Subversion Repositories Games.Chess Giants

Rev

Rev 108 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. #include <math.h>
  2. #include <time.h>
  3. #include "chess.h"
  4. #include "data.h"
  5. #if defined(UNIX)
  6. #  include <unistd.h>
  7. #endif
  8.  
  9. /* last modified 02/24/14 */
  10. /*
  11.  *******************************************************************************
  12.  *                                                                             *
  13.  *   LearnAdjust() us used to scale the learn value, which can be used to      *
  14.  *   limit the aggressiveness of the learning algorithm.  All we do here is    *
  15.  *   divide the learn value passed in by "learning / 10".                      *
  16.  *                                                                             *
  17.  *******************************************************************************
  18.  */
  19. int LearnAdjust(int value) {
  20.  
  21.   if (learning / 10 > 0)
  22.     return value / (learning / 10);
  23.   else
  24.     return 0;
  25. }
  26.  
  27. /* last modified 02/24/14 */
  28. /*
  29.  *******************************************************************************
  30.  *                                                                             *
  31.  *   LearnBook() is used to update the book database when a game ends for any  *
  32.  *   reason.  It uses the global "learn_value" variable and updates the book   *
  33.  *   based on the moves played and the value that was "learned".               *
  34.  *                                                                             *
  35.  *   The global learn_value has two possible sources.  If a game ends with a   *
  36.  *   real result (win, lose or draw) then the learrn_value will be set to a    *
  37.  *   number in the interval {-300, 300} depending on the result.  If there is  *
  38.  *   no result (the operator exits the program prior to reaching a conclusion  *
  39.  *   (quit, end, ^C) then we will use the values from the first few searches   *
  40.  *   after leaving book to compute a learrn_value (see LearnValue() comments   *
  41.  *   later in this file).                                                      *
  42.  *                                                                             *
  43.  *******************************************************************************
  44.  */
  45. void LearnBook() {
  46.   int nplies = 0, thisply = 0;
  47.   unsigned char buf32[4];
  48.   int i, j, cluster;
  49.   float book_learn[64], t_learn_value;
  50.  
  51. /*
  52.  ************************************************************
  53.  *                                                          *
  54.  *  If we have not been "out of book" for N moves, all we   *
  55.  *  we need to do is take the search evaluation for the     *
  56.  *  search just completed and tuck it away in the book      *
  57.  *  learning array (book_learn_eval[]) for use later.       *
  58.  *                                                          *
  59.  ************************************************************
  60.  */
  61.   if (!book_file)
  62.     return;
  63.   if (!learn)
  64.     return;
  65.   if (Abs(learn_value) != learning)
  66.     learn_value = LearnAdjust(learn_value);
  67.   learn = 0;
  68.   Print(128, "LearnBook() updating book database\n");
  69. /*
  70.  ************************************************************
  71.  *                                                          *
  72.  *  Now we build a vector of book learning results.  We     *
  73.  *  give every book move below the last point where there   *
  74.  *  were alternatives 100% of the learned score.  We give   *
  75.  *  the book move played at that point 100% of the learned  *
  76.  *  score as well.  Then we divide the learned score by the *
  77.  *  number of alternatives, and propagate this score back   *
  78.  *  until there was another alternative, where we do this   *
  79.  *  again and again until we reach the top of the book      *
  80.  *  tree.                                                   *
  81.  *                                                          *
  82.  ************************************************************
  83.  */
  84.   t_learn_value = ((float) learn_value) / 100.0f; // Pierre-Marie Baty -- added float suffix
  85.   for (i = 0; i < 64; i++)
  86.     if (learn_nmoves[i] > 1)
  87.       nplies++;
  88.   nplies = Max(nplies, 1);
  89.   for (i = 0; i < 64; i++) {
  90.     if (learn_nmoves[i] > 1)
  91.       thisply++;
  92.     book_learn[i] = t_learn_value * (float) thisply / (float) nplies;
  93.   }
  94. /*
  95.  ************************************************************
  96.  *                                                          *
  97.  *  Now find the appropriate cluster, find the key we were  *
  98.  *  passed, and update the resulting learn value.           *
  99.  *                                                          *
  100.  ************************************************************
  101.  */
  102.   for (i = 0; i < 64 && learn_seekto[i]; i++) {
  103.     if (learn_seekto[i] > 0) {
  104.       fseek(book_file, learn_seekto[i], SEEK_SET);
  105.       fread(buf32, 4, 1, book_file);
  106.       cluster = BookIn32(buf32);
  107.       BookClusterIn(book_file, cluster, book_buffer);
  108.       for (j = 0; j < cluster; j++)
  109.         if (!(learn_key[i] ^ book_buffer[j].position))
  110.           break;
  111.       if (j >= cluster)
  112.         return;
  113.       if (fabs(book_buffer[j].learn) < 0.0001)
  114.         book_buffer[j].learn = book_learn[i];
  115.       else
  116.         book_buffer[j].learn = (book_buffer[j].learn + book_learn[i]) / 2.0f; // Pierre-Marie Baty -- added float suffix
  117.       fseek(book_file, learn_seekto[i] + 4, SEEK_SET);
  118.       BookClusterOut(book_file, cluster, book_buffer);
  119.       fflush(book_file);
  120.     }
  121.   }
  122. }
  123.  
  124. /* last modified 02/24/14 */
  125. /*
  126.  *******************************************************************************
  127.  *                                                                             *
  128.  *   LearnFunction() is called to compute the adjustment value added to the    *
  129.  *   learn counter in the opening book.  It takes three pieces of information  *
  130.  *   into consideration to do this:  the search value, the search depth that   *
  131.  *   produced this value, and the rating difference (Crafty-opponent) so that  *
  132.  *   + numbers means Crafty is expected to win, - numbers mean Crafty is ex-   *
  133.  *   pected to lose.                                                           *
  134.  *                                                                             *
  135.  *******************************************************************************
  136.  */
  137. int LearnFunction(int sv, int search_depth, int rating_difference,
  138.     int trusted_value) {
  139.   static const float rating_mult_t[11] = { .00625f, .0125f, .025f, .05f, .075f, .1f,
  140.     0.15f, 0.2f, 0.25f, 0.3f, 0.35f // Pierre-Marie Baty -- added float suffixes
  141.   };
  142.   static const float rating_mult_ut[11] = { .25f, .2f, .15f, .1f, .05f, .025f, .012f,
  143.     .006f, .003f, .001f // Pierre-Marie Baty -- added float suffixes
  144.   };
  145.   float multiplier;
  146.   int sd, rd, value;
  147.  
  148.   sd = Max(Min(search_depth - 10, 19), 0);
  149.   rd = Max(Min(rating_difference / 200, 5), -5) + 5;
  150.   if (trusted_value)
  151.     multiplier = rating_mult_t[rd] * sd;
  152.   else
  153.     multiplier = rating_mult_ut[rd] * sd;
  154.   sv = Max(Min(sv, 5 * learning), -5 * learning);
  155.   value = (int) (sv * multiplier);
  156.   return value;
  157. }
  158.  
  159. /* last modified 02/24/14 */
  160. /*
  161.  *******************************************************************************
  162.  *                                                                             *
  163.  *   LearnValue() is used to monitor the scores over the first N moves out of  *
  164.  *   book.  After these moves have been played, the evaluations are then used  *
  165.  *   to decide whether the last book move played was a reasonable choice or    *
  166.  *   not.  (N is set by the #define LEARN_INTERVAL definition.)                *
  167.  *                                                                             *
  168.  *   This procedure does not directly update the book.  Rather, it sets the    *
  169.  *   global learn_value variable to represent the goodness or badness of the   *
  170.  *   position where we left the opening book.  This will be used later to      *
  171.  *   update the book in the event the game ends without any sort of actual     *
  172.  *   result.  In a normal situation, we will base our learning on the result   *
  173.  *   of the game, win-lose-draw.  But it is possible that the game ends before *
  174.  *   the final result is known.  In this case, we will use the score from the  *
  175.  *   learn_value we compute here so that we learn _something_ from playing a   *
  176.  *   game fragment.                                                            *
  177.  *                                                                             *
  178.  *   There are three cases to be handled.  (1) If the evaluation is bad right  *
  179.  *   out of book, or it drops enough to be considered a bad line, then the     *
  180.  *   book move will have its "learn" value reduced to discourage playing this  *
  181.  *   move again.  (2) If the evaluation is even after N moves, then the learn  *
  182.  *   value will be increased, but by a relatively modest amount, so that a few *
  183.  *   even results will offset one bad result.  (3) If the evaluation is very   *
  184.  *   good after N moves, the learn value will be increased by a large amount   *
  185.  *   so that this move will be favored the next time the game is played.       *
  186.  *                                                                             *
  187.  *******************************************************************************
  188.  */
  189. void LearnValue(int search_value, int search_depth) {
  190.   int i;
  191.   int interval;
  192.   int best_eval = -999999, best_eval_p = 0;
  193.   int worst_eval = 999999, worst_eval_p = 0;
  194.   int best_after_worst_eval = -999999, worst_after_best_eval = 999999;
  195.  
  196. /*
  197.  ************************************************************
  198.  *                                                          *
  199.  *  If we have not been "out of book" for N moves, all we   *
  200.  *  need to do is take the search evaluation for the search *
  201.  *  just completed and tuck it away in the book learning    *
  202.  *  array (book_learn_eval[]) for use later.                *
  203.  *                                                          *
  204.  ************************************************************
  205.  */
  206.   if (!book_file)
  207.     return;
  208.   if (!learn || learn_value != 0)
  209.     return;
  210.   if (moves_out_of_book <= LEARN_INTERVAL) {
  211.     if (moves_out_of_book) {
  212.       book_learn_eval[moves_out_of_book - 1] = search_value;
  213.       book_learn_depth[moves_out_of_book - 1] = search_depth;
  214.     }
  215.   }
  216. /*
  217.  ************************************************************
  218.  *                                                          *
  219.  *  Check the evaluations we've seen so far.  If they are   *
  220.  *  within reason (+/- 1/3 of a pawn or so) we simply keep  *
  221.  *  playing and leave the book alone.  If the eval is much  *
  222.  *  better or worse, we need to update the learning data.   *
  223.  *                                                          *
  224.  ************************************************************
  225.  */
  226.   else if (moves_out_of_book == LEARN_INTERVAL + 1) {
  227.     if (moves_out_of_book < 1)
  228.       return;
  229.     interval = Min(LEARN_INTERVAL, moves_out_of_book);
  230.     if (interval < 2)
  231.       return;
  232.     for (i = 0; i < interval; i++) {
  233.       if (book_learn_eval[i] > best_eval) {
  234.         best_eval = book_learn_eval[i];
  235.         best_eval_p = i;
  236.       }
  237.       if (book_learn_eval[i] < worst_eval) {
  238.         worst_eval = book_learn_eval[i];
  239.         worst_eval_p = i;
  240.       }
  241.     }
  242.     if (best_eval_p < interval - 1) {
  243.       for (i = best_eval_p; i < interval; i++)
  244.         if (book_learn_eval[i] < worst_after_best_eval)
  245.           worst_after_best_eval = book_learn_eval[i];
  246.     } else
  247.       worst_after_best_eval = book_learn_eval[interval - 1];
  248.     if (worst_eval_p < interval - 1) {
  249.       for (i = worst_eval_p; i < interval; i++)
  250.         if (book_learn_eval[i] > best_after_worst_eval)
  251.           best_after_worst_eval = book_learn_eval[i];
  252.     } else
  253.       best_after_worst_eval = book_learn_eval[interval - 1];
  254. /*
  255.  ************************************************************
  256.  *                                                          *
  257.  *  We now have the best eval for the first N moves out of  *
  258.  *  book, the worst eval for the first N moves out of book, *
  259.  *  and the worst eval that follows the best eval.  This    *
  260.  *  will be used to recognize the following cases of        *
  261.  *  results that follow a book move:                        *
  262.  *                                                          *
  263.  ************************************************************
  264.  */
  265. /*
  266.  ************************************************************
  267.  *                                                          *
  268.  *  (1) The best score is very good, and it doesn't drop    *
  269.  *  after following the game further.  This case detects    *
  270.  *  those moves in book that are "good" and should be       *
  271.  *  played whenever possible, while avoiding the sound      *
  272.  *  gambits that leave us ahead in material for a short     *
  273.  *  while until the score starts to drop as the gambit      *
  274.  *  begins to show its effect.                              *
  275.  *                                                          *
  276.  ************************************************************
  277.  */
  278.     if (best_eval == best_after_worst_eval) {
  279.       learn_value = best_eval;
  280.       for (i = 0; i < interval; i++)
  281.         if (learn_value == book_learn_eval[i])
  282.           search_depth = Max(search_depth, book_learn_depth[i]);
  283.     }
  284. /*
  285.  ************************************************************
  286.  *                                                          *
  287.  *  (2) The worst score is bad, and doesn't improve any     *
  288.  *  after the worst point, indicating that the book move    *
  289.  *  chosen was "bad" and should be avoided in the future.   *
  290.  *                                                          *
  291.  ************************************************************
  292.  */
  293.     else if (worst_eval == worst_after_best_eval) {
  294.       learn_value = worst_eval;
  295.       for (i = 0; i < interval; i++)
  296.         if (learn_value == book_learn_eval[i])
  297.           search_depth = Max(search_depth, book_learn_depth[i]);
  298.     }
  299. /*
  300.  ************************************************************
  301.  *                                                          *
  302.  *  (3) Things seem even out of book and remain that way    *
  303.  *  for N moves.  We will just average the 10 scores and    *
  304.  *  use that as an approximation.                           *
  305.  *                                                          *
  306.  ************************************************************
  307.  */
  308.     else {
  309.       learn_value = 0;
  310.       search_depth = 0;
  311.       for (i = 0; i < interval; i++) {
  312.         learn_value += book_learn_eval[i];
  313.         search_depth += book_learn_depth[i];
  314.       }
  315.       learn_value /= interval;
  316.       search_depth /= interval;
  317.     }
  318.     learn_value =
  319.         LearnFunction(learn_value, search_depth,
  320.         crafty_rating - opponent_rating, learn_value < 0);
  321.   }
  322. }
  323.