
  353.       return Square(idx + 32);
  354.   } else {
  355.       _BitScanReverse(&idx, int32_t(b));
  356.       return Square(idx);
  357.   }
  358. }
  359.  
  360. #endif
  361.  
  362. #else  // Compiler is neither GCC nor MSVC compatible
  363.  
  364. #error "Compiler not supported."
  365.  
  366. #endif
  367.  
  368.  
  369. /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
  370.  
  371. inline Square pop_lsb(Bitboard* b) {
  372.   const Square s = lsb(*b);
  373.   *b &= *b - 1;
  374.   return s;
  375. }
  376.  
  377.  
  378. /// frontmost_sq() and backmost_sq() return the square corresponding to the
  379. /// most/least advanced bit relative to the given color.
  380.  
  381. inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
  382. inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
  383.  
  384. #endif // #ifndef BITBOARD_H_INCLUDED
  385.