- /* 
-   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 
-   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) 
-   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad 
-   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad 
-   
-   Stockfish is free software: you can redistribute it and/or modify 
-   it under the terms of the GNU General Public License as published by 
-   the Free Software Foundation, either version 3 of the License, or 
-   (at your option) any later version. 
-   
-   Stockfish is distributed in the hope that it will be useful, 
-   but WITHOUT ANY WARRANTY; without even the implied warranty of 
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
-   GNU General Public License for more details. 
-   
-   You should have received a copy of the GNU General Public License 
-   along with this program.  If not, see <http://www.gnu.org/licenses/>. 
- */ 
-   
- #ifndef BITBOARD_H_INCLUDED 
- #define BITBOARD_H_INCLUDED 
-   
- #include <string> 
-   
- #include "types.h" 
-   
- namespace Bitbases { 
-   
- void init(); 
- bool probe(Square wksq, Square wpsq, Square bksq, Color us); 
-   
- } 
-   
- namespace Bitboards { 
-   
- void init(); 
- const std::string pretty(Bitboard b); 
-   
- } 
-   
- const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; 
-   
- const Bitboard FileABB = 0x0101010101010101ULL; 
- const Bitboard FileBBB = FileABB << 1; 
- const Bitboard FileCBB = FileABB << 2; 
- const Bitboard FileDBB = FileABB << 3; 
- const Bitboard FileEBB = FileABB << 4; 
- const Bitboard FileFBB = FileABB << 5; 
- const Bitboard FileGBB = FileABB << 6; 
- const Bitboard FileHBB = FileABB << 7; 
-   
- const Bitboard Rank1BB = 0xFF; 
- const Bitboard Rank2BB = Rank1BB << (8 * 1); 
- const Bitboard Rank3BB = Rank1BB << (8 * 2); 
- const Bitboard Rank4BB = Rank1BB << (8 * 3); 
- const Bitboard Rank5BB = Rank1BB << (8 * 4); 
- const Bitboard Rank6BB = Rank1BB << (8 * 5); 
- const Bitboard Rank7BB = Rank1BB << (8 * 6); 
- const Bitboard Rank8BB = Rank1BB << (8 * 7); 
-   
- extern int SquareDistance[SQUARE_NB][SQUARE_NB]; 
-   
- extern Bitboard SquareBB[SQUARE_NB]; 
- extern Bitboard FileBB[FILE_NB]; 
- extern Bitboard RankBB[RANK_NB]; 
- extern Bitboard AdjacentFilesBB[FILE_NB]; 
- extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; 
- extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; 
- extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; 
- extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; 
- extern Bitboard DistanceRingBB[SQUARE_NB][8]; 
- extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; 
- extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; 
- extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; 
- extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; 
-   
-   
- /// Overloads of bitwise operators between a Bitboard and a Square for testing 
- /// whether a given bit is set in a bitboard, and for setting and clearing bits. 
-   
- inline Bitboard operator&(Bitboard b, Square s) { 
-   return b & SquareBB[s]; 
- } 
-   
- inline Bitboard operator|(Bitboard b, Square s) { 
-   return b | SquareBB[s]; 
- } 
-   
- inline Bitboard operator^(Bitboard b, Square s) { 
-   return b ^ SquareBB[s]; 
- } 
-   
- inline Bitboard& operator|=(Bitboard& b, Square s) { 
-   return b |= SquareBB[s]; 
- } 
-   
- inline Bitboard& operator^=(Bitboard& b, Square s) { 
-   return b ^= SquareBB[s]; 
- } 
-   
- inline bool more_than_one(Bitboard b) { 
-   return b & (b - 1); 
- } 
-   
-   
- /// rank_bb() and file_bb() return a bitboard representing all the squares on 
- /// the given file or rank. 
-   
- inline Bitboard rank_bb(Rank r) { 
-   return RankBB[r]; 
- } 
-   
- inline Bitboard rank_bb(Square s) { 
-   return RankBB[rank_of(s)]; 
- } 
-   
- inline Bitboard file_bb(File f) { 
-   return FileBB[f]; 
- } 
-   
- inline Bitboard file_bb(Square s) { 
-   return FileBB[file_of(s)]; 
- } 
-   
-   
- /// shift() moves a bitboard one step along direction D. Mainly for pawns 
-   
- template<Square D> 
- inline Bitboard shift(Bitboard b) { 
-   return  D == NORTH      ?  b             << 8 : D == SOUTH      ?  b             >> 8 
-         : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 
-         : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 
-         : 0; 
- } 
-   
-   
- /// adjacent_files_bb() returns a bitboard representing all the squares on the 
- /// adjacent files of the given one. 
-   
- inline Bitboard adjacent_files_bb(File f) { 
-   return AdjacentFilesBB[f]; 
- } 
-   
-   
- /// between_bb() returns a bitboard representing all the squares between the two 
- /// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with 
- /// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file 
- /// or diagonal, 0 is returned. 
-   
- inline Bitboard between_bb(Square s1, Square s2) { 
-   return BetweenBB[s1][s2]; 
- } 
-   
-   
- /// in_front_bb() returns a bitboard representing all the squares on all the ranks 
- /// in front of the given one, from the point of view of the given color. For 
- /// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2. 
-   
- inline Bitboard in_front_bb(Color c, Rank r) { 
-   return InFrontBB[c][r]; 
- } 
-   
-   
- /// forward_bb() returns a bitboard representing all the squares along the line 
- /// in front of the given one, from the point of view of the given color: 
- ///        ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) 
-   
- inline Bitboard forward_bb(Color c, Square s) { 
-   return ForwardBB[c][s]; 
- } 
-   
-   
- /// pawn_attack_span() returns a bitboard representing all the squares that can be 
- /// attacked by a pawn of the given color when it moves along its file, starting 
- /// from the given square: 
- ///       PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); 
-   
- inline Bitboard pawn_attack_span(Color c, Square s) { 
-   return PawnAttackSpan[c][s]; 
- } 
-   
-   
- /// passed_pawn_mask() returns a bitboard mask which can be used to test if a 
- /// pawn of the given color and on the given square is a passed pawn: 
- ///       PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) 
-   
- inline Bitboard passed_pawn_mask(Color c, Square s) { 
-   return PassedPawnMask[c][s]; 
- } 
-   
-   
- /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a 
- /// straight or on a diagonal line. 
-   
- inline bool aligned(Square s1, Square s2, Square s3) { 
-   return LineBB[s1][s2] & s3; 
- } 
-   
-   
- /// distance() functions return the distance between x and y, defined as the 
- /// number of steps for a king in x to reach y. Works with squares, ranks, files. 
-   
- template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; } 
- template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; } 
-   
- template<typename T1, typename T2> inline int distance(T2 x, T2 y); 
- template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); } 
- template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); } 
-   
-   
- /// attacks_bb() returns a bitboard representing all the squares attacked by a 
- /// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index() 
- /// looks up the index using the 'magic bitboards' approach. 
- template<PieceType Pt> 
- inline unsigned magic_index(Square s, Bitboard occupied) { 
-   
-   extern Bitboard RookMasks[SQUARE_NB]; 
-   extern Bitboard RookMagics[SQUARE_NB]; 
-   extern unsigned RookShifts[SQUARE_NB]; 
-   extern Bitboard BishopMasks[SQUARE_NB]; 
-   extern Bitboard BishopMagics[SQUARE_NB]; 
-   extern unsigned BishopShifts[SQUARE_NB]; 
-   
-   Bitboard* const Masks  = Pt == ROOK ? RookMasks  : BishopMasks; 
-   Bitboard* const Magics = Pt == ROOK ? RookMagics : BishopMagics; 
-   unsigned* const Shifts = Pt == ROOK ? RookShifts : BishopShifts; 
-   
-   if (HasPext) 
-       return unsigned(pext(occupied, Masks[s])); 
-   
-   if (Is64Bit) 
-       return unsigned(((occupied & Masks[s]) * Magics[s]) >> Shifts[s]); 
-   
-   unsigned lo = unsigned(occupied) & unsigned(Masks[s]); 
-   unsigned hi = unsigned(occupied >> 32) & unsigned(Masks[s] >> 32); 
-   return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; 
- } 
-   
- template<PieceType Pt> 
- inline Bitboard attacks_bb(Square s, Bitboard occupied) { 
-   
-   extern Bitboard* RookAttacks[SQUARE_NB]; 
-   extern Bitboard* BishopAttacks[SQUARE_NB]; 
-   
-   return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index<Pt>(s, occupied)]; 
- } 
-   
- inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) { 
-   
-   switch (type_of(pc)) 
-   { 
-   case BISHOP: return attacks_bb<BISHOP>(s, occupied); 
-   case ROOK  : return attacks_bb<ROOK>(s, occupied); 
-   case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied); 
-   default    : return StepAttacksBB[pc][s]; 
-   } 
- } 
-   
-   
- /// popcount() counts the number of non-zero bits in a bitboard 
-   
- inline int popcount(Bitboard b) { 
-   
- #ifndef USE_POPCNT 
-   
-   extern uint8_t PopCnt16[1 << 16]; 
-   union { Bitboard bb; uint16_t u[4]; } v = { b }; 
-   return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; 
-   
- #elif defined(_MSC_VER) || defined(__INTEL_COMPILER) 
-   
-   return (int)_mm_popcnt_u64(b); 
-   
- #else // Assumed gcc or compatible compiler 
-   
-   return __builtin_popcountll(b); 
-   
- #endif 
- } 
-   
-   
- /// lsb() and msb() return the least/most significant bit in a non-zero bitboard 
-   
- #if defined(__GNUC__) 
-   
- inline Square lsb(Bitboard b) { 
-   assert(b); 
-   return Square(__builtin_ctzll(b)); 
- } 
-   
- inline Square msb(Bitboard b) { 
-   assert(b); 
-   return Square(63 - __builtin_clzll(b)); 
- } 
-   
- #elif defined(_WIN64) && defined(_MSC_VER) 
-   
- inline Square lsb(Bitboard b) { 
-   assert(b); 
-   unsigned long idx; 
-   _BitScanForward64(&idx, b); 
-   return (Square) idx; 
- } 
-   
- inline Square msb(Bitboard b) { 
-   assert(b); 
-   unsigned long idx; 
-   _BitScanReverse64(&idx, b); 
-   return (Square) idx; 
- } 
-   
- #else 
-   
- #define NO_BSF // Fallback on software implementation for other cases 
-   
- Square lsb(Bitboard b); 
- Square msb(Bitboard b); 
-   
- #endif 
-   
-   
- /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard 
-   
- inline Square pop_lsb(Bitboard* b) { 
-   const Square s = lsb(*b); 
-   *b &= *b - 1; 
-   return s; 
- } 
-   
-   
- /// frontmost_sq() and backmost_sq() return the square corresponding to the 
- /// most/least advanced bit relative to the given color. 
-   
- inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } 
- inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); } 
-   
- #endif // #ifndef BITBOARD_H_INCLUDED 
-