#include <math.h>
#include "chess.h"
#include "data.h"
/* last modified 02/23/14 */
/*
*******************************************************************************
* *
* TimeAdjust() is called to adjust timing variables after each program move *
* is made. It simply increments the number of moves made, decrements the *
* amount of time used, and then makes any necessary adjustments based on *
* the time controls. *
* *
*******************************************************************************
*/
void TimeAdjust(int time_used, int side) {
/*
************************************************************
* *
* Decrement the number of moves remaining to the next *
* time control. Then subtract the time the program took *
* to choose its move from the time remaining. *
* *
************************************************************
*/
tc_moves_remaining[side]--;
tc_time_remaining[side] -=
(tc_time_remaining[side] >
time_used) ? time_used : tc_time_remaining[side];
if (!tc_moves_remaining[side]) {
if (tc_sudden_death == 2)
tc_sudden_death = 1;
tc_moves_remaining[side] += tc_secondary_moves;
tc_time_remaining[side] += tc_secondary_time;
Print(4095, "time control reached (%s)\n", (side) ? "white" : "black");
}
if (tc_increment)
tc_time_remaining[side] += tc_increment;
}
/* last modified 02/23/14 */
/*
*******************************************************************************
* *
* TimeCheck() is used to determine when the search should stop. It uses *
* several conditions to make this determination: (1) The search time has *
* exceeded the time per move limit; (2) The value at the root of the tree *
* has not dropped too low. *
* *
* We use one additional trick here to avoid stopping the search just before *
* we change to a better move. We simply do our best to complete the *
* iteration which means we have searched every move to this same depth. *
* *
* This is implemented by having Search() call TimeCheck() passing it a *
* value of one (1) for the parameter busy. TimeCheck() will only end the *
* search if we have exceeded the max time limit. Otherwise, we continue. *
* Iterate() calls TimeCheck() passing it a value of "0" for busy, which *
* simply says "now, if we have used the target time limit (which can be *
* modified by the "difficulty value), we will stop and not try another *
* iteration." *
* *
* The "difficulty" value is used to implement the concept of an "easy move" *
* or a "hard move". With an easy move, we want to spend less time since *
* the easy move is obvious. The opposite idea is a hard move, where we *
* actually want to spend more time to be sure we don't make a mistake by` *
* moving too quickly. *
* *
* The basic methodology revolves around how many times we change our mind *
* on the best move at the root of the tree. *
* *
* The "difficulty" variable is initially set to 100, which represents a *
* percentage of the actual target time we should spend on this move. If *
* we end an iteration without having changed our mind at all, difficulty *
* is reduced by multiplying by .9, with a lower bound of 60%. *
* *
* If we change our mind during an iteration, there are two cases. (1) If *
* difficulty is < 100%, we set it back to 100% +20% for each time we *
* changed the best move. (2) if difficulty is already at 100% or higher, *
* we multiply difficulty by .80, then add 20% for each root move change. *
* For example, suppose we are at difficulty=60%, and we suddenly change our *
* mind twice this iteration (3 different best moves). *
* *
* difficulty = 100 + 3*20 = 160% of the actual target time will be used. *
* *
* Suppose we change back and forth between two best moves multiple times, *
* with difficulty currently at 100%. The first time: *
* *
* difficulty = .80 * 100 + 2*20 = 120% *
* *
* The next iteration: *
* *
* difficulty = .80 * 120 + 2 * 20 = 96% _ 40% = 136% *
* *
* The next iteration: *
* *
* difficulty = .80 * 136% + 40% = 149% *
* *
* If we stop changing our mind, then difficulty starts on a downward trend. *
* The basic idea is that if we are locked in on a move, we can make it a *
* bit quicker, but if we are changing back and forth, we are going to spend *
* more time to try to choose the best move. *
* *
*******************************************************************************
*/
int TimeCheck(TREE * RESTRICT tree, int busy) {
int time_used;
int i, ndone;
/*
************************************************************
* *
* Check to see if we need to "burp" the time to let the *
* operator know the search is progressing and how much *
* time has been used so far. *
* *
************************************************************
*/
time_used = (ReadClock() - start_time);
if (tree->nodes_searched > noise_level && display_options & 32 &&
time_used > burp) {
Lock(lock_io);
if (pondering)
printf(" %2i %s%7s? ", iteration_depth
,
Display2Times(time_used), tree->remaining_moves_text);
else
printf(" %2i %s%7s* ", iteration_depth
,
Display2Times(time_used), tree->remaining_moves_text);
if (display_options & 32 && display_options & 64)
if ((display_options & 32) && (display_options & 64) && Flip(root_wtm))
printf("%s(%snps) \r", tree
->root_move_text
,
DisplayKMB(nodes_per_second));
burp = (time_used / 1500) * 1500 + 1500;
Unlock(lock_io);
}
/*
************************************************************
* *
* First, check to see if there is only one root move. If *
* so, and we are not pondering, searching a book move or *
* or annotating a game, we can return and make this move *
* instantly. We do need to finish iteration 1 so that we *
* actually back up a move to play. *
* *
************************************************************
*/
if (n_root_moves == 1 && !booking && !annotate_mode && !pondering &&
iteration_depth > 1)
return 1;
if (iteration_depth <= 2)
return 0;
/*
************************************************************
* *
* If we are pondering or in analyze mode, we do not *
* terminate on time since there is no time limit placed *
* on these searches. If we have reached the absolute *
* time limit, we stop the search instantly. *
* *
************************************************************
*/
if (pondering || analyze_mode)
return 0;
if (time_used > absolute_time_limit)
return 1;
/*
************************************************************
* *
* If the operator has specified a specific time limit, we *
* stop when we hit that regardless of any other tests *
* used during normal timeing. *
* *
************************************************************
*/
if (search_time_limit) {
if (time_used < time_limit)
return 0;
else
return 1;
}
/*
************************************************************
* *
* If we are under the time limit already set, we do not *
* terminate the search. Once we reach that limit, we *
* abort the search if we are fixing to start another *
* iteration, otherwise we keep searching to try to *
* complete the current iteration. *
* *
************************************************************
*/
if (time_used < (difficulty * time_limit) / 100)
return 0;
if (!busy)
return 1;
/*
************************************************************
* *
* We have reached the target time limit. If we are in *
* the middle of an iteration, we keep going unless we are *
* stuck on the first move, where there is no benefit to *
* continuing and this will just burn clock time away. *
* *
* This is a bit tricky, because if we are on the first *
* move AND we have failed low, we want to continue the *
* search to find something better, if we have not failed *
* low, we will abort the search in the test that follows *
* this one. *
* *
************************************************************
*/
ndone = 0;
for (i = 0; i < n_root_moves; i++)
if (root_moves[i].status & 8)
ndone++;
if (ndone == 1 && !(root_moves[0].status & 1))
return 1;
/*
************************************************************
* *
* We are in the middle of an iteration, we have used the *
* allocated time limit, but we have more moves left to *
* search. We forge on until we complete the iteration *
* which will terminate the search, or until we reach the *
* "absolute_time_limit" where we terminate the search no *
* matter what is going on. *
* *
************************************************************
*/
if (time_used + 300 > tc_time_remaining[root_wtm])
return 1;
return 0;
}
/* last modified 02/23/14 */
/*
*******************************************************************************
* *
* TimeSet() is called to set the two variables "time_limit" and *
* "absolute_time_limit" which controls the amount of time taken by the *
* iterated search. It simply takes the timing controls as set by the user *
* and uses these values to calculate how much time should be spent on the *
* next search. *
* *
*******************************************************************************
*/
void TimeSet(int search_type) {
int mult = 0, extra = 0;
int surplus, average;
int simple_average;
surplus = 0;
average = 0;
/*
************************************************************
* *
* Check to see if we are in a sudden-death type of time *
* control. If so, we have a fixed amount of time *
* remaining. Set the search time accordingly and exit. *
* *
* If we have less than 5 seconds on the clock prior to *
* the increment, then limit our search to the increment. *
* *
* If we have less than 2.5 seconds on the clock prior to *
* the increment, then limit our search to half the *
* increment in an attempt to add some time to our buffer. *
* *
* Set our MAX search time to half the remaining time. *
* *
* If our search time will drop the clock below 1 second, *
* then limit our MAX search time to the normal search *
* time. This is done to stop any extensions from *
* dropping us too low. *
* *
************************************************************
*/
if (tc_sudden_death == 1) {
if (tc_increment) {
time_limit =
(tc_time_remaining[root_wtm] -
tc_operator_time * tc_moves_remaining[root_wtm]) /
(ponder ? 20 : 26) + tc_increment;
if (tc_time_remaining[root_wtm] < 500 + tc_increment) {
time_limit = tc_increment;
if (tc_time_remaining[root_wtm] < 250 + tc_increment)
time_limit /= 2;
}
absolute_time_limit = tc_time_remaining[root_wtm] / 2 + tc_increment;
if (absolute_time_limit < time_limit ||
tc_time_remaining[root_wtm] - time_limit < 100)
absolute_time_limit = time_limit;
if (tc_time_remaining[root_wtm] - time_limit < 50) {
time_limit = tc_time_remaining[root_wtm] - 50;
if (time_limit < 5)
time_limit = 5;
}
if (tc_time_remaining[root_wtm] - absolute_time_limit < 25) {
absolute_time_limit = tc_time_remaining[root_wtm] - 25;
if (absolute_time_limit < 5)
absolute_time_limit = 5;
}
} else {
time_limit = tc_time_remaining[root_wtm] / (ponder ? 20 : 26);
absolute_time_limit =
Min(time_limit * 5, tc_time_remaining[root_wtm] / 2);
}
}
/*
************************************************************
* *
* We are not in a sudden_death situation. We now have *
* two choices: If the program has saved enough time to *
* meet the surplus requirement, then we simply divide *
* the time left evenly among the moves left. If we *
* haven't yet saved up a cushion so that "fail-lows" *
* have extra time to find a solution, we simply take the *
* number of moves divided into the total time less the *
* necessary operator time as the target. *
* *
************************************************************
*/
else {
if (move_number <= tc_moves)
simple_average =
(tc_time -
(tc_operator_time * tc_moves_remaining[root_wtm])) / tc_moves;
else
simple_average =
(tc_secondary_time -
(tc_operator_time * tc_moves_remaining[root_wtm])) /
tc_secondary_moves;
surplus =
Max(tc_time_remaining[root_wtm] -
(tc_operator_time * tc_moves_remaining[root_wtm]) -
simple_average * tc_moves_remaining[root_wtm], 0);
average =
(tc_time_remaining[root_wtm] -
(tc_operator_time * tc_moves_remaining[root_wtm]) +
tc_moves_remaining[root_wtm] * tc_increment)
/ tc_moves_remaining[root_wtm];
if (surplus < tc_safety_margin)
time_limit = (average < simple_average) ? average : simple_average;
else
time_limit =
(average < 2/*.0*/ * simple_average) ? average : 2/*.0*/ * simple_average; // Pierre-Marie Baty -- this is integer math
}
if (surplus < 0)
surplus = 0;
if (tc_increment > 200 && moves_out_of_book < 2)
/*time_limit *= 1.2;*/ time_limit = (time_limit * 12) / 10; // Pierre-Marie Baty -- this is integer math
if (time_limit <= 0)
time_limit = 5;
absolute_time_limit =
time_limit + surplus / 2 + ((tc_time_remaining[root_wtm] -
tc_operator_time * tc_moves_remaining[root_wtm]) / 4);
if (absolute_time_limit > 6 * time_limit)
absolute_time_limit = 6 * time_limit;
if (absolute_time_limit > tc_time_remaining[root_wtm] / 2)
absolute_time_limit = tc_time_remaining[root_wtm] / 2;
/*
************************************************************
* *
* The "usage" option can be used to force the time limit *
* higher or lower than normal. The new "timebook" *
* command can also modify the target time making the *
* program use more time early in the game as it exits the *
* book, knowing it will save time later on by ponder hits *
* and instant moves. *
* *
************************************************************
*/
if (usage_level)
/*time_limit *= 1.0 + usage_level / 100.0;*/ time_limit += time_limit * usage_level / 100; // Pierre-Marie Baty -- this is integer math
if (first_nonbook_factor && moves_out_of_book < first_nonbook_span) {
mult =
(first_nonbook_span - moves_out_of_book + 1) * first_nonbook_factor;
extra = time_limit * mult / first_nonbook_span / 100;
time_limit += extra;
}
/*
************************************************************
* *
* If the operator has set an absolute search time limit *
* already, then we simply copy this value and return. *
* *
************************************************************
*/
if (search_time_limit) {
time_limit = search_time_limit;
absolute_time_limit = time_limit;
}
if (search_type == puzzle || search_type == booking) {
time_limit /= 10;
absolute_time_limit = time_limit * 3;
}
if (!tc_sudden_death && !search_time_limit &&
time_limit > 3 * tc_time / tc_moves)
time_limit = 3 * tc_time / tc_moves;
time_limit = Min(time_limit, absolute_time_limit);
if (search_type != puzzle) {
if (!tc_sudden_death)
Print(128, " time surplus %s ", DisplayTime(surplus));
else
Print(128, " ");
Print(128, "time limit %s", DisplayTimeKibitz(time_limit));
Print(128, " (+%s)", DisplayTimeKibitz(extra));
Print(128, " (%s)", DisplayTimeKibitz(absolute_time_limit));
if (fabs(usage_level
) > 0.0001) {
Print(128, "/");
Print(128, "(%d)", usage_level);
}
Print(128, "\n");
}
if (time_limit <= 1) {
time_limit = 1;
usage_level = 0;
}
}