Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #include "chess.h"
  2. #include "data.h"
  3. #include "epdglue.h"
  4. /* modified 08/03/16 */
  5. /*
  6.  *******************************************************************************
  7.  *                                                                             *
  8.  *   Split() is the driver for the threaded parallel search in Crafty.  The    *
  9.  *   basic idea is that whenever we notice that one (or more) threads are in   *
  10.  *   their idle loop, we drop into Split(), from Search(), and begin a new     *
  11.  *   parallel search from this node.  This is simply a problem of establishing *
  12.  *   a new split point, and then letting each thread join this split point and *
  13.  *   copy whatever data they need.                                             *
  14.  *                                                                             *
  15.  *   This is generation II of Split().  The primary differences address two    *
  16.  *   specific performance-robbing issues.  (1) Excessive waiting for a split   *
  17.  *   to be done, and (b) excessive waiting on specific locks.  Generation II   *
  18.  *   addresses both of these to significantly improve performance.             *
  19.  *                                                                             *
  20.  *   The main difference between Gen I and Gen II is the effort required to    *
  21.  *   split the tree and which thread(s) expend this effort.  In generation I,  *
  22.  *   the parent thread was responsible for allocating a split block for each   *
  23.  *   child thread, and then copying the necessary data from the parent split   *
  24.  *   block to these child split blocks.  When all of this was completed, the   *
  25.  *   child processes were released to start the parallel search after being    *
  26.  *   held while the split / copy operations were done.  In the generation II   *
  27.  *   Split() we now simply allocate a new split block for THIS thread, flag    *
  28.  *   the parent split block as joinable, and then go directly to ThreadWait()  *
  29.  *   which will drop us back in to the search immediately.  The idle threads   *
  30.  *   are continually looping on Join() which will jump them right into this    *
  31.  *   split block letting them do ALL the work of allocating a split block,     *
  32.  *   filling it in, and then copying the data to their local split block.      *
  33.  *   This distributes the split overhead among all the threads that split,     *
  34.  *   rather than this thread having to do all the work while the other threads *
  35.  *   sit idle.                                                                 *
  36.  *                                                                             *
  37.  *   Generation II is also much more lightweight, in that it copies only the   *
  38.  *   bare minimum from parent to child.  Generation I safely copied far too    *
  39.  *   much since this code was being changed regularly, but that is no longer   *
  40.  *   necessary overhead.                                                       *
  41.  *                                                                             *
  42.  *   Generation II has a zero contention split algorithm.  In the past, when a *
  43.  *   thread became idle, it posted a global split request and any thread that  *
  44.  *   was at an appropriate point would try to split.  But while it was doing   *
  45.  *   the splitting, other threads that were also willing to split would "get   *
  46.  *   in line" because Crafty used a global lock to prevent two threads from    *
  47.  *   attempting to split at the same instant in time.  They got in line, and   *
  48.  *   waited for the original splitter to release the lock, but now they have   *
  49.  *   no idle threads to split with.  A waste of time.  Now we allow ANY thread *
  50.  *   to attempt to split at the current ply.  When we do what might be called  *
  51.  *   a "gratuitous split" the only restriction is that if we have existing     *
  52.  *   "gratuitous split points" (split blocks that are joinable but have not    *
  53.  *   yet been joined), then we limit the number of such splits (per thread) to *
  54.  *   avoid excessive overhead.                                                 *
  55.  *                                                                             *
  56.  *   Generation II takes another idea from DTS, the idea of "late-join".  The  *
  57.  *   idea is fairly simple.  If, when a thread becomes idle, there are already *
  58.  *   other split points being searched in parallel, then we will try to join   *
  59.  *   one of them rather than waiting for someone to ask us to help.  We use    *
  60.  *   some simple criteria:  (1) The split point must be joinable, which simply *
  61.  *   means that no processor has exited the split point yet (which would let   *
  62.  *   us know there is no more work here and a join would be futile);  (2) We   *
  63.  *   compute an "interest" value which is a simple formula based on depth at   *
  64.  *   the split point, and the number of moves already searched.  It seems less *
  65.  *   risky to choose a split point with max depth AND minimum moves already    *
  66.  *   searched so that there is plenty to do.  This was quite simple to add     *
  67.  *   after the rest of the Generation II rewrite.  In fact, this is now THE    *
  68.  *   way threads join a split point, period, which further simplifies the code *
  69.  *   and improves efficiency.  IE, a thread can split when idle threads are    *
  70.  *   noticed, or if it is far enough away from the tips to make the cost       *
  71.  *   negligible.  At that point any idle thread(s) can join immediately, those *
  72.  *   that become idle later can join when they are ready.                      *
  73.  *                                                                             *
  74.  *   There are a number of settable options via the command-line or .craftyrc  *
  75.  *   initialization file.  Here's a concise explanation for each option and an *
  76.  *   occasional suggestion for testing/tuning.                                 *
  77.  *                                                                             *
  78.  *   smp_affinity (command = smpaffinity=<n> <p> is used to enable or disable  *
  79.  *      processor affinity.  -1 disables affinity and lets threads run on any  *
  80.  *      available core.  If you use an integer <n> then thread zero will bind  *
  81.  *      itself to cpu <n> and each additional thread will bind to the next     *
  82.  *      higher cpu number.  This is useful if you try to run two copies of     *
  83.  *      crafty on the same machine, now you can cause one to bind to the first *
  84.  *      <n> cores, and the second to the last <n> cores.  For the first        *
  85.  *      instance of Crafty, you would use smpaffinity=0, and for the second    *
  86.  *      smpaffinity=8, assuming you are running 8 threads per copy on a 16 cpu *
  87.  *      machine.  If you get this wrong, you can have more than one thread on  *
  88.  *      the same cpu which will significantly impact performance.              *
  89.  *                                                                             *
  90.  *   smp_max_threads (command = smpmt=n) sets the total number of allowable    *
  91.  *      threads for the search.  The default is one (1) as Crafty does not     *
  92.  *      assume it should use all available resources.  For optimal performance *
  93.  *      this should be set to the number of physical cores your machine has,   *
  94.  *      which does NOT include hyperthreaded cores.                            *
  95.  *                                                                             *
  96.  *   smp_split_group (command = smpgroup=n) sets the maximum number of threads *
  97.  *      at any single split point, with the exception of split points fairly   *
  98.  *      close to the root where ALL threads are allowed to split together,     *
  99.  *      ignoring this limit.  Note that this is ignored in the first 1/2 of    *
  100.  *      the tree (the nodes closer to the root).  There it is actually good to *
  101.  *      split and get all active threads involved.                             *
  102.  *                                                                             *
  103.  *   smp_min_split_depth (command = smpmin=n) avoids splitting when remaining  *
  104.  *      depth < n.  This is used to balance splitting overhead cost against    *
  105.  *      the speed gain the parallel search produces.  The default is currently *
  106.  *      5 (which could change with future generations of Intel hardware) but   *
  107.  *      values between 4 and 8 will work.  Larger values allow somewhat fewer  *
  108.  *      splits, which reduces overhead, but it also increases the percentage   *
  109.  *      of the time where a thread is waiting on work.                         *
  110.  *                                                                             *
  111.  *   smp_split_at_root (command = smproot=0 or 1) enables (1) or disables (0)  *
  112.  *      splitting the tree at the root.  This defaults to 1 which produces the *
  113.  *      best performance by a signficiant margin.  But it can be disabled if   *
  114.  *      you are playing with code changes.                                     *
  115.  *                                                                             *
  116.  *   smp_gratuitous_depth (command = smpgd=<n>) controls " gratuitous splits"  *
  117.  *      which are splits that are done without any idle threads.  This sets a  *
  118.  *      depth limit (remaining depth) that must be present before such a split *
  119.  *      can be done.  Making this number larger will reduce the number of      *
  120.  *      these splits.  Making it too small will increase overhead slightly and *
  121.  *      increase split block usage significantly.                              *
  122.  *                                                                             *
  123.  *   smp_gratuitous_limit (command = smpgl=<n>) limits the number of these     *
  124.  *      splits that a thread can do.  Once a thread has this number of         *
  125.  *      unjoined split points, it will not be allowed to split any more until  *
  126.  *      one or more threads join at least one of the existing split points.    *
  127.  *      In the smp search statistics, where you see output that looks like     *
  128.  *      this:                                                                  *
  129.  *                                                                             *
  130.  *        splits=m(n) ...                                                      *
  131.  *                                                                             *
  132.  *      m is the total splits done, n is the number of "wasted splits" which   *
  133.  *      are basically gratuitous splits where no thread joined before this     *
  134.  *      split point was completed and deallocated.                             *
  135.  *                                                                             *
  136.  *   The best way to tune all of these paramenters is to use the "autotune"    *
  137.  *   command (see autotune.c and help autotune) which will automatically run   *
  138.  *   tests and optimize the parameters.  More details are in the autotune.c    *
  139.  *   source file.                                                              *
  140.  *                                                                             *
  141.  *   A few basic "rules of the road" for anyone interested in changing or      *
  142.  *   adding to any of this code.                                               *
  143.  *                                                                             *
  144.  *   1.  If, at any time, you want to modify your private split block, no lock *
  145.  *       is required.                                                          *
  146.  *                                                                             *
  147.  *   2.  If, at any time, you want to modify another split block, such as the  *
  148.  *       parent split block shared move list, you must acquire the lock in the *
  149.  *       split block first.  IE tree->parent->lock to lock the parent split    *
  150.  *       block during NextMove() and such.                                     *
  151.  *                                                                             *
  152.  *   3.  If you want to modify any SMP-related data that spans multiple split  *
  153.  *       blocks, such as telling sibling processes to stop, etc, then you must *
  154.  *       acquire the global "lock_smp" lock first.  This prevents a deadlock   *
  155.  *       caused by two different threads walking the split block chain from    *
  156.  *       different directions, and acquiring the split block locks in          *
  157.  *       different orders, which could cause a catastrophic deadlock to occur. *
  158.  *       This is an infrequent event so the overhead is not significant.       *
  159.  *                                                                             *
  160.  *   4.  If you want to do any sort of I/O operation, you must acquire the     *
  161.  *       "lock_io" lock first.  Since threads share descriptors, there are     *
  162.  *       lots of potential race conditions, from the simple tty-output getting *
  163.  *       interlaced from different threads, to outright data corruption in the *
  164.  *       book or log files.                                                    *
  165.  *                                                                             *
  166.  *   Some of the bugs caused by failing to acquire the correct lock will only  *
  167.  *   occur infrequently, and they are extremely difficult to find.  Some only  *
  168.  *   show up in a public game where everyone is watching, to cause maximum     *
  169.  *   embarassment and causes the program to do something extremely stupid.     *
  170.  *                                                                             *
  171.  *******************************************************************************
  172.  */
  173. int Split(TREE * RESTRICT tree) {
  174.   TREE *child;
  175.   int tid, tstart, tend;
  176.  
  177. /*
  178.  ************************************************************
  179.  *                                                          *
  180.  *  Here we prepare to split the tree.  All we really do in *
  181.  *  the Generation II threading is grab a split block for   *
  182.  *  this thread, then flag the parent as "joinable" and     *
  183.  *  then jump right to ThreadWait() to resume where we left *
  184.  *  off, with the expectation (but not a requirement) that  *
  185.  *  other threads will join us to help.                     *
  186.  *                                                          *
  187.  *  Idle threads are sitting in ThreadWait() repeatedly     *
  188.  *  calling Join() to find them a split point, which we are *
  189.  *  fixing to provide.  They will then join as quickly as   *
  190.  *  they can, and other threads that become idle later can  *
  191.  *  also join without any further splitting needed.         *
  192.  *                                                          *
  193.  *  If we are unable to allocate a split block, we simply   *
  194.  *  abort this attempted split and return to the search     *
  195.  *  since other threads will also split quickly.            *
  196.  *                                                          *
  197.  ************************************************************
  198.  */
  199.   tstart = ReadClock();
  200.   tree->nprocs = 0;
  201.   for (tid = 0; tid < smp_max_threads; tid++)
  202.     tree->siblings[tid] = 0;
  203.   child = GetBlock(tree, tree->thread_id);
  204.   if (!child)
  205.     return 0;
  206.   CopyFromParent(child);
  207.   thread[tree->thread_id].tree = child;
  208.   tree->joined = 0;
  209.   tree->joinable = 1;
  210.   parallel_splits++;
  211.   smp_split = 0;
  212.   tend = ReadClock();
  213.   thread[tree->thread_id].idle += tend - tstart;
  214. /*
  215.  ************************************************************
  216.  *                                                          *
  217.  *  We have successfully created a split point, which means *
  218.  *  we are done.  The instant we set the "joinable" flag,   *
  219.  *  idle threads may begin to join in at this split point   *
  220.  *  to help.  Since this thread may finish before any or    *
  221.  *  all of the other parallel threads, this thread is sent  *
  222.  *  to ThreadWait() which will immediately send it to       *
  223.  *  SearchMoveList() like the other threads; however, going *
  224.  *  to ThreadWait() allows this thread to join others if it *
  225.  *  runs out of work to do.  We do pass ThreadWait() the    *
  226.  *  address of the parent split block, so that if this      *
  227.  *  thread becomes idle, and this thread block shows no     *
  228.  *  threads are still busy, then this thread can return to  *
  229.  *  here and then back up into the previous ply as it       *
  230.  *  should.  Note that no other thread can back up to the   *
  231.  *  previous ply since their recursive call stacks are not  *
  232.  *  set for that, while this call stack will bring us back  *
  233.  *  to this point where we return to the normal search,     *
  234.  *  which we just completed.                                *
  235.  *                                                          *
  236.  ************************************************************
  237.  */
  238.   ThreadWait(tree->thread_id, tree);
  239.   if (!tree->joined)
  240.     parallel_splits_wasted++;
  241.   return 1;
  242. }
  243.  
  244. /* modified 08/03/16 */
  245. /*
  246.  *******************************************************************************
  247.  *                                                                             *
  248.  *   Join() is called just when we enter the usual spin-loop waiting for work. *
  249.  *   We take a quick look at all active split blocks to see if any look        *
  250.  *   "joinable".  If so, we compute an "interest" value, which will be defined *
  251.  *   below.  We then join the most interesting split point directly. This      *
  252.  *   split point might have been created specifically for this thread to join, *
  253.  *   or it might be one that was already active when this thread became idle,  *
  254.  *   which allows us to join that existing split point and not request a new   *
  255.  *   split operation, saving time.                                             *
  256.  *                                                                             *
  257.  *******************************************************************************
  258.  */
  259. int Join(int64_t tid) {
  260.   TREE *tree, *join_block, *child;
  261.   int interest, best_interest, current, pass = 0;
  262.  
  263. /*
  264.  ************************************************************
  265.  *                                                          *
  266.  *  First we pass over ALL split blocks, looking for those  *
  267.  *  flagged as "joinable" (which means they are actually    *
  268.  *  active split points and that no processor at that split *
  269.  *  point has run out of work (there is no point in joining *
  270.  *  a split point with no remaining work) and no fail high  *
  271.  *  has been found which would raise the "stop" flag.) This *
  272.  *  is "racy" because we do not acquire any locks, which    *
  273.  *  means that the busy threads continue working, and there *
  274.  *  is a small probability that the split point will        *
  275.  *  disappear while we are in this loop.  To resolve the    *
  276.  *  potential race, after we find the most attractive split *
  277.  *  point, we acquire the lock for that split block and     *
  278.  *  test again, but this time if the block is joinable, we  *
  279.  *  can safely join under control of the lock, which is not *
  280.  *  held for very long at all.  If the block is not         *
  281.  *  joinable once we acquire the lock, we abort joining     *
  282.  *  since it is futile.  Note that if this happens, we will *
  283.  *  try to find an existing split point we can join three   *
  284.  *  times before we exit, setting split to 1 to ask other   *
  285.  *  threads to produce more candidate split points.         *
  286.  *                                                          *
  287.  *  Special case:  We don't want to join a split point that *
  288.  *  was created by this thread.  While it works, it can add *
  289.  *  overhead since we can encounter a later split point     *
  290.  *  that originated at the current split point, and we      *
  291.  *  would continue searching even though most of the work   *
  292.  *  has already been completed.  The hash table would help  *
  293.  *  avoid most (if not all) of this overhead, but there is  *
  294.  *  no good reason to take the chance of this happening.    *
  295.  *                                                          *
  296.  ************************************************************
  297.  */
  298.   for (pass = 0; pass < 3; pass++) {
  299.     best_interest = -999999;
  300.     join_block = 0;
  301.     for (current = 0; current <= smp_max_threads * 64; current++) {
  302.       tree = block[current];
  303.       if (tree->joinable && (tree->ply <= tree->depth / 2 ||
  304.               tree->nprocs < (int) smp_split_group) && tree->thread_id != tid) { // Pierre-Marie Baty -- added type cast
  305.         interest = tree->depth * 2 - tree->searched[0];
  306.         if (interest > best_interest) {
  307.           best_interest = interest;
  308.           join_block = tree;
  309.         }
  310.       }
  311.     }
  312. /*
  313.  ************************************************************
  314.  *                                                          *
  315.  *  Now we acquire the lock for this split block, and then  *
  316.  *  check to see if the block is still flagged as joinable. *
  317.  *  If so, we set things up, and then we get pretty tricky  *
  318.  *  as we then release the lock, and then copy the data     *
  319.  *  from the parent to our split block.  There is a chance  *
  320.  *  that while we are copying this data, the split point    *
  321.  *  gets completed by other threads.  Which would leave an  *
  322.  *  apparent race condition exposed where we start copying  *
  323.  *  data here, the split point is completed, the parent     *
  324.  *  block is released and then reacquired and we continue   *
  325.  *  if nothing has happened here, getting data copied from  *
  326.  *  two different positions.                                *
  327.  *                                                          *
  328.  *  Fortunately, we linked this new split block to the old  *
  329.  *  (original parent).  If that split block is released, we *
  330.  *  will discover this because that operation will also set *
  331.  *  our "stop" flag which will prevent us from using this   *
  332.  *  data and breaking things.  We allow threads to copy     *
  333.  *  this data without any lock protection to eliminate a    *
  334.  *  serialization (each node would copy the data serially,  *
  335.  *  rather than all at once) with the only consequence to   *
  336.  *  this being the overhead of copying and then throwing    *
  337.  *  the data away, which can happen on occasion even if we  *
  338.  *  used a lock for protection, since once we release the   *
  339.  *  lock it still takes time to get into the search and we  *
  340.  *  could STILL find that this split block has already been *
  341.  *  completed, once again.  Less contention and serial      *
  342.  *  computing improves performance.                         *
  343.  *                                                          *
  344.  ************************************************************
  345.  */
  346.     if (join_block) {
  347.       Lock(join_block->lock);
  348.       if (join_block->joinable) {
  349.         child = GetBlock(join_block, (int) tid); // Pierre-Marie Baty -- added type cast
  350.         Unlock(join_block->lock);
  351.         if (child) {
  352.           CopyFromParent(child);
  353.           thread[tid].tree = child;
  354.           parallel_joins++;
  355.           return 1;
  356.         }
  357.       } else {
  358.         Unlock(join_block->lock);
  359.         break;
  360.       }
  361.     }
  362.   }
  363. /*
  364.  ************************************************************
  365.  *                                                          *
  366.  *  We did not acquire a split point to join, so we set     *
  367.  *  smp_split to 1 to ask busy threads to create joinable   *
  368.  *  split points.                                           *
  369.  *                                                          *
  370.  ************************************************************
  371.  */
  372.   smp_split = 1;
  373.   return 0;
  374. }
  375.  
  376. /* modified 08/03/16 */
  377. /*
  378.  *******************************************************************************
  379.  *                                                                             *
  380.  *   ThreadAffinity() is called to "pin" a thread to a specific processor.  It *
  381.  *   is a "noop" (no-operation) if Crafty was not compiled with -DAFFINITY, or *
  382.  *   if smp_affinity is negative (smpaffinity=-1 disables affinity).  It       *
  383.  *   simply sets the affinity for the current thread to the requested CPU and  *
  384.  *   returns.  NOTE:  If hyperthreading is enabled, there is no guarantee that *
  385.  *   this will work as expected and pin one thread per physical core.  It      *
  386.  *   depends on how the O/S numbers the SMT cores.                             *
  387.  *                                                                             *
  388.  *******************************************************************************
  389.  */
  390. void ThreadAffinity(int cpu) {
  391. #if defined(AFFINITY)
  392.   cpu_set_t cpuset;
  393.   pthread_t current_thread = pthread_self();
  394.  
  395.   if (smp_affinity >= 0) {
  396.     CPU_ZERO(&cpuset);
  397.     CPU_SET(smp_affinity_increment * (cpu + smp_affinity), &cpuset);
  398.     pthread_setaffinity_np(current_thread, sizeof(cpu_set_t), &cpuset);
  399.   }
  400. #endif
  401. }
  402.  
  403. /* modified 08/03/16 */
  404. /*
  405.  *******************************************************************************
  406.  *                                                                             *
  407.  *   ThreadInit() is called after a process is created.  Its main task is to   *
  408.  *   initialize the process local memory so that it will fault in and be       *
  409.  *   allocated on the local node rather than the node where the original       *
  410.  *   (first) process was running.  All threads will hang here via a custom     *
  411.  *   WaitForALlThreadsInitialized() procedure so that all the local thread     *
  412.  *   blocks are usable before the search actually begins.                      *
  413.  *                                                                             *
  414.  *******************************************************************************
  415.  */
  416. void *STDCALL ThreadInit(void *t) {
  417.   int tid = (int64_t) t;
  418.  
  419.   ThreadAffinity(tid);
  420. #if !defined(UNIX)
  421.   ThreadMalloc((uint64_t) tid);
  422. #endif
  423.   thread[tid].blocks = 0xffffffffffffffffull;
  424.   Lock(lock_smp);
  425.   initialized_threads++;
  426.   Unlock(lock_smp);
  427.   WaitForAllThreadsInitialized();
  428.   ThreadWait(tid, (TREE *) 0);
  429.   Lock(lock_smp);
  430.   smp_threads--;
  431.   Unlock(lock_smp);
  432.   return 0;
  433. }
  434.  
  435. /* modified 08/03/16 */
  436. /*
  437.  *******************************************************************************
  438.  *                                                                             *
  439.  *   ThreadSplit() is used to determine if we should split at the current ply. *
  440.  *   There are some basic constraints on when splits can be done, such as the  *
  441.  *   depth remaining in the search (don't split to near the tips), and have we *
  442.  *   searched at least one move to get a score or bound (YBW condition).       *
  443.  *                                                                             *
  444.  *   If those conditions are satisfied, AND either a thread has requested a    *
  445.  *   split OR we are far enough away from the tips of the tree to justify a    *
  446.  *   "gratuitout split" then we return "success."  A "gratuitout split" is a   *
  447.  *   split done without any idle threads.  Since splits are not free, we only  *
  448.  *   do this well away from tips to limit overhead.  We do this so that when a *
  449.  *   thread becomes idle, it will find these split points immediately and not  *
  450.  *   have to wait for a split after the fact.                                  *
  451.  *                                                                             *
  452.  *******************************************************************************
  453.  */
  454. int ThreadSplit(TREE *RESTRICT tree, int ply, int depth, int alpha, int o_alpha, // Pierre-Marie Baty -- missing RESTRICT keyword
  455.     int done) {
  456.   TREE *used;
  457.   int64_t tblocks;
  458.   int temp, unused = 0;
  459.  
  460. /*
  461.  ************************************************************
  462.  *                                                          *
  463.  *  First, we see if we meet the basic criteria to create a *
  464.  *  split point, that being that we must not be too far     *
  465.  *  from the root (smp_min_split_depth).                    *
  466.  *                                                          *
  467.  ************************************************************
  468.  */
  469.   if (depth < (int) smp_min_split_depth) // Pierre-Marie Baty -- added type cast
  470.     return 0;
  471. /*
  472.  ************************************************************
  473.  *                                                          *
  474.  *  If smp_split is NOT set, we are checking to see if it   *
  475.  *  is acceptable to do a gratuitous split here.            *
  476.  *                                                          *
  477.  *  (1) if we are too far from the root we do not do        *
  478.  *      gratuitous splits to avoid the overhead.            *
  479.  *                                                          *
  480.  *  (2) if we have searched more than one move at this ply, *
  481.  *      we don't do any further tests to see if a           *
  482.  *      gratuitous split is acceptable, since we have       *
  483.  *      previously done this test at this ply and decided   *
  484.  *      one should not be done.  That condition has likely  *
  485.  *      not changed.                                        *
  486.  *                                                          *
  487.  *  (3) if we have pre-existing gratuitous split points for *
  488.  *      this thread, we make certain we don't create more   *
  489.  *      than the gratuitous split limit as excessive splits *
  490.  *      just add to the overhead with no benefit.           *
  491.  *                                                          *
  492.  ************************************************************
  493.  */
  494.   if (!smp_split) {
  495.     if (depth < (int) smp_gratuitous_depth || done > 1) // Pierre-Marie Baty -- added type cast
  496.       return 0;
  497.     tblocks = ~thread[tree->thread_id].blocks;
  498.     while (tblocks) {
  499.       temp = LSB(tblocks);
  500.       used = block[temp + tree->thread_id * 64 + 1];
  501.       if (used->joinable && !used->joined)
  502.         unused++;
  503.       Clear(temp, tblocks);
  504.     }
  505.     if (unused > (int) smp_gratuitous_limit) // Pierre-Marie Baty -- added type cast
  506.       return 0;
  507.   }
  508. /*
  509.  ************************************************************
  510.  *                                                          *
  511.  *  If smp_split IS set, we are checking to see if it is    *
  512.  *  acceptable to do a split because there are idle threads *
  513.  *  that need work to do.                                   *
  514.  *                                                          *
  515.  *  The only reason this would be false is if we have a     *
  516.  *  pre-existing split point that is joinable but has not   *
  517.  *  been joined. If one exists, there is no need to split   *
  518.  *  again as there is already an accessible split point.    *
  519.  *  Otherwise, if we are at the root and we are either not  *
  520.  *  allowed to split at the root, or we have additional     *
  521.  *  root moves that have to be searched one at a time using *
  522.  *  all available threads we also can not split here.       *
  523.  *                                                          *
  524.  ************************************************************
  525.  */
  526.   else {
  527.     if (ply == 1 && (!smp_split_at_root || !NextRootMoveParallel() ||
  528.             alpha == o_alpha))
  529.       return 0;
  530.     tblocks = ~thread[tree->thread_id].blocks;
  531.     while (tblocks) {
  532.       temp = LSB(tblocks);
  533.       used = block[temp + tree->thread_id * 64 + 1];
  534.       if (used->joinable && !used->joined)
  535.         unused++;
  536.       Clear(temp, tblocks);
  537.     }
  538.     if (unused > (int) smp_gratuitous_limit) // Pierre-Marie Baty -- added type cast
  539.       return 0;
  540.   }
  541.   return 1;
  542. }
  543.  
  544. /* modified 08/03/16 */
  545. /*
  546.  *******************************************************************************
  547.  *                                                                             *
  548.  *   ThreadStop() is called from SearchMoveList() when it detects a beta       *
  549.  *   cutoff (fail high) at a node that is being searched in parallel.  We need *
  550.  *   to stop all threads here, and since this threading algorithm is recursive *
  551.  *   it may be necessary to stop other threads that are helping search this    *
  552.  *   branch further down into the tree.  This function simply sets appropriate *
  553.  *   tree->stop variables to 1, which will stop those particular threads       *
  554.  *   instantly and return them to the idle loop in ThreadWait().               *
  555.  *                                                                             *
  556.  *******************************************************************************
  557.  */
  558. void ThreadStop(TREE * RESTRICT tree) {
  559.   int proc;
  560.  
  561.   Lock(tree->lock);
  562.   tree->stop = 1;
  563.   tree->joinable = 0;
  564.   for (proc = 0; proc < smp_max_threads; proc++)
  565.     if (tree->siblings[proc])
  566.       ThreadStop(tree->siblings[proc]);
  567.   Unlock(tree->lock);
  568. }
  569.  
  570. /* modified 08/03/16 */
  571. /*
  572.  *******************************************************************************
  573.  *                                                                             *
  574.  *   ThreadTrace() is a debugging tool that simply walks the split block tree  *
  575.  *   and displays interesting data to help debug the parallel search whenever  *
  576.  *   changes break things.                                                     *
  577.  *                                                                             *
  578.  *******************************************************************************
  579.  */
  580. void ThreadTrace(TREE * RESTRICT tree, int depth, int brief) {
  581.   int proc, i;
  582.  
  583.   Lock(tree->lock);
  584.   Lock(lock_io);
  585.   if (!brief) {
  586.     for (i = 0; i < 4 * depth; i++)
  587.       Print(4095, " ");
  588.     depth++;
  589.     Print(4095, "block[%d]  thread=%d  ply=%d  nprocs=%d  ",
  590.         FindBlockID(tree), tree->thread_id, tree->ply, tree->nprocs);
  591.     Print(4095, "joined=%d  joinable=%d  stop=%d  nodes=%d", tree->joined,
  592.         tree->joinable, tree->stop, tree->nodes_searched);
  593.     Print(4095, "  parent=%d\n", FindBlockID(tree->parent));
  594.   } else {
  595.     if (tree->nprocs > 1) {
  596.       for (i = 0; i < 4 * depth; i++)
  597.         Print(4095, " ");
  598.       depth++;
  599.       Print(4095, "(ply %d)", tree->ply);
  600.     }
  601.   }
  602.   if (tree->nprocs) {
  603.     if (!brief) {
  604.       for (i = 0; i < 4 * depth; i++)
  605.         Print(4095, " ");
  606.       Print(4095, "          parent=%d  sibling threads=",
  607.           FindBlockID(tree->parent));
  608.       for (proc = 0; proc < smp_max_threads; proc++)
  609.         if (tree->siblings[proc])
  610.           Print(4095, " %d(%d)", proc, FindBlockID(tree->siblings[proc]));
  611.       Print(4095, "\n");
  612.     } else {
  613.       if (tree->nprocs > 1) {
  614.         Print(4095, " helping= ");
  615.         for (proc = 0; proc < smp_max_threads; proc++)
  616.           if (tree->siblings[proc]) {
  617.             if (proc == tree->thread_id)
  618.               Print(4095, "[");
  619.             Print(4095, "%d", proc);
  620.             if (proc == tree->thread_id)
  621.               Print(4095, "]");
  622.             Print(4095, " ");
  623.           }
  624.         Print(4095, "\n");
  625.       }
  626.     }
  627.   }
  628.   Unlock(lock_io);
  629.   for (proc = 0; proc < smp_max_threads; proc++)
  630.     if (tree->siblings[proc])
  631.       ThreadTrace(tree->siblings[proc], depth, brief);
  632.   Unlock(tree->lock);
  633. }
  634.  
  635. /* modified 08/03/16 */
  636. /*
  637.  *******************************************************************************
  638.  *                                                                             *
  639.  *   ThreadWait() is the idle loop for the N threads that are created at the   *
  640.  *   beginning when Crafty searches.  Threads are "parked" here waiting on a   *
  641.  *   pointer to something they should search (a parameter block built in the   *
  642.  *   function Split() in this case.  When this pointer becomes non-zero, each  *
  643.  *   thread "parked" here will immediately call SearchMoveList() and begin the *
  644.  *   parallel search as directed.                                              *
  645.  *                                                                             *
  646.  *   Upon entry, all threads except for the "master" will arrive here with a   *
  647.  *   value of zero (0) in the waiting parameter below.  This indicates that    *
  648.  *   they will search and them be done.  The "master" will arrive here with a  *
  649.  *   pointer to the parent split block in "waiting" which says I will sit here *
  650.  *   waiting for work OR when the waiting split block has no threads working   *
  651.  *   on it, at which point I should return which will let me "unsplit" here    *
  652.  *   and clean things up.  The call to here in Split() passes this block       *
  653.  *   address while threads that are helping get here with a zero.              *
  654.  *                                                                             *
  655.  *******************************************************************************
  656.  */
  657. int ThreadWait(int tid, TREE * RESTRICT waiting) {
  658.   int value, tstart, tend;
  659.  
  660. /*
  661.  ************************************************************
  662.  *                                                          *
  663.  *  When we reach this point, one of three possible         *
  664.  *  conditions is true (1) we already have work to do, as   *
  665.  *  we are the "master thread" and we have already split    *
  666.  *  the tree, we are coming here to join in;  (2) we are    *
  667.  *  the master, and we are waiting on our split point to    *
  668.  *  complete, so we come here to join and help currently    *
  669.  *  active threads;  (3) we have no work to do, so we will  *
  670.  *  spin until Join() locates a split pont we can join to   *
  671.  *  help out.                                               *
  672.  *                                                          *
  673.  *  Note that when we get here, the parent already has a    *
  674.  *  split block and does not need to call Join(), it simply *
  675.  *  falls through the while spin loop below because its     *
  676.  *  "tree" pointer is already non-zero.                     *
  677.  *                                                          *
  678.  ************************************************************
  679.  */
  680.   while (FOREVER) {
  681.     tstart = ReadClock();
  682.     while (!thread[tid].tree && (!waiting || waiting->nprocs) && !Join(tid) &&
  683.         !thread[tid].terminate);
  684.     tend = ReadClock();
  685.     if (!thread[tid].tree)
  686.       thread[tid].tree = waiting;
  687.     thread[tid].idle += tend - tstart;
  688.     if (thread[tid].tree == waiting || thread[tid].terminate)
  689.       return 0;
  690. /*
  691.  ************************************************************
  692.  *                                                          *
  693.  *  Once we get here, we have a good split point, so we are *
  694.  *  ready to participate in a parallel search.  Once we     *
  695.  *  return from SearchMoveList() we copy our results back   *
  696.  *  to the parent via CopyToParent() before we look for a   *
  697.  *  new split point.  If we are a parent, we will slip out  *
  698.  *  of the spin loop at the top and return to the normal    *
  699.  *  serial search to finish up here.                        *
  700.  *                                                          *
  701.  *  When we return from SearchMoveList(), we need to        *
  702.  *  decrement the "nprocs" value since there is now one     *
  703.  *  less thread working at this split point.                *
  704.  *                                                          *
  705.  *  Note:  CopyToParent() marks the current split block as  *
  706.  *  unused once the copy is completed, so we don't have to  *
  707.  *  do anything about that here.                            *
  708.  *                                                          *
  709.  ************************************************************
  710.  */
  711.     value =
  712.         SearchMoveList(thread[tid].tree, thread[tid].tree->ply,
  713.         thread[tid].tree->depth, thread[tid].tree->wtm,
  714.         thread[tid].tree->alpha, thread[tid].tree->beta,
  715.         thread[tid].tree->searched, thread[tid].tree->in_check, 0, parallel);
  716.     tstart = ReadClock();
  717.     Lock(thread[tid].tree->parent->lock);
  718.     thread[tid].tree->parent->joinable = 0;
  719.     CopyToParent((TREE *) thread[tid].tree->parent, thread[tid].tree, value);
  720.     thread[tid].tree->parent->nprocs--;
  721.     thread[tid].tree->parent->siblings[tid] = 0;
  722.     Unlock(thread[tid].tree->parent->lock);
  723.     thread[tid].tree = 0;
  724.     tend = ReadClock();
  725.     thread[tid].idle += tend - tstart;
  726.   }
  727. }
  728.  
  729. /* modified 08/03/16 */
  730. /*
  731.  *******************************************************************************
  732.  *                                                                             *
  733.  *   CopyFromParent() is used to copy data from a parent thread to a child     *
  734.  *   thread.  This only copies the appropriate parts of the TREE structure to  *
  735.  *   avoid burning memory bandwidth by copying everything.                     *
  736.  *                                                                             *
  737.  *******************************************************************************
  738.  */
  739. void CopyFromParent(TREE * RESTRICT child) {
  740.   TREE *parent = child->parent;
  741.   int i, ply;
  742.  
  743. /*
  744.  ************************************************************
  745.  *                                                          *
  746.  *  We have allocated a split block.  Now we copy the tree  *
  747.  *  search state from the parent block to the child in      *
  748.  *  preparation for starting the parallel search.           *
  749.  *                                                          *
  750.  ************************************************************
  751.  */
  752.   ply = parent->ply;
  753.   child->ply = ply;
  754.   child->position = parent->position;
  755.   for (i = 0; i <= rep_index + parent->ply; i++)
  756.     child->rep_list[i] = parent->rep_list[i];
  757.   for (i = ply - 1; i < MAXPLY; i++)
  758.     child->killers[i] = parent->killers[i];
  759.   for (i = 0; i < 4096; i++) {
  760.     child->counter_move[i] = parent->counter_move[i];
  761.     child->move_pair[i] = parent->move_pair[i];
  762.   }
  763.   for (i = ply - 1; i <= ply; i++) {
  764.     child->curmv[i] = parent->curmv[i];
  765.     child->pv[i] = parent->pv[i];
  766.   }
  767.   child->in_check = parent->in_check;
  768.   child->last[ply] = child->move_list;
  769.   child->status[ply] = parent->status[ply];
  770.   child->status[1] = parent->status[1];
  771.   child->save_hash_key[ply] = parent->save_hash_key[ply];
  772.   child->save_pawn_hash_key[ply] = parent->save_pawn_hash_key[ply];
  773.   child->nodes_searched = 0;
  774.   child->fail_highs = 0;
  775.   child->fail_high_first_move = 0;
  776.   child->evaluations = 0;
  777.   child->egtb_probes = 0;
  778.   child->egtb_hits = 0;
  779.   child->extensions_done = 0;
  780.   child->qchecks_done = 0;
  781.   child->moves_fpruned = 0;
  782.   child->moves_mpruned = 0;
  783.   for (i = 0; i < 16; i++) {
  784.     child->LMR_done[i] = 0;
  785.     child->null_done[i] = 0;
  786.   }
  787.   child->alpha = parent->alpha;
  788.   child->beta = parent->beta;
  789.   child->value = parent->value;
  790.   child->wtm = parent->wtm;
  791.   child->depth = parent->depth;
  792.   child->searched = parent->searched;
  793.   strcpy(child->root_move_text, parent->root_move_text);
  794.   strcpy(child->remaining_moves_text, parent->remaining_moves_text);
  795. }
  796.  
  797. /* modified 08/03/16 */
  798. /*
  799.  *******************************************************************************
  800.  *                                                                             *
  801.  *   CopyToParent() is used to copy data from a child thread to a parent       *
  802.  *   thread.  This only copies the appropriate parts of the TREE structure to  *
  803.  *   avoid burning memory bandwidth by copying everything.                     *
  804.  *                                                                             *
  805.  *******************************************************************************
  806.  */
  807. void CopyToParent(TREE * RESTRICT parent, TREE * RESTRICT child, int value) {
  808.   int i, ply = parent->ply, which;
  809.  
  810. /*
  811.  ************************************************************
  812.  *                                                          *
  813.  *  The only concern here is to make sure that the info is  *
  814.  *  only copied to the parent if our score is > than the    *
  815.  *  parent value, and that we were not stopped for any      *
  816.  *  reason which could produce a partial score that is      *
  817.  *  worthless and dangerous to use.                         *
  818.  *                                                          *
  819.  *  One important special case.  If we get here with the    *
  820.  *  thread->stop flag set, and ply is 1, then we need to    *
  821.  *  clear the "this move has been searched" flag in the ply *
  822.  *  1 move list since we did not complete the search.  If   *
  823.  *  we fail to do this, then a move being searched in       *
  824.  *  parallel at the root will be "lost" for this iteration  *
  825.  *  and won't be searched again until the next iteration.   *
  826.  *                                                          *
  827.  *  In any case, we add our statistical counters to the     *
  828.  *  parent's totals no matter whether we finished or not    *
  829.  *  since the total nodes searched and such should consider *
  830.  *  everything searched, not just the "useful stuff."       *
  831.  *                                                          *
  832.  *  After we finish copying everything, we mark this split  *
  833.  *  block as free in the split block bitmap.                *
  834.  *                                                          *
  835.  ************************************************************
  836.  */
  837.   if (child->nodes_searched && !child->stop && value > parent->value &&
  838.       !abort_search) {
  839.     parent->pv[ply] = child->pv[ply];
  840.     parent->value = value;
  841.     parent->cutmove = child->curmv[ply];
  842.     for (i = 0; i < 4096; i++) {
  843.       parent->counter_move[i] = child->counter_move[i];
  844.       parent->move_pair[i] = child->move_pair[i];
  845.     }
  846.   }
  847.   if (child->stop && ply == 1)
  848.     for (which = 0; which < n_root_moves; which++)
  849.       if (root_moves[which].move == child->curmv[ply]) {
  850.         root_moves[which].status &= 7;
  851.         break;
  852.       }
  853.   parent->nodes_searched += child->nodes_searched;
  854.   parent->fail_highs += child->fail_highs;
  855.   parent->fail_high_first_move += child->fail_high_first_move;
  856.   parent->evaluations += child->evaluations;
  857.   parent->egtb_probes += child->egtb_probes;
  858.   parent->egtb_hits += child->egtb_hits;
  859.   parent->extensions_done += child->extensions_done;
  860.   parent->qchecks_done += child->qchecks_done;
  861.   parent->moves_fpruned += child->moves_fpruned;
  862.   parent->moves_mpruned += child->moves_mpruned;
  863.   for (i = 1; i < 16; i++) {
  864.     parent->LMR_done[i] += child->LMR_done[i];
  865.     parent->null_done[i] += child->null_done[i];
  866.   }
  867.   which = FindBlockID(child) - 64 * child->thread_id - 1;
  868.   Set(which, thread[child->thread_id].blocks);
  869. }
  870.  
  871. /* modified 08/03/16 */
  872. /*
  873.  *******************************************************************************
  874.  *                                                                             *
  875.  *   GetBlock() is used to allocate a split block and fill in only SMP-        *
  876.  *   critical information.  The child process will copy the rest of the split  *
  877.  *   block information as needed.                                              *
  878.  *                                                                             *
  879.  *   When we arrive here, the parent split block must be locked since we are   *
  880.  *   going to change data in that block as well as copy data from that block   *
  881.  *   the current split block.  The only exception is when this is the original *
  882.  *   split operation, since this is done "out of sight" of other threads which *
  883.  *   means no locks are needed until after the "joinable" flag is set, which   *
  884.  *   exposes this split point to other threads instantly.                      *
  885.  *                                                                             *
  886.  *******************************************************************************
  887.  */
  888. TREE *GetBlock(TREE * RESTRICT parent, int tid) {
  889.   TREE *child;
  890.   static int warnings = 0;
  891.   int i, unused;
  892. /*
  893.  ************************************************************
  894.  *                                                          *
  895.  *  One NUMA-related trick is that we only allocate a split *
  896.  *  block in the thread's local memory.  Each thread has a  *
  897.  *  group of split blocks that were first touched by the    *
  898.  *  correct CPU so that the split blocks page-faulted into  *
  899.  *  local memory for that specific processor.  If we can't  *
  900.  *  find an optimally-placed block, we return a zero which  *
  901.  *  will prevent this thread from joining the split point.  *
  902.  *  This is highly unlikely as it would mean the current    *
  903.  *  thread has 64 active split blocks where it is waiting   *
  904.  *  on other threads to complete the last bit of work at    *
  905.  *  each.  This is extremely unlikely.                      *
  906.  *                                                          *
  907.  *  Here we use a simple 64 bit bit-map per thread that     *
  908.  *  indicates which blocks are free (1) and which blocks    *
  909.  *  used (0).  We simply use LSB() to find the rightmost    *
  910.  *  one-bit set and that is the local block number.  We     *
  911.  *  convert that to a global block number by doing the      *
  912.  *  simple computation:                                     *
  913.  *                                                          *
  914.  *     global = local + 64 * tid + 1                        *
  915.  *                                                          *
  916.  *  Each thread has exactly 64 split blocks, and block 0    *
  917.  *  is the "master block" that never gets allocated or      *
  918.  *  freed.  Once we find a free block for the current       *
  919.  *  thread, we zero that bit so that the block won't be     *
  920.  *  used again until it is released.                        *
  921.  *                                                          *
  922.  ************************************************************
  923.  */
  924.   if (thread[tid].blocks) {
  925.     unused = LSB(thread[tid].blocks);
  926.     Clear(unused, thread[tid].blocks);
  927.     Set(unused, thread[tid].max_blocks);
  928.   } else {
  929.     if (++warnings < 6)
  930.       Print(2048,
  931.           "WARNING.  local SMP block cannot be allocated, thread %d\n", tid);
  932.     return 0;
  933.   }
  934.   child = block[unused + tid * 64 + 1];
  935. /*
  936.  ************************************************************
  937.  *                                                          *
  938.  *  Found a split block.  Now we need to fill in only the   *
  939.  *  critical information that can't be delayed due to race  *
  940.  *  conditions.  When we get here, the parent split block   *
  941.  *  must be locked, that lets us safely update the number   *
  942.  *  of processors working here, etc, without any ugly race  *
  943.  *  conditions that would corrupt this critical data.       *
  944.  *                                                          *
  945.  ************************************************************
  946.  */
  947.   for (i = 0; i < smp_max_threads; i++)
  948.     child->siblings[i] = 0;
  949.   child->nprocs = 0;
  950.   child->stop = 0;
  951.   child->joinable = 0;
  952.   child->joined = 0;
  953.   child->parent = parent;
  954.   child->thread_id = tid;
  955.   parent->nprocs++;
  956.   parent->siblings[tid] = child;
  957.   parent->joined = 1;
  958.   return child;
  959. }
  960.  
  961. /*
  962.  *******************************************************************************
  963.  *                                                                             *
  964.  *   WaitForAllThreadsInitialized() waits until all smp_max_threads are        *
  965.  *   initialized.  We have to initialize each thread and malloc() its split    *
  966.  *   blocks before we start the actual parallel search.  Otherwise we will see *
  967.  *   invalid memory accesses and crash instantly.                              *
  968.  *                                                                             *
  969.  *******************************************************************************
  970.  */
  971. void WaitForAllThreadsInitialized(void) {
  972.   while (initialized_threads < smp_max_threads); /* Do nothing */
  973. }
  974.  
  975. #if !defined (UNIX)
  976. /* modified 08/03/16 */
  977. /*
  978.  *******************************************************************************
  979.  *                                                                             *
  980.  *   ThreadMalloc() is called from the ThreadInit() function.  It malloc's the *
  981.  *   split blocks in the local memory for the processor associated with the    *
  982.  *   specific thread that is calling this code.                                *
  983.  *                                                                             *
  984.  *******************************************************************************
  985.  */
  986. extern void *WinMalloc(size_t, int);
  987. void ThreadMalloc(int64_t tid) {
  988.   int i;
  989.  
  990.   for (i = (int) (tid * 64 + 1); i < (int) (tid * 64 + 65); i++) { // Pierre-Marie Baty -- added type casts
  991.     if (block[i] == NULL)
  992.       block[i] =
  993.           (TREE *) ((~(size_t) 127) & (127 + (size_t) WinMalloc(sizeof(TREE) +
  994.                   127, (int) tid))); // Pierre-Marie Baty -- added type cast
  995.     block[i]->parent = NULL;
  996.     LockInit(block[i]->lock);
  997.   }
  998. }
  999. #endif
  1000.