Subversion Repositories Games.Chess Giants

Rev

Rev 96 | Rev 169 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  3.   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
  4.   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
  5.   Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
  6.  
  7.   Stockfish is free software: you can redistribute it and/or modify
  8.   it under the terms of the GNU General Public License as published by
  9.   the Free Software Foundation, either version 3 of the License, or
  10.   (at your option) any later version.
  11.  
  12.   Stockfish is distributed in the hope that it will be useful,
  13.   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15.   GNU General Public License for more details.
  16.  
  17.   You should have received a copy of the GNU General Public License
  18.   along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19. */
  20.  
  21. #include <algorithm>
  22.  
  23. #include "bitboard.h"
  24. #include "misc.h"
  25.  
  26. uint8_t PopCnt16[1 << 16];
  27. int SquareDistance[SQUARE_NB][SQUARE_NB];
  28.  
  29. Bitboard  RookMasks  [SQUARE_NB];
  30. Bitboard  RookMagics [SQUARE_NB];
  31. Bitboard* RookAttacks[SQUARE_NB];
  32. unsigned  RookShifts [SQUARE_NB];
  33.  
  34. Bitboard  BishopMasks  [SQUARE_NB];
  35. Bitboard  BishopMagics [SQUARE_NB];
  36. Bitboard* BishopAttacks[SQUARE_NB];
  37. unsigned  BishopShifts [SQUARE_NB];
  38.  
  39. Bitboard SquareBB[SQUARE_NB];
  40. Bitboard FileBB[FILE_NB];
  41. Bitboard RankBB[RANK_NB];
  42. Bitboard AdjacentFilesBB[FILE_NB];
  43. Bitboard InFrontBB[COLOR_NB][RANK_NB];
  44. Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
  45. Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
  46. Bitboard LineBB[SQUARE_NB][SQUARE_NB];
  47. Bitboard DistanceRingBB[SQUARE_NB][8];
  48. Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
  49. Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
  50. Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
  51. Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
  52.  
  53. namespace {
  54.  
  55.   // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
  56.   const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
  57.   const uint32_t DeBruijn32 = 0x783A9B23;
  58.  
  59.   int MSBTable[256];            // To implement software msb()
  60.   Square BSFTable[SQUARE_NB];   // To implement software bitscan
  61.   Bitboard RookTable[0x19000];  // To store rook attacks
  62.   Bitboard BishopTable[0x1480]; // To store bishop attacks
  63.  
  64.   typedef unsigned (Fn)(Square, Bitboard);
  65.  
  66.   void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
  67.                    Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
  68.  
  69.   // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
  70.   // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
  71.  
  72.   unsigned bsf_index(Bitboard b) {
  73.     b ^= b - 1;
  74.     return Is64Bit ? (b * DeBruijn64) >> 58
  75.                    : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
  76.   }
  77.  
  78.  
  79.   // popcount16() counts the non-zero bits using SWAR-Popcount algorithm
  80.  
  81.   unsigned popcount16(unsigned u) {
  82.     u -= (u >> 1) & 0x5555U;
  83.     u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
  84.     u = ((u >> 4) + u) & 0x0F0FU;
  85.     return (u * 0x0101U) >> 8;
  86.   }
  87. }
  88.  
  89. #ifdef NO_BSF
  90.  
  91. /// Software fall-back of lsb() and msb() for CPU lacking hardware support
  92.  
  93. Square lsb(Bitboard b) {
  94.   assert(b);
  95.   return BSFTable[bsf_index(b)];
  96. }
  97.  
  98. Square msb(Bitboard b) {
  99.  
  100.   assert(b);
  101.   unsigned b32;
  102.   int result = 0;
  103.  
  104.   if (b > 0xFFFFFFFF)
  105.   {
  106.       b >>= 32;
  107.       result = 32;
  108.   }
  109.  
  110.   b32 = unsigned(b);
  111.  
  112.   if (b32 > 0xFFFF)
  113.   {
  114.       b32 >>= 16;
  115.       result += 16;
  116.   }
  117.  
  118.   if (b32 > 0xFF)
  119.   {
  120.       b32 >>= 8;
  121.       result += 8;
  122.   }
  123.  
  124.   return Square(result + MSBTable[b32]);
  125. }
  126.  
  127. #endif // ifdef NO_BSF
  128.  
  129.  
  130. /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
  131. /// to be printed to standard output. Useful for debugging.
  132.  
  133. const std::string Bitboards::pretty(Bitboard b) {
  134.  
  135.   std::string s = "+---+---+---+---+---+---+---+---+\n";
  136.  
  137.   for (Rank r = RANK_8; r >= RANK_1; --r)
  138.   {
  139.       for (File f = FILE_A; f <= FILE_H; ++f)
  140.           s += b & make_square(f, r) ? "| X " : "|   ";
  141.  
  142.       s += "|\n+---+---+---+---+---+---+---+---+\n";
  143.   }
  144.  
  145.   return s;
  146. }
  147.  
  148.  
  149. /// Bitboards::init() initializes various bitboard tables. It is called at
  150. /// startup and relies on global objects to be already zero-initialized.
  151.  
  152. void Bitboards::init() {
  153.  
  154.   for (unsigned i = 0; i < (1 << 16); ++i)
  155.       PopCnt16[i] = (uint8_t) popcount16(i);
  156.  
  157.   for (Square s = SQ_A1; s <= SQ_H8; ++s)
  158.   {
  159.       SquareBB[s] = 1ULL << s;
  160.       BSFTable[bsf_index(SquareBB[s])] = s;
  161.   }
  162.  
  163.   for (Bitboard b = 2; b < 256; ++b)
  164.       MSBTable[b] = MSBTable[b - 1] + !more_than_one(b);
  165.  
  166.   for (File f = FILE_A; f <= FILE_H; ++f)
  167.       FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
  168.  
  169.   for (Rank r = RANK_1; r <= RANK_8; ++r)
  170.       RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
  171.  
  172.   for (File f = FILE_A; f <= FILE_H; ++f)
  173.       AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
  174.  
  175.   for (Rank r = RANK_1; r < RANK_8; ++r)
  176.       InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]);
  177.  
  178.   for (Color c = WHITE; c <= BLACK; ++c)
  179.       for (Square s = SQ_A1; s <= SQ_H8; ++s)
  180.       {
  181.           ForwardBB[c][s]      = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)];
  182.           PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
  183.           PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s];
  184.       }
  185.  
  186.   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
  187.       for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
  188.           if (s1 != s2)
  189.           {
  190.               SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
  191.               DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
  192.           }
  193.  
  194.   int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
  195.                      {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
  196.  
  197.   for (Color c = WHITE; c <= BLACK; ++c)
  198.       for (PieceType pt = PAWN; pt <= KING; ++pt)
  199.           for (Square s = SQ_A1; s <= SQ_H8; ++s)
  200.               for (int i = 0; steps[pt][i]; ++i)
  201.               {
  202.                   Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]);
  203.  
  204.                   if (is_ok(to) && distance(s, to) < 3)
  205.                       StepAttacksBB[make_piece(c, pt)][s] |= to;
  206.               }
  207.  
  208.   Square RookDeltas[] = { NORTH,  EAST,  SOUTH,  WEST  };
  209.   Square BishopDeltas[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
  210.  
  211.   init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
  212.   init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
  213.  
  214.   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
  215.   {
  216.       PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
  217.       PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);
  218.  
  219.       for (Piece pc = W_BISHOP; pc <= W_ROOK; ++pc)
  220.           for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
  221.           {
  222.               if (!(PseudoAttacks[pc][s1] & s2))
  223.                   continue;
  224.  
  225.               LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2;
  226.               BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]);
  227.           }
  228.   }
  229. }
  230.  
  231.  
  232. namespace {
  233.  
  234.   Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
  235.  
  236.     Bitboard attack = 0;
  237.  
  238.     for (int i = 0; i < 4; ++i)
  239.         for (Square s = sq + deltas[i];
  240.              is_ok(s) && distance(s, s - deltas[i]) == 1;
  241.              s += deltas[i])
  242.         {
  243.             attack |= s;
  244.  
  245.             if (occupied & s)
  246.                 break;
  247.         }
  248.  
  249.     return attack;
  250.   }
  251.  
  252.  
  253.   // init_magics() computes all rook and bishop attacks at startup. Magic
  254.   // bitboards are used to look up attacks of sliding pieces. As a reference see
  255.   // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
  256.   // use the so called "fancy" approach.
  257.  
  258.   void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
  259.                    Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
  260.  
  261.     int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
  262.                              {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };
  263.  
  264.     Bitboard occupancy[4096], reference[4096], edges, b;
  265.     int age[4096] = {0}, current = 0, i, size;
  266.  
  267.     // attacks[s] is a pointer to the beginning of the attacks table for square 's'
  268.     attacks[SQ_A1] = table;
  269.  
  270.     for (Square s = SQ_A1; s <= SQ_H8; ++s)
  271.     {
  272.         // Board edges are not considered in the relevant occupancies
  273.         edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
  274.  
  275.         // Given a square 's', the mask is the bitboard of sliding attacks from
  276.         // 's' computed on an empty board. The index must be big enough to contain
  277.         // all the attacks for each possible subset of the mask and so is 2 power
  278.         // the number of 1s of the mask. Hence we deduce the size of the shift to
  279.         // apply to the 64 or 32 bits word to get the index.
  280.         masks[s]  = sliding_attack(deltas, s, 0) & ~edges;
  281.         shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]);
  282.  
  283.         // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
  284.         // store the corresponding sliding attack bitboard in reference[].
  285.         b = size = 0;
  286.         do {
  287.             occupancy[size] = b;
  288.             reference[size] = sliding_attack(deltas, s, b);
  289.  
  290.             if (HasPext)
  291.                 attacks[s][pext(b, masks[s])] = reference[size];
  292.  
  293.             size++;
  294.             b = (b - masks[s]) & masks[s];
  295.         } while (b);
  296.  
  297.         // Set the offset for the table of the next square. We have individual
  298.         // table sizes for each square with "Fancy Magic Bitboards".
  299.         if (s < SQ_H8)
  300.             attacks[s + 1] = attacks[s] + size;
  301.  
  302.         if (HasPext)
  303.             continue;
  304.  
  305.         PRNG rng(seeds[Is64Bit][rank_of(s)]);
  306.  
  307.         // Find a magic for square 's' picking up an (almost) random number
  308.         // until we find the one that passes the verification test.
  309.         do {
  310.             do
  311.                 magics[s] = rng.sparse_rand<Bitboard>();
  312.             while (popcount((magics[s] * masks[s]) >> 56) < 6);
  313.  
  314.             // A good magic must map every possible occupancy to an index that
  315.             // looks up the correct sliding attack in the attacks[s] database.
  316.             // Note that we build up the database for square 's' as a side
  317.             // effect of verifying the magic.
  318.             for (++current, i = 0; i < size; ++i)
  319.             {
  320.                 unsigned idx = index(s, occupancy[i]);
  321.  
  322.                 if (age[idx] < current)
  323.                 {
  324.                     age[idx] = current;
  325.                     attacks[s][idx] = reference[i];
  326.                 }
  327.                 else if (attacks[s][idx] != reference[i])
  328.                     break;
  329.             }
  330.         } while (i < size);
  331.     }
  332.   }
  333. }
  334.