Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #ifndef BITBOARD_H_INCLUDED
  22. #define BITBOARD_H_INCLUDED
  23.  
  24. #include <string>
  25.  
  26. #include "types.h"
  27.  
  28. namespace Bitbases {
  29.  
  30. void init();
  31. bool probe(Square wksq, Square wpsq, Square bksq, Color us);
  32.  
  33. }
  34.  
  35. namespace Bitboards {
  36.  
  37. void init();
  38. const std::string pretty(Bitboard b);
  39.  
  40. }
  41.  
  42. const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
  43.  
  44. const Bitboard FileABB = 0x0101010101010101ULL;
  45. const Bitboard FileBBB = FileABB << 1;
  46. const Bitboard FileCBB = FileABB << 2;
  47. const Bitboard FileDBB = FileABB << 3;
  48. const Bitboard FileEBB = FileABB << 4;
  49. const Bitboard FileFBB = FileABB << 5;
  50. const Bitboard FileGBB = FileABB << 6;
  51. const Bitboard FileHBB = FileABB << 7;
  52.  
  53. const Bitboard Rank1BB = 0xFF;
  54. const Bitboard Rank2BB = Rank1BB << (8 * 1);
  55. const Bitboard Rank3BB = Rank1BB << (8 * 2);
  56. const Bitboard Rank4BB = Rank1BB << (8 * 3);
  57. const Bitboard Rank5BB = Rank1BB << (8 * 4);
  58. const Bitboard Rank6BB = Rank1BB << (8 * 5);
  59. const Bitboard Rank7BB = Rank1BB << (8 * 6);
  60. const Bitboard Rank8BB = Rank1BB << (8 * 7);
  61.  
  62. extern int SquareDistance[SQUARE_NB][SQUARE_NB];
  63.  
  64. extern Bitboard  RookMasks  [SQUARE_NB];
  65. extern Bitboard  RookMagics [SQUARE_NB];
  66. extern Bitboard* RookAttacks[SQUARE_NB];
  67. extern unsigned  RookShifts [SQUARE_NB];
  68.  
  69. extern Bitboard  BishopMasks  [SQUARE_NB];
  70. extern Bitboard  BishopMagics [SQUARE_NB];
  71. extern Bitboard* BishopAttacks[SQUARE_NB];
  72. extern unsigned  BishopShifts [SQUARE_NB];
  73.  
  74. extern Bitboard SquareBB[SQUARE_NB];
  75. extern Bitboard FileBB[FILE_NB];
  76. extern Bitboard RankBB[RANK_NB];
  77. extern Bitboard AdjacentFilesBB[FILE_NB];
  78. extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
  79. extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
  80. extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
  81. extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
  82. extern Bitboard DistanceRingBB[SQUARE_NB][8];
  83. extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
  84. extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
  85. extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
  86. extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
  87.  
  88.  
  89. /// Overloads of bitwise operators between a Bitboard and a Square for testing
  90. /// whether a given bit is set in a bitboard, and for setting and clearing bits.
  91.  
  92. inline Bitboard operator&(Bitboard b, Square s) {
  93.   return b & SquareBB[s];
  94. }
  95.  
  96. inline Bitboard operator|(Bitboard b, Square s) {
  97.   return b | SquareBB[s];
  98. }
  99.  
  100. inline Bitboard operator^(Bitboard b, Square s) {
  101.   return b ^ SquareBB[s];
  102. }
  103.  
  104. inline Bitboard& operator|=(Bitboard& b, Square s) {
  105.   return b |= SquareBB[s];
  106. }
  107.  
  108. inline Bitboard& operator^=(Bitboard& b, Square s) {
  109.   return b ^= SquareBB[s];
  110. }
  111.  
  112. inline bool more_than_one(Bitboard b) {
  113.   return b & (b - 1);
  114. }
  115.  
  116.  
  117. /// rank_bb() and file_bb() return a bitboard representing all the squares on
  118. /// the given file or rank.
  119.  
  120. inline Bitboard rank_bb(Rank r) {
  121.   return RankBB[r];
  122. }
  123.  
  124. inline Bitboard rank_bb(Square s) {
  125.   return RankBB[rank_of(s)];
  126. }
  127.  
  128. inline Bitboard file_bb(File f) {
  129.   return FileBB[f];
  130. }
  131.  
  132. inline Bitboard file_bb(Square s) {
  133.   return FileBB[file_of(s)];
  134. }
  135.  
  136.  
  137. /// shift_bb() moves a bitboard one step along direction Delta. Mainly for pawns
  138.  
  139. template<Square Delta>
  140. inline Bitboard shift_bb(Bitboard b) {
  141.   return  Delta == DELTA_N  ?  b             << 8 : Delta == DELTA_S  ?  b             >> 8
  142.         : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
  143.         : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
  144.         : 0;
  145. }
  146.  
  147.  
  148. /// adjacent_files_bb() returns a bitboard representing all the squares on the
  149. /// adjacent files of the given one.
  150.  
  151. inline Bitboard adjacent_files_bb(File f) {
  152.   return AdjacentFilesBB[f];
  153. }
  154.  
  155.  
  156. /// between_bb() returns a bitboard representing all the squares between the two
  157. /// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
  158. /// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
  159. /// or diagonal, 0 is returned.
  160.  
  161. inline Bitboard between_bb(Square s1, Square s2) {
  162.   return BetweenBB[s1][s2];
  163. }
  164.  
  165.  
  166. /// in_front_bb() returns a bitboard representing all the squares on all the ranks
  167. /// in front of the given one, from the point of view of the given color. For
  168. /// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
  169.  
  170. inline Bitboard in_front_bb(Color c, Rank r) {
  171.   return InFrontBB[c][r];
  172. }
  173.  
  174.  
  175. /// forward_bb() returns a bitboard representing all the squares along the line
  176. /// in front of the given one, from the point of view of the given color:
  177. ///        ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
  178.  
  179. inline Bitboard forward_bb(Color c, Square s) {
  180.   return ForwardBB[c][s];
  181. }
  182.  
  183.  
  184. /// pawn_attack_span() returns a bitboard representing all the squares that can be
  185. /// attacked by a pawn of the given color when it moves along its file, starting
  186. /// from the given square:
  187. ///       PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
  188.  
  189. inline Bitboard pawn_attack_span(Color c, Square s) {
  190.   return PawnAttackSpan[c][s];
  191. }
  192.  
  193.  
  194. /// passed_pawn_mask() returns a bitboard mask which can be used to test if a
  195. /// pawn of the given color and on the given square is a passed pawn:
  196. ///       PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
  197.  
  198. inline Bitboard passed_pawn_mask(Color c, Square s) {
  199.   return PassedPawnMask[c][s];
  200. }
  201.  
  202.  
  203. /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
  204. /// straight or on a diagonal line.
  205.  
  206. inline bool aligned(Square s1, Square s2, Square s3) {
  207.   return LineBB[s1][s2] & s3;
  208. }
  209.  
  210.  
  211. /// distance() functions return the distance between x and y, defined as the
  212. /// number of steps for a king in x to reach y. Works with squares, ranks, files.
  213.  
  214. template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
  215. template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
  216.  
  217. template<typename T1, typename T2> inline int distance(T2 x, T2 y);
  218. template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
  219. template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
  220.  
  221.  
  222. /// attacks_bb() returns a bitboard representing all the squares attacked by a
  223. /// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
  224. /// looks up the index using the 'magic bitboards' approach.
  225. template<PieceType Pt>
  226. inline unsigned magic_index(Square s, Bitboard occupied) {
  227.  
  228.   Bitboard* const Masks  = Pt == ROOK ? RookMasks  : BishopMasks;
  229.   Bitboard* const Magics = Pt == ROOK ? RookMagics : BishopMagics;
  230.   unsigned* const Shifts = Pt == ROOK ? RookShifts : BishopShifts;
  231.  
  232.   if (HasPext)
  233.       return unsigned(pext(occupied, Masks[s]));
  234.  
  235.   if (Is64Bit)
  236.       return unsigned(((occupied & Masks[s]) * Magics[s]) >> Shifts[s]);
  237.  
  238.   unsigned lo = unsigned(occupied) & unsigned(Masks[s]);
  239.   unsigned hi = unsigned(occupied >> 32) & unsigned(Masks[s] >> 32);
  240.   return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s];
  241. }
  242.  
  243. template<PieceType Pt>
  244. inline Bitboard attacks_bb(Square s, Bitboard occupied) {
  245.   return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index<Pt>(s, occupied)];
  246. }
  247.  
  248. inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
  249.  
  250.   switch (type_of(pc))
  251.   {
  252.   case BISHOP: return attacks_bb<BISHOP>(s, occupied);
  253.   case ROOK  : return attacks_bb<ROOK>(s, occupied);
  254.   case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
  255.   default    : return StepAttacksBB[pc][s];
  256.   }
  257. }
  258.  
  259.  
  260. /// lsb() and msb() return the least/most significant bit in a non-zero bitboard
  261.  
  262. #ifdef USE_BSFQ
  263.  
  264. #  if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
  265.  
  266. inline Square lsb(Bitboard b) {
  267.   unsigned long idx;
  268.   _BitScanForward64(&idx, b);
  269.   return (Square) idx;
  270. }
  271.  
  272. inline Square msb(Bitboard b) {
  273.   unsigned long idx;
  274.   _BitScanReverse64(&idx, b);
  275.   return (Square) idx;
  276. }
  277.  
  278. #  elif defined(__arm__)
  279.  
  280. inline int lsb32(uint32_t v) {
  281.   __asm__("rbit %0, %1" : "=r"(v) : "r"(v));
  282.   return __builtin_clz(v);
  283. }
  284.  
  285. inline Square msb(Bitboard b) {
  286.   return (Square) (63 - __builtin_clzll(b));
  287. }
  288.  
  289. inline Square lsb(Bitboard b) {
  290.   return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32)));
  291. }
  292.  
  293. #  else // Assumed gcc or compatible compiler
  294.  
  295. inline Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen
  296.   Bitboard idx;
  297.   __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) );
  298.   return (Square) idx;
  299. }
  300.  
  301. inline Square msb(Bitboard b) {
  302.   Bitboard idx;
  303.   __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) );
  304.   return (Square) idx;
  305. }
  306.  
  307. #  endif
  308.  
  309. #else // ifdef(USE_BSFQ)
  310.  
  311. Square lsb(Bitboard b);
  312. Square msb(Bitboard b);
  313.  
  314. #endif
  315.  
  316.  
  317. /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
  318.  
  319. inline Square pop_lsb(Bitboard* b) {
  320.   const Square s = lsb(*b);
  321.   *b &= *b - 1;
  322.   return s;
  323. }
  324.  
  325.  
  326. /// frontmost_sq() and backmost_sq() return the square corresponding to the
  327. /// most/least advanced bit relative to the given color.
  328.  
  329. inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
  330. inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
  331.  
  332. #endif // #ifndef BITBOARD_H_INCLUDED
  333.