Subversion Repositories Games.Chess Giants

Rev

Rev 96 | Rev 169 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #ifndef BITBOARD_H_INCLUDED
  22. #define BITBOARD_H_INCLUDED
  23.  
  24. #include <string>
  25.  
  26. #include "types.h"
  27.  
  28. namespace Bitbases {
  29.  
  30. void init();
  31. bool probe(Square wksq, Square wpsq, Square bksq, Color us);
  32.  
  33. }
  34.  
  35. namespace Bitboards {
  36.  
  37. void init();
  38. const std::string pretty(Bitboard b);
  39.  
  40. }
  41.  
  42. const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
  43.  
  44. const Bitboard FileABB = 0x0101010101010101ULL;
  45. const Bitboard FileBBB = FileABB << 1;
  46. const Bitboard FileCBB = FileABB << 2;
  47. const Bitboard FileDBB = FileABB << 3;
  48. const Bitboard FileEBB = FileABB << 4;
  49. const Bitboard FileFBB = FileABB << 5;
  50. const Bitboard FileGBB = FileABB << 6;
  51. const Bitboard FileHBB = FileABB << 7;
  52.  
  53. const Bitboard Rank1BB = 0xFF;
  54. const Bitboard Rank2BB = Rank1BB << (8 * 1);
  55. const Bitboard Rank3BB = Rank1BB << (8 * 2);
  56. const Bitboard Rank4BB = Rank1BB << (8 * 3);
  57. const Bitboard Rank5BB = Rank1BB << (8 * 4);
  58. const Bitboard Rank6BB = Rank1BB << (8 * 5);
  59. const Bitboard Rank7BB = Rank1BB << (8 * 6);
  60. const Bitboard Rank8BB = Rank1BB << (8 * 7);
  61.  
  62. extern int SquareDistance[SQUARE_NB][SQUARE_NB];
  63.  
  64. extern Bitboard SquareBB[SQUARE_NB];
  65. extern Bitboard FileBB[FILE_NB];
  66. extern Bitboard RankBB[RANK_NB];
  67. extern Bitboard AdjacentFilesBB[FILE_NB];
  68. extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
  69. extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
  70. extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
  71. extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
  72. extern Bitboard DistanceRingBB[SQUARE_NB][8];
  73. extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
  74. extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
  75. extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
  76. extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
  77.  
  78.  
  79. /// Overloads of bitwise operators between a Bitboard and a Square for testing
  80. /// whether a given bit is set in a bitboard, and for setting and clearing bits.
  81.  
  82. inline Bitboard operator&(Bitboard b, Square s) {
  83.   return b & SquareBB[s];
  84. }
  85.  
  86. inline Bitboard operator|(Bitboard b, Square s) {
  87.   return b | SquareBB[s];
  88. }
  89.  
  90. inline Bitboard operator^(Bitboard b, Square s) {
  91.   return b ^ SquareBB[s];
  92. }
  93.  
  94. inline Bitboard& operator|=(Bitboard& b, Square s) {
  95.   return b |= SquareBB[s];
  96. }
  97.  
  98. inline Bitboard& operator^=(Bitboard& b, Square s) {
  99.   return b ^= SquareBB[s];
  100. }
  101.  
  102. inline bool more_than_one(Bitboard b) {
  103.   return b & (b - 1);
  104. }
  105.  
  106.  
  107. /// rank_bb() and file_bb() return a bitboard representing all the squares on
  108. /// the given file or rank.
  109.  
  110. inline Bitboard rank_bb(Rank r) {
  111.   return RankBB[r];
  112. }
  113.  
  114. inline Bitboard rank_bb(Square s) {
  115.   return RankBB[rank_of(s)];
  116. }
  117.  
  118. inline Bitboard file_bb(File f) {
  119.   return FileBB[f];
  120. }
  121.  
  122. inline Bitboard file_bb(Square s) {
  123.   return FileBB[file_of(s)];
  124. }
  125.  
  126.  
  127. /// shift() moves a bitboard one step along direction D. Mainly for pawns
  128.  
  129. template<Square D>
  130. inline Bitboard shift(Bitboard b) {
  131.   return  D == NORTH      ?  b             << 8 : D == SOUTH      ?  b             >> 8
  132.         : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7
  133.         : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
  134.         : 0;
  135. }
  136.  
  137.  
  138. /// adjacent_files_bb() returns a bitboard representing all the squares on the
  139. /// adjacent files of the given one.
  140.  
  141. inline Bitboard adjacent_files_bb(File f) {
  142.   return AdjacentFilesBB[f];
  143. }
  144.  
  145.  
  146. /// between_bb() returns a bitboard representing all the squares between the two
  147. /// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
  148. /// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
  149. /// or diagonal, 0 is returned.
  150.  
  151. inline Bitboard between_bb(Square s1, Square s2) {
  152.   return BetweenBB[s1][s2];
  153. }
  154.  
  155.  
  156. /// in_front_bb() returns a bitboard representing all the squares on all the ranks
  157. /// in front of the given one, from the point of view of the given color. For
  158. /// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
  159.  
  160. inline Bitboard in_front_bb(Color c, Rank r) {
  161.   return InFrontBB[c][r];
  162. }
  163.  
  164.  
  165. /// forward_bb() returns a bitboard representing all the squares along the line
  166. /// in front of the given one, from the point of view of the given color:
  167. ///        ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
  168.  
  169. inline Bitboard forward_bb(Color c, Square s) {
  170.   return ForwardBB[c][s];
  171. }
  172.  
  173.  
  174. /// pawn_attack_span() returns a bitboard representing all the squares that can be
  175. /// attacked by a pawn of the given color when it moves along its file, starting
  176. /// from the given square:
  177. ///       PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
  178.  
  179. inline Bitboard pawn_attack_span(Color c, Square s) {
  180.   return PawnAttackSpan[c][s];
  181. }
  182.  
  183.  
  184. /// passed_pawn_mask() returns a bitboard mask which can be used to test if a
  185. /// pawn of the given color and on the given square is a passed pawn:
  186. ///       PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
  187.  
  188. inline Bitboard passed_pawn_mask(Color c, Square s) {
  189.   return PassedPawnMask[c][s];
  190. }
  191.  
  192.  
  193. /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
  194. /// straight or on a diagonal line.
  195.  
  196. inline bool aligned(Square s1, Square s2, Square s3) {
  197.   return LineBB[s1][s2] & s3;
  198. }
  199.  
  200.  
  201. /// distance() functions return the distance between x and y, defined as the
  202. /// number of steps for a king in x to reach y. Works with squares, ranks, files.
  203.  
  204. template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
  205. template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
  206.  
  207. template<typename T1, typename T2> inline int distance(T2 x, T2 y);
  208. template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
  209. template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
  210.  
  211.  
  212. /// attacks_bb() returns a bitboard representing all the squares attacked by a
  213. /// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
  214. /// looks up the index using the 'magic bitboards' approach.
  215. template<PieceType Pt>
  216. inline unsigned magic_index(Square s, Bitboard occupied) {
  217.  
  218.   extern Bitboard RookMasks[SQUARE_NB];
  219.   extern Bitboard RookMagics[SQUARE_NB];
  220.   extern unsigned RookShifts[SQUARE_NB];
  221.   extern Bitboard BishopMasks[SQUARE_NB];
  222.   extern Bitboard BishopMagics[SQUARE_NB];
  223.   extern unsigned BishopShifts[SQUARE_NB];
  224.  
  225.   Bitboard* const Masks  = Pt == ROOK ? RookMasks  : BishopMasks;
  226.   Bitboard* const Magics = Pt == ROOK ? RookMagics : BishopMagics;
  227.   unsigned* const Shifts = Pt == ROOK ? RookShifts : BishopShifts;
  228.  
  229.   if (HasPext)
  230.       return unsigned(pext(occupied, Masks[s]));
  231.  
  232.   if (Is64Bit)
  233.       return unsigned(((occupied & Masks[s]) * Magics[s]) >> Shifts[s]);
  234.  
  235.   unsigned lo = unsigned(occupied) & unsigned(Masks[s]);
  236.   unsigned hi = unsigned(occupied >> 32) & unsigned(Masks[s] >> 32);
  237.   return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s];
  238. }
  239.  
  240. template<PieceType Pt>
  241. inline Bitboard attacks_bb(Square s, Bitboard occupied) {
  242.  
  243.   extern Bitboard* RookAttacks[SQUARE_NB];
  244.   extern Bitboard* BishopAttacks[SQUARE_NB];
  245.  
  246.   return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index<Pt>(s, occupied)];
  247. }
  248.  
  249. inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
  250.  
  251.   switch (type_of(pc))
  252.   {
  253.   case BISHOP: return attacks_bb<BISHOP>(s, occupied);
  254.   case ROOK  : return attacks_bb<ROOK>(s, occupied);
  255.   case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
  256.   default    : return StepAttacksBB[pc][s];
  257.   }
  258. }
  259.  
  260.  
  261. /// popcount() counts the number of non-zero bits in a bitboard
  262.  
  263. inline int popcount(Bitboard b) {
  264.  
  265. #ifndef USE_POPCNT
  266.  
  267.   extern uint8_t PopCnt16[1 << 16];
  268.   union { Bitboard bb; uint16_t u[4]; } v = { b };
  269.   return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
  270.  
  271. #elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
  272.  
  273.   return (int)_mm_popcnt_u64(b);
  274.  
  275. #else // Assumed gcc or compatible compiler
  276.  
  277.   return __builtin_popcountll(b);
  278.  
  279. #endif
  280. }
  281.  
  282.  
  283. /// lsb() and msb() return the least/most significant bit in a non-zero bitboard
  284.  
  285. #if defined(__GNUC__)
  286.  
  287. inline Square lsb(Bitboard b) {
  288.   assert(b);
  289.   return Square(__builtin_ctzll(b));
  290. }
  291.  
  292. inline Square msb(Bitboard b) {
  293.   assert(b);
  294.   return Square(63 - __builtin_clzll(b));
  295. }
  296.  
  297. #elif defined(_WIN64) && defined(_MSC_VER)
  298.  
  299. inline Square lsb(Bitboard b) {
  300.   assert(b);
  301.   unsigned long idx;
  302.   _BitScanForward64(&idx, b);
  303.   return (Square) idx;
  304. }
  305.  
  306. inline Square msb(Bitboard b) {
  307.   assert(b);
  308.   unsigned long idx;
  309.   _BitScanReverse64(&idx, b);
  310.   return (Square) idx;
  311. }
  312.  
  313. #else
  314.  
  315. #define NO_BSF // Fallback on software implementation for other cases
  316.  
  317. Square lsb(Bitboard b);
  318. Square msb(Bitboard b);
  319.  
  320. #endif
  321.  
  322.  
  323. /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
  324.  
  325. inline Square pop_lsb(Bitboard* b) {
  326.   const Square s = lsb(*b);
  327.   *b &= *b - 1;
  328.   return s;
  329. }
  330.  
  331.  
  332. /// frontmost_sq() and backmost_sq() return the square corresponding to the
  333. /// most/least advanced bit relative to the given color.
  334.  
  335. inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
  336. inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
  337.  
  338. #endif // #ifndef BITBOARD_H_INCLUDED
  339.