- /* 
-   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 
-   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) 
-   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad 
-   Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad 
-   
-   Stockfish is free software: you can redistribute it and/or modify 
-   it under the terms of the GNU General Public License as published by 
-   the Free Software Foundation, either version 3 of the License, or 
-   (at your option) any later version. 
-   
-   Stockfish is distributed in the hope that it will be useful, 
-   but WITHOUT ANY WARRANTY; without even the implied warranty of 
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
-   GNU General Public License for more details. 
-   
-   You should have received a copy of the GNU General Public License 
-   along with this program.  If not, see <http://www.gnu.org/licenses/>. 
- */ 
-   
- #include <algorithm> 
-   
- #include "bitboard.h" 
- #include "misc.h" 
-   
- uint8_t PopCnt16[1 << 16]; 
- int SquareDistance[SQUARE_NB][SQUARE_NB]; 
-   
- Bitboard SquareBB[SQUARE_NB]; 
- Bitboard FileBB[FILE_NB]; 
- Bitboard RankBB[RANK_NB]; 
- Bitboard AdjacentFilesBB[FILE_NB]; 
- Bitboard ForwardRanksBB[COLOR_NB][RANK_NB]; 
- Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; 
- Bitboard LineBB[SQUARE_NB][SQUARE_NB]; 
- Bitboard DistanceRingBB[SQUARE_NB][8]; 
- Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB]; 
- Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; 
- Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; 
- Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; 
- Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; 
-   
- Magic RookMagics[SQUARE_NB]; 
- Magic BishopMagics[SQUARE_NB]; 
-   
- namespace { 
-   
-   // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan 
-   const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL; 
-   const uint32_t DeBruijn32 = 0x783A9B23; 
-   
-   int MSBTable[256];            // To implement software msb() 
-   Square BSFTable[SQUARE_NB];   // To implement software bitscan 
-   Bitboard RookTable[0x19000];  // To store rook attacks 
-   Bitboard BishopTable[0x1480]; // To store bishop attacks 
-   
-   void init_magics(Bitboard table[], Magic magics[], Direction directions[]); 
-   
-   // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses 
-   // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch. 
-   
-   unsigned bsf_index(Bitboard b) { 
-     b ^= b - 1; 
-     return Is64Bit ? (b * DeBruijn64) >> 58 
-                    : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26; 
-   } 
-   
-   
-   // popcount16() counts the non-zero bits using SWAR-Popcount algorithm 
-   
-   unsigned popcount16(unsigned u) { 
-     u -= (u >> 1) & 0x5555U; 
-     u = ((u >> 2) & 0x3333U) + (u & 0x3333U); 
-     u = ((u >> 4) + u) & 0x0F0FU; 
-     return (u * 0x0101U) >> 8; 
-   } 
- } 
-   
- #ifdef NO_BSF 
-   
- /// Software fall-back of lsb() and msb() for CPU lacking hardware support 
-   
- Square lsb(Bitboard b) { 
-   assert(b); 
-   return BSFTable[bsf_index(b)]; 
- } 
-   
- Square msb(Bitboard b) { 
-   
-   assert(b); 
-   unsigned b32; 
-   int result = 0; 
-   
-   if (b > 0xFFFFFFFF) 
-   { 
-       b >>= 32; 
-       result = 32; 
-   } 
-   
-   b32 = unsigned(b); 
-   
-   if (b32 > 0xFFFF) 
-   { 
-       b32 >>= 16; 
-       result += 16; 
-   } 
-   
-   if (b32 > 0xFF) 
-   { 
-       b32 >>= 8; 
-       result += 8; 
-   } 
-   
-   return Square(result + MSBTable[b32]); 
- } 
-   
- #endif // ifdef NO_BSF 
-   
-   
- /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable 
- /// to be printed to standard output. Useful for debugging. 
-   
- const std::string Bitboards::pretty(Bitboard b) { 
-   
-   std::string s = "+---+---+---+---+---+---+---+---+\n"; 
-   
-   for (Rank r = RANK_8; r >= RANK_1; --r) 
-   { 
-       for (File f = FILE_A; f <= FILE_H; ++f) 
-           s += b & make_square(f, r) ? "| X " : "|   "; 
-   
-       s += "|\n+---+---+---+---+---+---+---+---+\n"; 
-   } 
-   
-   return s; 
- } 
-   
-   
- /// Bitboards::init() initializes various bitboard tables. It is called at 
- /// startup and relies on global objects to be already zero-initialized. 
-   
- void Bitboards::init() { 
-   
-   for (unsigned i = 0; i < (1 << 16); ++i) 
-       PopCnt16[i] = (uint8_t) popcount16(i); 
-   
-   for (Square s = SQ_A1; s <= SQ_H8; ++s) 
-   { 
-       SquareBB[s] = 1ULL << s; 
-       BSFTable[bsf_index(SquareBB[s])] = s; 
-   } 
-   
-   for (Bitboard b = 2; b < 256; ++b) 
-       MSBTable[b] = MSBTable[b - 1] + !more_than_one(b); 
-   
-   for (File f = FILE_A; f <= FILE_H; ++f) 
-       FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB; 
-   
-   for (Rank r = RANK_1; r <= RANK_8; ++r) 
-       RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB; 
-   
-   for (File f = FILE_A; f <= FILE_H; ++f) 
-       AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); 
-   
-   for (Rank r = RANK_1; r < RANK_8; ++r) 
-       ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]); 
-   
-   for (Color c = WHITE; c <= BLACK; ++c) 
-       for (Square s = SQ_A1; s <= SQ_H8; ++s) 
-       { 
-           ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)]; 
-           PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; 
-           PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s]; 
-       } 
-   
-   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) 
-       for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) 
-           if (s1 != s2) 
-           { 
-               SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); 
-               DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2; 
-           } 
-   
-   int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; 
-   
-   for (Color c = WHITE; c <= BLACK; ++c) 
-       for (PieceType pt : { PAWN, KNIGHT, KING }) 
-           for (Square s = SQ_A1; s <= SQ_H8; ++s) 
-               for (int i = 0; steps[pt][i]; ++i) 
-               { 
-                   Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); 
-   
-                   if (is_ok(to) && distance(s, to) < 3) 
-                   { 
-                       if (pt == PAWN) 
-                           PawnAttacks[c][s] |= to; 
-                       else 
-                           PseudoAttacks[pt][s] |= to; 
-                   } 
-               } 
-   
-   Direction RookDirections[] = { NORTH,  EAST,  SOUTH,  WEST }; 
-   Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; 
-   
-   init_magics(RookTable, RookMagics, RookDirections); 
-   init_magics(BishopTable, BishopMagics, BishopDirections); 
-   
-   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) 
-   { 
-       PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); 
-       PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0); 
-   
-       for (PieceType pt : { BISHOP, ROOK }) 
-           for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) 
-           { 
-               if (!(PseudoAttacks[pt][s1] & s2)) 
-                   continue; 
-   
-               LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; 
-               BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]); 
-           } 
-   } 
- } 
-   
-   
- namespace { 
-   
-   Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { 
-   
-     Bitboard attack = 0; 
-   
-     for (int i = 0; i < 4; ++i) 
-         for (Square s = sq + directions[i]; 
-              is_ok(s) && distance(s, s - directions[i]) == 1; 
-              s += directions[i]) 
-         { 
-             attack |= s; 
-   
-             if (occupied & s) 
-                 break; 
-         } 
-   
-     return attack; 
-   } 
-   
-   
-   // init_magics() computes all rook and bishop attacks at startup. Magic 
-   // bitboards are used to look up attacks of sliding pieces. As a reference see 
-   // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we 
-   // use the so called "fancy" approach. 
-   
-   void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { 
-   
-     // Optimal PRNG seeds to pick the correct magics in the shortest time 
-     int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 }, 
-                              {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } }; 
-   
-     Bitboard occupancy[4096], reference[4096], edges, b; 
-     int epoch[4096] = {}, cnt = 0, size = 0; 
-   
-     for (Square s = SQ_A1; s <= SQ_H8; ++s) 
-     { 
-         // Board edges are not considered in the relevant occupancies 
-         edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); 
-   
-         // Given a square 's', the mask is the bitboard of sliding attacks from 
-         // 's' computed on an empty board. The index must be big enough to contain 
-         // all the attacks for each possible subset of the mask and so is 2 power 
-         // the number of 1s of the mask. Hence we deduce the size of the shift to 
-         // apply to the 64 or 32 bits word to get the index. 
-         Magic& m = magics[s]; 
-         m.mask  = sliding_attack(directions, s, 0) & ~edges; 
-         m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); 
-   
-         // Set the offset for the attacks table of the square. We have individual 
-         // table sizes for each square with "Fancy Magic Bitboards". 
-         m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; 
-   
-         // Use Carry-Rippler trick to enumerate all subsets of masks[s] and 
-         // store the corresponding sliding attack bitboard in reference[]. 
-         b = size = 0; 
-         do { 
-             occupancy[size] = b; 
-             reference[size] = sliding_attack(directions, s, b); 
-   
-             if (HasPext) 
-                 m.attacks[pext(b, m.mask)] = reference[size]; 
-   
-             size++; 
-             b = (b - m.mask) & m.mask; 
-         } while (b); 
-   
-         if (HasPext) 
-             continue; 
-   
-         PRNG rng(seeds[Is64Bit][rank_of(s)]); 
-   
-         // Find a magic for square 's' picking up an (almost) random number 
-         // until we find the one that passes the verification test. 
-         for (int i = 0; i < size; ) 
-         { 
-             for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) 
-                 m.magic = rng.sparse_rand<Bitboard>(); 
-   
-             // A good magic must map every possible occupancy to an index that 
-             // looks up the correct sliding attack in the attacks[s] database. 
-             // Note that we build up the database for square 's' as a side 
-             // effect of verifying the magic. Keep track of the attempt count 
-             // and save it in epoch[], little speed-up trick to avoid resetting 
-             // m.attacks[] after every failed attempt. 
-             for (++cnt, i = 0; i < size; ++i) 
-             { 
-                 unsigned idx = m.index(occupancy[i]); 
-   
-                 if (epoch[idx] < cnt) 
-                 { 
-                     epoch[idx] = cnt; 
-                     m.attacks[idx] = reference[i]; 
-                 } 
-                 else if (m.attacks[idx] != reference[i]) 
-                     break; 
-             } 
-         } 
-     } 
-   } 
- } 
-