Subversion Repositories Games.Chess Giants

Rev

Rev 169 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm>
  22.  
  23. #include "bitboard.h"
  24. #include "misc.h"
  25.  
  26. uint8_t PopCnt16[1 << 16];
  27. int SquareDistance[SQUARE_NB][SQUARE_NB];
  28.  
  29. Bitboard SquareBB[SQUARE_NB];
  30. Bitboard FileBB[FILE_NB];
  31. Bitboard RankBB[RANK_NB];
  32. Bitboard AdjacentFilesBB[FILE_NB];
  33. Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
  34. Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
  35. Bitboard LineBB[SQUARE_NB][SQUARE_NB];
  36. Bitboard DistanceRingBB[SQUARE_NB][8];
  37. Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
  38. Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
  39. Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
  40. Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
  41. Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
  42.  
  43. Magic RookMagics[SQUARE_NB];
  44. Magic BishopMagics[SQUARE_NB];
  45.  
  46. namespace {
  47.  
  48.   Bitboard RookTable[0x19000];  // To store rook attacks
  49.   Bitboard BishopTable[0x1480]; // To store bishop attacks
  50.  
  51.   void init_magics(Bitboard table[], Magic magics[], Direction directions[]);
  52.  
  53.   // popcount16() counts the non-zero bits using SWAR-Popcount algorithm
  54.  
  55.   unsigned popcount16(unsigned u) {
  56.     u -= (u >> 1) & 0x5555U;
  57.     u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
  58.     u = ((u >> 4) + u) & 0x0F0FU;
  59.     return (u * 0x0101U) >> 8;
  60.   }
  61. }
  62.  
  63.  
  64. /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
  65. /// to be printed to standard output. Useful for debugging.
  66.  
  67. const std::string Bitboards::pretty(Bitboard b) {
  68.  
  69.   std::string s = "+---+---+---+---+---+---+---+---+\n";
  70.  
  71.   for (Rank r = RANK_8; r >= RANK_1; --r)
  72.   {
  73.       for (File f = FILE_A; f <= FILE_H; ++f)
  74.           s += b & make_square(f, r) ? "| X " : "|   ";
  75.  
  76.       s += "|\n+---+---+---+---+---+---+---+---+\n";
  77.   }
  78.  
  79.   return s;
  80. }
  81.  
  82.  
  83. /// Bitboards::init() initializes various bitboard tables. It is called at
  84. /// startup and relies on global objects to be already zero-initialized.
  85.  
  86. void Bitboards::init() {
  87.  
  88.   for (unsigned i = 0; i < (1 << 16); ++i)
  89.       PopCnt16[i] = (uint8_t) popcount16(i);
  90.  
  91.   for (Square s = SQ_A1; s <= SQ_H8; ++s)
  92.       SquareBB[s] = (1ULL << s);
  93.  
  94.   for (File f = FILE_A; f <= FILE_H; ++f)
  95.       FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
  96.  
  97.   for (Rank r = RANK_1; r <= RANK_8; ++r)
  98.       RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
  99.  
  100.   for (File f = FILE_A; f <= FILE_H; ++f)
  101.       AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
  102.  
  103.   for (Rank r = RANK_1; r < RANK_8; ++r)
  104.       ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
  105.  
  106.   for (Color c = WHITE; c <= BLACK; ++c)
  107.       for (Square s = SQ_A1; s <= SQ_H8; ++s)
  108.       {
  109.           ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
  110.           PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
  111.           PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
  112.       }
  113.  
  114.   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
  115.       for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
  116.           if (s1 != s2)
  117.           {
  118.               SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
  119.               DistanceRingBB[s1][SquareDistance[s1][s2]] |= s2;
  120.           }
  121.  
  122.   int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
  123.  
  124.   for (Color c = WHITE; c <= BLACK; ++c)
  125.       for (PieceType pt : { PAWN, KNIGHT, KING })
  126.           for (Square s = SQ_A1; s <= SQ_H8; ++s)
  127.               for (int i = 0; steps[pt][i]; ++i)
  128.               {
  129.                   Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]);
  130.  
  131.                   if (is_ok(to) && distance(s, to) < 3)
  132.                   {
  133.                       if (pt == PAWN)
  134.                           PawnAttacks[c][s] |= to;
  135.                       else
  136.                           PseudoAttacks[pt][s] |= to;
  137.                   }
  138.               }
  139.  
  140.   Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST };
  141.   Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
  142.  
  143.   init_magics(RookTable, RookMagics, RookDirections);
  144.   init_magics(BishopTable, BishopMagics, BishopDirections);
  145.  
  146.   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
  147.   {
  148.       PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
  149.       PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);
  150.  
  151.       for (PieceType pt : { BISHOP, ROOK })
  152.           for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
  153.           {
  154.               if (!(PseudoAttacks[pt][s1] & s2))
  155.                   continue;
  156.  
  157.               LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
  158.               BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
  159.           }
  160.   }
  161. }
  162.  
  163.  
  164. namespace {
  165.  
  166.   Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
  167.  
  168.     Bitboard attack = 0;
  169.  
  170.     for (int i = 0; i < 4; ++i)
  171.         for (Square s = sq + directions[i];
  172.              is_ok(s) && distance(s, s - directions[i]) == 1;
  173.              s += directions[i])
  174.         {
  175.             attack |= s;
  176.  
  177.             if (occupied & s)
  178.                 break;
  179.         }
  180.  
  181.     return attack;
  182.   }
  183.  
  184.  
  185.   // init_magics() computes all rook and bishop attacks at startup. Magic
  186.   // bitboards are used to look up attacks of sliding pieces. As a reference see
  187.   // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
  188.   // use the so called "fancy" approach.
  189.  
  190.   void init_magics(Bitboard table[], Magic magics[], Direction directions[]) {
  191.  
  192.     // Optimal PRNG seeds to pick the correct magics in the shortest time
  193.     int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
  194.                              {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };
  195.  
  196.     Bitboard occupancy[4096], reference[4096], edges, b;
  197.     int epoch[4096] = {}, cnt = 0, size = 0;
  198.  
  199.     for (Square s = SQ_A1; s <= SQ_H8; ++s)
  200.     {
  201.         // Board edges are not considered in the relevant occupancies
  202.         edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
  203.  
  204.         // Given a square 's', the mask is the bitboard of sliding attacks from
  205.         // 's' computed on an empty board. The index must be big enough to contain
  206.         // all the attacks for each possible subset of the mask and so is 2 power
  207.         // the number of 1s of the mask. Hence we deduce the size of the shift to
  208.         // apply to the 64 or 32 bits word to get the index.
  209.         Magic& m = magics[s];
  210.         m.mask  = sliding_attack(directions, s, 0) & ~edges;
  211.         m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
  212.  
  213.         // Set the offset for the attacks table of the square. We have individual
  214.         // table sizes for each square with "Fancy Magic Bitboards".
  215.         m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
  216.  
  217.         // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
  218.         // store the corresponding sliding attack bitboard in reference[].
  219.         b = size = 0;
  220.         do {
  221.             occupancy[size] = b;
  222.             reference[size] = sliding_attack(directions, s, b);
  223.  
  224.             if (HasPext)
  225.                 m.attacks[pext(b, m.mask)] = reference[size];
  226.  
  227.             size++;
  228.             b = (b - m.mask) & m.mask;
  229.         } while (b);
  230.  
  231.         if (HasPext)
  232.             continue;
  233.  
  234.         PRNG rng(seeds[Is64Bit][rank_of(s)]);
  235.  
  236.         // Find a magic for square 's' picking up an (almost) random number
  237.         // until we find the one that passes the verification test.
  238.         for (int i = 0; i < size; )
  239.         {
  240.             for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
  241.                 m.magic = rng.sparse_rand<Bitboard>();
  242.  
  243.             // A good magic must map every possible occupancy to an index that
  244.             // looks up the correct sliding attack in the attacks[s] database.
  245.             // Note that we build up the database for square 's' as a side
  246.             // effect of verifying the magic. Keep track of the attempt count
  247.             // and save it in epoch[], little speed-up trick to avoid resetting
  248.             // m.attacks[] after every failed attempt.
  249.             for (++cnt, i = 0; i < size; ++i)
  250.             {
  251.                 unsigned idx = m.index(occupancy[i]);
  252.  
  253.                 if (epoch[idx] < cnt)
  254.                 {
  255.                     epoch[idx] = cnt;
  256.                     m.attacks[idx] = reference[i];
  257.                 }
  258.                 else if (m.attacks[idx] != reference[i])
  259.                     break;
  260.             }
  261.         }
  262.     }
  263.   }
  264. }
  265.