Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm>
  22.  
  23. #include "bitboard.h"
  24. #include "misc.h"
  25.  
  26. uint8_t PopCnt16[1 << 16];
  27. int SquareDistance[SQUARE_NB][SQUARE_NB];
  28.  
  29. Bitboard SquareBB[SQUARE_NB];
  30. Bitboard FileBB[FILE_NB];
  31. Bitboard RankBB[RANK_NB];
  32. Bitboard AdjacentFilesBB[FILE_NB];
  33. Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
  34. Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
  35. Bitboard LineBB[SQUARE_NB][SQUARE_NB];
  36. Bitboard DistanceRingBB[SQUARE_NB][8];
  37. Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
  38. Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
  39. Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
  40. Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
  41. Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
  42.  
  43. Magic RookMagics[SQUARE_NB];
  44. Magic BishopMagics[SQUARE_NB];
  45.  
  46. namespace {
  47.  
  48.   // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
  49.   const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
  50.   const uint32_t DeBruijn32 = 0x783A9B23;
  51.  
  52.   int MSBTable[256];            // To implement software msb()
  53.   Square BSFTable[SQUARE_NB];   // To implement software bitscan
  54.   Bitboard RookTable[0x19000];  // To store rook attacks
  55.   Bitboard BishopTable[0x1480]; // To store bishop attacks
  56.  
  57.   void init_magics(Bitboard table[], Magic magics[], Direction directions[]);
  58.  
  59.   // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
  60.   // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
  61.  
  62.   unsigned bsf_index(Bitboard b) {
  63.     b ^= b - 1;
  64.     return Is64Bit ? (b * DeBruijn64) >> 58
  65.                    : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
  66.   }
  67.  
  68.  
  69.   // popcount16() counts the non-zero bits using SWAR-Popcount algorithm
  70.  
  71.   unsigned popcount16(unsigned u) {
  72.     u -= (u >> 1) & 0x5555U;
  73.     u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
  74.     u = ((u >> 4) + u) & 0x0F0FU;
  75.     return (u * 0x0101U) >> 8;
  76.   }
  77. }
  78.  
  79. #ifdef NO_BSF
  80.  
  81. /// Software fall-back of lsb() and msb() for CPU lacking hardware support
  82.  
  83. Square lsb(Bitboard b) {
  84.   assert(b);
  85.   return BSFTable[bsf_index(b)];
  86. }
  87.  
  88. Square msb(Bitboard b) {
  89.  
  90.   assert(b);
  91.   unsigned b32;
  92.   int result = 0;
  93.  
  94.   if (b > 0xFFFFFFFF)
  95.   {
  96.       b >>= 32;
  97.       result = 32;
  98.   }
  99.  
  100.   b32 = unsigned(b);
  101.  
  102.   if (b32 > 0xFFFF)
  103.   {
  104.       b32 >>= 16;
  105.       result += 16;
  106.   }
  107.  
  108.   if (b32 > 0xFF)
  109.   {
  110.       b32 >>= 8;
  111.       result += 8;
  112.   }
  113.  
  114.   return Square(result + MSBTable[b32]);
  115. }
  116.  
  117. #endif // ifdef NO_BSF
  118.  
  119.  
  120. /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
  121. /// to be printed to standard output. Useful for debugging.
  122.  
  123. const std::string Bitboards::pretty(Bitboard b) {
  124.  
  125.   std::string s = "+---+---+---+---+---+---+---+---+\n";
  126.  
  127.   for (Rank r = RANK_8; r >= RANK_1; --r)
  128.   {
  129.       for (File f = FILE_A; f <= FILE_H; ++f)
  130.           s += b & make_square(f, r) ? "| X " : "|   ";
  131.  
  132.       s += "|\n+---+---+---+---+---+---+---+---+\n";
  133.   }
  134.  
  135.   return s;
  136. }
  137.  
  138.  
  139. /// Bitboards::init() initializes various bitboard tables. It is called at
  140. /// startup and relies on global objects to be already zero-initialized.
  141.  
  142. void Bitboards::init() {
  143.  
  144.   for (unsigned i = 0; i < (1 << 16); ++i)
  145.       PopCnt16[i] = (uint8_t) popcount16(i);
  146.  
  147.   for (Square s = SQ_A1; s <= SQ_H8; ++s)
  148.   {
  149.       SquareBB[s] = 1ULL << s;
  150.       BSFTable[bsf_index(SquareBB[s])] = s;
  151.   }
  152.  
  153.   for (Bitboard b = 2; b < 256; ++b)
  154.       MSBTable[b] = MSBTable[b - 1] + !more_than_one(b);
  155.  
  156.   for (File f = FILE_A; f <= FILE_H; ++f)
  157.       FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
  158.  
  159.   for (Rank r = RANK_1; r <= RANK_8; ++r)
  160.       RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
  161.  
  162.   for (File f = FILE_A; f <= FILE_H; ++f)
  163.       AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
  164.  
  165.   for (Rank r = RANK_1; r < RANK_8; ++r)
  166.       ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
  167.  
  168.   for (Color c = WHITE; c <= BLACK; ++c)
  169.       for (Square s = SQ_A1; s <= SQ_H8; ++s)
  170.       {
  171.           ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
  172.           PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
  173.           PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
  174.       }
  175.  
  176.   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
  177.       for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
  178.           if (s1 != s2)
  179.           {
  180.               SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
  181.               DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
  182.           }
  183.  
  184.   int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
  185.  
  186.   for (Color c = WHITE; c <= BLACK; ++c)
  187.       for (PieceType pt : { PAWN, KNIGHT, KING })
  188.           for (Square s = SQ_A1; s <= SQ_H8; ++s)
  189.               for (int i = 0; steps[pt][i]; ++i)
  190.               {
  191.                   Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]);
  192.  
  193.                   if (is_ok(to) && distance(s, to) < 3)
  194.                   {
  195.                       if (pt == PAWN)
  196.                           PawnAttacks[c][s] |= to;
  197.                       else
  198.                           PseudoAttacks[pt][s] |= to;
  199.                   }
  200.               }
  201.  
  202.   Direction RookDirections[] = { NORTH,  EAST,  SOUTH,  WEST };
  203.   Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
  204.  
  205.   init_magics(RookTable, RookMagics, RookDirections);
  206.   init_magics(BishopTable, BishopMagics, BishopDirections);
  207.  
  208.   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
  209.   {
  210.       PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
  211.       PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);
  212.  
  213.       for (PieceType pt : { BISHOP, ROOK })
  214.           for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
  215.           {
  216.               if (!(PseudoAttacks[pt][s1] & s2))
  217.                   continue;
  218.  
  219.               LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
  220.               BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
  221.           }
  222.   }
  223. }
  224.  
  225.  
  226. namespace {
  227.  
  228.   Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
  229.  
  230.     Bitboard attack = 0;
  231.  
  232.     for (int i = 0; i < 4; ++i)
  233.         for (Square s = sq + directions[i];
  234.              is_ok(s) && distance(s, s - directions[i]) == 1;
  235.              s += directions[i])
  236.         {
  237.             attack |= s;
  238.  
  239.             if (occupied & s)
  240.                 break;
  241.         }
  242.  
  243.     return attack;
  244.   }
  245.  
  246.  
  247.   // init_magics() computes all rook and bishop attacks at startup. Magic
  248.   // bitboards are used to look up attacks of sliding pieces. As a reference see
  249.   // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
  250.   // use the so called "fancy" approach.
  251.  
  252.   void init_magics(Bitboard table[], Magic magics[], Direction directions[]) {
  253.  
  254.     // Optimal PRNG seeds to pick the correct magics in the shortest time
  255.     int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
  256.                              {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };
  257.  
  258.     Bitboard occupancy[4096], reference[4096], edges, b;
  259.     int epoch[4096] = {}, cnt = 0, size = 0;
  260.  
  261.     for (Square s = SQ_A1; s <= SQ_H8; ++s)
  262.     {
  263.         // Board edges are not considered in the relevant occupancies
  264.         edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
  265.  
  266.         // Given a square 's', the mask is the bitboard of sliding attacks from
  267.         // 's' computed on an empty board. The index must be big enough to contain
  268.         // all the attacks for each possible subset of the mask and so is 2 power
  269.         // the number of 1s of the mask. Hence we deduce the size of the shift to
  270.         // apply to the 64 or 32 bits word to get the index.
  271.         Magic& m = magics[s];
  272.         m.mask  = sliding_attack(directions, s, 0) & ~edges;
  273.         m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
  274.  
  275.         // Set the offset for the attacks table of the square. We have individual
  276.         // table sizes for each square with "Fancy Magic Bitboards".
  277.         m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
  278.  
  279.         // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
  280.         // store the corresponding sliding attack bitboard in reference[].
  281.         b = size = 0;
  282.         do {
  283.             occupancy[size] = b;
  284.             reference[size] = sliding_attack(directions, s, b);
  285.  
  286.             if (HasPext)
  287.                 m.attacks[pext(b, m.mask)] = reference[size];
  288.  
  289.             size++;
  290.             b = (b - m.mask) & m.mask;
  291.         } while (b);
  292.  
  293.         if (HasPext)
  294.             continue;
  295.  
  296.         PRNG rng(seeds[Is64Bit][rank_of(s)]);
  297.  
  298.         // Find a magic for square 's' picking up an (almost) random number
  299.         // until we find the one that passes the verification test.
  300.         for (int i = 0; i < size; )
  301.         {
  302.             for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
  303.                 m.magic = rng.sparse_rand<Bitboard>();
  304.  
  305.             // A good magic must map every possible occupancy to an index that
  306.             // looks up the correct sliding attack in the attacks[s] database.
  307.             // Note that we build up the database for square 's' as a side
  308.             // effect of verifying the magic. Keep track of the attempt count
  309.             // and save it in epoch[], little speed-up trick to avoid resetting
  310.             // m.attacks[] after every failed attempt.
  311.             for (++cnt, i = 0; i < size; ++i)
  312.             {
  313.                 unsigned idx = m.index(occupancy[i]);
  314.  
  315.                 if (epoch[idx] < cnt)
  316.                 {
  317.                     epoch[idx] = cnt;
  318.                     m.attacks[idx] = reference[i];
  319.                 }
  320.                 else if (m.attacks[idx] != reference[i])
  321.                     break;
  322.             }
  323.         }
  324.     }
  325.   }
  326. }
  327.